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CHAPTER I

Introduction

String theory was originally formulated to describe the observed spectrum of higher

spin mesons. While this initial description of mesonic excitations as string-like objects

eventually failed, the realization that string theory actually contained in its description a

spin-2 excitation which can be identified with the graviton led the way for many important

works attempting to use string theory as a UV complete description of the world – leading

to many important discoveries in physics as well as mathematics along the way. While

this program is still a work-in-progress, an astounding feature has become apparent which

relates string theory to quantum field theories in a very fundamental way. Relying on

the properties of D-branes – extended objects in superstring theory on which open strings

end – a duality became apparent relating string theory in the presence of D-branes to the

field theories residing on the D-brane world-volumes. The discovery, which was brought

to the forefront of modern physics by the construction due to Maldacena of the AdS/CFT

correspondence [138], and was made precise in [96, 175], has led to many surprising and

interesting relations between quantum field theories and classical theories of gravity in an

anti de-Sitter background. The relation in its most useful regime relates classical string

theory to the strong coupling regime of certain QCD-like quantum field theories, thus in a

sense reviving the original motivations for constructing string theory.

In its original and most rigorously studied formulation, the AdS/CFT correspondence
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relates type IIB superstring theory in an AdS5 × S5 spacetime, which arises as the near-

stack limit of N D-branes, to N = 4, SU(N) super Yang-Mills (SYM) theory in four-

dimensions. Much work over the past 15 years in the high energy physics community has

focussed on investigating this correspondence, both by performing tests of the duality and

by formulating generalizations and constructing further examples of dual systems. For

reviews see [3, 64] as well as many others.

This correspondence may seem surprising so let us make a quick necessary check on

this proposed duality. If the duality is true, it must be the case that the global symmetries

on either side are the same. First, on the string theory side, the background geometry is

AdS5 × S5 which has isometry group given by SO(4, 2)× SO(6); this is straightforwardly

seen because S5 and AdS5 are naturally seen as maximally symmetric solutions embedded

in R6 with euclidean and (−,−,+,+,+,+) signature, respectively. In the gauge theory,

N = 4 SYM is a super-conformal theory in four-dimensions and conveniently SO(4, 2) is

precisely the conformal group in four-dimensions. Also, being an extended supersymmetric

theory the R-symmetry group of the field theory is given by SU(4) which is isomorphic

to SO(6). Therefore we can identify the conformal symmetry and R-symmetry in the

gauge theory with the symmetry groups of AdS5 and S5, respectively. So indeed the

global symmetries on each side of the correspondence match. In fact the statement above

extends to the full symmetry group. Including fermionic generators, the group of spacetime

isometries is extended to PSU(2, 2|4) which is also the full super-conformal algebra in four-

dimensions.

To put the duality more precisely, the correspondence equates the full string theory

partition function in the AdS5 × S5 background to the partition function of the dual

quantum field theory. The correspondence relies on making the following identification of
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parameters,

(I.1)
L4

α′2
= 4πgsN, 4πgs = g2

YM .

Here L is the radius of the AdS5 and the S5, α′ is the square of the string length, `s,

(or the inverse of the string tension), gs = eφ is the string coupling constant, and gYM

is the Yang-Mills coupling constant. Note that L, α′, and gs are all defined in the string

theory and gYM is a quantity in the SYM theory. The parameter N is defined on each

side of the correspondence: as the number of D3-branes in the string theory setup and

the rank of the gauge group in the field theory. The utility of the correspondence takes

full effect in a particular limiting case in which we take N � 1 while holding the ‘t Hooft

coupling, λ = g2
YMN , fixed. This ensures that we can treat the string theory perturbatively

since we must have gs small for λ to be fixed in the large-N limit. Furthermore, in order

to retain computability in the string theory it is convenient to take λ large as well; this

corresponds to taking the classical approximation which is seen as follows. Rewriting (I.1)

as L/`s = λ1/4, we see that the large λ limit ensures that the AdS-radius, L, is much

larger than the string length, `s. In this sense a supergravity approximation is justified.

Therefore, in its simplest form, we have a duality which maps string theory in the small

gs and α′ limit to a gauge theory in the large N and strong coupling, λ, limit. It is thus

a weak/strong duality, where strong coupling in the gauge theory is described by weak

coupling in the string theory. In this limit the duality has been tested many, many times

and the expectation is that the duality holds to all orders. However, supporting evidence of

the duality outside of the regime described above is still a rather ripe area for exploration

and the applicability of the duality outside this regime is technically still an open question.

It is therefore useful to explore probes of the duality which venture away from the large-N

and large-λ limits.

Most studies of the AdS/CFT correspondence have focussed both on the canonical
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example of AdS5×S5 (or various other simple cases such as M-theory on AdS4×S7) and on

the parameter regime described above. The focus of the present thesis is in understanding

deviations from both of these regimes. First, we will focus on the inclusion of what are called

higher derivative corrections to the bulk action. These take the form of four-derivative (or

higher) terms which correspond to either finite λ or finite N corrections to the setup

described above. In this sense these higher derivative actions can be viewed as effective

theories descending from string theory. The other aspect which we will probe in this thesis

concerns modifications of the internal manifold, both by replacing the five-sphere with a less

symmetric space and by deforming the differential structure by allowing for deformations

of the internal metric by fields which depend on the space-time coordinates. Before moving

on to the results proper, we first give an overview of the types of systems which will be

analyzed in this thesis and highlight some of the main results.

1.1 Higher derivative Lagrangians as effective theories

The bosonic sector of the low-energy effective action of type II string theories and M-

theory is described by a metric coupled to various p-form field strengths. When reduced to

lower dimensions these theories generically lead to matter coupled supergravity theories.

In particular, focussing only on the gravitational sector, the low-energy five-dimensional

lagrangian typically takes the following effective form:

(I.2) L = R+
∑
m=1

ζm(R)m+1,

where (R)m+1 represent terms involving 2(m+ 1) derivatives acting on the metric and ζm

is a coupling constant of dimension (length)2m. In this work we will focus on the lowest

corrections to the Einstein-Hilbert term, so m = 1, which corresponds to curvature-squared

corrections. These can be thought of in two ways, depending on the ten-dimensional origin

of these terms. From the effective string theory action point of view they can be thought of
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as ζ1 ∼ α′ ∼ `2s corrections, or from an alternative perspective they can correspond to finite

N corrections, such that ζ1 ∼ L2/N . It has been known for some time that, by expanding

the tree-level string scattering amplitude in powers of momenta, the first corrections to the

IIB action show up at order α′3, or fourth-order in the Riemann curvature [94, 92, 74]. As

such it seems likely that these Riemann-squared terms enter as the latter type of correction

– i.e. they are 1/N corrections. This expectation has been verified by relating the coefficient

of these terms to the R-currect and Weyl anomalies in the gauge theory via holographic

anomaly matching as will be discussed in more detail in the relevant section.

1.2 Consistent truncations of Kaluza-Klein theories

The low energy limits of type IIA/B string theory and M-theory correspond to IIA/B

ten-dimensional supergravity and eleven-dimensional supergravity respectively. To make

connection with realistic physics it is therefore prudent to reduce these theories to an

effective lower dimensional theory, a process known as Kaluza-Klein reduction. In this

procedure one decomposes the full (D + 1)-dimensional space-time manifold as a product

of a (d+ 1)-dimensional space-time manifold and a (D − d)-dimensional compact internal

manifold. The fields in the full theory are then decomposed as products of (d + 1) di-

mensional fields and a complete set of fields on the internal manifold. The complete set is

usually obtained by writing the internal dependence of the fields as a sum over harmonic

functions and forms on the internal space.

The classic example of this program is the decomposition of a gravitational theory in

(D+1)-dimensions on a circle. Consider the Einstein-Hilbert action in (D+1)-dimensions,

(I.3) S =
1

16πGD+1

∫
dD+1x

√
−g R.

Following the above discussion we take the compact circle direction to correspond to y ≡
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xD+1 and decompose the metric as follows,

(I.4) ds2 = GMNdx
MdxN = e2aΦgµνdx

µdxν + e2bΦ(dy +Aµdx
µ)2,

where the fields gµν , Aµ, and Φ depend on all coordinates.

Since we are decomposing the fields on a circle we can simply expand the y-dependence

of these fields on a complete set of functions on the circle; this is similar to a Fourier

decomposition. Explicitly we have,

(I.5) X(xµ, y) =
∞∑

n=−∞
Xn(xµ)e2πiny,

where X(xµ, y) represents any one of the fields defined above and Xn(xµ) are essentially

Fourier components. Thus far, the reduction is completely general. We can then think of

the Fourier components

(I.6) Xn(xµ) =

∫ 1

0
X(xµ, y)e−2πinydy

as representing fields in the lower dimensional theory.

Returning to the theory of interest, it turns out that the components of the (D + 1)-

dimensional Einstein equation reduce to an infinite tower of equations describing the n = 0

massless sector as well as higher modes with masses proportional to n2/R2. If we take the

limit R→ 0 the massive modes become infinitely massive so we can remove them from our

spectrum. Essentially, it would take an infinite amount of energy to excite these modes

so that they become non-dynamical and it is consistent to set them to zero. We thus

arrive at a theory consisting of massless fields gµν , Aµ, and Φ – in one lower dimension.

The truncated theory thus contains simply a massless graviton, a massless U(1) gauge

field and a massless scalar, complete with D-dimensional diffeomorphism and U(1) gauge

invariance, both descending from diffeomorphism invariance in D + 1-dimensions. So we

have conveniently removed two potential issues in one step: by making the radius small we
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have simultaneously removed an infinite set of massive modes from the theory, while also

making the extra dimension very small, roughly unobservable.

There is an important point to make here; in the above we have implicitly performed

two steps. First, by performing the circle reduction we are able to separate the fields into

two sectors corresponding to their charge under the U(1) gauge symmetry of the massless

gauge field; the massless fields – corresponding to the zero modes on the circle – are the

U(1) neutral sector, and the massive fields are the charged sector. At the classical level it is

consistent to set the charged fields to zero. This can be seen as follows: the charged fields

must occur in a U(1) neutral combination in the Lagrangian and so must enter at least

quadratically in any coupling – of note, in any terms containing a neutral field. Therefore,

at least classically, it is fully consistent to set the fields in the charged sector to zero and

truncate to the massless sector of the theory while fully satisfying the equations of motion.

The second step we have performed is the limiting procedure R→ 0. This has the further

effect of completely decoupling the massive – U(1) charged – fields in the effective field

theory at scales smaller than 1/R as they can be integrated out of the spectrum. In this

sense, the truncated theory should be well behaved even at the quantum level. We will see

that this decoupling is not so easily achieved in more complicated reductions.

The first step described in the preceding paragraph is the simplest and most trivial

example of the concept of a consistent truncation. A consistent truncation is a reduction

of the Lagrangian to a lower dimensional Lagrangian system such that the equations of

motion derived from the lower dimensional theory solve the higher dimensional system

of equations. Any solution of the truncated theory is necessarily a solution to the full

higher dimensional theory. The simplest way to achieve this is to restrict the fields to

simply not allow for dependence on the internal coordinates. For manifolds with a group

structure, this corresponds to a truncation to the singlet representations of the group or
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an appropriate subgroup.

A less trivial example of this process is that of reducing IIB supergravity on a five-

sphere. The field content of IIB supergravity is described in detail in section 4.2. The

general Kaluza-Klein reduction of this theory is quite complicated. However, the entire

Kaluza-Klein spectrum has been worked out to linearized order for the case where the

five-dimensional space is assumed to be AdS5 × S5 in [124, 104].

Although it is quite a bit more complicated, it is consistent to perform the first step

detailed above to this case and truncate the Kaluza-Klein reduction to appropriate singlet

(uncharged) modes on the five-sphere. The simplest truncation here is to complete singlets

on the five-sphere; this is the equivalent of the circle reduction above – you only keep

modes which have no internal dependence at all. In this thesis we will demonstrate a

slightly more non-trivial truncation which is appropriate for any Sasaki-Einstein manifold,

the five-sphere being a special case.

Due to the non-zero curvature of the Sasaki-Einstein manifold these truncations are

slightly different in spirit from the simple circle reduction described above. For the circle

reduction we can set the radius, R, of the circle to be very small. This had the effect of

giving very large masses to all of the higher Kaluza-Klein modes and so at energies far

below the scale 1/R these modes will not be important in the effective theory and so are

completely decoupled. However, for the reduction of IIB on the five-sphere (or a generic

Sasaki-Einstein five-manifold) even the lowest KK modes are not massless, but have a mass

proportional to the inverse-radius 1/L of the five-sphere. Furthermore, recalling that this

theory is an effective theory descending from string theory, taking the limit EL→ 0, where

E is the energy scale of perturbations, is essentially taking L/
√
α′ → 0 so we actually move

away from the regime where the supergravity approximation is valid and stringy/quantum

corrections become important. Thus, a simple L→ 0 limit cannot be performed to decouple
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the higher KK modes.

We will present a consistent truncation of IIB on a Sasaki-Einstein five-manifold. This

class includes the five-sphere as a special case. A (2d + 1)-dimensional Sasaki-Einstein

manifold is defined such that the cone metric over it is Kahler and Ricci-flat, i.e. it is a

Calabi-Yau-(d+1) manifold with metric given by

(I.7) ds2(CY6) = dr2 + r2ds@(SE5).

Additionally, many Sasaki-Einstein manifolds can be generically thought of as a U(1)

fiber over a complex d-dimensional Kahler-Einstein base space. As described in section

4.2 these Sasaki-Einstein manifolds possess an SU(2) structure group which is inherited

from the Kahler-Einstein base. Decomposing the IIB field content on singlets of this SU(2)

structure group ensures the consistency of the truncation. The details we leave for the bulk

of the thesis, but the main point is that the SU(2) structure defines a set of differential

forms which form a closed set under the appropriate multiplication operations and under

differential operations – pragmatically this is what guarantees consistency.

For the special case of the five-sphere, the truncation can be seen most easily from

a group theory perspective. We first note that the isometry group of S5 is SO(6) ∼=

SU(4). The truncation presented herein follows by restricting to singlets on a transitively

acting subgroup of SU(4). In this case it corresponds to SU(3) ⊂ SU(4). Any SU(4)

representation can be decomposed into representations of SU(3) × U(1); the truncation

retains only singlets of the SU(3) factor in this decomposition. Note that this global

symmetry of the five-sphere is unrelated to the SU(2) structure described above which is

related to the differential structure and is universal to all Sasaki-Einstein manifolds.

The truncations presented in this thesis will thus satisfy the first criterion we described

in the circle reduction – solutions to the truncated theory will correspond to classical so-

lutions of the full higher dimensional theory. However, we will not determine the stability
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of these solutions as we are not able to systematically remove the other modes from the

theory in an effective field theory sense. It is thought that truncations which preserve

some amount of supersymmetry will in fact be stable to perturbations. However, a careful

check of stability should be performed. An analysis of the stability of similar truncations

of eleven-dimensional supergravity has been performed in [21] verifying the stability of var-

ious supersymmetric truncations while also demonstrating that some non-supersymmetric

truncations are actually unstable to perturbations – specifically, certain scalar perturba-

tions have a mass below the Breitenlohner-Freedman bound [23, 24] which governs the

stability of scalar fields in an AdS background.

The generic reduction of IIB supergravity on S5 corresponds to an N = 8 maximally

supersymmetric theory in five-dimensions. The truncations discussed herein break N = 8

generically to N = 4 and for the special cases we will consider to N = 2. The dual

field theory thus also has reduced supersymmetry and corresponds to certain N = 1 SYM

theories. In this sense these truncations can be thought of as further examples of AdS/CFT

with reduced supersymmetry. Furthermore, these systems have been of recent interest

in constructing holographic duals to certain condensed matter systems by allowing for

nontrivial scalar condensates and also more drastic deformations which result in four and

five-dimensional geometries with anisotropic scaling.

1.3 Looking forward – gauge/gravity duality as a general principle

The ideas involving the AdS/CFT correspondence described above pertain to very spe-

cific cases within a more general paradigm which has come to prominence in the past few

years. The idea that a theory of gravity and a gauge theory in one lower dimension are

really two descriptions of the same physics seems to be very robust. Many intriguing results

have been established linking phenomena in both descriptions to each other – holographic

descriptions involving aspects of superconductors and the quark-gluon plasma have been



11

developed along with more technical results involving gravity duals to quiver gauge theo-

ries to name a few examples. While these ideas have been motivated by and are on their

firmest footing within string theory, many of the phenomenological results are independent

of explicit string theory constructions. This seems to lead one to conclude that certain

strong coupling regimes of particular gauge theories have a completely equivalent descrip-

tion as a theory of gravity with appropriate matter content, independent of string theory.

Even given this universality, it is of importance to study both avenues.

From one perspective the phenomenological approach to gauge/gravity duality is very

enticing and will be the most likely route to a description of “real world” physical systems.

It also provides a glimpse towards a potential understanding of quantum gravity in the

following sense. If they truly are equivalent theories, the quantum description of physics

in these geometries should be given simply by the dual gauge theory – understanding

this equivalence precisely will hopefully lead to many insights into the correct quantum

description of gravity. On the other hand, string theory has provided many insights into

gauge/gravity duality and will continue to be the most robust tool in these investigations.

A true understanding of the nature of these dualities and ultimately of quantum gravity

will most likely require a description within string theory.

The remainder of this thesis is organized as follows. In chapter II we discuss various

technical issues regarding higher derivative corrections to the minimal gauged supergravity

action. In particular, working in a perturbative framework we construct R-charged black

hole solutions and discuss the effects of field redefinitions of the metric and gravi-photon.

Following this we discuss the modification of the Gibbons-Hawking term due to higher

derivative terms in the action. The Gibbons-Hawking term is required in order to retain

a well defined variational principle, and in general higher derivative terms will spoil this.

We will see that, by working perturbatively – in the sense that the coefficients of the
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higher derivative terms are taken to be small – a well defined Gibbons-Hawking term can

be constructed. We end this chapter with a discussion on the mass-charge ratio of some

extremal black holes.

Chapter III involves an analysis of a particular higher derivative action. This action was

originally constructed in [107] and is the supersymmetric completion of the A∧Tr(R∧R)

term in N = 2 five-dimensional supergravity coupled to an arbitrary number of vector

multiplets. We eliminate the vector multiplets and reduce this action to minimal N = 2

supergravity in five-dimensions. Again working perturbatively, we construct black hole

solutions and discuss corrections to the so-called superstar, a solution to five-dimensional

supergravity which contains a naked singularity. However, in the perturbative analysis we

present, we are unable to determine if the higher derivative terms resolve the singularity.

We end chapter III with a computation of the shear-viscosity to entropy density ratio

(η/s) in the gauge theory plasma dual to a finite-chemical potential solution of this higher

derivative theory. This quantity has received much attention recently due to its universal

behavior at the two-derivative level and the proposed lower bound η/s ≥ 1/4π, termed the

KSS (for Kovtun, Son and Starinets) bound [125]. We find, in agreement with previous

studies, that the addition of higher derivative terms can generically violate this bound and

that the addition of chemical potential only enhances the effect.

Chapter IV is devoted to the construction of consistent truncations of IIB supergravity

on five dimensional squashed-deformed Sasaki-Einstein manifolds. These truncations are

novel, in the fact that they admit massive modes to be included in the truncation. Utilizing

the SU(2) structure of the Sasaki-Einstein manifold, the reduction follows straightforwardly

and is guaranteed to be consistent. We begin by presenting the bosonic reduction, high-

lighting the truncation to N = 2 supergravity coupled to a massive vector multiplet and

a universal hypermultiplet. These reductions include an AdS solution and we discuss the
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spectrum of excitations about the AdS vacuum; this allows us to assemble the excitations

into the appropriate AdS supermultiplets. Furthermore, we demostrate the consistency

of various further truncations. We then present the reduction of the fermionic sector of

IIB. We again are able to organize the spectrum in terms of AdS supermultiplets. The

supersymmetry variations of the fermions are determined and shown to be consistent with

the supermultiplet structure. The fermion equations of motion are also determined, and

from these we construct the Lagrangian for the full truncated theory. Finally, we present

a particular truncation which contains only a single hypermultiplet, along with the super-

gravity multiplet. This truncation is particularly interesting as it is the supersymmetric

completion of a bosonic system which describes a holographic superconductor.

This thesis is based on the following papers, all of which were completed in collaboration

with (some combination of) Jim Liu, Sera Cremonini, Kentaro Hanaki and Zhichen Zhao:

• [132] – J. T. Liu, P. Szepietowski, “Higher derivative corrections to R-charged AdS(5)

black holes and field redefinitions,” Phys. Rev. D79, 084042 (2009)

• [54] – S. Cremonini, K. Hanaki, J. T. Liu, P. Szepietowski, “Black holes in five-

dimensional gauged supergravity with higher derivatives,” JHEP 0912, 045 (2009)

• [55] – S. Cremonini, K. Hanaki, J. T. Liu, P. Szepietowski, “Higher derivative effects

on eta/s at finite chemical potential,” Phys. Rev. D80, 025002 (2009)

• [56] – S. Cremonini, J. T. Liu, P. Szepietowski, “Higher Derivative Corrections to R-

charged Black Holes: Boundary Counterterms and the Mass-Charge Relation,” JHEP

1003, 042 (2010)

• [133] – J. T. Liu, P. Szepietowski, Z. Zhao, “Consistent massive truncations of IIB

supergravity on Sasaki-Einstein manifolds,” Phys. Rev. D81, 124028 (2010)
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• [134] – J. T. Liu, P. Szepietowski, Z. Zhao, “Supersymmetric massive truncations of

IIb supergravity on Sasaki-Einstein manifolds,” Phys. Rev. D82, 124022 (2010).



CHAPTER II

Addition of higher derivative terms to the gravitational
action - field redefinitions and boundary terms

In this chapter we discuss two technical aspects involving theories which include higher

derivative terms. First, a detailed analysis of the effects of field redefinitions on charged

black hole solutions is presented. Second, we provide a discussion on modifications to the

Gibbons-Hawking surface term when higher derivative corrections are included. We end

with a discussion on the black hole thermodynamics and relations to the weak gravity

conjecture [8]. This chapter is based on work published in [132, 56] in collaboration with

Jim Liu and Sera Cremonini.

2.1 Field Redefinitions and Higher Derivative Terms

Higher derivative corrections to the Einstein-Hilbert action have received much notice in

recent years, as such terms naturally show up in the α′ expansion of effective actions derived

from string theory. In general, the first non-trivial terms arise at the four derivative level,

corresponding to curvature-squared corrections to classical Einstein theory of the form

(II.1) e−1δL = α1R
2 + α2RµνR

µν + α3RµνρσR
µνρσ,

where the coefficients α1, α2 and α3 are determined by the underlying theory. It was

suggested in [176] that the natural form of such terms would be given by the Gauss-Bonnet

15
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combination

(II.2) e−1δLGB = α(R2 − 4RµνR
µν +RµνρσR

µνρσ),

as this is the unique combination that avoids introducing ghosts in the effective theory. It

was subsequently argued, however, that in the absence of an off-shell formulation such as

string field theory, the α1 and α2 coefficients are physically indeterminate as they may be

eliminated by an on-shell field redefinition of the form gµν → gµν + aRgµν + bRµν . In this

sense, only the Riemann-squared term parameterized by α3 carries physical information

from the underlying string theory.

The form of the higher derivative corrections are further constrained by supersymmetry.

Explicit computations for the uncompactified closed superstring indicate that the first

corrections enter at the R4 order [94, 92, 74]. This is a feature of maximal supersymmetry,

as curvature-squared terms are present in, for example, the uncompactified heterotic theory

[93, 140]. An alternate route to obtaining supersymmetric higher derivative corrections is

to make use of supersymmetry itself to construct higher derivative invariants that may show

up in the action. This was applied in the heterotic supergravity by supersymmetrizing the

Lorentz Chern-Simons form responsible for the modified Bianchi identity dH = α′Tr (F ∧

F − R ∧ R) [16]; the result agrees with the explicit calculations, once field redefinitions

are properly taken into account [49]. More recently, the supersymmetric completion of

the A ∧ TrR ∧ R term in five-dimensional N = 2 supergravity (coupled to a number of

vector multiplets) was obtained in [107]. This result has led to new progress in the study of

black hole entropy and precision microstate counting in five dimensions (see e.g. [45] and

references therein).

The supersymmetric four-derivative terms given in [107] were obtained using conformal

supergravity methods. Thus it should be no surprise that they involve the square of the
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five-dimensional Weyl tensor [107]

e−1δLsugra = cI
24 [1

8M
ICµνρσC

µνρσ + · · · ]

= cI
24 [1

8M
I(1

6R
2 − 4

3RµνR
µν +RµνρσR

µνρσ) + · · · ],(II.3)

as opposed to the Gauss-Bonnet combination, (II.2). In principle, an appropriate field

redefinition may be performed to bring this into the Gauss-Bonnet form. However, this is

usually not done, as it would obscure the overall supersymmetric structure of the theory.

Thus in practice two somewhat complementary approaches have been taken to investigating

the curvature-squared corrections to the Einstein-Hilbert action. The first, which applies

whether the underlying theory is supersymmetric or not, is to use a parameterized action

of the form (II.1), with special emphasis on the Gauss-Bonnet combination. The second

is to focus directly on supergravity theory, and hence to use explicitly supersymmetric

higher-derivative actions of the form (II.3). In principle, these two approaches are related

by appropriate field redefinitions. However, in practice this is complicated by the fact that

additional matter fields (e.g. N = 2 vector multiplets) as well as auxiliary fields may be

present, thus making any field redefinition highly non-trivial.

In this section, we investigate and clarify some of the issues surrounding field redef-

initions in the presence of additional fields. In particular, we take the bosonic sector

of five-dimensional N = 2 gauged supergravity and extend it with four-derivative terms

built from the Riemann tensor Rµνρσ as well as the graviphoton field-strength tensor Fµν .

Although we introduce eight such terms, we demonstrate that only four independent com-

binations remain physical once field redefinitions are taken into account. To be explicit, we

construct the higher-derivative corrections to the spherically symmetric R-charged1 AdS5

black holes of [12, 13], working to linear order in the higher-derivative terms, and then

investigate the effect of field redefinitions on these black hole solutions.

1Here R-charge refers to the charge under the U(1) gravi-photon.
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To some extent, our solutions generalize the Gauss-Bonnet black holes originally con-

structed in [22, 172] and extended to Einstein-Maxwell theory in [173] and, with the in-

clusion of Born-Infeld terms, in [174]. One advantage that the Gauss-Bonnet combination

has over the generic form of (II.1) is that it leaves the graviton propagator unmodified,

and also yields a modified Einstein equation involving at most second derivatives of the

metric. With an appropriate metric ansatz, the resulting Gauss-Bonnet black holes are

then obtained by solving a simple quadratic equation. Furthermore, this feature of the

Gauss-Bonnet term leads to a good boundary variation and natural generalization of the

Gibbons-Hawking surface term [143]. This is a primary reason behind the popularity of

applying Gauss-Bonnet (and more generally Lovelock) extensions to braneworld physics

(see e.g. [48]).

Our interest in studying the higher order corrections to R-charged AdS5 black holes is

also motivated by our desire to explore finite ’t Hooft coupling corrections in AdS/CFT.

Using the relation α′ = L2/
√
λ, we see that each additional factor of α′Rµνρσ in the

string effective action gives rise to a 1/
√
λ factor in the strong coupling expansion of the

dual gauge theory. Since supersymmetry ensures that the leading correction terms in IIB

theory are of order α′3, this indicates that the N = 4 super-Yang Mills theory dual to

AdS5 × S5 will first receive such corrections at the λ−3/2 order. The effect of these finite

’t Hooft coupling corrections on both the thermodynamics [100, 155] and hydrodynamics

[33, 35, 14, 31, 32, 30] of the N = 4 plasma have received much attention in the context of

extrapolations between the strong and weak coupling limits of the N = 4 theory.

