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Abstract. The present study reveals interesting constraining effects of isospin

filtering reactions on the low energy constants present in meson-baryon chiral

effective Lagrangian, particularly, on the next-to-leading order constants. Our

model has been developed within the framework of Unitarized Chiral Pertur-

bation Theory and has been fitted to two-body scattering data in the sector of

S = −1. In addition, the model was further elaborated by means of the inclusion

of high-spin hyperonic resonances.

1 Introduction and formalism

The plausible explanation of the Λ(1405) resonance as a molecular state arising from cou-

pled channel meson-baryon re-scattering in the strangeness S = −1 sector employing the

lowest order chiral Lagrangian is one of the most important successes of Unitarized Chiral

Perturbation Theory (UChPT). This scheme consists of a non-perturbative sum of properly

arranged topologies derived from an effective chiral Lagrangian. Such a Lagrangian is basi-

cally a momentum expansion whose building blocks preserve the same symmetries as Quan-

tum Chromodynamics (QCD). Being more precise, the unitarization in coupled channels is

implemented by solving the Bethe-Salpeter equation (BSE) which, although it is defined as a

complex system of integral equations, can be converted into a system of algebraic equations

by means of the on shell factorization [1] giving the final expression: Ti j = (1 − VilGl)
−1Vl j.

Here, Ti j stands for the scattering amplitude which conects the incoming i-channel with the

outgoing j-channel, and Gl is the loop function solved employing dimensional regularization.

Finally, Vi j, the interaction kernel, is derived from the chiral Lagrangian whose leading or-

der contribution gives rise to the Weimberg-Tomozawa (WT) term and to the meson-baryon

vertices needed to build the Born diagrams.

L(1)
φB = i〈B̄γμ[Dμ, B]〉 − M0〈B̄B〉 − 1

2
D〈B̄γμγ5{uμ, B}〉 − 1

2
F〈B̄γμγ5[uμ, B]〉 , (1)

where M0 is the common baryon octet mass in the chiral limit. The constants D, F denote

the axial vector couplings of the baryons to the mesons. B is the baryon octet field and the

symbol 〈. . . 〉 stands for the trace in flavour space, while the pseudoscalar meson octet field φ

enters as: uμ = iu†∂μUu†, where U(φ) = u2(φ) = exp
(√

2iφ/ f
)
.
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Despite this theoretical breakthrough, the aim for more precise calculations led the com-

munity to extend this approach with the inclusion of higher order terms and to explore higher

energies. In particular, to compute the next-to-leading order (NLO) contributions of the La-

grangian in S wave one can use the prescription:

L(2)
φB = bD〈B̄{χ+, B}〉 + bF〈B̄[χ+, B]〉 + b0〈B̄B〉〈χ+〉 + d1〈B̄{uμ, [uμ, B]}〉

+d2〈B̄[uμ, [uμ, B]]〉 + d3〈B̄uμ〉〈uμB〉 + d4〈B̄B〉〈uμuμ〉 , (2)

where χ+ = 2B0(u†Mu† + uMu) breaks chiral symmetry explicitly via the quark mass

matrix M = diag(mu,md,ms) and B0 = − 〈0| q̄q |0〉 / f 2 relates to the order parameter of

spontaneously broken chiral symmetry, with f being the pseudoscalar decay constant in

the chiral limit. The coefficients bD, bF , b0 and di (i = 1, . . . , 4) make up the low energy

constants (LEC) set at this order. As these parameters are not fixed by the symmetries of the

underlying QCD theory, the fitting procedures to the experimental data play a key role.

In previous studies, the relevance of the NLO terms [2] as well as the Born terms [3] of

the chiral S U(3) Lagrangian for the KΞ channels was proved establishing the experimental

K−p → KΞ cross-section data as a very important ingredient to obtain more reliable values

of the NLO parameters. The main novelty in [3] with respect to [2] was the systematic

addition of the u- and s-channel diagrams to a kernel consisting of WT term and the NLO

one. As an obvious consequence, very different parameterizations for the NLO LEC were

obtained. But, paradoxically, both reached very similar goodness in order to describe the

experimental data. The analysis of the isospin components of the K−p → KΞ cross-section

for these LEC sets in [3] showed very dissimilar isospin-distribution patterns, a fact that

clearly points out the need to explore reactions acting as isospin selectors by means of

which more realistic values of NLO LEC are obtained. Therefore, motivated by the previous

findings, we have performed a new fit that includes additional experimental data from the

reactions K−p → ηΛ, ηΣ0 which proceed via single I = 0 and I = 1 component respectively.

Likewise, the secondary K0
L beam, at K-Long Facility for JLab, on liquid hydrogen might

induce pure isovector reactions. Among them, the K0
L p → K+Ξ0 process is specially

interesting given its sensitivity to the NLO terms. Thus, the measurement of such a cross

section could provide very valuable information. To check the predictive capacity of the

model, we include a prediction for the corresponding total cross section.

