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CANONICAL APPROACH TO CONSTRUCTING CONSTANTS
OF MOTION FOR NONLOCAL FIELD THEORIES

By W. GARCZYNSKI AND J. STELMACH
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A general method of derivation of conservation laws for non-local field theories si
presented. Differences in comparison with a local case are stressed. Two kinds of Lagrangians
appearing in a non-local theory are examined. Canonical choice of constants of motion
is made corresponding to the transformations from the confoimal and gauge groups.

PACS numbers: 03.50.Kk

1. Introduction

Motivating this work on the non-local field theory we would like to avoid repetition
of various arguments against existing local theories, and also to avoid avoking belief in
necessity to introduce somehow into a theory a parameter with dimensionality of length.
Instead, we shall adopt rather pragmatic point of view saying that one encounters non-
~local interactions when working with a field theory on a lattice. Replacing lattice values
of a field by its “quasicontinual representation” leads to non-local interactions, with
definite given formfactors {1, 2]. One may say that regularizing field theory by putting
it on a lattice one introduces nonlocality [3].

Another example of a non-local interaction of interest is obtained by solving the Gauss
law constraint in a non-Abelian gauge field theory [4].

The very next step in dealing with a non-local interaction consists of finding constants
of motion. This is precisely our problem which we discuss in this paper.

We follow, and develop it further, the variational approach to the problem outlined
some time ago by Rzewuski [5]. Another approach was proposed by Pauli at the same time
[6] and later by Marnelius [7].

Our derivation of conservation laws parallels Rzewuski’s. Its novelty lies in a final
selection of the constants of motion, out of an infinite family of them, by determining
unspecified functionals appearing in Rzewuski’s formulae. We believe that our derivation
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establishes the canonical way of constructing constants of motion for non-local field theories
of a type considered throughout the paper. The difference in comparison with local case
comes from the occurrence of two distinct Lagrangians in a theory — canonical and effective
ones. Their mutual interplay is a characteiistic feature of the method of constructing what
we call — canonical set of constants of motion. They are of the same form as the Noether
charges, and are expressed through the canonical Lagrangian while the effective one serves
for derivation of Euler-Lagrange equations of motion.

2. Basic definitions

We consider a class of non-local theories specified by the action functional

o

S(@) = ¥ s"(Q), @.1)
n=1
where S™(Q) is given by n-tuple integral over a region £ restricted by the space-like surfaces
o, < 0,40, lies earlier than 6,), and a time-like surface 2. The number n of integrations
is minimal in a sense that it can not be diminished by performing some integrations due
to a presence of singular functions in the integrand. In other words we assume that the
functions L™ appeating in the expressions

SU(Q) = [ dxy ... § dx,L™(x, ... X5 @, 8),
Q 2

dx = dx%x' ... dx® = dx°d"x (2.2)

should be smooth, and symmetric under the permutations of their arguments, in the case
one is dealing with a single multiplet ¢ of fields. We assume that x varies in the Minkowski
space Mp,, of D spatial dimensions. Restriction of each variable x; to the region 2 makes
the S™(Q) a non-additive functional for n > 1. This kind of action functional was treated
by Rzewuski (cf. [S]), while the case when only one variable is restricted to 2 was considered
by Marnelius (cf. [7]).

For the sake of simplicity we restrict our considerations to the case when L™ are
homogencous n-th order functionals of ¢ and d¢. Moreover, we assume that only local
part of the action functional, represented by SUX(Q), depends on derivatives of the fields
while higher order action functionals are the n-th order monomials in the fields only

LXy, o X3 @, 00) = L(x;, ooy X)@(%1) .. (X)), 1 =2 2.3)

and the formfactors L™(x,, ..., x,) are smooth symmetric functions. More general cases
may be treated without essential difficulties by the same method, which we shall illustrate
on the above class of non-local interactions.