In principle, it would be greatly desirable to extend the finite coupling analysis to N = 1

gauge theories dual to AdS5×Y 5 where Y 5 is Sasaki-Einstein. This is of particular interest

in resolving conjectures on the nature of the shear viscosity bound η/s [156, 126, 33, 125,

122, 27, 26]. One difficulty in doing so, however, lies in the fact that the higher derivative
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corrections involving the Ramond-Ramond five-form have not yet been fully explored (but

see [154]). While it may be argued that these terms will not contribute in the maximally

supersymmetric case, there is no reason to expect this to continue to hold for the reduced

supersymmetric backgrounds dual to N = 1 super-Yang Mills. For this reason, recent

investigations of the shear viscosity [122, 27, 26] (and drag force [71, 170]) have assumed

a parameterized set of curvature-squared corrections of the form indicated above in (II.1).

Our present construction of higher-derivative corrected R-charged black holes allows for

a generalization of the finite coupling shear viscosity calculation to backgrounds dual to

turning on a chemical potential [15].

We start with the two-derivative bosonic action of N = 2 gauged supergravity, and in

Section 2 we introduce a parameterized set of four derivative terms involving both curvature

and graviphoton field strengths. Then, in Section 3, we obtain the linearized corrections to

the spherically symmetric R-charged AdS5 black holes. As one of the aims of this chapter

is to clarify the use of field redefinitions, we take a closer look at this in Section 4. Finally,

we conclude with a discussion of our results in Section 5.

2.1.1 The higher-derivative theory

Our starting point is the bosonic sector of pure N = 2 gauged supergravity in five

dimensions. The theory is described by a metric, gµν , and a U(1) gauge field, Aµ, termed

the gravi-photon with Lagrangian given by

(II.4) e−1L0 = R− 1
4FµνF

µν + 12g2 + 1
12
√

3
εµνρσλFµνFρσAλ.

Although the Chern-Simons term is important from a supergravity point of view, it will

not play any role in the electrically charged solutions that are investigated below.

In general, higher-derivative corrections to L0 may be expanded in the number of deriva-

tives. We are mainly interested in the first non-trivial corrections, which arise at the four-

derivative level. In a pure gravity theory, this would correspond to the addition of R2
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terms to the Lagrangian. However, for the Einstein-Maxwell system, we may also consider

higher-order terms in the Maxwell field, such as F 4 and RF 2 terms. We thus introduce

the higher-derivative Lagrangian

(II.5) L = L0 + LR2 + LF 4 + LRF 2 ,

where L0 is given in (II.4), while the additional terms are

e−1LR2 = α1R
2 + α2RµνR

µν + α3R
µνρσRµνρσ,

e−1LF 4 = β1(FµνF
µν)2 + β2F

µ
νF

ν
ρF

ρ
σF

σ
µ,

e−1LRF 2 = γ1RFµνF
µν + γ2RµνF

µρFρ
ν + γ3R

µνρσFµνFρσ.(II.6)

Note that we have not considered terms such as Fµν�Fµν that would in principle enter at

the same order. Although we are not complete in this regard, the terms that enter in LF 4

are nevertheless sufficient for capturing the expansion of the Born-Infeld action.

Equations of Motion

Both the Maxwell and Einstein equations pick up corrections from the higher-derivative

terms in (II.5). The modified Maxwell equation is straightforward

∇µFµν + 1
4
√

3
ενρλσδFρλFσδ = ∇µ

(
8β1F

2Fµν − 8β2F
µλFλσF

σν

+4γ1RF
µν + 4γ2(R[µ

λF
ν]λ) + 4γ3R

µνλσFλσ
)
.(II.7)
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The Einstein equation is somewhat cumbersome, but can be expressed in Ricci form as

Rµν + 4g2gµν − 1
2FµλFν

λ + 1
12gµνF

2 =

(2α1 + α2 + 2α3)∇µ∇νR− (α2 + 4α3)�Rµν

−2α1RRµν + 4α3RµλRν
λ − 2(α2 + 2α3)RµλνσR

λσ − 2α3RµρλσRν
ρλσ

+1
3gµν [(2α1 + α2 + 2α3)�R+ α1R

2 + α2R
2
λσ + α3R

2
ρλσδ]

−4β1F
2FµλFν

λ − 4β2FµρF
ρλFλσF

σ
ν + gµν [β1(F 2)2 + β2F

4]

+γ1(∇µ∇νF 2 −RµνF 2 − 2RFµλFν
λ)

+γ2(−∇λ∇(µFν)ρF
λρ + 1

2�FµλFν
λ + 2R(µ

λFν)
ρFλρ +RλσFµ

λFν
σ)

−γ3(2∇λ∇σFµλFνσ + 3RµρλσFν
ρF λσ)

+1
3gµν [(γ1 − 1

2γ2)�F 2 + 2γ3∇λ∇σF λρF σρ

+2γ1RF
2 − 2γ2RλσF

λρF σρ + 2γ3R
ρλσδFρλFσδ].(II.8)

Since we are mainly interested in obtaining corrections linear in the parameters (α1, α2,

α3, β1, β2, γ1, γ2, γ3) of the higher derivative terms, we may substitute the lowest order

equations of motion, given by setting the left-hand-sides of (II.7) and (II.8) to zero, into
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the right-hand-side of (II.8) to obtain a slightly simpler form of the Einstein equation

Rµν + 4g2gµν − 1
2FµλFν

λ + 1
12gµνF

2 =

4g2(5α1 + α2 − 2α3 + 10γ1 − 2γ2)FµλFν
λ

−2α3RµρλσRν
ρλσ − (α2 + 2α3 − γ2)RµλνσF

λρF σρ − 3γ3R(µ
ρλσFν)ρFλσ

+ 1
12(2α1 + α2 + 2α3 + 12γ1 − 3γ2)∇µ∇νF 2 − 1

2(α2 + 4α3 − γ2)�FµλFν
λ

−2γ3∇λ∇σFµλFνσ − 1
12(α1 − α2 + 2α3 + 48β1 + 8γ1 + 2γ2)F 2FµλFν

λ

+(α3 − 4β2 + γ2)FµρF
ρλFλσF

σ
ν

+1
3gµν [−16g4(5α1 + α2)− 2

3g
2(17α1 + 7α2 + 42γ1 − 12γ2)F 2

+1
6(α1 + 2α2 + 7α3 + 6γ1 − 3γ2 + 3γ3)�F 2

+ 1
144(7α1 − 13α2 + 432β1 + 60γ1 + 24γ2)(F 2)2

+1
4(α2 + 12β2 − 4γ2)F 4 + α3R

2
ρλσδ + 2γ3RρλσδF

ρλF σδ]

+ · · · .(II.9)

This is valid to first order in the four-derivative corrections.

Numerous previous studies higher-derivative corrections in five dimensions have concen-

trated on the purely gravitational sector of the theory. In this case, the first order Einstein

equation simplifies to

(II.10) Rµν + 4g2gµν = −2α3RµρλσRν
ρλσ + 1

3gµν [−16g4(5α1 + α2) + α3R
2
ρλσδ].

Working to this same order, we may define an effective cosmological constant

(II.11) g2
eff = g2[1 + 2

3(10α1 + 2α2 + α3)g2],

so that

(II.12) Rµν + 4g2
effgµν = α3(−2CµρλσCν

ρλσ + 1
3gµνC

2
ρλσδ),
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where we made the substitution Rµνλσ = Cµνλσ − g2(gµλgνσ − gµσgνλ) + · · · which is a

consequence of the zeroth order Einstein equation, Rµν = −4g2gµν + · · · . We see that the

coefficients α1 and α2 of R2 and R2
µν , respectively, do not enter at linear order, so long as we

use the effective cosmological constant given by geff . This is related to the fact that these

two terms may be removed by a field redefinition of the form gµν → gµν + agµνR + bRµν

with appropriate constants a and b.

Although neutral black hole solutions may be obtained directly from (II.12), we are

mainly interested in R-charged solutions which may be obtained from the full equations

(II.7) and (II.9). We turn to this in the next section.

2.1.2 R-charged black holes

The two-derivative Lagrangian, (II.4), admits a well-known two-parameter family of

static, stationary AdS5 black hole solutions, given by [12, 13]

ds2 = −H−2fdt2 +H(f−1dr2 + r2dΩ2
3),

A =
√

3 cothβ

(
1

H
− 1

)
dt,(II.13)

where the functions H and f are

f = 1− µ

r2
+ g2r2H3,

H = 1 +
µ sinh2 β

r2
.(II.14)

The parameter µ is a non-extremality parameter, while β is related to the electric charge

of the black hole. The extremal (BPS) limit is obtained by taking µ → 0 and β → ∞

with Q ≡ µ sinh2 β fixed, so that f = 1 + g2r2H3 with H = 1 + Q/r2. These extremal

solutions are naked singularities, and may be interpreted as ‘superstars’ [147]. In the

absence of higher-derivative corrections, the BPS solutions may be smoothed out by turning

on angular momentum to form true black holes [106, 105, 52, 128]



24

The first order solution

We wish to find the first order corrections to the R-charged black hole solution given

by (II.13). To do so, we treat the coefficients (α1, α2, . . ., γ3) of the four-derivative terms

in (II.6) as small parameters, and make the ansatz

ds2 = −H−2fdt2 +H(f−1dr2 + r2dΩ2
3),

A =
√

3 cothβ

(
1 + a1

H
− 1

)
dt,(II.15)

where

f = 1− µ

r2
+ g2r2H3 + f1,

H = 1 +
µ sinh2 β

r2
+ h1.(II.16)

Here, we treat h1, f1 and a1 as small corrections, and will solve for them to linear order in

the parameters of the higher-derivative Lagrangian. Note that this ansatz was designed so

that the zeroth order equations are automatically satisfied in the absence of h1, f1 and a1.

Even after linearization in the small parameters, the individual equations of motion,

(II.7) and (II.9), yield complicated coupled equations for the first order corrections. How-

ever, the use of certain symmetries of these equations yields tractable equations. In par-

ticular, the difference between the tt and rr components of the Einstein equation, Rtt−Rrr,

gives a second order equation involving only h1, which is easily solved. The solution for h1

can then be inserted into the Maxwell equation, (II.7), to obtain a solution for a1. Finally,

the remaining components of the Einstein equation can be solved for f1, thus yielding the
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full solution. The result is

h1 =
µ2 sinh2 2β

6H2
0r

6

(
7α1 + 5α2 + 13α3 + 42γ1 − 12γ2 + 12γ3

)
,

(II.17)

a1 =
µ2 sinh2 2β

6H3
0r

6

[(
7α1 + 5α2 + 13α3 + 42γ1 − 12γ2 − 12γ3 tanh2 β

)
+
µ sinh2 β

2r2

(
7α1 + 5α2 + 13α3

+24(6β1 + 3β2 + 2γ1 − γ2 + γ3(1 + sech2β))
)]
,(II.18)

f1 = 2
3g

4
(
10α1 + 2α2 + α3

)
r2H3

0

+
g2µ2 sinh2 2β

r4

(
10α1 − α2 − 13α3 + 20γ1 − γ2 − 6γ3

)
+

µ2

r6H0

[
sinh2 2β

(
3α1 − α3 + 18γ1 − 3γ2

)
+ 2α3

]

−µ
3 sinh2 2β cosh2 2β

2r8H2
0

(
5α1 + α2 + α3 + 30γ1 − 6γ2

)
+
µ4 sinh4 2β

96r10H3
0

(
47α1 + 13α2 + 17α3 − 144β1 − 72β2 + 276γ1 − 48γ2 − 24γ3

)
,

(II.19)

where H0 = 1 + µ sinh2 β/r2 is the zeroth order solution for H. (Since h1, a1 and f1 are

already linear in the parameters of the higher order corrections, we may use H and H0

interchangeably in the above expressions.) Note that the first line in f1 reproduces the

shift of the cosmological constant g2 → g2
eff given in (II.79). This allows us to write

(II.20) f = 1− µ

r2
+ g2

effr
2H3 + f̄1,

where f̄1 is given by the remaining terms in (II.19).

In obtaining the above solution, we have imposed the boundary conditions that h1 and

a1 both fall off faster than 1/r2 as r → ∞ so that the R-charge is not modified from its

zeroth order value. For f1, the boundary condition is taken as (II.20), with f̄1 falling off

faster than 1/r2.
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2.1.3 Field Redefinitions

As given in (II.6), we have parameterized the four-derivative terms in the Lagrangian

in terms of the eight coefficients (α1, α2, . . ., γ3). However, not all of these coefficients are

physical. This is because some of the terms in the higher derivative Lagrangian can be

removed by field redefinition.

To proceed, we consider transformations of the form

gµν → gµν + a(R+ 20g2)gµν + b(Rµν + 4g2gµν) + cFµλF
λ
ν + dF 2gµν ,

Aµ → (1 + g2(25a+ 5b− 12c+ 60d))Aµ.(II.21)

Note that the first two terms in the metric shift incorporate the cosmological constant; this

corresponds to the zeroth order Einstein equation in the absence of gauge excitations. While

this shift by the cosmological constant is not strictly speaking necessary in performing the

field redefinition, we nevertheless find it convenient, as this avoids a shift in the effective

cosmological constant geff after the field redefinition. In addition, the scaling of the gauge

field is chosen so that it will remain canonically normalized after the shift of the metric.

The result of this combined transformation is to shift the original Lagrangian (II.5) into

e−1L =
(
1 + 12g2(5a+ b)

) [
R− 1

4F
2
µν + 12g2

(
1− 2g2(5a+ b)

)
+ 1

12
√

3

(
1 + 3g2(5a+ b− 12c+ 60d)

)
εµνρλσFµνFρλAσ

+
(
α1 + 1

2(3a+ b)
)
R2 + (α2 − b)RµνRµν + α3RµνρσR

µνρσ

+
(
β1 + 1

8(c− d)
)

(FµνF
µν)2 + (β2 − 1

2c)F
µ
νF

ν
ρF

ρ
σF

σ
µ

+
(
γ1 − 1

8(a+ b+ 4c− 12d)
)
RF 2

+
(
γ2 − 1

2(b+ 2c)
)
RµνF

µρFρ
ν + γ3RµνρσF

µνF ρσ
]
,(II.22)

where, as usual, we only work to linear order in the shift parameters (a, b, c, d).

Up to an overall rescaling, this new Lagrangian can almost be brought back to the
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original form, provided we shift the various coefficients as follows:

g2 → g2
(
1 + 2g2(5a+ b)

)
,

α1 → α1 − 1
2(3a+ b), α2 → α2 + b, α3 → α3,

β1 → β1 − 1
8(c− d), β2 → β2 + 1

2c,

γ1 → γ1 + 1
8(a+ b+ 4c− 12d), γ2 → γ2 + 1

2(b+ 2c), γ3 → γ3.(II.23)

One difference remains, however, and that is the coefficient of the F ∧ F ∧ A Chern-

Simons term. This suggests that, when considering higher derivative corrections in gauged

supergravity, there is in fact a preferred field redefinition frame where this Chern-Simons

term remains uncorrected. (Such a preferred frame also shows up when considering the

supersymmetric completion of the mixed TrR ∧ R ∧ A term [107].) This F ∧ F ∧ A term

is unimportant, however, for the spherically symmetric R-charged black holes considered

above in Section 3.

Ignoring the F∧F∧A term, the freedom to perform field redefinitions of the form (II.21)

indicates that at most four of the eight coefficients of the higher derivative terms will be

physical. Clearly α3 and γ3 are physical, as they cannot be removed by the transformation

of (II.23). The additional two physical coefficients can be taken to be a linear combination

of

(II.24) β̂1 ≡ β1 + 1
144(α1 − 7α2) + 1

12(γ1 + γ2) and β̂2 ≡ β2 + 1
4α2 − 1

2γ2.

In addition, although g2 is shifted by the field redefinition, the physical cosmological con-

stant, g2
eff , as defined in (II.79), remains invariant.

The use of field redefinitions allows us to rewrite the four-derivative Lagrangian in

various forms. A common choice would be to use the Gauss-Bonnet combination R2 −

4R2
µν + R2

µνλσ for the curvature-squared terms. This system has been extensively studied

in the absence of higher-derivative gauge field corrections, and has the feature that it
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admits exact spherically symmetric black hole solutions, both without [22, 172] and with

[173] R-charge. An alternate choice, perhaps more natural from a supersymmetric point

of view [107], is the Weyl-squared combination C2
µνλσ = 1

6R
2 − 4

3R
2
µν +R2

µνλσ. Either one

of these choices would fix two of the coefficients (i.e. α1 and α2 in terms of α3). The

additional freedom to perform field redefinitions may then be used to eliminate the mixed

RF 2 and RµνF
µλF λν terms parameterized by γ1 and γ2.

Field redefinitions and the first order solution

Given the above field redefinition, it is instructive to examine its effect on the first order

black hole solution of (II.17), (II.18) and (II.19). In this case, it is straightforward to see

that the coefficient shift of (II.23) results in

h1 → h̃1 = h1 +
µ2 sinh2 2β

8H2
0r

6
(−7a+ b+ 12c− 84d),

a1 → ã1 = a1 +
µ2 sinh2 2β

8H3
0r

6

[
(−7a+ b+ 12c− 84d)− 3µ sinh2 β

r2
(a+ b− 4c+ 12d)

]
,

f1 → f̃1 = f1 − 2g4(5a+ b)r2H3
0 −

g2µ2 sinh2 2β

2r4
(25a+ 8b− 18c+ 60d)

+
3µ2 sinh2 2β

8r6H0

[
−2(3a+ b− 8c+ 36d) +

µ cosh2 2β

r2H0
(5a+ b− 12c+ 60d)

−µ
2 sinh2 2β

r4H2
0

(a− 2c+ 12d)

]
.(II.25)

At first, this result may appear somewhat surprising. After all, this field redefinition is

supposed to be ‘unphysical’, and yet the form of the solution has changed. The resolution

of this puzzle lies in the fact that the we have shifted the metric by terms that are not

necessarily proportional to the lowest order equations of motion. (While we have taken care

to incorporate the cosmological constant in (II.21), we have omitted the gauge field stress

tensor in the shift.) In this sense, while the original and shifted metrics both solve the

equations of motion, they nevertheless correspond to physically distinct solutions. The field

redefinition of (II.21) is then more naturally thought of as a mapping between solutions.

More explicitly, we note that the shift of the metric given in (II.21) takes the black hole
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solution away from the form of the initial ansatz given by (II.15). In particular, shifting

the metric by (II.21) and using the zeroth order solution gives

gtt → g̃tt = gtt

[
1− µ2 sinh2 2β

2r6H3
0

(a+ 2b− 6c+ 12d)

]
,

grr → g̃rr = grr

[
1− µ2 sinh2 2β

2r6H3
0

(a+ 2b− 6c+ 12d)

]
,

gαβ → g̃αβ = gαβ

[
1− µ2 sinh2 2β

2r6H3
0

(a− b+ 12d)

]
,(II.26)

where α and β refer to coordinates on S3. It is now possible to see that a coordinate

transformation r → r̃ is necessary in order to restore the canonical form of the shifted

metric. By identifying

ds̃2 = g̃ttdt
2 + g̃rrdr

2 + g̃θθdΩ2
3

= −H̃−2f̃dt2 + H̃(f̃−1dr̃2 + r̃2dΩ2
3),(II.27)

we end up with expressions for H̃ and f̃

(II.28) H̃ =
g̃θθ
r̃2
, f̃ = −g̃ttg̃2

θθr̃
4,

as well as a differential equation relating r̃2 with r2

(II.29)
d(r̃2)

d(r2)
=
g̃ttg̃rrg̃θθ

r2
.

Note that, in defining the angular coordinate θ, we have taken the metric on the unit S3

to be of the form dΩ2
3 = dθ2 + · · · . The equation for r̃2 is easily solved, and yields the

relation

(II.30) r̃2 = r2

[
1 +

3µ2 sinh2 2β

8r6H2
0

(3a+ 3b− 12c+ 36d)

]
,

where we have set a possible integration constant to zero to preserve the r → ∞ asymp-

totics.
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We are now able to explicitly compute the shifted metric functions h̃1 and f̃1 as well as

the shifted gauge potential ã1. For h̃1, we use the definition

(II.31) H̃ = 1 +
µ sinh2 β

r̃2
+ h̃1,

along with (II.28) and (II.30) to obtain

(II.32) h̃1 = h1 +
µ2 sinh2 2β

8H2
0r

6
(−7a+ b+ 12c− 84d),

which is in perfect agreement with (II.25). For f̃1, on the other hand, we find

f̃1 = f1 − 2g4(5a+ b)r2H3
0 −

3g2µ2 sinh2 2β

2r4
(b− 2c)

+
3µ2 sinh2 2β

8r6H0

[
−2(3a+ b− 8c+ 36d) +

µ cosh 2β

r2H0
(5a+ b− 12c+ 60d)

−µ
2 sinh2 2β

r4H2
0

(a− 2c+ 12d)

]
.(II.33)

Note that we have defined f̃1 by

(II.34) f̃ = 1− µ

r̃2
+ g̃2r̃2H̃3 + f̃1,

where g̃2 = g2(1 + 2g2(5a+ b)) is the shifted cosmological constant given in (II.23).

Comparison of (II.33) with (II.25) clearly demonstrates a difference in the O(g2) term.

The origin of this difference is somewhat subtle, and is related to the choice of boundary

conditions for the shifted and unshifted solutions. To see this, we recall that the gauge

potential Aµ is also shifted by the field redefinition (II.21) so that it maintains canonical

normalization. The implication of this shift on the black hole solution is that

(II.35) At →
(
1 + g2(25a+ 5b− 12c+ 60d)

)
At,

where

(II.36) At =
√

3 cothβ

(
1 + a1

H
− 1

)
, H = 1 +

µ sinh2 β

r2
+ h1.
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In order to rescale the potential without adding any O(1/r2) terms to H0, h1 or a1, we

must instead shift the two parameters µ and β of the black hole according to

(II.37) cothβ → cothβ
(
1 + g2(25a+ 5b− 12c+ 60d)

)
, µ sinh2 β → µ sinh2 β.

This corresponds to a rescaling of the nonextremality parameter µ

(II.38) µ→ µ̃ = µ(1 + 2g2 cosh2 β(25a+ 5b− 12c+ 60d)).

In this case, the shifted metric function f̃ , given in (II.34), ought to more properly be

written as

(II.39) f̃ = 1− µ̃

r̃2
+ g̃2r̃2H̃3 + f̂1,

where

f̂1 = f̃1 +
2g2µ cosh2 β

r2
(25a+ 5b− 12c+ 60d)

= f1 + λ
H0

r2
− 2g4(5a+ b)r2H3

0 −
g2µ2 sinh2 2β

2r4
(25a+ 8b− 18c+ 60d) + · · · .

(II.40)

This now agrees with f̃1 of (II.25) up to a solution λH0/r
2 to the homogeneous differential

equation for f1, where

(II.41) λ = 2g2µ cosh2 β(25a+ 5b− 12c+ 60d).

This is a modification of the O(1/r2) term in f1, which, however, is subdominant in f ,

as the leading behavior of f is given by f ∼ g2
effr

2 for an asymptotically Anti-de Sitter

background.

Finally, we may follow the effect of the field redefinition (II.21) on the gauge potential

term a1. Given the µ and β rescaling of (II.37), we obtain

(II.42) ã1 = (1 + a1)
H̃

H
− 1.
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Working out the right hand side of this expression, we find that it agrees with (II.25). We

have thus seen that the first order solution for the spherically symmetric R-charged black

hole indeed transforms as expected under field redefinitions.

2.1.4 Discussion

While we have considered general field redefinitions given by four parameters (a, b, c,

d), a preferred subset of this would be to shift the metric by the full zeroth order equation

of motion

(II.43) Rµν + 4g2gµν − 1
2FµλFν

λ + 1
12gµνF

2.

In the above notation, this corresponds to taking

(II.44) c = 1
2b, d = − 1

12(a− b).

In this case, we may redefine the coefficients of the higher derivative terms according to

β1 = β̂1 − 1
12(γ̂1 + γ̂2) + 1

144(α1 − 7α2),

β2 = β̂2 + 1
2 γ̂2 + 1

4α2,

γ1 = γ̂1 − 1
6(α1 − α2),

γ2 = γ̂2 + α2,(II.45)

so that the set (α3, β̂1, β̂2, γ̂1, γ̂2, γ3) are invariant under the restricted field redefinitions.

Note that β̂1 and β̂2 are the physical coefficients previously defined in (II.24).

It is illuminating to rewrite the higher derivative Lagrangian (II.5) in terms of the new

parameters. Ignoring the Chern-Simons term, the result is

e−1L =
(
1− 8g2(5α1 + α2)

)[
R− 1

4 F̂
2 + 12g2

eff + α1E2 + α2E2
µν + α3

(
R2
µνλσ − 8g4

)
+β̂1(F̂ 2)2 + β̂2F̂

4 + γ̂1EF̂ 2 − γ̂2EµνF̂µσF̂ νσ + γ3R
µνλσF̂µνF̂λσ

]
,

(II.46)
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where

(II.47) Eµν ≡ Rµν + 4g2gµν − 1
2 F̂µλF̂ν

λ + 1
12gµνF̂

2, E = Eµµ

is the zeroth order equation of motion. Note that we have worked to linear order in pulling

out the overall factor 1 − 8g2(5α1 + α2) renormalizing Newton’s constant. Furthermore,

F̂ = dÂ is a rescaled field strength defined by

(II.48) Âµ =
[
1 + 8g2

(
1
3(5α1 + α2) + 5γ̂1 − γ̂2

)]
Aµ,

so that Âµ remains invariant under the field redefinition of (II.21). The structure of (II.46)

now clearly demonstrates that, of the four-derivative terms, only those parameterized by

(α3, β̂1, β̂2, γ3) are physical, as the remaining terms are manifestly proportional to the

zeroth order equation of motion.

In principle, the choice of field redefinitions allows us to go back and forth between

the Gauss-Bonnet and Weyl-squared parameterizations of the higher-derivative terms in

the Lagrangian. In this sense, it is perhaps not a complete surprise to see that in some

cases both parameterizations yield the same results for the entropy of BPS black holes

[103, 44, 61], even though the bare Gauss-Bonnet correction is not supersymmetric in

itself. (Of course, the bare Weyl-squared term is not supersymmetric by itself either.)

What this suggests is that the Riemann-squared term parameterized by α3 plays a crucial

and perhaps dominant role in the geometry of higher-derivative black holes, and that the

additional matter and auxiliary field terms may contribute only indirectly through their

effects on the geometry, at least in the BPS case where there is additional symmetry at

the horizon.

Finally, given the general higher-derivative corrected R-charged black holes, it would be

interesting to study their thermodynamics and hydrodynamics. One outcome of this study

ought to be a clear identification of physical versus unphysical parameters of the theory.
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In particular, in the parameterization of (II.46), we would expect all dependence on (α1,

α2, γ̂1, γ̂2) to drop out of the thermodynamical quantities. One difficulty in exploring

the higher-derivative theory is that some care must be taken in generalizing the Gibbons-

Hawking surface term. This is because the general (i.e. non Gauss-Bonnet) combination of

R2 terms leads to higher than second-derivative terms in the equations of motion, and hence

necessitates specifying additional boundary data [143]. As demonstrated in [35], one way

around this is to perturb in the higher-derivative terms and to demand that the undesired

boundary variations vanish when the lowest-order equations of motion are imposed. The

goal of the next sections is to apply this procedure to the gravitational sector of the general

parameterized four-derivative Lagrangian with a goal of exploring higher-derivative black

hole thermodynamics using holographic renormalization.