Like in [2], the inclusion of additional high-spin and high-mass resonances plays a double

role: it improves the description of the experimental cross sections and, additionally, it allows

us to study the stability of the NLO coefficients. In this study, Λ(1890),Σ(2030) and Σ(2250)
(with JP = 7/2+, 5/2− and 3/2+, respectively) have been incorporated into the channels

estimated to be sensitive to the NLO terms, namelly the K̄N → Y → KΞ (ηΛ) processes.

These transition amplitudes have been implemented adopting the Rarita-Schwinger method

that permits building resonant amplitudes from effective lagrangians, which allow one to

couple 1/2 spins with the higher ones by means of tensorial structures [4]. Eventually, the

scattering amplitudes are then rewritten according to the following prescription:

Ti j = T BS
i j +

∑

Jπ
T Jπ

i j , (3)

where T BS
i j is the scattering amplitude obtained from the chiral lagrangian and unitarized by

means of the BS equation, while T Jπ
i j accounts for the corresponding resonant term with Jπ

quantum numbers, which take the values Jπ = 3/2+, 5/2−, 7/2+ for the K−p → K0Ξ0,K+Ξ−
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processes while for the K−p → ηΛ one, only the Λ(1890) resonance (Jπ = 3/2+) is imple-

mented.

2 Results and discussion

b0 (GeV−1) bD (GeV−1) bF (GeV−1) d1 (GeV−1) d2 (GeV−1) d3 (GeV−1) d4 (GeV−1) χ2
d.o.f.

WT+Born+NLO 0.13 ± 0.04 0.12 ± 0.01 0.21 ± 0.02 0.15 ± 0.03 0.13 ± 0.03 0.30 ± 0.02 0.25 ± 0.03 1.14
WT+Born+NLO+RES −0.07 ± 0.01 0.13 ± 0.01 0.27 ± 0.02 0.14 ± 0.03 0.13 ± 0.01 0.40 ± 0.02 0.02 ± 0.02 0.96

Table 1. Values of the NLO parameters and the corresponding χ2
d.o.f., defined in [2], for both fits.

Bearing in mind our previous findings, we have carried out two different fits. On the

one hand, the WT+Born+NLO fit corresponds to a unitarized calculation employing an

interaction kernel built from Eqs. (1) and (2). This is to say, a model that depends on 16 fitting

parameters: the pseudoscalar decay constant, the 2 axial vector couplings, the 6 subtraction

constants showing up in the dimensional regularization, and the 7 NLO low energy constants.

On the other hand, the inclusion of the resonant contributions described by Eq. (3) results in

the WT+Born+NLO+RES fit. These phenomenological terms involve 13 new parameters

on which, for brevity, we omit thorough information. The same large amount of K−p elastic

and inelastic cross section data has been taken into account for both procedures, as well as,

branching ratios at threshold and the precise SIDDHARTA value of the energy shift and width

of kaonic hydrogen. For more specific details, see [5].
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Figure 1. K−p → ηΛ, ηΣ0,K+Ξ−,K0Ξ0 total cross sections for the WT+Born+NLO fit, with its error

bands (gray area) estimated as specified in [5], and for the WT+Born+NLO+RES fit. Experimental

data has been taken from [6–16].
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The NLO coefficients corresponding to the WT+Born+NLO fit are displayed in Table 2,

from which we can appreciate a notable homogeneity in their values, especially, if we

compare them with those of [2, 3]. This fact underpins the idea that the use of experimental

data coming from isospin filtering processes promotes the reliability of LEC. From the

comparison between rows of Table 2, one can note an overall stability. The constants with

small variations are those that are present in the NLO couplings of the processes being

analyzed (Table VIII in [2]), while b0 and d4 only show up in elastic processes which are not

directly taken into account in the driving terms of the amplitude needed to fit the present data.

Another eye-catching feature in Table 2 is the remarkable 16% improvement in the

χ2
d.o.f. when the resonant amplitudes are incorporated. This fact is clearly reflected in

Fig. 1, where only the total cross sections sensitve to NLO are represented. The top panels,

corresponding to the cross sections of the η channels, show the good agreement with data

reached by both models which are able to reproduce, for instance, the resonant structure

of the Λ(1670) seen in K−p → ηΛ. It should be mentioned that WT+Born+NLO+RES
(dashed line) does a better job in describing the experimental K−p → ηΛ cross section in the

energies ranging from 1850 to 2200 MeV because of the explicit inclusion of the Λ(1890)

resonance. This resonance is also relevant to improve the reproduction of the K−p → K0Ξ0

cross section (left bottom panel) above threshold, where WT+Born+NLO (solid line)

overshoots the scattering data slightly. The combined effect of the Σ(2030) and Σ(2250)

resonances provides a clear bump structure reaching its maximum at around 2100 MeV.

The WT+Born+NLO model presents a good agreement with data within the whole energy

range for the K−p → K+Ξ− cross section. There, the resonant terms interfere destructively,

resulting in a slight reduction of strength around the maximum. Finally, in Fig. 2, we present

a prediction for the K0
L p → K+Ξ0 cross section whose experimental measurement could

contribute to a better knowledge of the NLO LEC.

Figure 2. Total cross sections of the K0
L p → K+Ξ0 reactions for both models. The experimental points

of the I = 1 K−n → K0Ξ− reaction, taken from [17, 18] and divided by two.
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