Before considering the variational principle let us identify the rclevant Lagrange
functionals corresponding to the action functional. Namely, we define the n-th order
partial Lagrangians L™(x; Q) by the conditions

SPQ) = [ dx"(x;Q), n=12,... 2.4
2
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Due to the symmetry of integrands in (2.2) it is possible to identify the Lagrangians
Ix: Q) = LV[x: g(x). Eg(x)],s (2.3)
and for n - 2

Ix; Q) = Jdxy ... §fdx,- (L7(xy. oy Xpoq, 0)0(x7) - (x,— )g(x). (2.6)
2 (7]

Having the partial Lagrangians we define two global ones: the Canonical Lagrangian
L(x; Q) given by

Lix;@ = ) L"(x: Q) (2.7)
n= 1

and the Effective Lagrangian (x: Q)

Lix; Q) = Y nl"(x; Q). (2.8)
n=1
Clearly, they differ only when the non-locality occurs because of the multiplier n.
In order to formulate the variational principle we consider an infinitesimal variation
of ihe variables x and fields, depending on some continuous paramcters dwg, s = 1, ..., N,

’

x = x" = x+dx,

ox* = dx"w,. u=0,1,...,D, s=1.,N, (2.9
Plx) = ¢'(x) = p(x)+Ag(x), (2.10)

4p(x) = A q(x)do,, (2.11)

dp(x) = ¢'(x)=p(x) = [4’p(x)—6°x"0, p(x)]dw,. (2.12)

Following Rzewuski’s method we find for the total variation of the action functional the
expression

. ; 0L (x; Q) -
AS(Q) = S(Q)-S(Q) = *dx{ ST b i (xs Q) | Sg(x)
J ap(x)
0
+8,[n"(x; Q)0g(x)+ ox* L(x; Q)]} , (2.13)

where the canonical momentum z%(x; Q) is

0L (x; Q L‘” x; 0
(x; Q) = 021x: ) = 5 ). (2.14)
38,(x) 00,¢(x)
Assuming that 4S(2) does not depend on the variation d ¢ inside of the region €, (Stationary
Action Principle), one gets the equation of motion for the ficlds

of(\r Q)

~¢,m(x;82) =0 (2.15)
cp(x)
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for x varying inside of . Thus for any solution of the equation of motion one has the
equality
4S(Q) = Flo,; Q- Flo; Q1+ F[Z: Q], (2.16)

where the functional F[o; Q] is given by the formula

Flo; Q] = | do,(x) [n"(x; Qde(x)+5x"a(x; Q)] = F[a: Qéw, (2.17)

Here do,(x) is the oriented element of the surface ¢ around the point x. The dot above
the equality sign means that it holds on a solution of the equations of motion.
Further considerations depend on specific choice of the domain Q. We shall treat
in detail two particular cases. First, when the region 2 covers the whole space-time M, ,,
and second when it consists of a box Q = Vx T, where T is a finite time interval.

3. Conservation laws

A. The case Q = My,
Assume that the field equations hold throughout the whole space-time

oY u
- '—a“TE = 0 (31)
O
and define the charges as follows
Q'le]l = —F'[e] = [ da,j", (3.2)

where the currents are given by the formula
J4 = (X0, — Ap) - 6°x L. 3.3)
The charges Q°[o] depend, generally, on ¢ and thus are not conserved

00Te] _ sy = o
50_()‘_) = Uy, (’\ = Q(X)

~—

= (n"0,9— g",£L)0,0°x" — 0 (1" A°P) — 8°%"(0,F ) - (3.4)

The subindex *“ex” means the derivative with respect to an explicit dependence of #(x)
upon the x” variable. We use the Bjorken and Drell metric throughout the paper.

Integrating the last equalities over a region € bounded by the flat surfaces x° = r,,
x% =1, > t;, and a time-like surface 2, we obtain

§dx,j* = Q3(12) = 03(1)+ Q%) = | dx€, (3.5)

Q5
where
i1y = [ d®xj%(, %), (3.6)

-
|x| <X
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and
(%) = jda“j“s. (3.7)

v

Now, upon taking &' to space infinity, and assuming that in this limit the charges Q%(X)
vanish

lim Q%) =0, s=1,..,N, (3.8)
we get from (3.5) the equality
t2 12
jdx&uj’” = Q%1,)— Q%) = | dx@’, s=1,..,N. (3.9)

t i

For the symmetry transformations defined as follows

0= =0, s=1.N, (3.10)

the charges Q°(+) become familiar conserved Noether constants of motion, provided a theory
is local since in this case the effective Lagrangian entering j*° coincides with the canonical
Lagrangian appearing in the Noether charges. Generally, they are not conserved for arbi-
trary transformations (2.9)—(2.12) for which the functional Q° do not vanish. It is possible
nevertheless, following Rzewuski, to construct conserved charges also in this case. Namely,
it is clear that the following quantities are conserved on extrcmals

Q1. 1) = Q1) — [ dx@+4(v), (3.11)

provided that currents vanish sutficiently fast in the spatial directions
§dP0,j* =0, s=1,.,N (3.12)

and ¢°(7) are arbitrary functionals of the ficlds ¢, not depending on 7, and 7 is an arbitrary
but fixed parameter

1 .
;;7 Q.9 =0 s=1.,N (3.13)

Thus we obtain an infinite family of conserved quantities corresponding to given transfor-
mations of variables x and fields ¢. In the case of the symmetry transformations the charges
0%(t, 1) coincide, in the local case, with the Noether charges, up to the undetermined func-
tionals ¢°(1).