2.2 Gibbons-Hawking Terms

As mentioned, in theories that are maximally supersymmetric (e.g. IIB theory in ten

dimensions), the first corrections do not enter until α′ 3R4 order. However, generically one

would expect the first non-trivial terms to appear at curvature-squared level. This has

motivated numerous recent holographic studies with R2 terms parameterized by

(II.49) e−1δL = α1R
2 + α2R

2
µν + α3R

2
µνρσ .

In the absence of matter fields, the Einstein equation takes the form Rµν = −(d− 1)g2gµν ,

where g = 1/L is the inverse AdS radius. As a result, the α1 and α2 terms in (II.49) may

be shifted away by an on-shell field redefinition of the form

(II.50) gµν → gµν + λ1[Rµν + (d− 1)g2gµν ] + λ2gµν [R+ d(d− 1)g2],

for appropriate choices of λ1 and λ2. In particular, such a field redefinition allows (II.49)

to be replaced by the well-known Gauss-Bonnet combination

(II.51) e−1LGB = α3(R2 − 4R2
µν +R2

µνρσ),
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which is the unique curvature-squared combination that nevertheless yields equations of

motion that are no higher than second derivative in the metric.

Many of the positive features of the Gauss-Bonnet combination, including exact Gauss-

Bonnet black hole solutions, have been exploited in recent investigations of AdS/CFT

hydrodynamics [27, 26]. However, it is important to realize that the α1 and α2 terms in

(II.49) are not always unphysical once matter fields are turned on. For example, in an

Einstein-Maxwell theory, shifting away the α1 and α2 terms in (II.49) would at the same

time generate new mixed terms of the formRF 2 andRµνF
µλF νλ. This is especially relevant

in studies of R-charged backgrounds in five-dimensional gauged supergravity, where the

natural curvature-square correction arises as the Weyl-tensor squared, as opposed to the

Gauss-Bonnet combination [107, 54].

Perturbative approach to higher-derivative terms

The purpose of this section is to revisit the holographic renormalization of R-squared

AdS gravity and to demonstrate the systematic construction of both generalized Gibbons-

Hawking surface terms and local boundary counterterms in theories with higher derivatives.

It is well known that higher derivative theories generically lead to unpleasant features such

as ghosts and additional propagating degrees of freedom. However, since the theories we

are interested in arise from the low energy limit of string theory, it is only consistent to

treat the higher derivative terms perturbatively, as part of the α′ expansion. In this way,

these terms will not generate additional ghost modes, and thus will not drastically alter

the dynamics of the lowest order two-derivative theory.

As an example of what we mean by the perturbative treatment of higher derivative

terms, consider a toy model of a simple harmonic oscillator with a four-derivative addition

[162]

(II.52) L = 1
2 ẋ

2 − 1
2ω

2x2 − 1
2α(ẍ2 − ω2ẋ2).
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The resulting equation of motion is

(II.53) (1 + αω2)ẍ+ ω2x2 + αx(4) = 0,

and has solution

(II.54) x(t) = A1e
iωt +A2e

−iωt +A3e
it/
√
α +A4e

−it/
√
α .

The first two terms are conventional, while the last two arise because of the higher derivative

nature of the model. This demonstrates that additional degrees of freedom are present

in this theory, and in particular it is no longer sufficient to specify only two boundary

conditions when constructing the Green’s function. This is also clear when considering the

variation of the action

(II.55) δS = −
∫ t2

t1

[EOM]dt+
[
((1 + αω2)ẋ+ α

...
x )δx− αẍδẋ

]t2
t1
.

In order to have a well-defined variational principle, we must hold both x and ẋ fixed at

the endpoints of the time interval.

In general, for finite non-zero α, there is no possibility of avoiding the complications

of the higher-derivative theory. However, it is instructive to consider the limit α → 0. In

this case, it is clear that the second solution, with frequency 1/
√
α, is not perturbatively

connected to the α = 0 theory. Assuming the toy Lagrangian (II.52) arises from an O(α)

expansion of a more complete theory, it is then clear that the second solution would never

have appeared in the full theory, and thus must be discarded for perturbative consistency.

A simple way of arriving at the perturbative solution is to rewrite the equation of motion

(II.53) as

(II.56) ẍ+ ω2x2 = −α d
2

dt2
(ẍ+ ω2x),

We may then substitute in the lowest order equation of motion to obtain ẍ+ω2x2 = O(α2),

and in general iterate to any arbitrary order of α (our choice of shifting the kinetic term
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in (II.52) leads to vanishing perturbative corrections in α, but in general they could be

present).

While perturbative solutions to the equation of motion are routinely investigated, it is

often equally important to construct a well-defined variational principle at the perturbative

level. Looking at the toy model, the difficulty here arises from the −αẍδẋ surface variation

in (II.55). In general, no surface term exists that can remove the dependence on δẋ on the

boundary (after all, this is a four derivative theory). However, at the perturbative level, we

may use the lowest order equation of motion to rewrite −αẍδẋ = αω2xδẋ + O(α2). This

variation can then be canceled at O(α) by adding a surface term of the form

(II.57) Ssurface =
[
−αω2xẋ

]t2
t1
.

In principle, this can be continued order by order in α.

Using this toy model, we have motivated the fact that there is a consistent perturbative

treatment of higher derivative gravitational theories arising out of string theory. In partic-

ular, the gravitational analog of (II.57) is a generalized Gibbons-Hawking surface term, and

this was constructed in a particular case in [35] when examining the effect of the IIB R4

term on the shear viscosity to entropy density ratio η/s in N = 4 super-Yang-Mills theory.

The construction in [35] was based on scalar channel fluctuations, and hence focused on

an effective scalar field theory. Our present aim is to extend this construction to the full

gravity theory, and hence to demonstrate that (perturbative) holographic renormalization

of higher derivative gravity theories is indeed consistent.

Allowing for a gauge field, we focus on the holographic renormalization of d-dimensional

Einstein-Maxwell theory with generic curvature-squared corrections given by

(II.58) e−1L = R− 1
4F

2 + (d− 1)(d− 2)g2 + α1R
2 + α2R

2
µν + α3R

2
µνρσ.

The bulk action from this Lagrangian must be supplemented by a set of surface terms,
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whose goal is to ensure that the variational principle is well defined. In fact, when defined

on a space with boundary, the two-derivative Einstein-Hilbert action itself requires the

addition of the Gibbons-Hawking surface term to cancel boundary variations which would

otherwise spoil the variational principle. The presence of higher derivative corrections

leads to additional boundary terms which need to be canceled, and therefore requires the

inclusion of an appropriate generalization of the Gibbons-Hawking term.

For particular combinations of curvature corrections, the so-called Lovelock theories

where the equations of motion involve no higher than second derivatives of the metric –

which include the Gauss-Bonnet combination as a special case – proper boundary terms

have already been constructed [167, 143]. However, for more general corrections, we must

treat the corrections perturbatively, and only in this case does the construction of a gener-

alized Gibbons-Hawking term become feasible2. We demonstrate below how this is done,

and furthermore construct the set of local counterterms removing the leading divergences

from the action. This generalizes the case of Gauss-Bonnet gravity, for which all the

counterterms needed to regularize the action were constructed in [29, 9, 28, 130].

R-charged black holes and the mass-charge relation

For an application of the counterterm corrected action, we will look at R-charged black

hole thermodynamics. In fact, one of the driving forces behind the studies of AdS/CFT

at finite temperature has been the close resemblance of the laws of black hole physics with

those of standard thermodynamics. To extract thermodynamic quantities from black hole

backgrounds one typically evaluates the on-shell action I and the boundary stress tensor,

given by

(II.59) T ab =
2√
−h

δI

δhab
,

2A similar construction has also been done for F (R) theories of gravity in [70] and also for more general higher
derivative theories in [150, 153, 152, 60].
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where hab denotes the boundary metric. The on-shell value of the gravitational action may

then be identified with the thermodynamic potential Ω according to I = βΩ, where in the

grand canonical ensemble

(II.60) Ω = E − TS −QIΦI .

Here QI are a set of conserved R-charges and ΦI their respective potentials. Holographic

renormalization ensures that both Ω and E are finite in the above expression.

Below we will perturbatively construct the d-dimensional spherically symmetric R-

charged black hole solutions to theR-squared theory (II.58) and study their thermodynamic

properties using the holographically renormalized action. Extracting the higher curvature

effects on the black hole mass will also allow us to discuss the weak gravity conjecture in

the context of AdS black holes. In fact, according to the conjecture, the linear mass-charge

relation for extremal (not necessarily SUSY) black holes cannot be exact, but should re-

ceive corrections as the charge decreases. For extremal R-charged black-holes, we find a

deviation from the leading relation m = q of the form

(II.61)
m

q
=

(
m

q

)
0

[
1− 1

r2
+

(
α1f1(r+) + α2f2(r+) + α3f3(r+)

)]
,

where r+ is the horizon radius, and the fi(r+) are all positive functions. Thus, m/q will

necessarily decrease when all the couplings αi are positive. Clearly, it is still possible for

the ratio to decrease if some of the αi are negative, and in this respect it is important to

be able to determine the precise form of the couplings from UV physics.

A feature which we would like to emphasize is that the deviation from the m = q

relation seems to be tied to the correction to some of the transport coefficients which have

been computed holographically in the context of the quark gluon plasma. In particular,

the sign of the correction to the shear viscosity to entropy ratio η/s has received a lot of

attention, precisely because curvature-squared terms have been shown to lead to a violation
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of the KSS bound [126]. For the examples that have been studied thus far, the sign of the

higher derivative couplings responsible for the bound violation is precisely the same as that

needed by the weak gravity conjecture [8]. For instance, for the special case of Weyl-squared

corrections, where α1 = 1
6 α, α2 = −4

3 α, α3 = α, the mass-charge relation becomes

(II.62)
m

q
=

(
m

q

)
0

[
1− α f(r+)

r2
+

]
,

where the function f(r+) is positive, while the expression for η/s takes the form

(II.63)
η

s
=

1

4π

[
1− α g(Q)

]
,

where g(Q) is a non-negative function of the R-charge.

The outline of the rest of this chapter is as follows. Section 2.2.1 is dedicated to the

construction of the perturbative generalization of the Gibbons-Hawking surface term for

the R2 action (II.58). Following this, in Section 2.2.2 we present the local counterterms

needed to render this action finite in dimensions d ≤ 7. We then present the R-charged

black hole solution in Section 2.2.3 and explore their thermodynamics in Section 2.2.4.

Finally in section 2.2.5 we discuss the implications of the mass to charge ratio for the weak

gravity conjecture.

2.2.1 Generalizing the Gibbons-Hawking surface term

Before considering the higher derivative gravitational action, it is worth recalling that

the ordinary Einstein-Hilbert action

(II.64) Sbulk = − 1

2κ2
d

∫
M
ddx
√
−gR

contains explicitly second derivatives of the metric gµν . Thus, on a space with a boundary,

variation with respect to the metric yields, in addition to the standard δgµν factors, terms

involving the normal derivative of the metric. In order to have a well-defined variational
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principle where the metric, but not its derivative, is held fixed at the boundary, the Einstein-

Hilbert action must be supplemented by the Gibbons-Hawking surface term

(II.65) SGH = − 1

κ2
d

∫
∂M

dd−1x
√
−hK .

Here K denotes the trace of the extrinsic curvature tensor, Kµν = ∇(µnν), where nµ

specifies the normal direction to the boundary surface, and hab is the boundary metric.

With the inclusion of the Gibbons-Hawking term, the unwanted normal derivative terms

are canceled, and the variational principle is well-defined.

We now consider the addition of curvature-squared terms, and take the bulk action to

be of the form

(II.66) Sbulk = − 1

2κ2
d

∫
M
ddx
√
−g
[
R− 1

4
F 2 +(d−1)(d−2)g2 +α1R

2 +α2R
2
µν+α3R

2
µνρσ

]
.

In general, this four-derivative action gives rise to higher order equations of motion. How-

ever, for the special choice of coefficients α1 = α3 and α2 = −4α3, the higher derivative

terms combine to form the well-known Gauss-Bonnet term R2−4R2
µν +R2

µνρσ, which is the

unique combination that gives rise to equations of motion involving no higher than second

derivatives of the metric. This motivates us to rewrite (II.66) in the equivalent form

Sbulk = − 1

2κ2
d

∫
M
ddx
√
−g
[
R− 1

4
F 2 + (d− 1)(d− 2)g2

+α̃1R
2 + α̃2R

2
µν + α3(R2 − 4R2

µν +R2
µνρσ)

]
,(II.67)

where

(II.68) α̃1 = α1 − α3, α̃2 = α2 + 4α3.

For the special case of Gauss-Bonnet gravity, where α̃1 = α̃2 = 0, the Gibbons-Hawking

surface term can be generalized [167, 143], and takes the form

SGauss-Bonnet
GH = − 1

κ2
d

∫
∂M

dd−1x
√
−hα3

[
− 2

3
K3 + 2KKabK

ab − 4

3
KabK

bcKc
a

−4(Rab −
1

2
Rhab)Kab

]
,(II.69)
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where Rab is the boundary Ricci tensor. However, no equivalent term exists for α̃1 and

α̃2 non-vanishing, because in this case the equations of motion are of higher order, and

in general it is no longer sufficient to specify only the metric (and not derivatives) on the

boundary.

This issue is unavoidable whenever we are faced with higher order equations of motion.

However, we are really only interested in viewing the higher order terms as corrections to the

two-derivative action. In this case, we only need to develop a perturbative expansion where

the higher derivative terms do not generate their own dynamics, but instead contribute

merely correction terms, thus effectively maintaining a two-derivative equation of motion.

In this case, it should be possible to write down an effective Gibbons-Hawking term, not

just for the Gauss-Bonnet combination, but also for the R2 and R2
µν terms in the action.

This has been done for R2 corrections in d = 5 by introducing auxiliary fields [60]. However,

one can avoid the complications involved in utilizing auxiliary fields by working directly

with the perturbative expansion.

To see how this may be done, we begin with the observation that the ordinary Gibbons-

Hawking term (II.65) is designed to cancel the appropriate part of the variation of the

Einstein-Hilbert term, namely
√
−ggµνδRµν . With this in mind, consider the variation

δ[R+ α̃1R
2 + α̃2R

2
µν ] = δR+ 2α̃1RδR+ 2α̃2(RµνδRµν +RµρR

µ
σδg

ρσ)

= (gµν + 2α̃1Rg
µν + 2α̃2R

µν)δRµν

+(Rµν + 2α̃1RRµν + 2α̃2RµρR
ρ
ν )δgµν .(II.70)

Substituting in the lowest order equation

(II.71) Rµν = −(d− 1)g2gµν +
1

2

(
FµλFν

λ − 1

2(d− 2)
gµνF

2

)
+O(αi)
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results in

δ[R+ α̃1R
2 + α̃2R

2
µν ] = (1− 2α̃1g

2d(d− 1)− 2α̃2g
2(d− 1))gµνδRµν

+
1

2(d− 2)
(α̃1(d− 4)− α̃2)F 2gµνδRµν + α̃2F

µλF νλδRµν + · · · ,

(II.72)

where we have ignored higher order terms as well as terms not related to the variation

δRµν .

For the terms in (II.72) involving simply gµνδRµν , it is straightforward to generalize the

usual Gibbons-Hawking term, (II.65), to obtain a corresponding surface term canceling the

variation of the normal derivative of the metric

S1
GH = − 1

κ2
d

∫
∂M

dd−1x
√
−h
[
(1− 2α̃1g

2d(d− 1)− 2α̃2g
2(d− 1))K

+
1

2(d− 2)
(α̃1(d− 4)− α̃2)KF 2

]
.(II.73)

However, the last term in (II.72) is a not as straightforward to deal with, and the variation

δRµν must be computed explicitly. We find,

∫
M
ddx
√
−gFµλF νλδRµν

=

∫
M
ddx
√
−gFµλF νλ

(
∇σδΓσµν −∇µδΓσνσ

)
=

1

2

∫
M
ddx
√
−gFµλF νλ

(
2nρ∇(µδgν)ρ − nρ∇ρδgµν − nµgρσ∇νδgρσ

)
=

1

2

∫
M
ddx
√
−g [bulk] +

1

2

∫
∂M

dd−1x
√
−h
(
−hachbdF cλF dλ

−habnµFµλnνF νλ
)
nρ∇ρδgab + · · · ,(II.74)

where in the last line we have kept only the terms on the boundary coming from integration

by parts and including normal derivatives of the metric. The proper Gibbons-Hawking

boundary term associated with this variation is then simply:

(II.75) S2
GH = − 1

κ2
d

∫
∂M

dd−1x
√
−hα̃2

2

(
KnµF

µλnνF
ν
λ +KabF

aλF bλ

)
.
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It is now clear that the full effective Gibbons-Hawking term generalizing (II.65) is just the

sum of (II.73) and (II.75), which handles the α̃1 and α̃2 terms, and (II.69), which takes

care of the α3 Gauss-Bonnet combination:

SGH = − 1

κ2
d

∫
∂M

dd−1x
√
−h
[(

1− 2α̃1g
2d(d− 1)− 2α̃2g

2(d− 1)
)
K

+
1

2(d− 2)

(
α̃1(d− 4)− α̃2

)
KF 2 +

α̃2

2

(
KnµF

µλnνF
ν
λ +KabF

aλF bλ

)
−2α3

(1

3
K3 −KKabK

ab +
2

3
KabK

bcKc
a + 2(Rab −

1

2
Rhab)Kab

)]
.(II.76)

We note that the Gibbons-Hawking term now involves the gauge field strength evaluated

on the boundary. Variation of SGH then results in δF terms on the boundary, thus compli-

cating the variational principle for the potential Aµ. This can in principle be avoided by

working in the canonical ensemble, where the charge is held fixed, and which corresponds

to taking δ(nµF
µa) = 0 instead of δAµ = 0 on the boundary. A natural way to do this is

to add a Hawking-Ross boundary term of the form
∫
∂M dd−1x

√
−hnµFµaAa to cancel the

boundary term which arises from the variation of the gauge kinetic term in the bulk action

[111]. However, for our present purposes, all terms involving the field strength in (II.76)

are actually subdominant and, in fact, vanish for all of the thermodynamic quantities dis-

cussed below. Therefore, we will chose to work in the grand-canonical ensemble without

adding the Hawking-Ross term.

2.2.2 Boundary Counterterms

It is well known that the gravitational action (II.66) evaluated on the background so-

lution is divergent. The divergences can be removed, however, using the method of holo-

graphic renormalization, which involves introducing appropriate boundary counterterms

Sct so that the full action

(II.77) Γ = Sbulk + SGH − Sct,



45

remains finite on-shell. This method has become quite standard in the framework of

AdS/CFT, since the boundary counterterms have a natural interpretation as conventional

field theory counterterms in the dual CFT.

Along with counterterms to remove divergences, one is also free to add an arbitrary

number of finite counterterms. While such terms shift the values of the action and boundary

stress tensor, they are natural from the CFT point of view, since they correspond to the

freedom to change renormalization prescriptions. Their inclusion has played a key role, for

example, in resolving the puzzle of the unusual mass/charge relation M ∼ 3
2µ+Q− 1

3g
2Q2

observed in [38] for single R-charged black holes in AdS5, in apparent conflict with the BPS

bound M ≥ Q, saturated in this case when µ = 0. With the addition of an appropriate

finite counterterm, the expected linear relation M ∼ 3
2µ + 3Q may be restored [129].

The finite counterterms are also necessary for maintaining diffeomorphism invariance in

the renormalized theory, and may be unambiguously generated using the Hamilton-Jacobi

approach to boundary counterterms.

In order to explore the appropriate counterterm structure needed to regulate the action

(II.66), we first note that it admits a vacuum AdS solution with

(II.78) Rµν = −(d− 1)g2
effgµν ,

where

(II.79) g2
eff = g2

(
1 + α̃1g

2d(d− 1)(d− 4)

d− 2
+ α̃2g

2 (d− 1)(d− 4)

d− 2
+ α3g

2(d− 3)(d− 4)

)

is the shifted inverse AdS radius. Writing the vacuum AdS metric as

(II.80) ds2 = −(k + g2
effr

2)dt2 +
dr2

k + g2
effr

2
+ r2dΩ2

d−2,k,

it is easy to see that
√
−g ∼ rd−2, and hence that the leading divergence of the on-shell

goes as rd−1
0 where r0 is an appropriate cutoff.
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The counterterm action for the theory (II.66) may be expanded in powers of the inverse

metric hab ∼ 1/r2
0:

(II.81) Sct =
1

2κ2
d

∫
∂M

dd−1x
√
−h [A+BR+ C1R2 + C2R2

ab + C3R2
abcd + · · · ] .

Note that we have ignored possible counterterms built out of Fµν since in the configurations

we are interested in the gauge field vanishes sufficiently rapidly at the boundary so that it

will not contribute to any potential counterterms. The A and B coefficients are chosen to

cancel the rd−1
0 and rd−3

0 power law divergences, respectively, while the Ci terms will cancel

the rd−5
0 divergence. Note, however, that at lowest order the asymptotic Einstein condition

Rµν = −(d − 1)g2gµν along with the boundary symmetry implied by (II.80) ensures that

the boundary curvature satisfies the algebraic relation R2 = (d − 2)R2
ab. Furthermore,

isotropy of the transverse space relates R2
abcd to the other boundary curvature squared

quantities as well. What this means is that divergence cancellation by itself is insufficient

to fix the relative factors among the Ci coefficients.

An elegant way around this ambiguity in fixing the Ci coefficients is to use the Hamilton-

Jacobi method to obtain the counterterms. In particular, this was done in [130] to generate

the counterterms for the Gauss-Bonnet component of the action proportional to α3. (These

counterterms were previously constructed in [29, 9, 28] using more direct methods.) In

order to determine the α̃1 and α̃2 dependent counterterms, we may take a shortcut and

note that they may be absorbed by a field redefinition in the asymptotic limit. In this case,

their only effect is to rescale the usual counterterms for the two-derivative theory, which is

proportional to the combination

(II.82) R2
ab −

d− 1

4(d− 2)
R2

at curvature squared order. At the linear level, we combine the various ingredients to
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obtain

Sct =
1

2κ2
d

∫
∂M

dd−1x
√
−h
[
2g(d− 2)

(
1− 1

2
α̃1g

2d(d− 1)(3d− 4)

d− 2

−1

2
α̃2g

2 (d− 1)(3d− 4)

d− 2
− 1

6
α3g

2(d− 3)(d− 4)

)
+

1

g(d− 3)

(
1− 1

2
α̃1g

2d(d− 1)(5d− 12)

d− 2

−1

2
α̃2g

2 (d− 1)(5d− 12)

d− 2
+

3

2
α3g

2(d− 3)(d− 4)

)
R

+
1

g3(d− 3)2(d− 5)

(
1− 1

2
α̃1g

2d(d− 1)(7d− 20)

d− 2
− 1

2
α̃2g

2 (d− 1)(7d− 20)

d− 2

−7

2
α3g

2(d− 3)(d− 4)

)(
R2
ab −

d− 1

4(d− 2)
R2

)
+

α3

g(d− 5)

(
R2 − 4R2

ab +R2
abcd

)
+ · · ·

]
.(II.83)

We have only explicitly worked out the counterterms up to O(rd−5
0 ). This is sufficient

to cancel divergences for d ≤ 7, but is insufficient for removing finite terms that spoil

diffeomorphism invariance in d = 7. Hence our results are explicit only for d < 7, although

the counterterm action can be extended to arbitrary dimension if desired.

2.2.3 The R2 corrected black hole solution

The full theory we are interested in is determined by the bulk action (II.66) along with

the generalized Gibbons-Hawking term (II.76) and counterterm action (II.83). We now

turn to the construction of R2 corrected spherically symmetric black hole solutions to this

system. Since we are working to linear order in αi, we may substitute the lowest order

equations of motion wherever possible into the higher curvature terms. We find that the
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Einstein equation takes the form

Rµν + (d− 1)g2gµν +
1

4(d− 2)
F 2gµν −

1

2
FµλFν

λ =[
−g4(α1d+ α2)

(d− 4)(d− 1)2

d− 2
− g2

(
α1(d2 − 8) + α2(3d− 8)

) (d− 1)

2(d− 2)2
F 2

+
(
α1(d− 4)(3d− 8)− α2(5d− 12)

) 1

16(d− 2)3
(F 2)2 +

α2

4(d− 2)
FγλF

λσFσρF
ργ

+
(
α1(d− 4) + α2(d− 3) + α3(3d− 8)

) 1

2(d− 2)2
∇λ∇λF 2 +

α3

d− 2
R2
γρλσ

]
gµν

+g2(α1d+ α2 − 2α3)(d− 1)FµλFν
λ + α3FµλF

λσFσρF
ρ
ν

−
(
α1(d− 4)− α2 + 2α3)

1

4(d− 2)
F 2FµλFν

λ − 2α3RµρλσRν
ρλσ

−(α2 + 2α3)RµρνλF
ρσF λσ −

1

2
(α2 + 4α3)∇λ∇λ(FµλFν

λ)

+(2α1 + α2 + 2α3)
(d− 4)

4(d− 2)
∇µ∇νF 2 ,(II.84)

while the Maxwell equation is simply

(II.85) ∇µFµν = 0.

The presence of F 4 terms in the Einstein equation indicates that we will end up with metric

terms up to O(Q4) where Q is the electric charge.

We now take the spherically symmetric metric ansatz

(II.86) ds2 = −f1(r) dt2 +
1

f2(r)
dr2 + r2dΩ2

d−2,k ,

where k = 1, 0,−1 specifies the curvature of the transverse space. Inserting this into the
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Einstein equations yields the solution to linear order in the αi:

f1(r) = k + g2
effr

2 − µ

rd−3

+
(
1 + 2g2(α̃1d(d− 1)− α̃2(d2 − 6d+ 7) + α3(d− 3)(d− 4))

) Q2

2(d− 2)(d− 3)r2(d−3)

+
kQ2

r2d−4

(
2α̃1

(d− 4)

(d− 2)2
− α̃2

d2 − 6d+ 10

(d− 2)2

)
+ α3(d− 3)(d− 4)

µ2

r2d−4

− µQ2

r3d−7

(
α̃1

(d− 1)(d− 4)

(d− 2)2
− α̃2

(d− 2)2
+ α3

(d− 4)

(d− 2)

)
+

Q4

4r4d−10

(
α̃1

(d− 4)(11d2 − 45d+ 44)

(d− 2)3(d− 3)(3d− 7)
+ α̃2

4d3 − 33d2 + 83d− 64

(d− 2)3(d− 3)(3d− 7)

+α3
(d− 4)

(d− 2)2(d− 3)

)
(II.87)

f2(r) =

(
1− 2γ

Q2

r2d−4

)
f1(r) ,

where geff is defined in (II.79) and

(II.88) γ = α̃1
(2d− 3)(d− 4)

(d− 2)2
+ α̃2

d2 − 5d+ 5

(d− 2)2
.

The gauge field is given by

(II.89) At =
Q

(d− 3)rd−3
+ γ

Q3

(3d− 7)r3d−7
,

up to a possible constant.

Other than k, the black hole depends on two parameters: µ, which is related to the

mass, and Q, which is essentially the electric charge. Note that the mass parameter µ

is shifted from the conventional Gauss-Bonnet black hole mass parameter by a constant

proportional to α3. In particular, the Gauss-Bonnet theory (α̃1 = α̃2 = 0) admits an exact

solution with a corresponding mass parameter µ̂ of the form

(II.90) ds2 = −fdt2 +
1

f
dr2 + r2dΩ2

d−2,k,

where [22, 172, 173, 39]

(II.91) f = k +
r2

2α̃3

[
1∓

√
1 + 4α̃3

(
µ̂

rd−1
− g2 − Q2

2(d− 2)(d− 3)r2(d−2)

)]
,
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and α̃3 = α3(d − 3)(d − 4). Taking the ‘negative’ branch of (II.91), which is the only one

that admits a perturbative expansion, we find to linear order in α3

f = k + g2
effr

2 − (1 + 2g2α̃3)
µ̂

rd−3
+ (1 + 2g2α̃3)

Q2

2(d− 2)(d− 3)r2(d−3)

+α̃3
µ̂2

r2(d−2)
− α̃3µ̂Q

2

(d− 2)(d− 3)r3d−7
+

α̃3Q
4

4(d− 2)2(d− 3)2r2(2d−5)
,(II.92)

where in this case g2
eff = g2(1 + g2α̃3). Comparing this with (II.87) demonstrates the

relation

(II.93) µ = µ̂(1 + 2g2α̃3) = µ̂
(
1 + 2g2α3(d− 3)(d− 4)

)
.

Note also that for Q = 0 the dependence of the solution (II.87) on α̃1 and α̃2 is indirect

through the shift in geff . This is related to the fact that these contributions may be

removed at linear order through a field redefinition. However, with nonzero charge, a field

redefinition of the form gµν → gµν + aRgµν + bRµν can in principle remove the R2 and

R2
µν terms in the action but also generates RF 2 and RµνF

µλF νλ terms, implying that the

coefficients α̃1 and α̃2 remain physical [132].

2.2.4 Thermodynamics

Given the holographically renormalized action, it is straightforward to study the ther-

modynamics of the R-charged black holes. We begin with the temperature, which is given

by the surface gravity of the black hole, or equivalently by the requirement of the absence

of a conical singularity at the horizon of the Euclideanized black hole. The relevant part

of the Euclideanized metric has the form

(II.94) ds2 = f1(r)dτ2 +
dr2

f2(r)
,

where both f1 and f2 have a zero at the outer horizon, f1(r+) = f2(r+) = 0. In this case,

the temperature is given by

(II.95) T =
1

4π

[√
f ′1(r)f ′2(r)

]
r=r+

.
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For f1 and f2 given in (II.87), we find:

T =
1

4πr+

[
(d− 3)

µ

rd−3
+

+ 2g2
effr

2
+ −

Q2

(d− 2)r2d−6
+

− 2α3(d− 2)(d− 3)(d− 4)
µ2

r2d−4
+

− g
2Q2

r2d−6
+

(
2α̃1

(d4 − 36d2 + 107d− 84)

(d− 2)2(d− 3)
− 2α̃2

(d4 − 14d3 + 65d2 − 121d+ 77)

(d− 2)2(d− 3)

+2α3
(d− 3)(d− 4)

(d− 2)

)
+
k Q2

r2d−4
+

(
−12α̃1

(d− 4)

(d− 3)
+ α̃2

2(d− 4)(d− 5)

(d− 3)

)
+
µQ2

r3d−7
+

(
α̃1

(d− 4)(d2 + 6d− 15)

(d− 2)(d− 3)
− α̃2

(d3 − 13d2 + 49d− 53)

(d− 2)(d− 3)
+ α3

(d− 4)(3d− 7)

(d− 2)

)
− Q4

r4d−10
+

(
α̃1

(d− 4)(10d3 − 49d2 + 84d− 57)

2(d− 2)2(d− 3)2(3d− 7)
+ α̃2

(2d4 − 14d3 + 31d2 − 32d+ 25)

2(d− 2)2(d− 3)2(3d− 7)

+α3
(2d− 5)(d− 4)

2(d− 2)2(d− 3)

)]
.(II.96)

While this expression is written in terms of the parameters µ, r+ and Q, they are not all

independent. In particular, µ may be written in terms of r+ and Q through the horizon

condition f1(r+) = 0 (although µ enters quadratically in (II.87), it is only necessary to

obtain µ to first order in the αi).

The entropy can be obtained by using Wald’s formula

(II.97) S = −2π

∫
horizon

Eµνρσεµνερσd
d−2x,

where

(II.98) Eµνρσ =
δSbulk

δRµνρσ

∣∣∣∣
gµν fixed

,

and εµν is the binormal to the horizon. For the action (II.66), we have

Eµνρσ = − 1

2κ2
d

√
−g
[

1
2(1 + α1R)(gµρgνσ − gµσgνρ)

+1
2α2(gµρRνσ + gνσRµρ − gµσRνρ − gνρRµσ) + 2α3R

µνρσ
]
,(II.99)

in which case we find the entropy to be

S =
2πωd−2,k

κ2
d

rd−2
+

[
1− 2α̃1g

2d(d− 1)− 2α̃2g
2(d− 1) + 2α3(d− 2)(d− 3)

k

r2
+

− Q2

r2d−4
+

(
α̃1
d− 4

d− 2
+ α̃2

d− 3

d− 2

)]
.(II.100)
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Here ωd−2,k denotes the area of the transverse space given by dΩd−2,k.

The next ingredient we are interested in is the energy, which can be extracted from the

time-time component of the boundary stress tensor,

Tab =
2√
−h

δS

δhab

=
1

2κ2
d

[
2
(
1− 2α̃1g

2d(d− 1)− 2α̃2g
2(d− 1)

)
(Kab −Khab)

+

(
α̃1

(d− 4)

d− 2
− α̃2

d− 2

)(
F 2Kab + 2KFλaF

λ
b −

1

2
KF 2

)
+α̃2

(
KabhcdnµF

µcnνF
νd +KnµF

µ
anνF

ν
b −

1

2
KhcdnµF

µcnνF
νdhab

)
+α̃2

(
KcdF

c
aF

d
b −

1

2
KcdF

cλF dλhab

)]
+ TGBab + TCTab ,

(II.101)

giving us the refreshingly simple expression

(II.102) E =
ωd−2

2κ2
d

(d− 2)µ
(
1− 2α̃1g

2d(d− 1)− 2α̃2g
2(d− 1)− 2α3g

2(d− 3)(d− 4)
)
,

which we expect to be valid in arbitrary dimension d. Notice that in the absence of higher

derivative corrections this expression reproduces the familiar result E ∼ µ found in [47].

This also matches the Gauss-Bonnet black hole mass [146, 39] in the case α̃1 = α̃2 = 0,

and agrees with [60], with arbitrary αi coefficients (note that we have removed the k2

dependent ‘Casimir energy’ by the addition of finite counterterms, which was not done in

[60]).

The final quantity we are interested in finding is the thermodynamic potential, which

can be obtained by evaluating the complete on-shell action:

(II.103) βΩ = Sbulk + SGH + Sct.
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Computing this explicitly we find the renormalized free energy:

Ω =
ωd−2,k

2κ2
d

[
µ
(
1− 2α̃1g

2d(d− 1)− 2α̃2g
2(d− 1)− 2α3g

2(d− 2)(d− 3)
)

−2g2rd−1
+

(
1− α̃1g

2d
2(d− 1)

d− 2
− α̃2g

2d(d− 1)

d− 2
− α3g

2d(d− 3)

)
− Q2

(d− 2)(d− 3)rd−3
+

+
kQ2

rd−1
+

(
4α̃1

(d− 1)(d− 4)

(d− 2)
+ α̃2

d(d− 4)

(d− 2)

)
+
g2Q2

rd−3
+

(
2α̃1

(d− 1)(d− 4)(2d− 3)

(d− 2)2
+ α̃2

d3 − 4d2 + 6

(d− 2)2
− 2α3

(d− 4)

(d− 2)

)
+
µQ2

r2d−4
+

(
−4α̃1

(d− 1)(d− 4)

(d− 2)
− α̃2

d(d− 4)

(d− 2)
+ 2α3

(2d− 5)

(d− 2)

)
− 2α3(d− 2)(d− 3)

µ2

rd−1
+

+
Q4

2r3d−7
+

(
α̃1

(d− 4)(12d2 − 45d+ 43)

(d− 2)2(d− 3)(3d− 7)
+ α̃2

(3d3 − 23d2 + 53d− 39)

(d− 2)2(d− 3)(3d− 7)

−α3
(3d− 8)

(d− 2)2(d− 3)

)]
,(II.104)

where we again recall that µ is a redundant parameter, and may be rewritten in terms of

r+ and Q.

Since the d-dimensional expressions are rather unwieldy, we have checked our calcula-

tions by verifying that the thermodynamic potential and energy satisfy

(II.105) Ω = E − TS −QΦ,

and the first law,

(II.106) dE = TdS + ΦdQ .

Here Φ is the chemical potential, defined as the difference in the potential between the

horizon and spatial infinity,

(II.107) Φ(r+) = At(r →∞)−At(r = r+) ,

and Q = (ωd−2/2κ
2
d)Q is the normalized electric charge which is unmodified by the higher

derivative terms.

Finally, we note that a subtlety arises when applying the above thermodynamic expres-

sions in an AdS/CFT context. For the R-charged black hole solution, we have chosen a
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parameterization of the background which is asymptotic to vacuum AdS given by (II.80).

Taking r →∞, this has the form

(II.108) ds2 ∼ −g2
effr

2dt2 + r2dΩ2
d−2,k +

dr2

g2
effr

2
.

Working on the Poincaré patch (k = 0), the natural spatial coordinates are written in

terms of the zeroth order AdS radius, so that

ds2 ∼ −g2
effr

2dt2 + g2r2d~x 2 +
dr2

g2
effr

2

∼ g2r2

(
−
g2

eff

g2
dt2 + d~x 2

)
+

dr2

g2
effr

2
.(II.109)

The boundary CFT metric thus has a redshift factor

(II.110) λ =
geff

g
,

which may be removed by rescaling asymptotic time

(II.111) t→ t′ = λt .

Thus, in the CFT, all thermodynamic quantities in this section ought to be rescaled via

(II.112) {E, T,Φ,Ω} → 1

λ
{E, T,Φ,Ω} .

We will only perform the scaling explicitly for the energy, since it is the quantity which

plays a key role in the discussion of the mass to charge relation.

2.2.5 The weak gravity conjecture and M/Q

It is not surprising that the relation between the mass m and the charge q of extremal

black hole solutions is modified in the presence of curvature corrections. In light of the

weak gravity conjecture, which emerged from the ideas explored in [169] and later refined

in [8], it is interesting to examine the precise dependence of the mass on the R-charge for

the solutions we have constructed above.
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One of the key points emphasized in [169] is the fact that string theory, or any theory

of quantum gravity, puts constraints on low energy physics, so that not every (consistent)

effective field theory can in fact be UV completed. Thus, the landscape of “good” theories

– those which are compatible with quantum gravity – is much smaller than the actual

swampland of all effective field theories which do not have a UV completion. Building on

the simple observation that “gravity is the weakest force,” the authors of [8] conjectured

that there should always be elementary objects whose mass to charge ratio is smaller than

the corresponding one for macroscopic extremal black holes. The presence of such objects

would then provide a decay channel for extremal black holes, alleviating the problem of

remnants. Thus, according to the weak gravity conjecture, the mass/charge relation m = q

for extremal black holes cannot be exact, but must instead receive corrections as the charge

q decreases. Furthermore, the deviation from the extremal limit is expected to become more

pronounced as the charge becomes smaller.

An analysis of higher derivative corrections to the mass/charge ratio of four-dimensional,

asymptotically flat black holes was performed in [121]. In the examples where the sign of

the correction to m/q could be verified from UV physics, it was found to be negative, in

agreement with the claims of [8]. Similar results appeared more recently [91] in the context

of d-dimensional black holes with two electric charges, which are solutions corresponding to

fundamental strings with generic momentum and winding on an internal circle. While the

weak gravity conjecture was originally phrased in terms of four-dimensional, asymptotically

flat black holes, it is worth exploring its analog in the context of extremal black holes in

AdS. In particular, there have been suggestions in the literature that the correction to m/q

might be somehow tied to the correction to the shear viscosity to entropy density ratio η/s

(as well as to the charge conductivity) [122, 144, 55]. When discussing the effects of higher

derivatives on various transport coefficients, the authors of [144] included an analysis ofm/q
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for five-dimensional R-charged black holes, and their results were in qualitative agreement

with those of [121].

Given our analysis in this paper, we may extend some of these studies to R-charged

solutions in d-dimensions. As we will see, our results will be similar to those already found

in [121] and [144]. Moreover, we emphasize that in five dimensions the deviation from the

linear extremal mass-charge relation predicted by the weak gravity conjecture seems to be

intimately tied to the corrections observed in some of the hydrodynamic calculations in

AdS5/CFT4. Such a connection could be a consequence of gravity constraining the set of

allowed dual CFTs.

In Section 2.2.4 we extracted the energy of the corrected R-charge solutions from the

boundary stress tensor. In this case, the mass to charge ratio is given simply by

(II.113)
m

q
=

1

λ

E

Q
,

where the energy E is given in (II.102), but must be rescaled by the redshift factor λ

introduced in (II.110) to ensure proper boundary asymptotics. Recall that the normalized

charge Q is given by Q = (ωd−2/2κ
2
d)Q. Since we are interested in m/q for extremal black

holes, we make use of the extremality condition T = 0 as well as the horizon condition

f(r+) = 0.

Although we ultimately want to consider black holes in AdS, we start by setting g = 0

and k = 1 in order to examine m/q for asymptotically flat solutions with a spherical

horizon, as was done in [121]. We find

m

q
=

(
m

q

)
0

(
1− α1

r2
+

(d− 3)2(d− 4)2

2(d− 2)(3d− 7)
− α2

r2
+

(d− 3)2(2d2 − 11d+ 16)

2(d− 2)(3d− 7)

−α3

r2
+

(d− 3)(2d3 − 16d2 + 45d− 44)

(d− 2)(3d− 7)

)
,(II.114)

where

(II.115)

(
m

q

)
0

=

√
2(d− 2)

d− 3
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is the uncorrected mass to charge ratio. Note first of all that, independent of the number of

dimensions, the correction is always negative whenever the αi’s are positive. Furthermore,

as one can easily check by trading r+ dependence for Q dependence, the 1/r2
+ factor in

front of the higher derivative corrections implies that the deviation from the linear relation

m ∼ q is enhanced as the charge decreases. This was precisely one of the predictions of the

weak gravity conjecture, and was also observed in [121]. Of course to say anything more

about the precise form of the correction, one needs to determine the couplings.

The expressions corresponding to spherical horizon black holes in AdS are significantly

more complicated. Here we quote the result in d = 5, and relegate the d = 4 and d = 6

cases to the appendix, since they are qualitatively the same:(
m

q

)
d=5

=

(
m

q

)
0,d=5

(
1− α1

(816β3 + 1024β2 + 300β + 1)

6r2
+(1 + 2β)(2 + 3β)

−α2
(336β3 + 392β2 + 132β + 11)

6r2
+(1 + 2β)(2 + 3β)

− α3
(564β3 + 586β2 + 216β + 31)

6r2
+(1 + 2β)(2 + 3β)

)
,(II.116)

where β = g2r2
+ and

(II.117)

(
m

q

)
0,d=5

=

√
3(2 + 3β)

2
√

1 + 2β
.

As in the asymptotically flat case, the corrections are sensitive to the sign of the couplings,

and will necessarily push the solution below the extremal limit when all the αi are positive.

Of course, if some of the couplings are negative the various terms can conspire to yield a

positive correction to the mass to charge ratio. However, if the weak gravity conjecture

holds, we would expect that, in an effective theory that is consistent with gravity in the UV,

the couplings would be constrained in such a way as to lower m/q. Again, this underlines

the importance of obtaining the higher derivative couplings from UV physics.

In the asymptotically Minkowski case we observed that m/q became smaller as the

charge decreased, since the overall 1/r2
+ factor decreases monotonically as r+ increases.

Here the AdS black hole situation is similar only as long as r+ does not become too large.
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When r+ ∼ 1/g, the coefficient of the α3 term reaches a minimum and starts growing as

r+ increases. This effect was already noticed in [144] and is intrinsic to the AdS geometry

– it reflects the fact that the size of the black hole is becoming of the same order as the

AdS radius.

One of the results of the investigations of the hydrodynamic regime of four-dimensional

SCFTs has been the universality [33] of the shear viscosity to entropy ratio, η/s = 1/4π in

the leading supergravity approximation. Studies of R4 corrections [35, 30, 145] increased

the ratio, and seemed to favor the existence of a new bound in nature, η/s ≥ 1/4π, the

celebrated KSS bound. However, with the inclusion of curvature-squared corrections the

bound has been shown to be violated by 1/N effects on the CFT side [122, 37, 144, 55]. The

size of the violation is related to the two central charges a, c of the dual four-dimensional

CFT. Holographic Weyl anomaly matching demonstrates that the coefficient of the R2

terms in the action is proportional to (c− a)/c, and it is precisely the quantity c− a which

controls the strength of the correction to η/s, with c − a > 0 necessarily giving violation

of the bound.

Until recently, all the available CFT examples with a known gravity dual corresponded

to c−a > 0, so that violating the η/s bound seemed to be the rule rather than the exception.

However, a large class of four dimensional N = 2 CFTs was constructed recently in [80],

and shown in [81] to contain examples with c − a < 0 and a known dual gravitational

description. These are quiver gauge theories which can be viewed as arising from M5

branes wrapping a Riemann surface. Furthermore, one can add non-compact branes that

intersect the surface at points (punctures on the Riemann surface). In the large N limit,

these yield a large class of AdS5 compactifications of M-theory with four-dimensionalN = 2

supersymmetry, some of which correspond to c− a < 0.

In light of these constructions, the requirement of c−a > 0 which seemingly arises from
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the weak gravity conjecture is rather puzzling. Ideally, we may have expected the gravity

duals to restrict the set of allowed CFTs, effectively placing the ones with c − a < 0 into

the swampland. However, such a statement would have to be reconciled with the results of

[81], which found no such sign restrictions. Still, it is remarkable that the issue of the sign

of c−a arises not only in the computation of transport coefficients, but also in the context

of the weak gravity conjecture. We illustrate this connection with a simple example.

To make contact with the AdS/CFT work on transport coefficients, we take d = 5 and

consider the Weyl-tensor-squared corrected action

(II.118)

Sbulk = − 1

2κ2
5

∫
M
d5x
√
−g

[
R− 1

4
F 2 + 12g2 + α

(
1

6
R2 − 4

3
RµνR

µν +RµνρσR
µνρσ

)]
.

This choice is motivated by the general form of the supersymmetric higher derivative action

that was used in [55] to obtain the corrections to η/s in N = 1 SCFT. In fact, η/s for

(II.118) can be read off from [55], and takes the form

(II.119)
η

s
=

1

4π
[1− 4α(2− q)],

where 0 ≤ q ≤ 2, and q is the R-charge in the notation of [55]. The main feature to point

out is that, since (2− q) is non-negative, the condition α > 0 (or alternatively c− a > 0)

always leads to violation of the η/s bound, and also guarantees that the entropy increases.

But α > 0 is also the requirement needed to satisfy the weak gravity conjecture. In fact,

for the Weyl squared correction in d = 5, our result for m/q reduces to:

(II.120)

(
m

q

)
d=5

=

(
m

q

)
0

(
1− α168β3 + 156β2 + 60β + 11

4 r2
+ (1 + 2β)(2 + 3β)

)
.

While here we have focused on five dimensions, these features are generic in other dimen-

sions as well (as can be inferred from the m/q expressions in the appendix).

For a less trivial example in d = 5 we can look at the most general four-derivative action

describing R-charged solutions, which has been studied in [144, 55], and can be reduced –
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via appropriate field redefinitions – to the simple form:

(II.121)

e−1δL = c1RµνρσR
µνρσ + c2RµνρσF

µνF ρσ + c3(F 2)2 + c4F
4 + c5ε

µνρσλAµRνραβR
αβ

σλ .

The effect of such terms on the shear viscosity to entropy density ratio can be read off from

[144, 55], and for the special case where the terms are constrained by supersymmetry (so

that all the ci’s are related to each other), one finds:

(II.122)
η

s
=

1

4π

[
1− c1 g(Q)

]
,

where g(Q) is a non-negative function of R-charge. The mass to charge relation for this

case has been worked out in [144] and exhibits the same behavior we found in the simpler

Weyl-tensor-squared case:

(II.123)

(
m

q

)
d=5

=

(
m

q

)
0

(
1− c1 f(r+)

)
,

where again f(r+) is always positive. While the precise form of the corrections to m/q and

η/s is different, the behavior required by the weak gravity conjecture (in this case c1 > 0)

is again correlated with the violation of the viscosity to entropy bound.

The correlation between the behavior of η/s and the corrections to m/q is intriguing. It

hints, at least in the five-dimensional context, at a close connection between the sign of c−a

and possible fundamental constraints on the gravitational side of the duality. However, in

this case one would need to understand the role played by the strongly coupled theories

investigated in [81], which allow for negative c− a. We should also point out that studies

of causality in the CFT [26, 36] as well as the requirement of positive energy measurements

in collider experiments [117, 116] (also note the work of [161]) have resulted in bounds on

the central charges a and c, but so far have not lead to any restrictions on the actual sign

of c − a. Nevertheless, theories with c − a < 0 would naively seem to be in conflict with

the weak gravity conjecture, and thus may be expected to possess unusual features. We
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note that these ideas have already been explored in several contexts. For example, [1] have

identified consistency conditions for effective field theories with a UV completion, based on

the idea that the signs of certain higher dimensional operators must be strictly positive.

Such arguments, however, still need to be fully extended to generic gravitational settings.

Having a geometrical understanding of the origin of the higher derivative couplings

– and of their sign in particular – would also be valuable. For example, for the case

of ungauged N = 2, d = 5 supergravity (obtained by reducing d = 11 supergravity on a

CY3), the coupling of the RµνρσR
µνρσ term can be shown to be related to the second Chern

class of the CY3, which is known to be positive. For the case of N = 2, d = 5 gauged

supergravity (which is needed to discuss black holes in AdS), the compactification manifold

would be a five-dimensional Sasaki-Einstein manifold, and the geometric origin of the higher

derivative couplings is less clear. While there is work [78, 79] relating geometric data of

generic supersymmetric AdS5 solutions of type IIB supergravity to the central charges a,

c of the dual CFTs, so far this applies only to the leading supergravity approximation,

where a = c = O(N2). Thus, it would be valuable to generalize these constructions to

accommodate finite N corrections to the central charges. Whether through geometric data,

or through consistency arguments on the field theory side, a better understanding of the

signs of the higher derivative gravitational couplings is needed. This is especially relevant

if we want to achieve a deeper insight into the weak gravity conjecture, and how it is tied

to seemingly unrelated quantities such as hydrodynamic transport coefficients.



CHAPTER III

A supersymmmetric higher derivative lagrangian and η/s

In this chapter we present a supersymmetric higher derivative extension of the minimal

gauged supergravity Lagrangian and relate the coefficients of the higher derivative terms to

gauge theory parameters through an anomaly matching procedure. We compute black hole

solutions and discuss their thermodynamics. Finally we present a calculation of the shear

viscosity to entropy density ratio for charged black holes in this theory, making comments

relevant to the conjectured KSS bound [125]. This chapter is based on work published in

[54, 55] in collaboration with Sera Cremonini, Kentaro Hanaki and Jim Liu.

3.1 Introduction

In this chapter, we investigate black holes in higher-derivative corrected five-dimensional

N = 2 gauged supergravity. Our motivation is two-fold. Firstly, we are interested in

exploring the nature of stringy corrections to supergravity and in particular whether such

higher-order corrections may smooth out singular horizons of small black holes. Secondly,

five-dimensional gauged supergravity is a natural context in which to explore AdS/CFT,

and black holes are important thermal backgrounds for this duality. By working out these

gravity corrections, we may learn more about finite-coupling as well as 1/N effects in the

dual N = 1 super-Yang-Mills theory.

Because of the reduced supersymmetry, we expect the first corrections to N = 2 gauged

62
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supergravity to occur at R2 order. For this reason, we will limit our focus on four-derivative

terms in the effective supergravity action. While in principle these terms may be derived

directly from string theory, doing so would involve specific choices of string compactifica-

tions down to five dimensions as well as the potential need to work out contributions from

the Ramond-Ramond sector. To avoid these issues, we instead make use of supersymmetry,

and in particular the result of [107], which worked out the supersymmetric completion of

the A ∧ TrR ∧ R term in N = 2 supergravity coupled to an arbitrary number of vector

multiplets using the superconformal tensor calculus methods developed in [127, 17, 76, 18].

Although we are not aware of an actual uniqueness proof, we expect the four-derivative

terms constructed in [107] to be uniquely determined by supersymmetry (modulo field

redefinitions). The ungauged story is rather elegant, and may be tied to M-theory com-

pactified on a Calabi-Yau three-fold. In this case the higher derivative corrections are given

by

(III.1) e−1δL = 1
24c2I

[
1
16εµνρλσA

I µRνραβRλσαβ + · · ·
]
,

where the ellipses denote the supersymmetric completion of the A∧TrR∧R Chern-Simons

term. Comparing this term with the Calabi-Yau reduction of the M5-brane anomaly term

demonstrates that the coefficients c2I are related to the second Chern class on the Calabi-

Yau manifold. The higher-derivative corrected action has recently been applied to the

study of five-dimensional black holes in string theory (see e.g. [45] and references therein).

While much has already been made of the higher-derivative corrections to ungauged

supergravity, here we are mainly interested in the gauged supergravity case and resulting

applications to AdS/CFT. In this case, the natural setup would be to take IIB string theory

compactified on AdS5×Y 5 where Y 5 is Sasaki-Einstein, which is dual toN = 1 super-Yang-

Mills theory in four dimensions. While the four-derivative terms worked out in [107] apply

equally well to both gauged and ungauged supergravity, in this case their stringy origin
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is less clear. As we will show, however, the c2I coefficients governing the four-derivative

terms may be related to gauge theory data using holographic anomaly matching.

Before constructing the R-charged black holes in the higher-derivative corrected theory,

we first integrate out the auxiliary fields of the off-shell formulation, yielding an on-shell

supergravity action. Throughout this paper, we furthermore work in the truncation to

minimal supergravity involving only the graviton multiplet (gµν , Aµ, ψµ). While this on-

shell action is implicit in the work of [107], we find it useful to have it written out explicitly,

as it facilitates comparison with other recent results. This is especially of interest in pro-

viding a more rigorous supergravity understanding of the R2 corrections to shear viscosity

[122, 27, 26] and drag force [71, 170].

3.2 Higher Derivative Gauged Supergravity

In this section we investigate five-dimensional N = 2 supergravity with the inclusion

of (stringy) higher-derivative corrections. We are mainly interested in the case of gauged

supergravity, which is the natural setting for the AdS/CFT setup. Because of the reduced

amount of supersymmetry, we expect the first corrections to this theory to occur at R2

order. For this reason, we will limit ourselves to four-derivative terms in the effective

supergravity action.

The conventional on-shell formulation of minimal N = 2 gauged supergravity is given

in terms of the graviton multiplet (gµν , Aµ, ψ
i
µ) where ψiµ is a symplectic-Majorana spinor

with i = 1, 2 labeling the doublet of SU(2). The bosonic two-derivative Lagrangian takes

the form

(III.2) e−1L0 = −R− 1
4F

2
µν + 1

12
√

3
εµνρλσFµνFρλAσ + 12g2,

where g is the coupling constant of the gauged R-symmetry, and where we have followed

the sign conventions of [107]1. We are, of course, interested in obtaining four-derivative

1We take [∇µ,∇ν ]vσ = Rµνρ σ vρ and Rab = R c
ac b.
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corrections to the above Lagrangian that are consistent with supersymmetry. Along with

purely gravitational corrections of the form (II.49), other possible four-derivative terms

include F 4, mixed RF 2 and parity violating ones. Given the large number of such terms,

it would appear to be a daunting task to work out the appropriate supersymmetric com-

binations. Fortunately, however, it is possible to make use of manifest supersymmetry in

the form of superconformal tensor calculus to construct supersymmetric R2 terms. (See

e.g. [141] for a nice review, albeit focusing on four-dimensional N = 2 supergravity.)