Since the tilded charges do not depend on the time we may simplify them by putting
t =T,

0°(1) = 01, V)=, = Q') +4°(x), s=1,..,N. (3.14)

The next task consists of selecting, out of this family of conserved quantities, some interest-
ing ones by a proper choice of the functionals ¢°(r), and the parameter 7. Befoie going
into the discussion of this question let us mention briefly the case when the demain Q is
restricted to a box V multiplied by a finite time interval T,
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B. The case Q = VxT

In the considered case the condition (3.8) is replaced by the requirement
2)=0, s=1,..,N, (3.15)

where the vanishing is due to the boundary conditions imposed on fields. The integration
region €5 is in this case a part of the initial region Q sclected by the two flat surfaces x° = ¢,
and x° = ¢, > t,, intersecting Q, t;,t, €T, and X' is the corresponding pait of a side
surface of Q. Adding the conditions

JdPx0 " =0, s=1,..,N. (3.16)

7
one gets the following charges

0%(1) = [ d°%(r, X)+qi{1), s=1,..,N. (3.17)
v

Thus one sees that both cases of an infinite and a finite region Q can be treated simulta-
neously. One has to remember only that domain of the integration in the last case is a finite
box.

The charges coincide with the Noether charges in the local case, when the currents are
conserved. We shall demonstrate that it is possible to choose the undetermined functionals
gy(t) in such a way as to get rid of the effective Lagrangian appearing in the currents, and
to obtain a set of canonical constants of motion. To be specific we shall consider the trans-
formations from the conformal and gauge group, and construct the relevant conserved
quantities. We shall list briefly the main ingredients of the construction in order to fix the
notations.

a) Translations:

oyxt=¢", u,v=0,1,..,D, (3.18)
Ay = 0, (3.19)
e T = e -, (3.20)
Qr =0, T" = —("%)ees (3.21)
P(x% = [ d°xT*(x)+ p'(x°). (3.22)
b) Lorentz rotations:
ofext = ghtx?— ghex? (3.23)
Aftp = T, (3.24)
JHO = MO = xOTH T — T g, (3.25)
8 M"0 = gt = (x* g0 —x°g"4) (8, L), + T — TH —8,(nZ ), (3.26)

M*(x%) = [ d°xM°O(x)+m*(x°). (3.27)



¢) Dilatations:

d — dimension of the field ¢,
jh = D" = —x,T" —n"de,

x4
al‘Du = QD = xv(avg)ex_ B_q; d‘P—”v(d‘*'l)av‘P"‘(D'f‘l)g,

D(x°) = | d®xD°(x)+d(x°).
d) Special Conformal Transformations:
OloneX" = x7g" —2x"x”,
Stont®@ = 2%,(&"d—2"")p+(2x"x" — %),
J o= KW =~ [(2x°x} — g x2) 0,9 +2x7d - o —2x,2" ] +(2x*x" — g"'x}) &,

QK" = Qlone = (X% = g"x7) (0,2)

. o
+2x; <7t’16"<p —nd*p+ ’(J"; e+ n"E’lvagq))

—2x" E% dp—(D+ 1)L+ d+ 1)5,1@] —2(d—m, "),
K'(x%) = | d°xK*(x)+ K" (x°).
e) Global Gauge Transformations:
d¢x* =0, a=1,..,N,
cp = —N.g,
[No Nol = ~faeNes  No= NP = =N,
fupe — real, antisymmetric,

Ja = "N.g,
0¥
aﬂjz = Qa = 6u(nuNa(p) = 6_ Na{p+n”Na0M(p,
@

0.(x%) = [ d’xja(x)+q,(x°), a=1,..,N.
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(3.28)

(3.29)

(3.30)
(3.31)

(3.32)

(3.33)
(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
(3.39)
(3.40)

(3.41)

(342)

(3.43)