The general idea of the superconformal approach is to develop an off-shell formulation

involving the Weyl multiplet that is locally gauge invariant under the superconformal group.

The resulting conformal supergravity may then be broken down to Poincaré supergravity

by introducing a conformal compensator in the hypermultiplet sector and introducing ex-

pectation values for some of its fields. One advantage of this method is that the off-shell

formulation admits a superconformal tensor calculus which enables one to construct super-

symmetric invariants of arbitrary order in curvature. This is in fact the approach taken in

[107], which worked out the supersymmetric completion of the A∧TrR∧R term in N = 2

supergravity coupled to an arbitrary number of vector multiplets.

The basic construction of [107] involves conformal supergravity (i.e. the Weyl multi-

plet) coupled to a set of nV + 1 conformal vector multiplets and a single compensator

hypermultiplet. The resulting Lagrangian takes the form

(III.3) L = L0 + L1 = L(V )
0 + L(H)

0 + L1,

where L0 corresponds to the two-derivative terms and L1 the four-derivative terms. We

have further broken up L0 into contributions L(V )
0 from the vector multiplets and L(H)

0

from the hypermultiplet.

As formulated in [107], the full Lagrangian L contains a set of auxiliary fields which we

wish to eliminate in order to make direct comparison to the on-shell Lagrangian (III.2).
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To do so, we simply integrate out the auxiliary fields using their equations of motion, and

the remainder of this section is devoted to this process. As an important shortcut, we note

that when working to linear order in the correction terms in L1, we only need to substitute

in the lowest order expressions for the auxiliary fields [7]. For this reason, we first examine

the two-derivative Lagrangian before turning to the four-derivative terms contained in L1.

3.2.1 The leading two-derivative action

We begin with the vector multiplet contribution to the two-derivative Lagrangian [107]

e−1L(V )
0 = N (1

2D −
1
4R+ 3v2) + 2NIvµνF Iµν +NIJ 1

4F
I
µνF

J µν + 1
24cIJKε

µνρλσAIµF
J
νρF

K
λσ

−NIJ
(

1
2D

µM IDµMJ + Y I
ijY

J ij
)
,(III.4)

where M I , AIµ and Y I
ij (I, J = 1, 2, . . . , nv + 1) denote, respectively, the scalar fields, the

gauge fields and the SU(2)-triplet auxiliary fields in the nv + 1 vector multiplets. In

addition, the scalar D and the two-form vµν are auxiliary fields coming from the Weyl

multiplet. The prepotential N and its functional derivatives are given by the standard

expressions

(III.5) N = 1
6cIJKM

IMJMK , NI = 1
2cIJKM

JMK , NIJ = cIJKM
K .

For future reference, we also note the useful relations

(III.6) NIM I = 3N , NIJMJ = 2NI .

Turning next to the hypermultiplet Lagrangian, we have [107]

(III.7)

e−1L(H)
0 = 2

[
DµAᾱi DµAiα +Aᾱi (gM)2Aiα + 2gY ij

αβA
ᾱ
i A

β
j

]
+A2(1

4D + 3
8R−

1
2v

2) .

In general, Aiα are a set of 4 × nH hypermatter scalars carrying both the SU(2) index i

and the index α = 1, 2, . . . , 2nH of USp(2nH). (We use the SU(2) index raising convention
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Ai = εijAj and Ai = Ajεji with ε12 = ε12 = 1). Note that we have gauged a subgroup G

of USp(2nH), so that the covariant derivative appearing above is given by

(III.8) DµAαi = ∂µAαi − gAIµtIAαi +Aαj V j
µ i ,

where tI are the generators of the gauge symmetry and where V ij
µ is an additional auxiliary

field belonging to the Weyl multiplet. Finally, we have defined M ≡ M ItI , where M I are

the vector multiplet scalars.

For simplicity, we focus on a single compensator and choose the conventional gauging

of the diagonal U(1) in the SU(2) R-symmetry. In this case, the action of M on the

hyperscalars is given by

(III.9) MAαi = M ItIAαi = M IPI(iσ
3)αβA

β
i ,

while the covariant derivative becomes

(III.10) DµAαi = ∂µAαi − gAIµPI(iσ3)αβA
β
i +Aαj V j

µ i .

Here PI denote the charges associated with the gauging. Furthermore, A2 ≡ Aᾱi Aiα =

Aβi d α
β Aiα, where the metric d α

β is arranged to be a delta function as appropriate for a

compensator [107].

Combining (III.4) with (III.7), the complete two-derivative action is given by

e−1L0 = 1
4D(2N +A2) +R

(
3
8 A

2 − 1
4N
)

+ v2(3N − 1
2A

2)

+2NIvµνF Iµν +NIJ(1
4F

I
µνF

J µν − 1
2D

µM IDµMJ) + 1
24cIJKε

µνρλσAIµF
J
νρF

K
λσ

−NIJY I
ijY

J ij + 2
[
DµAᾱi DµAiα +Aᾱi (gM)2Aiα + 2gY ij

αβA
ᾱ
i A

β
j

]
.(III.11)

At the two-derivative level, the auxiliary field D plays the role of a Lagrange multiplier,

yielding the constraint

(III.12) 2N +A2 = 0 .
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Thus we can recover the standard very special geometry constraint N = 1 by setting

A2 = −2. (This fixing of the dilatational gauge transformation is in fact the purpose of

the conformal compensator). This then brings the Lagrangian to the following form:

L0 = 1
2D(N − 1)− 1

4R(N + 3) + v2(3N + 1) + 2NIvµνF Iµν

+NIJ(1
4F

I
µνF

J µν − 1
2D

µM IDµMJ) + 1
24 cIJKε

µνρλσAIµF
J
νρF

K
λσ

−NIJY I
ijY

J ij + 2
[
DµAᾱi DµAiα +Aᾱi (gM)2Aiα + 2gY ij

αβA
ᾱ
i A

β
j

]
.(III.13)

Integrating out the auxiliary fields

The action (III.13) can be written in a more familiar on-shell form by integrating out

the auxiliary fields. We will do this in two steps by first eliminating the fields Aαi , V ij
µ and

Y I
ij and then eliminating D and vµν .

We start by fixing the SU(2) symmetry by taking Aαi = δαi , which identifies the indices

in the hypermultiplet scalar. The equation of motion for V ij
µ is then given by

(III.14) V ij
µ = gPI(iσ

3)ijAIµ ,

which also results in DµAαi = 0. Turning next to Y I
ij , we first note that

(III.15) Y ij
αβ A

ᾱ
i A

β
j = Y I ijPI (iσ3)ij .

Varying (III.13) with respect to Y I
ij then gives us the equation of motion

(III.16) Y I
ij = 2(N−1)IJPJ(iσ3)ij .

Using the above to eliminate Aαi , V ij
µ and Y I

ij from the two-derivative action (III.13),

we end up with

e−1L0 = 1
2D(N − 1)− 1

4R(N + 3) + v2(3N + 1) + 2NIvµνF Iµν

+ NIJ
(

1
4F

I
µνF

J µν − 1
2∂

µM I∂µM
J
)

+ 1
24cIJKε

µνρλσAIµF
J
νρF

K
λσ

+ 8g2(N−1)IJPIPJ + 4g2(PIM
I)2 ,(III.17)
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where the last line corresponds to the gauged supergravity potential

(III.18) V = −4g2[2(N−1)IJPIPJ + (PIM
I)2] .

Note that, with abelian gauging, the covariant derivative acts trivially on the vector mul-

tiplet scalars, DµM I = ∂µM
I .

To remove the remaining auxiliary fields D and vµν from (III.17) we must turn to the

equations of motion for this system. Varying the action with respect to D, vµν , M I and

AIµ yields, respectively,

0 = 1
2(N − 1) ,(III.19)

0 = 2(3N + 1)vµν + 2NIF Iµν ,(III.20)

0 = 1
2NI(D −

1
2R+ 6vµνv

µν) + 2NIJF Jµνvµν + 1
4 cIJK F

J
µνF

K µν +NIJ�MJ

+1
2 cIJK ∂µM

J∂µMK − g2 δV

δM I
,(III.21)

0 = −∇ν [4NIvνµ +NIJF Jνµ] + 1
8CIJKεµ

νρλσF JνρF
K
λσ .(III.22)

In addition, the Einstein equation is given by:

0 = 1
4(N + 3)(Rµν − 1

2gµνR) + 1
4(N − 1)Dgµν − 1

4(∇µ∇νN − gµν�N )

+1
2NIJ(∂µM

I∂νM
J − 1

2gµν∂λM
I∂λMJ)− 2(3N + 1)(vµλvν

λ − 1
4gµνvλσv

λσ)

−4NI(F I(µ
λvν)λ − 1

4gµνF
I
λσv

λσ)− 1
2NIJ(F IµλF

J
ν
λ − 1

4gµνF
I
λσF

J λσ)− 1
2gµνV .(III.23)

We are now in a position to start solving for the auxiliary fields D and vµν . Inserting the

very special geometry constraint N = 1 (enforced by the equation of motion for D) into

(III.20) yields

(III.24) vµν = −1
4NIF

I
µν .

We may now eliminate N and vµν from the lowest order Maxwell and Einstein equations
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to obtain

∇ν [(NINJ −NIJ)F Jνµ] = −1
8CIJKεµ

νρλσF JνρF
K
λσ,

Rµν − 1
2gµνR = −1

2NIJ(∂µM
I∂νM

J − 1
2gµν∂λM

I∂λMJ)

−1
2(NINJ −NIJ)(F IµλF

J
ν
λ − 1

4gµνF
I
λσF

J λσ) + 1
2gµνV .(III.25)

Turning next to the scalar equations of motion, we note that the nv + 1 equations may

be decomposed into nv equations for the constrained scalars M I , along with one equation

for the Lagrange multiplier D. To solve for D, we multiply the scalar equation by M I and

obtain:

D − 1
2R+ 6vµνv

µν = −8
3NIF

I
µνv

µν − 1
6NIJF

I
µνF

J µν − 1
3NIJ∂µM

I∂µMJ

−4
3NI�M

I + 2
3M

I δV

δM I
.(III.26)

Substituting in R and vµν then allows us to express the auxiliary field D entirely in terms

of physical fields:

D = − 7
12NIJ∂µM

I∂µMJ − 4
3NI�M

I + 1
4(NINJ − 1

2NIJ)F IµνF
J µν − 5

6V + 2
3M

I δV

δM I

= − 7
12NIJ∂µM

I∂µMJ − 4
3NI�M

I + 1
4(NINJ − 1

2NIJ)F IµνF
J µν

+2g2[6PIPJ(N−1)IJ − PIPJM IMJ ] .(III.27)

By using (III.26), the equation of motion for the constrained scalars (III.21) can be rewrit-

ten in the following form:(
δJI −

NIMJ

3

)[
cJKL(∂µM

K∂µML + 2MK�ML)

−(NJKNL − 1
2cJKL)FKFL − δV

δMJ

]
= 0.(III.28)

We now have all the ingredients we need to write down the on-shell two-derivative

Lagrangian:

e−1L = −R− 1
2NIJ∂µM

I∂µMJ − 1
4(NINJ −NIJ)F IµνF

J µν

+ 1
24 cIJK ε

µνρλσAIµF
J
νρF

K
λσ + 4g2[2(N−1)IJPIPJ + (PIM

I)2] ,(III.29)
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where now the M I are a set of constrained scalars satisfying the very special geometry

condition N = 1. The Lagrangian perfectly matches the bosonic sector of the standard

two-derivative N = 2 supergravity action coupled to nv vector multiplets. The resulting

equations of motion are given by (III.25) and (III.28).

Here, we are mainly concerned with the truncation of (III.29) to the case of pure super-

gravity. This is accomplished by setting the scalars to constants and by defining a single

graviphoton Aµ according to2

(III.30) M I = M̄ I , AIµ = M̄ IAµ.

While the constants M̄ I are arbitrary moduli in the ungauged case, in the gauged cause

they must lie at a critical point of the potential (III.18) given by solving

(III.31)

(
δJI −

NIMJ

3

)
δV

δMJ
= 0.

By demanding that the critical point is supersymmetric, we find that the constant scalars

satisfy3:

(III.32) PIM̄
I =

3

2
, (N̄−1)IJPIPJ =

3

8
.

in which case the potential becomes V̄ = −12g2. The resulting Lagrangian for the bosonic

fields of the supergravity multiplet (gµν , Aµ) then reads

(III.33) e−1L = −R− 3
4F

2
µν + 1

4ε
µνρλσAµFνρFλσ + 12g2 ,

which reproduces the conventional on-shell supergravity Lagrangian (III.2) once the gravipho-

ton is rescaled according to Aµ → Aµ/
√

3.

While this completes the analysis relevant to the leading, two-derivative action, we note

that the expression for D simplifies further in the case of constant scalars. Substituting

2Note that our definition differs by a factor of 1/3 from the conventional one where Aµ = AIµNI .
3These expressions can be obtained by making use of the hyperino and gauging SUSY variations, as well as the

equation of motion for the auxiliary field Y Iij . We refer the reader to [107] for more details.
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(III.30) and (III.32) into the expression (III.27) for D yields the simple result

(III.34) D = 1
4(N̄IN̄J − 1

2N̄IJ)F IµνF
J µν = 3

2F
2
µν .

By taking N = 1, we see that this explicit form of D does not play a role in the leading

expression for the two-derivative Lagrangian. However, it will become relevant in the

discussion of higher derivative corrections, which we turn to next.

3.2.2 Higher-derivative corrections in gauged SUGRA

We now turn to the four-derivative corrections to the action (III.3), which we parame-

terize by L1. For convenience, we separate the contributions to L1 present in the ungauged

theory from those coming strictly from the gauging, L1 = Lungauged
1 +Lgauged

1 . The two are

given by:

e−1Lungauged
1 = 1

24c2I

[
1
16εµνρλσA

I µRνραβRλσαβ + 1
8M

ICµνρσC
µνρσ + 1

12M
ID2 + 1

6F
I
µνv

µνD

−1
3M

ICµνρσv
µνvρσ − 1

2F
I µνCµνρσv

ρσ + 8
3M

Ivµν∇ν∇ρvµρ

−16
9 M

IvµρvρνR
ν
µ − 2

9M
Iv2R+ 4

3M
I∇µvνρ∇µvνρ + 4

3M
I∇µvνρ∇νvρµ

−2
3M

Iεµνρλσv
µνvρλ∇δvσδ + 2

3F
I µνεµνρλσv

ρδ∇δvλσ + F I µνεµνρλσv
ρ
δ∇λvσδ

−4
3F

I µνvµρv
ρλvλν − 1

3F
I µνvµνv

2 + 4M Ivµνv
νρvρλv

λµ −M I(v2)2
]
,(III.35)

e−1Lgauged
1 = 1

24c2I

[
− 1

12εµνρλσ A
I µRνρ ij(U)Rλσij (U)

−1
3 M

IRµν ij(U)Rµν ij(U)− 4
3 Y

I
ijvµνR

µν ij(U)
]
,(III.36)

where

(III.37) R ij
µν (U) = ∂µV

ij
ν − V i

µkV
kj
ν − (µ↔ ν) .

As we can see, the constants c2I parameterize the magnitude of these contributions. Notice

that the scalar D no longer acts as a Lagrange multiplier, since it now appears quadratically

in L1. In fact, by varying the full action L = L0 + L1 with respect to D, with L0 as in
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(III.17), we obtain the modified very special geometry constraint

(III.38) N = 1− c2I

72
(DM I + F I µνvµν) ,

which encodes information about how the scalars M I are affected by higher-derivative

corrections.

Integrating out the auxiliary fields

As in the two-derivative case, in order to obtain a Lagrangian written solely in terms of

the physical fields of the theory we need to eliminate the auxiliary fields D, vµν , V i
µν and

Y I
ij from L = L0 + L1. In Sec. 3.2.1 we solved for the auxiliary fields by neglecting higher

order corrections, and then integrated them out of the two-derivative action. It turns out

that the lowest order expressions for the auxiliary fields are sufficient when working to

linear order in the c2I [7]. This allows us to reuse the results of the previous section for

the auxiliary fields, which we summarize here:

V ij
µ = gPI(iσ

3)ijAIµ ,(III.39)

Y I
ij = 2(N−1)IJPJ(iσ3)ij ,(III.40)

vµν = −1
4NIF

I
µν ,(III.41)

D = 1
4(NINJ − 1

2NIJ)F IµνF
J µν .(III.42)

While it is valid to use these lowest order expressions, it is important to realize that

the scalar fields are modified because of (III.38). This modification leads to additional

contributions to the two-derivative on-shell action (III.29), which combines with L1 to

yield the complete action at linear order in c2I .

In principle, we may work with the full system of supergravity coupled to nV vector

multiplets. However, here we focus on the truncation to pure supergravity, where the

scalars M I are taken to be non-dynamical. Even so, they are not entirely trivial. While at
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the two-derivative level, we may simply set them to constants according to (III.30), here

we must allow for the modification (III.38) by defining

(III.43) M I = M̄ I + c2M̂
I , AIµ = M̄ IAµ, c2 ≡ c2IM̄

I ,

where M̂ I are possible scalar fluctuations that enter at O(c2). Substituting this into the

expressions (III.41) and (III.42) for the auxiliary fields then yields

(III.44) vµν = −3
4Fµν +O(c2), D = 3

2F
2 +O(c2) ,

which match the lowest order expressions for constant scalars. The modified very special

geometry constraint (III.38) can now be simplified further, and becomes

(III.45) N = 1− c2

96
F 2 +O(c2

2).

In general, a solution to the fluctuating scalars M̂ I ought to come from the equations of

motion. However, as a shortcut, we make the ansatz that M̂ I is proportional to M̄ I . The

modified constraint (III.45) is then enough to fix the correction to the scalars to be

M I = M̄ I
[
1− c2

288
F 2 +O(c2

2)
]
.(III.46)

Consistency with the equations of motion will presumably demand an appropriate relation

between the various c2I coefficients. However, since the vectors will be truncated out, we

only care about the combination c2 given in (III.43), and will not work out this relation

explicitly.

We are now ready to integrate out both the scalars M I and the auxiliary fields from

the two-derivative action L0 given in (III.13). By making use of the corrections4 to the

leading order scalar expressions (III.32)

(III.47) PIM
I =

3

2

[
1− c2

288
F 2
]
, (N−1)IJPIPJ =

3

8

[
1 +

c2

288
F 2
]
,

4These can be easily verified using PI = 1
4
N̄IJM̄J .
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we find that the contribution coming from L0 yields the following terms:

(III.48)

e−1L0 = −R− 3

4
F 2 +

1

4
εµνρλσAµFνρFλσ + 12g2 +

c2

24

[
1

16
RF 2 +

1

64
(F 2)2 − 5

4
g2F 2

]
.

Turning next to the four-derivative contributions, we note that, since such terms are

already linear in c2, we may simply use the leading order solution for the scalars. The

gauging contribution (III.36) is then particularly simple

(III.49) e−1Lgauged
1 = − c2

64
g2 εµνρλσA

µF νρF λσ .

On the other hand, the contribution to Lungauged
1 is given by:

e−1Lungauged
1 =

c2

24

[ 1

16
εµνρλσA

µRνρδγRλσδγ +
1

8
C2
µνρσ +

3

16
CµνρλF

µνF ρλ − FµρFρνRνµ

−1

8
RF 2 +

3

2
Fµν∇ν∇ρFµρ +

3

4
∇µF νρ∇µFνρ +

3

4
∇µF νρ∇νFρµ

+
1

8
εµνρλσF

µν(3F ρλ∇δF σδ + 4F ρδ∇δF λσ + 6F ρδ∇
λF σδ)

+
45

64
FµνF

νρFρλF
λµ − 45

256
(F 2)2

]
.(III.50)

The full on-shell Lagrangian is thus given by

e−1L = −R− 3

4
F 2
(

1 +
5

72
c2g

2
)

+
1

4

(
1− 1

16
c2g

2
)
εµνρλσAµFνρFλσ + 12g2

+
c2

24

[ 1

16
RF 2 +

1

64
(F 2)2

]
+ Lungauged

1 .(III.51)

Finally, we may redefine Aµ to write the kinetic term in canonical form:

(III.52) Afinal
µ =

√
3
(

1 +
5

144
c2g

2
)
Aold
µ .

The Lagrangian then becomes:

L = −R− 1

4
F 2 +

1

12
√

3

(
1− 1

6
c2g

2
)
εµνρλσAµFνρFλσ + 12g2

+
c2

24

[ 1

48
RF 2 +

1

576
(F 2)2

]
+ Lungauged

1 ,(III.53)
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with

e−1Lungauged
1 =

c2

24

[ 1

16
√

3
εµνρλσA

µRνρδγRλσδγ +
1

8
C2
µνρσ +

1

16
CµνρλF

µνF ρλ − 1

3
FµρFρνR

ν
µ

− 1

24
RF 2 +

1

2
Fµν∇ν∇ρFµρ +

1

4
∇µF νρ∇µFνρ +

1

4
∇µF νρ∇νFρµ

+
1

32
√

3
εµνρλσF

µν(3F ρλ∇δF σδ + 4F ρδ∇δF λσ + 6F ρδ∇λF σδ)

+
5

64
FµνF

νρFρλF
λµ − 5

256
(F 2)2

]
.(III.54)

3.3 Anomaly matching and AdS/CFT

In the above section, we have written out the on-shell five-dimensional N = 2 gauged

supergravity Lagrangian up to four-derivative order. Restoring Newton’s constant, this

takes the form

(III.55) e−1L =
1

16πG5

[
−R− 1

4
F 2 +

1

12
√

3
εµνρλσAµFνρFλσ + 12g2 +

c2

192
C2
µνρσ + · · ·

]
,

where we have only written out a few noteworthy terms. Given this Lagrangian, it is

natural to make the appropriate AdS/CFT connection to N = 1 super-Yang Mills theory.

Before we do so, however, we present a brief review of the AdS/CFT dictionary in the case

of N = 4 super-Yang Mills.

The standard AdS/CFT setup relates IIB string theory on AdS5 × S5 to N = 4 super-

Yang Mills with gauge group SU(N) and ’t Hooft coupling λ = g2
YMN . The standard

AdS/CFT dictionary then reads

(III.56)
L4

α′2
= 4πgsN = g2

YMN,

where L is the ‘radius’ of AdS5. This duality may be approached more directly by reducing

IIB supergravity on S5, yielding N = 8 gauged supergravity in five dimensions. Just as

in the N = 2 case of (III.55), this theory is determined in terms of two gravity-side

parameters, G5 (Newton’s constant) and g (the gauged supergravity coupling constant).
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These are related to the parameters of the AdS/CFT dictionary (III.56) according to

(III.57) g =
1

L
, N2 =

πL3

2G5
.

Since the range of N = 1 gauge theories is much richer than that of N = 4 SYM, it is

worth rewriting the above AdS/CFT relations in terms of more general invariants of the

gauge theory. This may be elegantly done through anomaly matching, and in particular by

making a connection through the holographic Weyl anomaly [112]. Note that a discussion

of the N = 1 SCFT description of the higher derivative theory was already given in [107],

where special emphasis was placed on the technique of a-maximization. Here we wish to

provide a more complete discussion of the relation between the gravity parameters G5, g

and c2 and the gauge theory data.

3.3.1 The Weyl anomaly

For a four-dimensional field theory in a curved background, the Weyl anomaly may be

parameterized by two coefficients, commonly denoted a and c (or equivalently b and b′)

(III.58) 〈Tµµ 〉 =
c

16π2
C − a

16π2
E,

where

(III.59) C = C2
µνρσ = R2

µνρσ − 2R2
µν + 1

3R
2

is the square of the four-dimensional Weyl tensor, and

(III.60) E = R̃2
µνρσ = R2

µνρσ − 4R2
µν +R2

is the four-dimensional Euler invariant. At the two-derivative level, the holographic com-

putation of the N = 4 SYM Weyl anomaly gives a = c = N2/4 [112]. Combining this with

(III.57) then allows us to write

(III.61) a = c =
πL3

8G5
,
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which has the advantage of being completely general, independent of the particular gauge

theory dual.

The prescription for obtaining the holographic Weyl anomaly for higher derivative grav-

ity was worked out in [20, 151], and later extended in [77] for general curvature squared

terms. The result is that, for an action of the form

(III.62) e−1L =
1

2κ2

(
−R+ 12g2 + αR2 + βR2

µν + γR2
µνρσ + · · ·

)
,

the holographic Weyl anomaly may be written as [77]

(III.63)

gµν〈Tµν〉 =
2L

16πG5

[(
− L

24
+

5α

3
+
β

3
+
γ

3

)
R2 +

(L
8
− 5α− β − 3γ

2

)
R2
µν +

γ

2
R2
µνρσ

]
,

where L is related to g (to linear order) by

(III.64) g =
1

L

[
1− 1

6L2
(20α+ 4β + 2γ)

]
.

Comparison of (III.58) with (III.63) then gives the curvature-squared correction to (III.61)

a =
πL3

8G5

[
1− 4

L2
(10α+ 2β + γ)

]
c =

πL3

8G5

[
1− 4

L2
(10α+ 2β − γ)

]
.(III.65)

Turning now to the N = 2 gauged supergravity Lagrangian of (III.55), we see that the

curvature-squared corrections are proportional to the square of the five-dimensional Weyl

tensor. This gives

(III.66) (α, β, γ) =
c2

192

(
1

6
,−4

3
, 1

)
,

so that

(III.67) a =
πL3

8G5
, c =

πL3

8G5

(
1 +

c2

24L2

)
, g =

1

L
.

Note that the AdS radius is unshifted from that of the lowest order theory. This is because

AdS is conformally flat, so that the Weyl-squared correction in (III.55) has no effect on
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the background. Finally, we may solve for c2 to obtain

(III.68)
c2

24
=
c− a
ag2

.

This is the key relation connecting the four-derivative terms in the gauged supergravity

Lagrangian to the N = 1 gauge theory data.

3.3.2 The R-current anomaly

A consistency check on the form of c2 comes from the gravitational contribution to

the anomalous divergence of the U(1)R current 〈∂µ(
√
gRµ)〉, since the latter is related by

supersymmetry to the conformal anomaly 〈Tµµ 〉.

The CFT U(1) anomaly is given by

(III.69) δI(Λ)ZCFT =

∫
ΛI
[

tr(GIGJGK)

24π2
F J ∧ FK +

trGI
192π2

Rab ∧Rab
]
,

where GI is a global U(1)I generator, and the trace is taken to be a sum over all the

fermion loops. The AdS/CFT relation ZCFT = exp(−Ibulk) then connects this field theory

anomaly to the coefficients of the Chern-Simons terms in the bulk supergravity:

(III.70) Ibulk = · · ·+
∫ [

tr(GIGJGK)

24π2
AI ∧ F J ∧ FK +

trGI
192π2

AI ∧Rab ∧Rab
]
,

where the ellipses denote the gauge invariant part of the action. Comparison to the A∧R∧R

term of (III.35) gives

(III.71) trGI = −πc2I

8G5
.

To relate c2 ≡ c2IM̄
I to the central charges, we can use the relation

(III.72) a =
3

32
(3trR3 − trR), c =

1

32
(9trR3 − 5trR) ,

provided we can relate GI appropriately to the U(1) charges R. A few comments are

needed to explain how to identify the R-charge correctly. First of all, the R-charge is a
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particular linear combination of the GI , proportional to M̄ IGI . Also, the supercharge Qα

should have R-charge one. The U(1) charges of Qα can be read off from the coupling

between the gauge fields and the graviphoton in the gravity side, and the algebra is given

by [GI , Qα] = PIQα. This uniquely determines the R-charge as

(III.73) R =
M̄ IGIL

PIM̄ I
→ trR = − 1

PIM̄ I

πc2L

8G5
.

Recall that the combination PIM̄
I = 3/2 can be determined from the vacuum solution,

(III.32). By plugging this equation into (III.72), we obtain

(III.74)
c2

24
=

8G5

πL
(c− a) .

In addition, the gravitational constant also can be determined from the U(1) anomaly.

Eq. (III.70) implies

(III.75) tr(GIGJGK) =
π

8G5

(
12cIJK −

g2

3
c(IPJPK)

)
.

By multiplying M̄ IM̄JM̄K on both sides, we obtain

(III.76)
27

8L3
trR3 =

π

8G5

(
12− 3c2

4L2

)
.

The formula for the central charges (III.72) and (III.74) then gives

(III.77)
1

16πG5
=

a

2π2L3
.

Using this relation, (III.74) can be rewritten as

(III.78)
c2

24L2
=
c− a
a

.

These results agree with those found through the holographic Weyl anomaly calculations,

as expected for consistency.
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Extracting the R-current anomaly from the N = 2 case

Since the U(1) normalization may be somewhat obscure, we may perform an additional

check by making contact with the N = 2 SCFT literature. In fact, one can extract the c2

result (III.68) from the analysis of [4], which studied R-symmetry anomalies in the N = 2

SCFT dual to AdS5×S5/Z2. Of course, the appropriate supersymmetric CFT that is dual

to our bulk N = 2 AdS5 theory has N = 1 supersymmetry. Nevertheless, one can still use

the analysis of [4], after carefully rewriting it in the language of N = 1 anomalies. Before

doing so, we will need to make a few general comments on the connection between the

CFT R-current anomalies and the dual supergravity description.

The four-dimensional CFT R-current anomaly is sensitive to the amount of supersym-

metry, and is given by [6]:

∂µ(
√
gRµ)N=1 =

c− a
12π2

R̃R+
5a− 3c

9π2
F̃F ,(III.79)

∂µ(
√
gRµ)N=2 =

c− a
4π2

R̃R+
3(c− a)

π2
F̃F ,(III.80)

where F is the flux associated with the R-symmetry. The R-symmetry of N = 2 SCFTs

is U(1)R × SU(2)R. The U(1)R symmetry of its N = 1 subalgebra is

(III.81) RN=1 =
1

3
RN=2 +

4

3
I3,

where I1, I2, I3 are SU(2)R generators. The factor of 1/3 in the relation above can also be

seen in the gravitational contributions to ∂µ(
√
gRµ) in (III.79) and (III.80). Recall that

the mixed U(1)-gravity-gravity anomaly ∂µ(
√
gRµ) ∝ R̃R is represented in the bulk by

the mixed gauge-gravity Chern-Simons interaction ∝
∫

AdS5
A ∧ tr(R ∧R). Thus, the bulk

CS term associated to the N = 1 SCFT will be 1/3 of that corresponding to N = 2.

Furthermore, when using the results of [4], we will have to be careful with how the U(1)

gauge field is normalized. In the AdS/CFT dictionary, the normalization of the gauge field
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kinetic term

(III.82) SAdS5 =

∫
d4x dz

√
−g FµνF

µν

4 g2
SG

can be extracted by looking at the two-point function of the dual CFT currents sourced by

the gauge field Aµ(~x) = Aµ(~x, z)|boundary. For a four-dimensional CFT, the general form

of the two point function of such currents is given by [73]:

(III.83) 〈Ji(x)Jj(y)〉 =
B

(2π)4

(
�δij − ∂i∂j

) 1

(x− y)4
,

where B is a numerical coefficient which is related to the normalization of the gauge kinetic

term:

(III.84) B ∝ 1

g2
SG

.

For the N = 2 computation of [4] one finds B = 8, while for the case of N = 1 supersym-

metry [5] we read off B = 8/3. Notice that the two results are again off by a factor of 3.

We now have all the ingredients we need to apply the (N = 2 SCFT) analysis of [4] to our

case (N = 1 SCFT). We have seen that both the gauge kinetic term normalization and the

coefficient of the mixed gauge-gravity CS term will have to be adjusted.

The five-dimensional supergravity action of [4] takes the form

S =
N2

π2L3

∫ √
−g

F 2
R
4

+
N

16π2L

∫
AR ∧ tr(R ∧R)

=
N2

4π2L3

∫ [√
−g F 2

R −
L2

16N
εµνρλσA

µRνρδγRλσδγ

]
,(III.85)

where AR is the gauge field that couples canonically to the R-current. This was the effective

supergravity Lagrangian which was appropriate for comparison to the N = 2 SCFT. Since

we are interested in comparing to a CFT with N = 1 SUSY, we will need to rescale both

terms by appropriate factors of 1/3:

S → N2

4π2L3

∫ [√
−g 1

3
F 2
R −

L2

3 · 16N
εµνρλσA

µRνρδγRλσδγ

]
.(III.86)
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Finally, we rescale the graviphoton, AR = (
√

3/2)A, to obtain a canonical gauge kinetic

term:

(III.87) S → N2

4π2L3

∫ [√
−g F 2

4
− L2

32
√

3N
εµνρλσA

µRνρδγRλσδγ

]
.

This is the action which should be compared to ours:

(III.88) Sus =
N2

4π2L3

∫
√
g
[
−R− F 2

4
+

c2

24 · 16
√

3
εµνρλσ A

µRνρδγRλσδγ + . . .
]
,

finally giving us

(III.89) c2 =
12L2

N
= 24L2 c− a

a
,

in agreement with (III.68) and (III.78).

3.4 R-Charged Black Hole Solutions

The embedding of the lowest order five-dimensional N = 2 gauged U(1)3 supergravity

into IIB supergravity was done in [57]. If the three U(1) charges are taken to be equal, we

end up with the minimal supergravity system that we have considered above, (III.2). The

static stationary non-extremal solutions are well known, and were found in [13]. For the

truncation to minimal supergravity, they take the form

ds2 = H−2fdt2 −H
(
f−1dr2 + r2dΩ2

3,k

)
,

A =

√
3(kQ+ µ)

Q

(
1− 1

H

)
dt,(III.90)

where the metric functions H and f are:

H(r) = 1 +
Q

r2
,

f(r) = k − µ

r2
+ g2r2H3 .(III.91)

Here µ is a non-extremality parameter and dΩ2
3,k for k = 1, 0, or −1 corresponds to the

unit metric of a spherical, flat, or hyperbolic 3-dimensional geometry, respectively.
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3.4.1 Higher order corrected R-charged Black Hole Solutions

We wish to find corrections to the R-charged solutions (III.90) given the higher deriva-

tive Lagrangian (III.53). To this end, as in [132] we treat c2 as a small parameter and

expand the metric and gauge field as follows:

H(r) = 1 +
Q

r2
+ c2h1(r) ,

f(r) = k − µ

r2
+ g2r2H3 + c2f1(r) ,

A =

√
3(kQ+ µ)

Q

(
1− 1 + c2a1(r)

H

)
dt ,(III.92)

where h1, f1, and a1 parameterize the corrections to the background geometry. Solving the

equations of motion for the theory, we arrive at:

h1 = −Q(kQ+ µ)

72r6H2
0

,

f1 =
−5g2Q(kQ+ µ)

72r4
+

µ2

96r6H0
,

a1 =
Q

144r6H3
0

[
4(kQ+ µ)− 3µ− 3Qµ

r2

]
.(III.93)

The new corrected geometry is therefore given by

H(r) = H0(r) +
c2

24

[
−Q(kQ+ µ)

3r6H2
0

]
,

f(r) = f0(r) +
c2

24

[
− 8g2Q(kQ+ µ)

3r4
+

µ2

4r6H0

]
,

At(r) = At 0(r)− c2

24

√
3Q(kQ+ µ)

2r8H4
0

[
2(kQ+ µ)r2 − µr2H0

]
,(III.94)

where H0, f0, and A0 refer to the background solutions (III.90) and (III.91). Finally, we

should note that in the literature Q and µ are sometimes written in terms of a parameter

β, defined by sinh2 β = kQ/µ2.

We will state the k = 0 and k = 1 solutions explicitly, since they have several interesting

applications: the former to studies of the hydrodynamic regime of the theory, and the latter



85

to the issue of horizon formation for small black holes. For k = 0, the solution is given by

H(r) = H0(r) +
c2

24

[
−Qµ

3 r6H2
0

]
,

f(r) = f0(r) +
c2

24

[
− 8g2µQ

3r4
+

µ2

4 r6H0

]
,

At(r) = At 0(r)− c2

24

[√
3Qµ

2r8H4
0

(µr2 −Qµ)

]
.(III.95)

while for k = 1 it is given by

H(r) = H0(r)− c2

24

[
Q(Q+ µ)

3r2(r2 +Q)2

]
,

f(r) = f0(r) +
c2

24

[
− 8g2Q(Q+ µ)

3r4
+

µ2

4r6H0

]
,

At(r) = At 0(r)− c2

24

[√
3Q(Q+ µ)

2r8H4
0

(
(2Q+ µ)r2 −Qµ

)]
.(III.96)

3.4.2 Conditions for Horizon Formation

We would like to conclude this section with some comments on the structure of the

horizon for the solutions that we have found. In particular, we are interested in whether

higher derivative corrections will facilitate or hinder the formation of a horizon. In the

standard two-derivative theory, the BPS-saturated limit (µ = 0) of the k = 1 solution

(III.90)-(III.91) describes a geometry with a naked singularity, the so-called superstar [147].

Furthermore, even if the non-extremality parameter is turned on, one finds that a horizon

develops only given a certain critical amount, µ ≥ µc [13]. It is therefore natural to

ask what happens to such geometries once we start incorporating curvature corrections.

For the superstar, we would like to see hints of horizon formation. In the non-extremal

case, on the other hand, it would be nice to determine whether the inclusion of higher-

derivative corrections leads to a smaller (larger) critical value µc, increasing (decreasing) the

parameter space for the appearance of a horizon. However, one should keep in mind that

our arguments are only suggestive, since our analysis is perturbative, while the formation

of a horizon is a non-perturbative process. Moreover, given that even in the non-extremal
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case turning on µ does not guarantee the presence of a horizon, it is not clear at all whether

higher derivative corrections can be enough to push the superstar to develop a horizon. A

more proper analysis would involve looking directly at the SUSY conditions, and asking

whether they are compatible with having a superstar solution with a finite horizon. In

fact, there are already studies which seem to indicate [142] that this may not be possible.

The spherically symmetric solutions presented in (III.96) are of the form:

(III.97) ds2 = F1(r) dt2 − F2(r) dr2 − F3(r) dΩ2
3 .

Horizons appear at zeroes of the function F1(r). One can make arguments about their

existence without having to solve explicitly for their exact location. Notice that F1(r) is a

positive function for large r. Thus, a sufficient condition for having at least one horizon is

(III.98) F1(rmin) ≤ 0 ,

where rmin is a (positive) minimum of F1(r). This was the reasoning used in [13] to study

the properties of the horizon of the non-extremal solution.

For the corrected superstar solution we have, expanding in c2:

(III.99) F1 ≡
f

H2
=
f0 + c2(f1 − 2f0h1H

−1
0 )

H2
0

+O(c2
2) .

It is easy to see that, to leading order, the numerator does not vanish. With the inclusion

of higher-derivative terms, however, it picks up a negative contribution, hinting at the

possibility of a horizon. Furthermore, the minimum of the function F ≡ f0 + c2(f1 −

2f0h1H
−1
0 ) will shift. Let’s see precisely how that happens. To lowest order, its minimum

is given by x
(0)
min = 2Q, which in turn gives us F (x

(0)
min) = 1 + 27g2Q/4. Including higher

order corrections, we find

(III.100) xmin = x
(0)
min + c2x

(1)
min = 2Q− c2

81g2Q− 4

4374Qg2
.
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Now we have

F (xmin) = 1 + 27g2Q/4 + c2(
1

972Q
− g2

48
),

which tells us that the minimum of the function will be slightly closer to zero as long as

g2Q > 4/81.

The analysis of the conditions for the existence of a horizon in the non-extremal case

(µ 6= 0) is significantly more involved. The expression for the corrected horizon radius in

terms of the original, two-derivative horizon radius r0 is:

rH = r0

(
1 +

c2

24

{g4H4
0 (3Q2 − 26Qr2

0 + 3r4
0)− 2g2H2

0 (13Q− 3r2
0) + 3

24H0r0[g2H2
0 (Q− 2r2

0)− 1]

})
.(III.101)

Notice that we traded µ in favor or r0 in the expression above by making use of f0(r0) = 0,

i.e. the relation µ/r2
0 = 1+g2r2

0H
3
0 . As we mentioned above, in the two-derivative case one

finds a critical value µcrit above which a horizon will form. It would certainly be interesting

to explore for which parameter values rH decreases or increases, and more importantly, how

the (corrected) critical value of µ is affected by the curvature corrections. We leave this to

future studies.

3.5 Thermodynamics

We may now study some of the basic thermodynamic properties of the non-extremal

solutions constructed above. With an eye towards AdS/CFT in the Poincaré patch, we will

focus on the k = 0 solution (III.95), although the analysis may easily be carried out for the

other cases as well. We begin with the entropy, which for Einstein gravity is characterized

by the area of the event horizon. In the presence of higher derivative terms, however, this

relation is modified, and the entropy is no longer given by the area law. Instead, we may

turn to the Noether charge method developed in [171] (see also [120, 119]).

The original Noether charge method is only applicable to a theory with general covari-

ance, but has been extended to a theory with gravitational Chern-Simons terms in [166].
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Our action includes a mixed Chern-Simons term of the form A ∧ R ∧ R. But as long as

we keep this term as it is, with a bare gauge potential, the general covariance is unbroken

and we can still use the original formulation. In the absence of covariant derivatives of the

Riemann tensor, the entropy formula is given by [171]

(III.102) S = −2π

∫
Σ
dD−2x

√
−h δL

δRµνρσ
εµνερσ ,

where Σ denotes the horizon cross section, h is the induced metric on the it and εµν is the

binormal to the horizon cross section.

For the metric ansatz (III.90) the only non-vanishing component of the binormal εµν is

(III.103) εtr = −εrt = H−1/2 .

Applying the prescription (III.102) to the action (??), we obtain, to linear order in c2,

(III.104)

S =
A

8G5

[
−gµρgνσ +

c2

24

(
−1

4C
µνρσ − 1

32g
µρgνσF 2 + 5

12g
νσFµλF ρλ − 1

16F
µνF ρσ

)]
εµνερσ

∣∣∣∣
r=r+

=
A

4G5

[
1 + c2

µ(Q+ 3r2
0)

48(r2
0 +Q)3

]
,

where A =
∫ √
−h dΩ3,0 is the area of the horizon for the solution to the higher derivative

theory. Also, r+ denotes the radius of the event horizon for the corrected black brane

solution, while r0 is the horizon location for the original, two-derivative solution (III.91).

The former can be found by requiring that the gtt = f(r)/H(r)2 component of the cor-

rected metric vanishes5. Similarly, r0 satisfies f0(r0) = 0. Notice that the non-extremality

parameter µ can be expressed entirely in terms of r0 and Q:

(III.105) f0(r0) = 0 ⇒ µ =
g2(r2

0 +Q)3

r2
0

.

We can therefore eliminate µ from (III.105), and write the entropy in the following form:

(III.106) S =
A

4G5

[
1 + c2g

2Q+ 3r2
0

48 r2
0

]
.

5To linear order in the expansion parameter c2, this coincides with demanding that f(r) vanishes.
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The first term above is simply the contribution coming from the area, while the remaining

O(c2) term is the expected deviation from the area law.

In order to arrive at the entropy density, we need one more ingredient, which is the

relation between the corrected and uncorrected horizon radii r+ and r0:

(III.107) r+ = r0

(
1 +

c2

24

g2(r2
0 +Q)(3Q2 − 26Qr2

0 + 3r4
0)

24r4
0(Q− 2r2

0)

)
.

This is because the area A appearing in (III.106) is computed using r+. This expression

allows us to write the entropy per unit three-brane spatial volume entirely in terms of r0

as well as the physical parameters of the theory

s =
(r2

0 +Q)3/2

4G5L3

(
1 +

c2

24

g2(3Q2 − 14Qr2
0 − 21r4

0)

8r2
0(Q− 2r2

0)

)
=

2(r2
0 +Q)3/2

πL6

(
a+ (c− a)

3Q2 − 14Qr2
0 − 21r4

0

8r2
0(Q− 2r2

0)

)
.(III.108)

In the second line we have used the relations (III.67) to replace the gravitational quantities

G5 and c2 by the central charges of the dual CFT. Notice that the lowest order term above

matches the two-derivative entropy computation of [165].

While r0 is the coordinate location of the horizon in the lowest order computation,

it is not in itself a physically relevant parameter. Instead, it may be viewed as a proxy

for the Hawking temperature associated with the non-extremal solution. A simple way of

computing this temperature is to identify it with the inverse of the periodicity of Euclidean

time τ . The relevant components of the metric are given by

(III.109) ds2 = H−2fdτ2 +Hf−1dr2 + · · · ,

and the horizon is located at f(r+) = 0. Expanding near the horizon and identifying the

proper period of τ to remove the conical singularity yields the temperature

(III.110) TH =
(r2

0 +Q)1/2

2πL2

[(2r2
0 −Q)

r2
0

+
c2

24L2

(3Q3 + 4Q2r2
0 + 59Qr4

0 − 10r6
0)

8r4
0(2r2

0 −Q)

]
.
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In principle, we may invert this expression to obtain r0 as a function of temperature TH

and charge Q. This then allows us to rewrite the entropy density as a function of charge

and temperature, s = s(TH , Q). In practice, however, non-trivial R-charge introduces a

new scale, so that the entropy density/temperature relation no longer takes the simple

form s ∼ T 3 resulting from simple dimensional analysis.

Our interest in studying higher order corrections to R-charged AdS5 black holes is

also motivated by our desire to investigate corrections to the hydrodynamic regime of the

dual theory. It is natural to apply the results of this work to the calculation of η/s, the

shear viscosity to entropy ratio, which has recently received a great deal of attention. In

particular, our present construction of higher-derivative corrected R-charged black holes

allows for a generalization of the finite coupling shear viscosity calculation to the case of

finite (R-charge) chemical potential. We present this calculation in the following sections.

3.6 Overview of η/s in AdS/CFT

Over the past decade the development of the AdS/CFT correspondence [138, 96, 175]

has led to a new way of thinking about strongly coupled gauge theories. Although the

original and best studied example of the AdS/CFT duality connects N = 4 supersym-

metric Yang-Mills to type IIB string theory on AdS5 × S5, the duality has been extended

to a variety of cases, and can describe confining gauge theories with features that are

qualitatively similar to QCD. In recent years the AdS/CFT correspondence has proven to

be a valuable tool for better understanding thermal and hydrodynamic properties of field

theories at strong coupling. In particular, it has been applied to the realm of heavy ion

collisions, with the aim of providing a more realistic description of the strongly coupled

quark-gluon plasma (QGP).

In the context of RHIC physics, a quantity that has played a special role is the ratio of

shear viscosity to entropy density, η/s (see e.g. [98] and references therein). Weak coupling
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calculations in thermal field theory predict η/s � 1, while elliptic flow measurements

at RHIC seem to indicate a very small ratio 0 . η/s . 0.3, showing that the QGP

behaves like a nearly ideal fluid, and is in the strong coupling regime. Motivated by such

observations, there has been a large effort to apply AdS/CFT methods to the calculation

of various transport coefficients. The AdS/CFT “program” is particularly valuable given

that lattice methods (which work well for equilibrium, or thermodynamic, quantities) fail

for non-equilibrium processes.

Furthermore, developments resulting from the AdS/CFT correspondence prompted

Kovtun, Son and Starinets (KSS) to postulate a bound [126] for η/s, according to which

all fluids would obey

(III.111)
η

s
≥ 1

4π
.

The bound, which seems to be satisfied by all substances in nature, was later shown [33]

to be saturated in all gauge theories with a dual supergravity description in the large N

and λ = g2
YMN limit. Moreover, the universal value η/s = 1/4π ∼ 0.08 falls into the

experimental range observed at RHIC. Finite λ corrections to the leading supergravity

result were explored in [35], which considered curvature terms of the form ∼ α′3R4 in Type

IIB supergravity on AdS5×S5. The result was that the leading finite λ corrections increase

the ratio in the direction consistent with the bound:

(III.112)
η

s
=

1

4π

[
1 + 15 ζ(3)λ−3/2

]
.

However, η/s bound violations were subsequently observed in the presence of curvature

squared terms [122, 27, 26, 40]. In the context of the AdS/CFT correspondence, such terms

correspond to finite N corrections and lead to [37]

(III.113)
η

s
=

1

4π

(
1− c− a

a

)
,
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where a and c are the central charges of the dual CFT. Thus, violation will occur provided

c − a > 0. The central charges are known to be equal in the large N limit [112], with

a = c = O(N2), but differ for finite N . For the supergravity examples studied so far, the

leading 1/N corrections on the CFT side lead to c−a ≥ 0, implying violation of the bound

by finite N effects [37]. (It is an interesting question on its own to ask whether one can

have string theory constructions whose dual description allows for c− a < 0.)

In this paper we investigate what happens to the η/s ratio in the presence of non-zero

chemical potential. In particular, we focus on the chemical potential corresponding to

turning on a U(1)R background of the N = 2 system. To leading order in the supergravity

approximation, the R-charge chemical potential does not affect the calculation of η/s, as

was shown in [139, 165, 136]. However, it is interesting to examine whether this is still

the case once higher derivative corrections are included. Furthermore, if η/s is affected by

R-charge, it would be useful to see whether the KSS bound violation gets larger or smaller

as a function of chemical potential6.

We work in the framework of D = 5, N = 2 gauged supergravity, which is dual to N = 1

super-Yang Mills theory. In particular, we are interested in supersymmetric higher deriva-

tive terms, which have a highly constrained structure7. The four-derivative corrections

to the leading order supergravity include a mixed gauge-gravitational Chern Simons term

A ∧ Tr (R ∧R). The supersymmetric completion of this term was done in [107], where an

off-shell action was obtained for D = 5, N = 2 gauged supergravity at the four-derivative

level. In [54] we derived the corresponding on-shell Lagrangian, found corrected R-charged

black hole solutions, and studied their thermodynamic properties. We will use many of the

results of [54] to compute the shear viscosity. Our main result is that turning on R-charge

6Ideally, one could imagine tuning the chemical potential to match observations. However, it should be noted
that the R-charge chemical potential we are investigating is not the same as the more physically relevant chemical
potential related to non-zero baryon number density.

7Four derivative corrections in the presence of a chemical potential have been partially discussed in [89, 41],
where R2 and F 4 corrections were considered, respectively. The supersymmetric Lagrangian, however, has RF 2 and
∇F∇F -type terms as well which were not previously considered.
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not only leads to violation of the bound, but enhances the effect, pushing η/s further below

1/4π. Furthermore, while the dependence of η and s individually on the R-charge is quite

complicated, the ratio η/s is remarkably simple.

The general picture that emerges from such studies is that if we are interested in de-

scribing properties of the QGP (or other strongly coupled systems), we can try tuning the

parameters available to us (whether N , λ or the chemical potential), as long as we remain

within the regime of validity of the supergravity approximation. Moreover, it is an interest-

ing fundamental question whether violations of the bound can be related to any constraints

on the dual gravitational side or consistency requirement of the underlying string theory.

For instance, one may be able to relate the violation of the η/s bound to the weak gravity

conjecture of [8], according to which there should be some states whose M/Q ratio is below

the BPS bound. While this is an interesting avenue to explore8, the solutions that we have

considered do not admit a nice extremal BPS black hole limit (since the extremal solution

is the superstar geometry, with a naked singularity), and therefore do not lend themselves

easily to such an analysis.

3.7 Computation of the shear viscosity

Before presenting the result for η/s let us briefly recall the higher derivative lagrangain

and the R-charged black hole geometries discussed in the previous sections. Our starting

point is five-dimensional N = 2 gauged supergravity. The physical fields in this theory

are the metric gµν , graviphoton Aµ and gravitino ψµ. The supersymmetric four-derivative

corrections were obtained in [107] using the superconformal tensor calculus methods worked

out in [127, 17, 76, 18]. By integrating out the auxiliary fields, the Lagrangian may be put

8See [121] for investigating the effect of higher derivatives on the weak gravity conjecture.
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into the form [54] 9

16πG5e
−1L = −R− 1

4
F 2 +

1

12
√

3

(
1− 4c̄2

)
εµνρλσAµFνρFλσ + 12g2

+
c̄2

g2

[ 1

16
√

3
εµνρλσA

µRνρδγRλσδγ +
1

8
C2
µνρσ +

1

16
CµνρλF

µνF ρλ − 1

3
FµρFρνR

ν
µ

− 1

48
RF 2 +

1

2
Fµν∇ν∇ρFµρ +

1

4
∇µF νρ∇µFνρ +

1

4
∇µF νρ∇νFρµ

+
1

32
√

3
εµνρλσF

µν(3F ρλ∇δF σδ + 4F ρδ∇δF λσ + 6F ρδ∇
λF σδ)

+
5

64
FµνF

νρFρλF
λµ − 41

2304
(F 2)2

]
.(III.114)

The four-derivative corrections are determined in terms of a single new dimensionless pa-

rameter c̄2 (corresponding to c2g
2/24 in the notation of [54]). Holographic computation

of the Weyl anomaly [112, 20, 151, 77] allows G5 and c̄2 to be expressed in terms of the

anomaly coefficients a and c of the dual N = 1 gauge theory. This was worked out in

[37, 54], with the result

(III.115) g3G5 =
π

8a
, c̄2 =

c− a
a

.

Nonextremal R-charged black hole solutions to the lowest order N = 2 gauged super-

gravity were found in [13], and the corrections linear in c̄2 were worked out in [54]. Using a

parameterization convenient for the shear viscosity calculation, the flat-horizon black holes

are given by the metric

(III.116) ds2 =
g2r2

0

u

[ f(u)

H(u)2
dt2 −H(u)d~x 2

]
− H(u)

4g2u2f(u)
du2,

and the gauge field

(III.117) At = gr0

√
3(1 + q)3

q

[
1− 1

1 + qu
− c̄2

2
q(1 + q)3u

3(1− qu)

(1 + qu)4

]
.

The metric functions f(u) and H(u) are given by

f = (1 + qu)3 − (1 + q)3u2 + c̄2

[
−8

3
q(1 + q)3u3 +

1

4
(1 + q)6 u4

1 + qu

]
,

H = 1 + qu− c̄2

3
q(1 + q)3 u3

(1 + qu)2
.(III.118)

9We follow the conventions of [107] and take [∇µ,∇ν ]vσ = Rµνρ σ vρ and Rab = R c
ac b.
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The above solution is fixed in terms of two parameters, r0 (related to non-extremality)

and dimensionless q (related to the R-charge). At the two-derivative level, the horizon is

located at u = 1, while the boundary of AdS5 is at u = 0. At linear order in c̄2, however,

the horizon location gets shifted to

(III.119) u+ = 1 +
c̄2

12

(1 + q)(3− 26q + 3q2)

2− q
.

The temperature and entropy density were obtained in [54]

T =
g2r0(2− q)(1 + q)1/2

2π

[
1− c̄2

8

10− 59q − 4q2 − 3q3

(2− q)2

]
,

s =
(gr0)3(1 + q)3/2

4G5

[
1 +

c̄2

8

21 + 14q − 3q2

2− q

]
.(III.120)

Note that, for q = 0, we may write the entropy density in terms of the temperature as

(III.121) s = 2π2a

[
1 +

9

4

c− a
a

]
T 3,

where we used the holographic relations (III.115). This reduces to the familiar s =

π2N2T 3/2 [95] for N = 4 SYM, where a = c = N2/4.