The quantities p*(x°), m*(x°), d(x°), k"(x°), g.(x°) are so far unspecified functionals depend-
ing on fields. In the case of a field in a box all spatial integrations are restricted, and proper

boundary conditions are imposed.
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As always, the currents j*° are determined up to the gradients from some superpoten-
tials. Replacing the currents by new ones

J = 1 = 0, X0, (3.44)
XM= — X, (3.45)

and demanding that due to the proper behaviour of the superpotentials at the spatial
infinity, or due to the proper boundary conditions in a case of a field in a box, the following
conditions hold

jdPxe,x* =0 (3.46)

one gets the same charges from the new currents. Both currents have the same divergencies
due to the antisymmetry of the superpotentials. A typical example of a superpotential
is provided by the energy-momentum tensor 7*" which may be replaced by the Belinfante
tensor 0"

0% = TH -9, 1", (3.47)
where the superpotentials /™ ** are
fv,i-u = %(7‘5"2}'"—7:;'2”—71"2”) — _fv,uz' (3.48)

In the same way as in the conformally invariant local case one may “improve” the tensor
0" by adding another divergenceless term, and thus obtain simpler expressions for the
currents D* and K*', [8-10].

4. Conservation laws in a theory which is local in the time variable

Upon removal of a lattice from the time axis one obtains a theory which is local in
time while remaining non-local in the spatial variables. In such a case it is possible to
introduce the Hamilton formulation in the terms of the independent canonical variables

P(x°, X) = p(x)

and
- 0L
n(x°, X) = n(x) = 1°(x) = — (x) (4.1)
dp(x)
with x° — fixed. Taking for the Hamiltonian the functional
H(x%) = P°(x°) = | d®x(np— L)+ p°(x?), 4.2)
and imposing the Hamilton equations
dH(x) .
= ) 4.3
o) P(x) 4.3)
dH(x° .
)+ i, 4.9
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where So means a total functional derivative in contradistinction to the partial derivative
4

o
5o which takes into account only explicit dependence of H upon the ¢, one obtains the
@

following equations on the functional
dp°(x°)
on(x)

dp°(x°%) | S B » b OLV(xy, o Xy gy X5 @)
5p() z n(n I)Jd Xy .. Jd Xp—1 Py oo (4.6)
n=2

One can solve the equations rather easily taking into account the condition (2.3). In a general
case one may use the general method for a restoration of a functional from its functional
derivatives [11]. We obtain

P°(x%, @) = [ dPx[L(x)~ L(x)]+p°(x°, 0), 4.7

where p°(x°, 0) is an additive constant, not depending functionally on fields, which we shall
omit. Therefore, we get finally for the Hamiltonian the expression

H(x°) = [ d®x[n(x)p(x)— L(x)] = PAx°). 4.8)

Thus we arrived at the canonical form of the Hamiltonian corresponding to a given cano-
nical Lagrangian L. Hinted by this result we select the unknown functionals in such a way
as to get rid of the effective Lagrangian % from the charges. Resulting charges we call the
canonical ones. Let us list them all in the same notations as before, and in the same
sequence:

=0, (4.5)

a) T = n*d’p—g"L, (4.9)
8,T¢ = —(0"L)es (4.10)
Py = [d°xT = [ d°x(nd"@—g™L). @11
b) MO = xeTE X TE —n"E 0, (4.12)
0,MEOD = (x*g"® —xg"") (8,L)+ T& — T — 0, (n"E%¢), (4.13)

Mg = [ d°xM2*® = [ d°x[x%(né*p—g®’L)
—~x}nd®p— g%L)—nI %], (4.14)
[2%, %] = gizhe gi5™e — ghext —grepth, (4.15)
c) L= —x, T —n"de, (4.16)
£ = x"(0,L)— or dtp m(d+1)3,9+(D+1)L, (4.17)

D¢ = [d°xD? = jd”x[—n(x46‘¢+d<p)+x°L], (4.18)
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d) K& = TE(g"x* - 2% + 2,0 — g d)g (4.19)

3,KE = (2x"x* — g"x%) (8,L)ex
Aav val oL Av iv
+2x, | ' p—n"0 @+ b_z o +n2"d,p
?

oL ;
—2x" [a— do—(D+1)L+n*(d+ 1)6&] = 2n"d—m,ZM)g, (4.20)
?