We compute the shear viscosity using the Kubo formula which relates the shear viscosity

to the two point function of the stress-tensor on the boundary. Holographically, since the

stress tensor is dual to the metric, this is computed by performing a metric perturbation.

Following the methods developed in [35, 122] we introduce a scalar channel perturbation

to the metric

(III.122) gxy → gxy + hxy,

where, for convenience, we define hxy = φ(t, u, ~x). Expanding the Lagrangian (III.114) to

second order in the perturbation yields

S =
1

16πG5

∫
d4k

(2π)4

∫ 1

0
du
[
Aφ′′kφ−k +Bφ′kφ

′
−k + Cφ′kφ−k +Dφkφ−k

+Eφ′′kφ
′′
−k + Fφ′′kφ

′
−k

]
,(III.123)
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where the fourier components of φ are defined by

(III.124) φ(t, u, ~x ) =

∫
d3xdt φk(u)ei(

~k·~x−ωt).

We note that this parameterization of the action with coefficients A, . . . , F was originally

used in [35] to handle the R4 correction of IIB supergravity. However, it is general enough

to accommodate the present case. The coefficients are even functions of the momentum,

and are given explicitly in the appendix.

Varying this action with respect to φ yields a fourth order differential equation. How-

ever, since the higher derivative terms are multiplied by c̄2, we may reduce the order of the

equation by working perturbatively in c̄2. To see this, we first consider the lowest order

equation of motion

φ′′ +

(
f ′0
f0
− 1

u

)
φ′ +

ω̄2H3
0

uf2
0

φ = 0 ,(III.125)

where we have defined the dimensionless frequency

(III.126) ω̄2 =
ω2

4g4r2
0

.

The lowest order metric functions

(III.127) f0 = (1 + qu)3 − (1 + q)3u2, H0 = 1 + qu,

are obtained by setting c̄2 = 0 in (III.118). Taking additional derivatives of (III.125) allows

us to eliminate φ′′′ and φ′′′′ terms in the full equation of motion. The result is rather simple:

(III.128) φ′′ +

(
f ′

f
− 1

u
− c̄2

(1 + q)3u

(1 + qu)3

)
φ′ +

ω̄2H3

uf2
φ = 0.

Notice that the form of this equation is almost identical to that of (III.125), the lowest

order equation of motion, modified only by the presence of the corrected metric functions

f and H as well as one new term, which is explicitly O(c̄2).
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Since the function f(u) vanishes linearly at the horizon u+, the point u = u+ is a regular

singular point of the equation of motion (III.128). This suggests that we write

(III.129) φ(u) = f(u)νF (u),

where F (u) is assumed to be regular at the horizon. The exponent ν is then obtained

by solving the indicial equation. In the hydrodynamic limit, the lowest order solution is

known [139, 165] and is given by:

(III.130)

φ0 = f0(u)ν0

{
1− ν0

2

[
∆ ln

(Ξ− α1 − 1 + 2α3u)(Ξ + α1 + 1)

(Ξ + α1 + 1− 2α3u)(Ξ− α1 − 1)
+3 ln

(
1+(α1 +1)u−α3u

2
)]}

,

where

(III.131)

α1 ≡ 3q, α2 ≡ 3q2, α3 ≡ q3, Ξ ≡ (1 + q)(1 + 4q)1/2, ∆ ≡ −3
q + 1

Ξ
.

The exponent ν0 is given by

(III.132) ν0 = − iω̄

(2− q)(1 + q)1/2
,

and may be re-expressed as ν0 = −iω/4πT0, where T0 is the lowest order temperature given

in (III.120). Note that we have chosen incoming wave boundary conditions at the horizon

as appropriate to the shear viscosity calculation.

Adding higher derivative terms will have two effects on this solution, one being a cor-

rection to the function F (u) and the other a modification of the exponent ν defined above.

For the exponent, solving the indicial equation gives

(III.133) ν = − iω̄

(2− q)(1 + q)1/2

(
1 +

c̄2

8

10− 59q − 4q2 − 3q3

(q − 2)2

)
= − iω

4πT
,

where the relation to the temperature (III.120) is valid to linear order in c̄2. We may

now substitute φ(u) = f(u)νF (u) into the equation of motion (III.128) and linearize in



98

c̄2 to obtain an equation for F (u). While this is difficult to solve exactly, since we only

need a solution in the hydrodynamic regime, it is sufficient to work to first order in ω

(or equivalently ν). The solution for F (u) is quite complicated and can be found in the

appendix.

Given this solution, it remains to evaluate the on-shell value of the action. As explained

in [35], the bulk action (III.123) must be paired with an appropriate generalization of the

Gibbons-Hawking term. In general, the fourth order equation of motion yields a boundary

value problem for the two-point function where additional data must be specified (e.g.

fields and their first derivatives at the endpoints). However, when working perturbatively

in c̄2, the equation of motion reduces to a second order one, given by (III.128). This allows

us to use a generalized Gibbons-Hawking term of the form

(III.134) K = −Aφkφ′−k −
F

2
φ′kφ

′
−k + E(p1φ

′
k + 2p0φk)φ

′
−k,

where

(III.135) p1 =
f ′0
f0
− 1

u
, p2 =

ω̄2H3
0

uf2
0

are the coefficients in the lowest order equation of motion (III.125).

Evaluating the on-shell action then amounts to evaluating a boundary term

(III.136) S =

∫
d4k

(2π)4
Fk
∣∣∣1
0
,

where

Fk =
1

16πG5

[(
B −A− F ′

2

)
φ′kφ−k +

1

2
(C −A′)φkφ−k − E′φ′′kφ−k

+Eφ′′kφ
′
−k − Eφ′′′k φ−k − E

(f ′0
f0
− 1

u

)
φ′kφ

′
−k + 2E

ω̄2H3
0

uf2
0

φ′kφ−k

]
.(III.137)

In order to compute the shear viscosity we need only the limit of the above action as u

approaches the AdS boundary (i.e. u→ 0). It turns out that only the first and third terms
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contribute. This yields a value for the shear viscosity via the Kubo relation

(III.138) η = lim
ω→0

1

ω
lim
u→0

(2 ImFk) =
(gr0)3

16πG5
(q + 1)3/2

(
1 +

c̄2

8

5 + 6q + 5q2

2− q

)
.

Finally, dividing this by the entropy density (III.120) gives a value for the shear viscosity

to entropy density ratio of

(III.139)
η

s
=

1

4π

[
1− c̄2(1 + q)

]
=

1

4π

[
1− c− a

a
(1 + q)

]
,

where we have rewritten c̄2 in terms of the anomaly coefficients c and a using (III.115).

3.8 Discussion

The expression for η/s, given in (III.139), is surprisingly simple, given that both η and s

are individually rather more complicated functions of the parameter q. This is presumably

related to some form of universality, which holds even in an R-charged background10. It is

instructive to examine the contribution of the various terms in the four-derivative action

to the result (III.139). We find that only four terms in (III.114) are important. Writing

16πG5e
−1L = −R− 1

4
F 2 + · · ·+ c̄2

g2

[
α1C

2
µνρσ + α2CµνρσF

µνF ρσ

+α3∇µF νρ∇µFνρ + α4∇µF νρ∇νFρµ + · · ·
]
,(III.140)

we may arrive at the result

(III.141)
η

s
=

1

4π

[
1− 4c̄2

(
2α1 − q(α1 + 6α2 − 6α3 + 3α4)

)]
.

Note that setting αi to their actual values in (III.114) reproduces (III.139).

The shear viscosity to entropy density ratio was independently derived in [144], where

it was found to depend only on terms explicitly involving the Riemann tensor [i.e. the α1

and α2 terms in (III.140)]. This appears to differ from the result found above. However,

10Of course, the simplest result possible would have been to obtain η/s independent of q. But this is clearly not
the case here.



100

by the use of Bianchi identities and integration by parts we can cast the gradient terms

into the form

α3∇µF νρ∇µFνρ + α4∇µF νρ∇νFρµ =

(2α3 − α4)
[
− Fµν∇ν∇ρFµρ + FµρFρνR

ν
µ − 1

2RµνρσF
µνF ρσ

]
.(III.142)

The first two terms do not contribute to the η/s ratio, while the last term will add to the

original α2 term to give an effective α̃2 = α2−α3 +α4/2, so that (III.141) may be rewritten

as

(III.143)
η

s
=

1

4π

[
1− 4c̄2

(
2α1 − q(α1 + 6α̃2)

)]
.

This agrees with the result of [144] provided the difference in signature conventions is taken

into account.

Finally, we return to the N = 1 SYM shear viscosity result of (III.139). In order

to express this in terms of physical quantities, we wish to relate the parameter q to the

R-charge chemical potential and temperature. Since q only enters into (III.139) at the next-

leading order, we can use the leading order expressions in pinning down q. The chemical

potential for R-charge Φ is identified as the difference of At between horizon and boundary

[47, 58]. At lowest order, (III.117) yields

(III.144) Φ = gr0

√
3q(1 + q).

Comparing this to the temperature

(III.145) T0 =
g2r0

2π
(2− q)(1 + q)1/2,

allows us to write

(III.146) q =
3

2Φ̄2

(
1 +

4

3
Φ̄2 −

√
1 +

8

3
Φ̄2

)
,
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where Φ̄ = gΦ/2πT is the dimensionless chemical potential. Note that q is an increasing

function with respect to Φ̄, with q = 0 when Φ̄ = 0. The possible value of q ranges as

(III.147) 0 ≤ q ≤ 2.

Substituting (III.146) into (III.139) then gives

(III.148)
η

s
=

1

4π

[
1− c− a

a

(
1 +

3

2Φ̄2

(
1 +

4

3
Φ̄2 −

√
1 +

8

3
Φ̄2

))]
.

Since q is non-negative, this demonstrates that turning on an R-charge chemical potential

only increases violation of the η/s bound, provided c − a > 0. Taking the range (III.147)

into account, we see that adjusting the R-charge yields a range of values

(III.149)
1

4π

(
1− 3

c− a
a

)
≤ η

s
≤ 1

4π

(
1− c− a

a

)
,

where we have again assumed c− a > 0.

In conclusion, we have explored the effect of a background R-charge on the shear vis-

cosity to entropy density ratio η/s. While the leading order ratio η/s = 1/4π is universal,

R-charge corrections do turn up at the 1/N order. For known theories with a holographic

dual, where c − a > 0, the conjectured 1/4π bound is generally violated for arbitrary

chemical potential. We caution, however, that this is a parametrically small violation ap-

pearing at O(1/N) in the large N limit. In principle, it would be desirable to obtain a

more robust result. However, this is hindered by difficulties in obtaining exact solutions

to the full equations of motion (i.e. beyond the linearized limit). While this can be done

in certain cases such as Gauss-Bonnet gravity, the natural supersymmetric organization of

the higher derivative Lagrangian (III.114) is not of this form. It would be interesting to

see if a modified universality relation for η/s can be obtained for arbitrary forms of the

higher derivative gravity theory.



CHAPTER IV

Consistent truncations of IIB supergravity on squashed
Sasaki-Einstein manifolds

In this chapter we present a consistent truncation of IIB supergravity on Sasaki-Einstein

manifolds. A detailed analysis of the bosonic reduction of IIB is presented, followed by the

reduction of the fermionic sector. This chapter is based on work published in [133, 134] in

collaboration with Jim Liu and Zhichen Zhao.

4.1 Motivations for Studying Massive Truncations of String/M-theory

Recent developments in AdS/CFT have expanded the scope of applications from the

realm of strongly coupled relativistic gauge theories to various condensed matter systems

whose dynamics are expected to be described by a strongly coupled theory. These in-

clude systems with behavior governed by a quantum critical point [114, 110], as well as

cold atoms and similar systems exhibiting non-relativistic conformal symmetry [164, 11].

Much current attention is also directed towards holographic descriptions of superfluids and

superconductors [97, 108, 113, 109].

The main feature used in the construction of a dual model of superconductivity is the

existence of a charged scalar field in the dual AdS background [108, 109]. Turning on

temperature and non-zero chemical potential corresponds to working with a charged black

hole in AdS. Then, as the temperature is lowered, the charged scalar develops an instability

102



103

and condenses, so that the black hole develops scalar hair1. This condensate breaks the

U(1) symmetry, and is a sign of superconductivity (in the case where the U(1) is “weakly

gauged” on the boundary).

The basic model dual to a 2+1 dimensional superconductor is simply that of a charged

scalar coupled to a Maxwell field and gravity, and may be described by a Lagrangian of

the form

(IV.1) L4 = R+
6

L2
− 1

4
F 2
µν − |∂µψ − iqAµψ|2 −m2|ψ|2.

The properties of the system may then be studied for various values of mass m and charge

q. While this is a perfectly acceptable framework, a more complete understanding demands

that this somewhat phenomenological Lagrangian be embedded in a more complete theory

such as string theory, or at least its supergravity limit. For AdS4 duals of 2+1 dimensional

superconductors, this was examined at the linearized level in [63], and embedded into

D = 11 supergravity at the full non-linear level in [82, 84, 85] for the case m2L2 = −2

and q = 2. Similarly, a IIB supergravity model for an AdS5 dual to 3+1 dimensional

superconductors was constructed in [99] with m2L2 = −3 and q = 2.

The AdS4 model of [82, 84, 85] and the AdS5 model of [99] are based on Kaluza-

Klein truncations on squashed Sasaki-Einstein manifolds. They both have the unusual

feature where the q = 2 charged scalar arises from the massive level of the Kaluza-Klein

truncation. This appears to go against the standard lore of consistent truncations, where

it was thought that truncations keeping only a finite number of massive modes would

necessarily be inconsistent. A heuristic argument is that states in the Kaluza-Klein tower

carry charges under the internal symmetry, and hence would couple at the non-linear level

to source higher and higher states, all the way up the Kaluza-Klein tower. This hints

that one way to obtain a consistent truncation is simply to truncate to singlets of the

1Recent models have generalized this construction to encompass both p-wave [101, 158] and d-wave [50] conden-
sates.
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internal symmetry group, and indeed such a construction is consistent. An example of

this is a standard torus reduction, where only zero modes on the torus are kept. On

the other hand, sphere reductions to maximal gauged supergravities in D = 4, 5 and 7

do not follow this rule, as they are expected to be consistent, even though some of the

lower-dimensional fields (such as the non-abelian graviphotons) are charged under the R-

symmetry. In fact, the issue of Kaluza-Klein consistency is not yet fully resolved, and

often must be treated on a case by base basis. This has led us to explore the squashed

Sasaki-Einstein compactifications to see if additional consistent massive truncations may

be found.

In addition to embedding holographic models of superconductivity into string theory,

several groups have demonstrated the embedding of dual non-relativistic CFT backgrounds

into string theory [115, 137, 2]. These geometries where originally constructed from a toy

model of a massive vector field coupled to gravity with a negative cosmological constant

[164, 11] of the form (given here for a deformation of AdS5):

(IV.2) L5 = R+
12

L2
− 1

4
F 2
µν −

m2

2
A2
µ,

with mass related to the scaling exponent z according to m2L2 = z(z + 2). The z = 2

and z = 4 models (m2L2 = 8 and m2L2 = 24, respectively) were subsequently realized

within IIB supergravity in terms of consistent truncations retaining a massive vector (along

with possibly other fields as well) [115, 137, 2]. These results have further opened up the

possibility of obtaining large classes of consistent truncations retaining massive modes of

various spin.

4.1.1 Consistent massive truncations of IIB supergravity

For the most part, the massive consistent truncations used in the study of AdS/condensed

matter systems have not been supersymmetric2. Nevertheless this has motivated us to
2The massive truncation given in [82] is supersymmetric, although the connection to a holographic superconductor

was done through the non-supersymmetric skew-whiffed case.
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investigate the possibility of obtaining new supersymmetric massive truncations of IIB

supergravity. In particular, we are mainly interested in reducing IIB supergravity on a

Sasaki-Einstein manifold to obtain gauged supergravity in D = 5 coupled to possibly mas-

sive supermultiplets.

Following the construction of D = 11 supergravity [53] and the realization that it admits

an AdS4×S7 vacuum solution [75], it was soon postulated that the Kaluza-Klein reduction

on the sphere would give rise to gauged N = 8 supergravity at the “massless” Kaluza-Klein

level [69, 67, 68]. This notion was reinforced by a linearized Kaluza-Klein mode analysis

demonstrating that the full spectrum of Kaluza-Klein excitations falls into supermultiplets

of the D = 4, N = 8 superalgebra OSp(4|8) [19, 160, 42]. However, demonstrating full

consistency of the non-linear reduction to gauged N = 8 supergravity has remained elusive.

Nevertheless, all indications are that the reduction is consistent [62], and this has in fact

been demonstrated for the related case of reducing to D = 7 on S4 [148, 149].

The story is similar for the case of IIB supergravity reduced on S5. A linearized Kaluza-

Klein mode analysis demonstrates that the spectrum of Kaluza-Klein excitations falls into

complete supermultiplets of the D = 5, N = 8 superalgebra SU(2, 2|4), with the lowest

one corresponding to the ordinary N = 8 supergravity multiplet [104, 124]. In this case,

only partial results are known about the full non-linear reduction to gauged supergravity,

but there is strong evidence for its consistency [123, 57, 135, 59].

More generally, it was conjectured in [157, 66] and [86], that, for any supergravity

reduction, it is always possible to consistently truncate to the supermultiplet containing

the massless graviton. This is a non-trivial statement, as the truncation must satisfy

rather restrictive consistency conditions related to the gauge symmetries generated by the

isometries of the internal manifold [65, 118]. This conjecture has recently been shown

to be true for Sasaki-Einstein reductions of IIB supergravity on SE5 [34] and D = 11
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supergravity on SE7 [86], yielding minimal D = 5, N = 2 and D = 4, N = 2 gauged

supergravity, respectively (see also [83, 87]).

While states in the same supermultiplet do not necessarily have the same mass in

gauged supergravity, the minimal supergravity multiplets, which contain the graviton,

gravitino and a graviphoton, are in fact massless. Thus one may suspect that truncations

to massless supermultiplets are necessarily consistent. However, it turns out that this is

not the case. This was explicitly demonstrated in [118], where, for example, it was shown

to be inconsistent to retain the SU(2)× SU(2) vector multiplets that naturally arise in the

compactification of IIB supergravity on T 1,1.

For many of the above reasons, it has often been a challenge to explore consistent

supersymmetric truncations, even at the massless Kaluza-Klein level. However, bosonic

truncations retaining massive breathing and squashing modes [25] have been known to be

consistent for some time. In this case, consistency is guaranteed by retaining only singlets

under the internal symmetry group SU(4) × U(1) for the squashed S7 or SU(3) × U(1)

for the squashed S5. The supersymmetry of background solutions involving the breathing

and squashing modes was explored in [131], where it was further conjectured that a super-

symmetric consistent truncation could be found that retains the full breathing/squashing

supermultiplet.

Although this massive consistent truncation conjecture was made for squashed sphere

compactifications, it naturally generalizes to compactification on more general internal

spaces, such as Sasaki-Einstein spaces. ForD = 11 supergravity compactified on a squashed

S7, written as U(1) bundled over CP 3, truncation of the N = 8 Kaluza-Klein spectrum

to SU(4) singlets under the decomposition SO(8) ⊃ SU(4)×U(1) yields the N = 2 super-
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gravity multiplet3

(IV.3) n = 0 : D(2, 1)0 = D(3, 2)0 +D(5
2 ,

3
2)−1 +D(5

2 ,
3
2)1 +D(2, 1)0,

at the massless (n = 0) Kaluza-Klein level. No SU(4) singlets survive at the first (n = 1)

massive Kaluza-Klein level, and the breathing and squashing modes finally make their

appearance at the second (n = 2) Kaluza-Klein level in a massive vector multiplet [131]

n = 2 : D(4, 0)0 = D(5, 1)0 +D(9
2 ,

1
2)−1 +D(9

2 ,
1
2)1 +D(11

2 ,
1
2)−1 +D(11

2 ,
1
2)1

+D(4, 0)0 +D(5, 0)0 +D(5, 0)−2 +D(5, 0)2 +D(6, 0)0.(IV.4)

Replacing S7 by SE7 amounts to replacing CP 3 by an appropriate Kahler-Einstein base B.

In this case, the internal isometry is generically reduced from SU(4)×U(1). Nevertheless,

the notion of truncating to SU(4) singlets may simply be replaced by the prescription of

truncating to zero modes on the base B. This procedure was in fact done in [82], which

constructed the non-linear Kaluza-Klein reduction for all the bosonic fields contained in

the above supermultiplets (IV.3) and (IV.4) and furthermore verified the N = 2 super-

symmetry.

For the case of IIB supergravity compactified on SE5, it is straightforward to generalize

the squashed S5 conjecture of [131]. In this case, however, the Kaluza-Klein spectrum

is more involved, and is given in Table 4.1. A curious feature shows up here in that an

additional LH+RH chiral matter multiplet shows up at the ‘massless’ Kaluza-Klein level.

The E0 = 4 scalar in this multiplet corresponds to the IIB axi-dilaton, while the additional

E0 = 3 charged scalar is precisely the charged scalar constructed in the holographic model

of [99]. At the higher Kaluza-Klein levels, the breathing and squashing mode scalars

correspond to the E0 = 8 and E0 = 6 scalars in the massive vector multiplet. In addition,

consistent truncations involving the E0 = 5 (m2L2 = 8) doublet of vectors in the semi-

3The OSp(4|2) super-representations D(E0, s)q and SO(2,3) representations D(E0, s)q are labeled by energy E0,
spin s and U(1) charge q under OSp(4|2) ⊃ SO(2, 3)×U(1) ⊃ SO(2)× SO(3)×U(1).
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n Multiplet SU(2, 2|1) SO(2, 4)× U(1)
0 supergraviton D(3, 12 ,

1
2 )0 D(4, 1, 1)0 +D(3 1

2 , 1,
1
2 )−1 +D(3 1

2 ,
1
2 , 1)1 +D(3, 12 ,

1
2 )0

0 LH chiral D(3, 0, 0)2 D(3 1
2 ,

1
2 , 0)1 +D(3, 0, 0)2 +D(4, 0, 0)0

0 RH chiral D(3, 0, 0)−2 D(3 1
2 , 0,

1
2 )−1 +D(3, 0, 0)−2 +D(4, 0, 0)0

1 LH massive gravitino D(4 1
2 , 0,

1
2 )1 D(5 1

2 ,
1
2 , 1)1 +D(5, 12 ,

1
2 )0 +D(5, 0, 1)2

+D(6, 0, 1)0 +D(4 1
2 , 0,

1
2 )1 +D(5 1

2 , 0,
1
2 )−1

1 RH massive gravitino D(4 1
2 ,

1
2 , 0)−1 D(5 1

2 , 1,
1
2 )−1 +D(5, 12 ,

1
2 )0 +D(5, 1, 0)−2

+D(6, 1, 0)0 +D(4 1
2 ,

1
2 , 0)−1 +D(5 1

2 ,
1
2 , 0)1

2 massive vector D(6, 0, 0)0 D(7, 12 ,
1
2 )0 +D(6 1

2 ,
1
2 , 0)−1 +D(6 1

2 , 0,
1
2 )1

+D(7 1
2 , 0,

1
2 )−1 +D(7 1

2 ,
1
2 , 0)1 +D(6, 0, 0)0

+D(7, 0, 0)−2 +D(7, 0, 0)2 +D(8, 0, 0)0

Table 4.1: The truncated Kaluza-Klein spectrum of IIB supergravity on squashed S5 [131], or
equivalently on SE5. Here n denotes the Kaluza-Klein level. The consistent truncation
is expected to terminate at level n = 2 with the breathing mode supermultiplet.

long LH+RH massive gravitino multiplet and the E0 = 7 (m2L2 = 24) vector in the

massive vector multiplet were constructed in [115, 137, 2] in the context of investigating

non-relativistic conformal backgrounds in string theory.

What we have seen so far is that massive consistent truncations of IIB supergravity

have been obtained keeping various subsets of the bosonic fields identified in Table 4.1.

The goal of this paper is to construct a complete non-linear Kaluza-Klein reduction of

IIB supergravity on SE5 retaining all the bosonic fields in the multiplets up to the n = 2

level. This complements the massive Kaluza-Klein truncation of D = 11 supergravity [82],

and provides another example of a consistent truncation retaining the breathing mode

supermultiplet. We proceed in Section 4.2 with the Sasaki-Einstein reduction of IIB super-

gravity. Then in Section 4.3 we connect the full non-linear reduction with the linearized

Kaluza-Klein analysis of [104, 124] and show how the bosonic fields in Table 4.1 are related

to the original IIB fields. In Section 4.4 we relate the complete non-linear reduction to

previous results by performing additional truncations to a subset of active fields. Finally,

we conclude in Section 4.5 with some further speculation on massive consistent truncations

of supergravity.

For a discussion of the N = 4 nature of the general reduction on Sasaki-Einstein mani-
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folds see [43, 88] which independently worked out the massive consistent truncation of IIB

supergravity on SE5. Also [163] reports related results for a particular truncation of these

theories.

4.2 Sasaki-Einstein reduction of IIB supergravity

The bosonic field content of IIB supergravity consists of the NSNS fields (gMN , BMN , φ)

and the RR potentials (C0, C2, C4). Because of the self-dual field strength F+
5 = dC4, it is

not possible to write down a covariant action. However, we may take a bosonic Lagrangian

of the form

(IV.5) LIIB = R ∗ 1− 1

2τ2
2

dτ ∧ ∗dτ̄ − 1

2
MijF

i
3 ∧ ∗F

j
3 −

1

4
F̃5 ∧ ∗F̃5 −

1

4
εijC4 ∧ F i3 ∧ F

j
3 ,

where self-duality F̃5 = ∗F̃5 is to be imposed by hand after deriving the equations of

motion.

We have given the Lagrangian in an SL(2,R) invariant form where

(IV.6) τ = C0 + ie−φ, M =
1

τ2

|τ |2 −τ1

−τ1 1

 ,

and where

(IV.7) F i3 = dBi
2, Bi

2 =

B2

C2

 , F̃5 = dC4 + 1
2εijB

i
2 ∧ dB

j
2.

The equations of motion following from (IV.61) and the self-duality of F̃5 are

dF̃5 = 1
2εijF

i
3 ∧ F

j
3 , F̃5 = ∗F̃5,

d(Mij ∗ F j3 ) = −εijF̃5 ∧ F j3 ,

d ∗ dτ
τ2

+ i
dτ ∧ ∗dτ

τ2
2

= − i

2τ2
G3 ∧ ∗G3,(IV.8)
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and the Einstein equation (in Ricci form)

RMN =
1

2τ2
2

∂(Mτ∂N)τ̄ +
1

4
Mij

(
F iMPQF

j PQ
N − 1

12
gMNF

i
PQRF

j PQR

)
+

1

4 · 4!
F̃MPQRSF̃N

PQRS .(IV.9)

In the above we have introduced the complex three-form G3 = F 2
3 − τF 1

3 . If desired, this

allows us to rewrite the three-form equation of motion as

(IV.10) d ∗G = −i dτ
2τ2
∧ ∗(G3 + Ḡ3) + iF̃5 ∧G3.

4.2.1 The reduction ansatz

Before writing out the reduction ansatz, we note a few key features of Sasaki-Einstein

manifolds. A Sasaki-Einstein manifold has a preferred U(1) isometry related to the Reeb

vector. This allows us to write the metric as a U(1) fibration over a Kahler-Einstein base

B

(IV.11) ds2(SE5) = ds2(B) + (dψ +A)2,

where dA = 2J with J the Kahler form on B. Moreover, B admits an SU(2) structure

defined by the (1,1) and (2,0) forms J and Ω satisfying

(IV.12) J ∧ Ω = 0, Ω ∧ Ω̄ = 2J ∧ J = 4 ∗4 1, ∗4J = J, ∗4Ω = Ω,

as well as

(IV.13) dJ = 0, dΩ = 3i(dψ +A) ∧ Ω.