K¢ = [ dPKQ = | d°x{n[(g"x* —2x"x")0,¢

+(2x, 24 = 2x"d)p] +(2x"x° — gx?)L}. (4.21)

€) Joe = T"N,9, (4.22)
B . oL u - u

Opfac = 39 Nap+7"N,0,9 = 0,(n"N,9), (4.23)

Q. = [ d°jS = [ d®xnN . (4.24)

Hence, the canonical charges are constructed exactly in the same way as the Noether
charges in a local field theory. We advocate the above choice of charges also in a general
case of non-local interactions, also in the time variable.

It is not difficult though rather tedious task to compute the Poisson brackets between
various canonical charges. Namely defining the usua! Poisson brackets

" ) - ZJ Py (5 dAF dG_ dF dAG ) 425)
- ¢ (x) 0my(x)  Omu(xX) 59 (%)/|x0-tix.
we find omitting the subscript C at the charges
{PY, p(x)} = —d"p(x) = Shp(x), (4.26)
{M*, p(x)} = (x*0°—x°0*+Z*)p(x) = 6{°p(x), 4.27)
D, p(0)} = (d+x,8")p(x) = Spp(x), (4.28)
{K" o)} = (2x"x" = g"'x*)3,9(x) +2x,(8""d = Z")p(x) = Slourp(x),  (4.29)
{20 ()} = —Nog(x) = 559(x). (4.30)

As the examples of the Poisson brackets between the charges we shall mention the following
ones

{P*, P} = [ d°x(g°"0, T~ g*3,T™) = [ d°x[¢*(0"L)x— 70" L)ex]. (431
{P’, D} = —P'—g” [ d’x0,D*—x° | d®xa,T", (4.32)
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{Pv’ Qa} = _gOV j dDX@ijs (433)
{D, Q,} = x°{ d"d,j4, (4.34)
{00 Q) = —farQe- (4.35)

Generally, besides usual terms one gets additional ones which vanish in the local limit.

5. Conditions for a non-local theory to be invariant under the transformations from the
conformal group

Let the region of integration £ covers the whole space-time. The total variation of the
action functional under the infinitesimal transformations (2.9)-(2.12) is equal to

A4S = [ dxSL = dw, | dx5°L, G.1
where

-~

0%
J dxS°L = J dx ['an" (Asq,—5Sx“a,‘¢)—n”av(As¢p—5‘x"au<p)] : (5.2)

Assuming that terms of the form of a total divergence do not contribute to the action
variation, we demand that remaining integral vanish. Thus we obtain the criteria for
vanishing of the total variation of the action functional under the given transformation
of fields and space-time variables. For instance, assuming that

fdxo*2 =0, (5.3)
we obtain as the condition for a theory to be translationally invariant
Jdx(0* L)y = 0. 54
Similarly, if the integrals vanish
§ dxd,[(g"x* - g"*x) 2] = 0, (5.5)

then the condition for a theory to be Lorentz invariant is
.f dx[xl(aag)ex - xo(alg)ex]
0¥
= f dx [-5; z"@wn"z’*a“wn‘aﬁp—nea‘q)}. (5.6)

For a theory which in addition possesses Lorentz invariant formfactor, the left hand side
vanishes. In the same way a theory satisfying the condition
fdxo,(x"&) = 0, 5.7

is dilatationally invariant if the following equality holds

oL
de [— dop+n"(d+1)8,¢—(D+ 1)L ——x“(&,l,%’)“] = 0. (5.8)
dg
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Finally, if a theory is such that
§ dxa [x’x*—g"x) 2] =0 (5.9

it is conformally invariant when the necessary and sufficient condition is fulfilled
1 V.4 VA_2y A [ v 0L V3
+ ) dx(2x"x* — g"'x%) (6;8)ex = { dx{x $d<p+n d+1)o,p—(D+1)Z

0L . .
—2x, [a— I+ nEM0,p+ 1t g — n‘ahp] + V"} , (5.10)
@

where V" is so called a virial of the field
V¥ = n(g"d—-Z*")¢. (5.11)

In the local case the condition (5.10) simplifies for a theory which is in addition translatio-
nally and rotationally invariant. For non-local theories the integral form of the condition
renders such a simplification impossible. The effective Lagrangian & rather than the cano-
nical one L plays crucial role in the above symmetry considerations.

Applications of the formalism to the quasicontinual representation of a lattice field
theory will be given elsewhere.

One of the authors (W.G.) thanks Professor C. Cronstrém for the useful discussion
on related topics during the 18-th Winter School of Theoretical Physics at Karpacz, Fe-
bruary 1981. Both authors thank Professor J. Rzewuski for several discussions on the
subject.
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