Note that we are taking the ‘unit radius’ Einstein condition Rij = 4gij on the Sasaki-

Einstein manifold, which corresponds to Rab = 6gab on the Kahler-Einstein base.

For the reduction, we write down the most general decomposition of the bosonic IIB

fields consistent with the isometries of B. For the metric, we take

(IV.14) ds2
10 = e2Ads2

5 + e2Bds2(B) + e2C(η +A1)2,
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where η = dψ + A. Since A1 gauges the U(1) isometry, it will be related to the D = 5

graviphoton. Note, however, that the graviphoton receives additional contributions from

the five-form.

The three-form and five-form field strengths can be expanded in a basis of invariant

tensors on B. For the three-forms, we work with the potentials

(IV.15) Bi
2 = bi2 + bi1 ∧ (η +A1) + bi0Ω + b̄i0Ω̄.

The scalars bi0 are complex, while the remaining fields are real. Note that we do not include

a term of the form b̃i0J in the ansatz, as this field will act simply as a Stückelburg field in

the five-dimensional theory. In particular, it does not give rise to any new dynamics in the

equations of motion as it can be repackaged as a total derivative plus terms which would

simply shift bi2 and bi1,

(IV.16) 2b̃i0J = d(̃bi0 ∧ (η +A1))− db̃i0 ∧ (η +A1)− b̃i0F2.

Taking F i3 = dBi
2 gives

F i3 = (dbi2 − bi1 ∧ F ) + dbi1 ∧ (η +A1)− 2bi1 ∧ J +Dbi0 ∧ Ω +Db̄i0 ∧ Ω̄

+3ibi0Ω ∧ (η +A1)− 3ib̄i0Ω̄ ∧ (η +A1),(IV.17)

where D is the U(1) gauge covariant derivative

(IV.18) Dbi0 = dbi0 − 3iA1b
i
0.

For convenience, we write this as

(IV.19) F i3 = gi3+gi2∧(η+A1)+gi1∧J+f i1∧Ω+ f̄ i1∧Ω̄+f i0∧Ω∧(η+A1)+ f̄ i0∧Ω̄∧(η+A1),

where our notation is such that the gi’s are real and the f i’s are complex.

For the self-dual five-form, we take

(IV.20)

F̃5 = (1+∗)[(4+φ0)∗41∧(η+A1)+A1∧∗41+p2∧J∧(η+A1)+q2∧Ω∧(η+A1)+q̄2∧Ω̄∧(η+A1)],
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where ∗41 denotes the volume form on the Kahler-Einstein base B. Note that we have

pulled out a constant background component

(IV.21) F̃5 = 4(1 + ∗)vol(SE5),

which sets up the Freund-Rubin compactification4. The two-forms q2 are complex, while

the other fields are real. For later convenience, we take the explicit 10-dimensional dual in

the metric (IV.64) to obtain

F̃5 = (4 + φ0) ∗4 1 ∧ (η +A1) + A1 ∧ ∗41 + p2 ∧ J ∧ (η +A1) + q2 ∧ Ω ∧ (η +A1)

+q̄2 ∧ Ω̄ ∧ (η +A1) + e5A−4B−C(4 + φ0) ∗ 1− e3A−4B+C ∗ A1 ∧ (η +A1)

+eA−C ∗ p2 ∧ J + eA−C ∗ q2 ∧ Ω + eA−C ∗ q̄2 ∧ Ω̄,(IV.22)

where ∗ now denotes the Hodge dual in the D = 5 spacetime.

4.2.2 Reduction of the equations of motion

In order to obtain the reduction, it is now simply a matter of inserting the above

decompositions into the IIB equations of motion. The F̃5 equation yields

d(eA−C ∗ p2) = 2e3A−4B+C ∗ A1 − p2 ∧ F2 + εijg
i
1 ∧ g

j
3,

Dq2 = 3ieA−C ∗ q2 + εij(f
i
1 ∧ g

j
2 − f

i
0g
j
3),(IV.23)

along with the constraints

φ0 = −2i
3 εij(f

i
0f̄

j
0 − f̄

i
0f

j
0 ),

p2 = 1
4εijg

i
1 ∧ g

j
1 − d[A1 + 1

4A1 + i
6εij(f

i
0f̄

j
1 − f̄

i
0f

j
1 )].(IV.24)

The implication of this is that F̃5 gives rise to two physical D = 5 fields, namely a massive

vector A1 and a complex antisymmetric tensor q2 satisfying an odd-dimensional self-duality

equation and with m2 = 9. The mass of A1 is not directly apparent from (IV.23) as it

4For simplicity, we have assumed a unit radius (L = 1) compactification.
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mixes with A1 from the metric to yield the massless graviphoton as well as a m2 = 24

massive vector.

The F i3 equation yields

D(e3A+CMij ∗ f j1 ) = −3ie5A−CMijf
j
0 ∗ 1 + εij [(4 + φ0)e5A−4B−Cf j0 ∗ 1− q2 ∧ gj3

+eA−C ∗ q2 ∧ gj2 + e3A−4B+C ∗ A1 ∧ f j1 ],

d(eA+4B−CMij ∗ gj2) = Mij [e
−A+4B+C ∗ gj3 ∧ F + 4e3A+C ∗ gj1]

+εij [−2eA−C ∗ p2 ∧ gj1 − A1 ∧ gj3 − 4eA−C(∗q2 ∧ f̄ j1 + ∗q̄2 ∧ f j1 )],

d(e−A+4B+CMij ∗ gj3) = εij [−(4 + φ0)gj3 + A1 ∧ gj2 − 2p2 ∧ gj1 − 4(q2 ∧ f̄ j1 + q̄2 ∧ f j1 )

+4eA−C(f̄ j0 ∗ q2 + f j0 ∗ q̄2)].(IV.25)

These correspond to a pair of charged scalars f i0, a pair of m2 = 8 massive vectors gi1 and

a pair of massive antisymmetric tensors bi2.

The ten-dimensional Einstein equation (IV.9) reduces to a five-dimensional Einstein

equation, as well as the equations of motion for the breathing and squashing modes B

and C and the graviphoton A1. In particular, in the natural vielbein basis, the frame

components of the ten-dimensional Ricci tensor corresponding to the reduction (IV.64) are

given by

10Rαβ = e−2A[Rαβ −∇α∇β(3A+ 4B + C)− ηαβ∂γA∂γ(3A+ 4B + C)− ηαβ�A

+3∂αA∂βA− 4∂αB∂βB − ∂αC∂βC + 4(∂αA∂βB + ∂αB∂βA)

+(∂αA∂βC + ∂αC∂βA)]− 1
2e

2C−4AFαγFβ
γ ,

10Rab = δab[6e
−2B − 2e2C−4B − e−2A(�B + ∂γB∂

γ(3A+ 4B + C))],

10R99 = 4e2C−4B + 1
4e

2C−4AFγδF
γδ − e−2A(�C + ∂γC∂

γ(3A+ 4B + C)),

10Rα9 = 1
2e
C−3A[∇γFαγ + Fαγ∂

γ(A+ 4B + 3C)].(IV.26)

The α and β indices correspond to the D = 5 spacetime, while a and b correspond to
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the Kahler-Einstein base B and 9 corresponds to the U(1) fiber direction. The covariant

derivatives and frame indices on the right hand side of these quantities are with respect to

the D = 5 metric. In order to reduce to the D = 5 Einstein frame metric, we now choose

3A+ 4B + C = 0, or

(IV.27) A = −4
3B −

1
3C.

For convenience, we will retain A in the expressions below. However, it is not independent,

and should always be thought of as a shorthand for (IV.27).

Equating the ten-dimensional Ricci tensor (IV.26) to the stress tensor formed out of F i3

and F̃5 of (IV.67) and (IV.22), we obtain the D = 5 Einstein equation

Rαβ = 1
3ηαβ(−24e2A−2B + 4e5A+3C + 1

2e
8A(4 + φ0)2) + 28

3 ∂αB∂βB + 8
3∂(αB∂β)C

+4
3∂αC∂βC + 1

2τ22
∂(ατ∂β)τ̄ + 1

2e
2C−2A(FαγFβ

γ − 1
6ηαβFγδF

γδ) + 1
2e
−8BAαAβ

+eA−C [(pαγpβ
γ − 1

6ηαβpγδp
γδ) + 4(q(α

γ q̄β)γ − 1
6ηαβqγδ q̄

γδ)]

+Mij [
2
3e

5A−Cηαβ(f i0f̄
j
0 + f̄ i0f

j
0 ) + 1

2e
−2A−2C(giαγg

j γ
β −

1
6ηαβg

i
γδg

j γδ)

+1
4e
−4A(giαγδg

j γδ
β − 2

9ηαβg
i
γδεg

j γδε) + e−4B(giαg
j
β + 2(f iαf̄

j
β + f̄ iαf

j
β))],(IV.28)
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as well as the B, C and A1 equations of motion

d ∗ dB = [6e2A−2B − 2e5A+3C − 1
4e

8A(4 + φ0)2] ∗ 1− 1
4e
−8BA1 ∧ ∗A1

+Mij [
1
8e
−2A−2Cgi2 ∧ ∗g

j
2 + 1

8e
−4Agi3 ∧ ∗g

j
3 − 1

2e
5A−C(f i0f̄

j
0 + f̄ i0f

j
0 ) ∗ 1

−1
4e
−4B(gi1 ∧ ∗g

j
1 + 2(f i1 ∧ ∗f̄

j
1 + f̄ i1 ∧ ∗f

j
1 ))],

d ∗ dC = [4e5A+3C − 1
4e

8A(4 + φ0)2] ∗ 1 + 1
2e

2C−2AF2 ∧ ∗F2 + 1
4e
−8BA1 ∧ ∗A1

−1
2e
A−C(p2 ∧ ∗p2 + 4q2 ∧ ∗q̄2) +Mij [−3

8e
−2A−2Cgi2 ∧ ∗g

j
2

+1
8e
−4Agi3 ∧ ∗g

j
3 − 3

2e
5A−C(f i0f̄

j
0 + f̄ i0f

j
0 ) ∗ 1

+1
4e
−4B(gi1 ∧ ∗g

j
1 + 2(f i1 ∧ ∗f̄

j
1 + f̄ i1 ∧ ∗f

j
1 ))],

d(e2C−2A ∗ F2) = (4 + φ0)e−8B ∗ A1 − p2 ∧ p2 − 4q2 ∧ q̄2

+Mij [4e
−4B ∗ (f i0f̄

j
1 + f̄ i0f

j
1 ) + e−4A ∗ gi3 ∧ g

j
2].(IV.29)

Note that, in order to obtain the D = 5 Einstein equation, we had to shift the reduction

of 10Rαβ an appropriate combination of 10Rab and 10R99 in order to remove the ηαβ�A

component in the first line of (IV.26).

The IIB equations of motion thus reduce to (IV.23), (IV.25), (IV.28) and (IV.29) as

well as the axi-dilaton equation, which we have not written down explicitly, but which will

be shown to be consistent below.

4.2.3 The effective five-dimensional Lagrangian

We now wish to construct an effective D = 5 Lagrangian which reproduces the above

equations of motion. This may be done by noting that the D = 5 Einstein equation (IV.28)
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arises naturally from a Lagrangian of the form

L = R ∗ 1 + (24e2A−2B − 4e5A+3C − 1
2e

8A(4 + φ0)2) ∗ 1− 28
3 dB ∧ ∗dB −

8
3dB ∧ ∗dC

−4
3dC ∧ ∗dC −

1
2τ22

dτ ∧ ∗dτ̄ − 1
2e

2C−2AF2 ∧ ∗F2 − 1
2e
−8BA1 ∧ ∗A1

−eA−C(p2 ∧ ∗p2 + 4q2 ∧ ∗q̄2) +Mij [−2e5A−C(f i0f̄
j
0 + f̄ i0f

j
0 ) ∗ 1

−1
2e
−2A−2Cgi2 ∧ ∗g

j
2 − 1

2e
−4Agi3 ∧ ∗g

j
3 − e

−4B(gi1 ∧ ∗g
j
1 + 2(f i1 ∧ ∗f̄

j
1 + f̄ i1 ∧ ∗f

j
1 ))]

+LCS .(IV.30)

We have included a Chern-Simons piece LCS which cannot be determined from the Einstein

equation.

It is now possible to verify that (IV.30) reproduces all the terms in the equations of

motion (IV.23), (IV.25) and (IV.29) involving the metric (ie the Hodge *). The remaining

terms may be obtained from the addition of the topological piece

LCS = 2i
3 (q2 ∧ dq̄2 − q̄2 ∧ dq2)− 4A1 ∧ q2 ∧ q̄2 + 2εijb

i
2 ∧ db

j
2

+4i
3 [(q̄2 − i

6εij f̄
i
0g
j
2) ∧ εkl(fk1 ∧ gl2 − fk0 gl3)− (q2 + i

6εijf
i
0g
j
2) ∧ εkl(f̄k1 ∧ gl2 − f̄k0 gl3)]

−A1 ∧ (p2 − 1
4εijg

i
1 ∧ g

j
1) ∧ (p2 − 1

4εklg
k
1 ∧ gl1)

−2[1
4A1 + i

6εij(f
i
0f̄

j
1 − f̄

i
0f

j
1 )] ∧ εkl(gk1 ∧ gl3 − 1

4g
k
1 ∧ gl1 ∧ F2).(IV.31)

Here we recall the definitions

(IV.32) f i0 = 3ibi0, f i1 = Dbi0, gi1 = −2bi1, gi2 = dbi1, gi3 = dbi2 − bi1 ∧ F2,

implicit in (IV.17) and (IV.67). Furthermore, φ0 and p2 are given by (IV.24). Note that,

while A1 is massive, and does not have a gauge invariance associated with it, it is natural

to make the shift

(IV.33) A1 → A′1 − 2i
3 εij(f

i
0f̄

j
1 − f̄

i
0f

j
1 ),

so that

(IV.34) p2 = 1
4εijg

i
1 ∧ g

j
1 − F2 − 1

4F
′
2,
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where F′2 = dA′1.

We now turn to the axi-dilaton equation obtained from (IV.30). Since τ only shows up in

the kinetic term and inMij , we see that the τ equation of motion obtained from the D = 5

Lagrangian reproduces that obtained from the original IIB Lagrangian. This is because the

quantity in the square brackets multiplyingMij in (IV.30) is the straightforward reduction

of −1
2F

i
3 ∧ ∗F

j
3 in the original IIB Lagrangian (IV.61).

4.3 Matching the linearized Kaluza-Klein analysis

The complete D = 5 Lagrangian, as given by (IV.30) and (IV.31), is somewhat opaque.

Thus in this section, we demonstrate that it in fact contains the fields corresponding to

the Kaluza-Klein mass spectrum noted in Table 4.1. To do this, it is sufficient to look at

the linearized level. We first note that the effective D = 5 fields are the complex scalars

(τ, bi0), real scalars (B,C), one-form potentials (A1, b
i
1,A1), pair of real two-forms (bi2), the

complex two-form (q2), and of course the metric (gµν). The D = 5 equations of motion

(IV.23), (IV.25) and (IV.29) may be linearized on the matter fields to obtain the set

d ∗ dbi0 = (9δij + 12iN i
j)b

j
0 ∗ 1,

d ∗ dbi1 = −8 ∗ bi1,

d ∗ dbi2 = −4N i
jdb

j
2,

dq2 = 3i ∗ q2,

d ∗ F2 = 4 ∗ A1, d ∗ F2 + 1
4d ∗ F2 = −2 ∗ A1,

d ∗ dB = 4(7B + C) ∗ 1, d ∗ dC = 16(B + C) ∗ 1.(IV.35)

Here we have introduced

(IV.36) N =M−1ε =
1

τ2

 −τ1 1

−|τ |2 τ1

 ,
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with eigenvalues +i and −i, corresponding to eigenvectors

(
1 τ

)T
and

(
1 τ̄

)T
, respec-

tively.

The first equation in (IV.35) then decomposes into a pair of equations for the complex

scalars bm
2=−3

0 and bm
2=21

0 with masses m2 = −3 and m2 = 21 according to

(IV.37) bi0 =

1

τ

 bm
2=−3

0 +

1

τ̄

 bm
2=21

0 .

The second equation is that of an SL(2,R) doublet of real vectors bi1 with mass m2 = 8.

The third equation can be converted to an odd-dimensional self-duality equation [168]

dbi2 = 4N i
j ∗ bj2, for a doublet of antisymmetric tensors bi2 with mass m2 = 16. The

fourth equation is already in odd-dimensional self-duality form, and shows that the complex

antisymmetric tensor q2 has mass m2 = 9.

The vector equations can be diagonalized

(IV.38) d ∗ (F2 + 1
6F2) = 0, d ∗ F2 = −24 ∗ A1,

to identify the massless graviphoton A1 + 1
6A1 and the massive m2 = 24 vector A1. Finally

the B and C equations may be diagonalized to identify the m2 = 32 breathing and m2 = 12

squashing modes

(IV.39) d ∗ dρ = 32ρ ∗ 1, d ∗ dσ = 12σ ∗ 1,

where

(IV.40) B = ρ+ 1
2σ, C = ρ− 2σ.

It is now possible to see how the above linearized modes are organized into N = 2

supermultiplets. As shown in Table 4.1, at the zeroth Kaluza-Klein level, we have the

graviton supermultiplet

(IV.41) D(3, 1
2 ,

1
2)0 = D(4, 1, 1)0 +D(31

2 , 1,
1
2)−1 +D(31

2 ,
1
2 , 1)1 +D(3, 1

2 ,
1
2)0,
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with bosonic fields being the graviton gµν and the massless graviphoton A1 + 1
6A1. Still at

the zeroth level, there is also a LH+RH chiral multiplet

D(3, 0, 0)2 = D(31
2 ,

1
2 , 0)1 +D(3, 0, 0)2 +D(4, 0, 0)0,

D(3, 0, 0)−2 = D(31
2 , 0,

1
2)−1 +D(3, 0, 0)−2 +D(4, 0, 0)0.(IV.42)

The charged E0 = 3 scalar corresponds to the m2 = −3 scalar bm
2=−3

0 , while the complex

E0 = 4 scalar is the axi-dilaton τ .

At the first Kaluza-Klein level, we have a semi-long LH+RH massive gravitino multiplet

D(41
2 , 0,

1
2)1 = D(51

2 ,
1
2 , 1)1 +D(5, 1

2 ,
1
2)0 +D(5, 0, 1)2 +D(6, 0, 1)0

+D(41
2 , 0,

1
2)1 +D(51

2 , 0,
1
2)−1,

D(41
2 ,

1
2 , 0)−1 = D(51

2 , 1,
1
2)−1 +D(5, 1

2 ,
1
2)0 +D(5, 1, 0)−2 +D(6, 1, 0)0

+D(41
2 ,

1
2 , 0)−1 +D(51

2 ,
1
2 , 0)1.(IV.43)

The bosonic field content is an SL(2,R) doublet of m2 = 8 (E0 = 5) vectors bi1, a charged

m2 = 9 (E0 = 5) anti-symmetric tensor q2, and a doublet of m2 = 16 (E0 = 6) anti-

symmetric tensors bi2.

At the second Kaluza-Klein level, we have a massive vector multiplet

D(6, 0, 0)0 = D(7, 1
2 ,

1
2)0 +D(61

2 ,
1
2 , 0)−1 +D(61

2 , 0,
1
2)1 +D(71

2 , 0,
1
2)−1 +D(71

2 ,
1
2 , 0)1

+D(6, 0, 0)0 +D(7, 0, 0)−2 +D(7, 0, 0)2 +D(8, 0, 0)0.(IV.44)

The massive E0 = 7 vector is the m2 = 24 mode A1. The real E0 = 6 and E0 = 8 scalars

are the m2 = 12 squashing and m2 = 32 breathing modes, σ and ρ, respectively. The

charged E0 = 7 scalar is bm
2=21

0 with m2 = 21. This identification of the linearized fields

with the Kaluza-Klein modes is shown in Table 4.3.

For the case of IIB supergravity on S5, is interesting to note that these fields lie at

the lowest level of the massive trajectories in the Kaluza-Klein mode decomposition of the
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n Multiplet State Field
0 supergraviton D(4, 1, 1)0 gµν

D(3, 12 ,
1
2 )0 A1 + 1

6A1

0 LH+RH chiral D(3, 0, 0)±2 bm
2=−3

0

D(4, 0, 0)0 +D(4, 0, 0)0 τ
1 LH+RH massive gravitino D(5, 12 ,

1
2 )0 +D(5, 12 ,

1
2 )0 bi1

D(5, 0, 1)2 +D(5, 1, 0)−2 q2
D(6, 0, 1)0 +D(6, 1, 0)0 bi2

2 massive vector D(7, 12 ,
1
2 )0 A1

D(6, 0, 0)0 σ

D(7, 0, 0)±2 bm
2=21

0

D(8, 0, 0)0 ρ

Table 4.2: Identification of the bosonic states in the Kaluza-Klein spectrum with the linearized
modes in the reduction.

D = 10 fields [104, 124]. We note that the massive Kaluza-Klein tower is built out of

scalar, vector and tensor harmonics on S5, and the lowest harmonics generally have simple

behavior on the internal sphere coordinates. For example, the lowest scalar harmonic is

the constant mode on the sphere, while the lowest vector harmonics generate the Killing

vectors on the sphere. It is presumably the simplicity of the lowest harmonics that allows

the truncation to be consistent, even at the non-linear level.

Although the harmonics on SE5 are more involved (see e.g. [46] for the case of T 1,1),

it is clear that the decomposition (IV.15) and (IV.22) of the D = 10 fields in terms of

invariant tensors on SE5 is equivalent to the truncation to the lowest harmonics on the

sphere. This appears to be an essential feature guaranteeing the consistency of the massive

truncation, and hence we do not expect to be able to keep any additional multiplets in the

Kaluza-Klein tower beyond the n = 2 level.

4.4 Further truncations

In order to make a connection with previous results on massive consistent truncations

of IIB supergravity, we note that the semi-long LH+RH massive gravitino multiplet at the

first Kaluza-Klein level may be truncated out by setting

(IV.45) bi1 = 0, bi2 = 0, q2 = 0.



121

It is easy to see that this truncation is consistent, since the respective equations of motion

for q2 in (IV.23) and gi2 and gi3 in (IV.25) are trivially satisfied in this case. The resulting

D = 5 Lagrangian takes the form

L = R ∗ 1 + (24e2A−2B − 4e5A+3C − 1
2e

8A(4 + φ0)2) ∗ 1− 28
3 dB ∧ ∗dB −

8
3dB ∧ ∗dC

−4
3dC ∧ ∗dC −

1
2τ22

dτ ∧ ∗dτ̄ − 1
2e

2C−2AF2 ∧ ∗F2 − eA−C(F2 + 1
4F
′
2) ∧ ∗(F2 + 1

4F
′
2)

−1
2e
−8B[A′1 − 2i

3 εij(f
i
0f̄

j
1 − f̄

i
0f

j
1 )] ∧ ∗[A′1 − 2i

3 εij(f
i
0f̄

j
1 − f̄

i
0f

j
1 )]

−2Mij [e
5A−C(f i0f̄

j
0 + f̄ i0f

j
0 ) ∗ 1 + e−4B(f i1 ∧ ∗f̄

j
1 + f̄ i1 ∧ ∗f

j
1 )]

−A1 ∧ (F2 + 1
4F
′
2) ∧ (F2 + 1

4F
′
2),(IV.46)

where

(IV.47) f i0 = 3ibi0, f i1 = Dbi0, φ0 = −2i
3 εij(f

i
0f̄

j
0 − f̄

i
0f

j
0 ).

A further truncation to the massless N = 2 supergravity sector may be obtained by

setting

(IV.48) bi0 = 0, B = 0, C = 0, A1 = 0,

along with taking a constant background for the axi-dilaton, τ = τ0. This leaves only

gµν and A1, and yields the standard Lagrangian for the bosonic fields of minimal gauged

supergravity

(IV.49) L = R ∗ 1 + 12g2 ∗ 1− 1
2F2 ∧ ∗F2 − 1

3
√

3
A1 ∧ F2 ∧ F2,

where we have rescaled the graviphoton, A1 → 1√
3
A1, so that it has a canonical kinetic

term, and where we have restored the dimensionful gauged supergravity coupling g.

4.4.1 Truncation to the zeroth Kaluza-Klein level

Beyond the truncation to minimal supergravity discussed above, the first nontrivial

truncation involves keeping only the lowest Kaluza-Klein level fields {τ, bm2=−3
0 } dynamical.
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In what follows we will denote bm
2=−3

0 simply as b so that (b10, b
2
0) = (b, τb). This truncation

is not as simple as setting all other fields to zero, as the equations of motion demand certain

constraints to be satisfied. For this case we start with the Lagrangian (C.9), obtained by

setting bi2 = bi1 = q2 = 0. We then impose the constraints

(IV.50) bm
2=21

0 = 0, e4B = e−4C = 1−4τ2|b|2, A1 = −4iτ2(bDb̄− b̄Db)+4|b|2dτ1.

These in turn imply that

(IV.51) φ0 = −24τ2|b|2, p2 = −dA1.

To guarantee consistency, we have to check four constraints from the equations of motion

(the B, C, f i0, and combined Maxwell Equation). They are all verified to hold identically,

and hence the truncation to the supergravity plus the LH+RH chiral multiplet is consistent.

The Lagrangian is given by

L = R ∗ 1 +
[
24(1− 3τ2|b|2)e−4B − 4e−8B − 1

2e
−8B(4 + φ0)2

]
∗ 1− 8dB ∧ ∗dB

−3
2F2 ∧ ∗F2 − 1

2e
−8BA1 ∧ ∗A1 − 8e−4Bτ2Db ∧ ∗Db̄− 2ie−4B(b̄Db ∧ ∗dτ̄ − bDb̄ ∧ ∗dτ)

− 1
2τ22

(1 + 8e−4Bτ2|b|2)dτ ∧ ∗dτ̄ −A1 ∧ F2 ∧ F2.(IV.52)

This expression can be simplified by defining λ ≡ 4τ2|b|2, giving

L = R ∗ 1 +
6(2− 3λ)

(1− λ)2
∗ 1− dλ ∧ ∗dλ

2(1− λ)2
− (1 + λ)dτ ∧ ∗dτ̄

2(1− λ)τ2
2

− 3

2
F2 ∧ ∗F2 −

A1 ∧ ∗A1

2(1− λ)2

−8τ2Db ∧ ∗Db̄
1− λ

− 2i

1− λ
(b̄Db ∧ ∗dτ̄ − bDb̄ ∧ ∗dτ)−A1 ∧ F2 ∧ F2.(IV.53)

If we further truncate the model by setting τ = ie−φ0 = ig−1
s , which is consistent with

the equation of motion for τ given in (IV.8), this reproduces the model used in [99] to

describe a holographic superconductor using a m2 = −3 and q = 2 charged scalar. If we

denote b =
√
gsfe

iθ, the truncated Lagrangian reads

L = R ∗ 1− 3
2F2 ∧ ∗F2 −A1 ∧ F2 ∧ F2

+12
(1− 6f2)

(1− 4f2)2
∗ 1− 8

df ∧ ∗df
(1− 4f2)2

− 8f2 (dθ − 3A1) ∧ ∗(dθ − 3A1)

(1− 4f2)2
.(IV.54)
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A further redefinition f = 1
2 tanh η

2 then reproduces the Lagrangian given in [99].

4.4.2 Truncation to the second Kaluza-Klein level

Starting with the Lagrangian (C.9) with bi2 = bi1 = q2 = 0, it is possible to retain

the bm
2=21

0 scalar by setting bm
2=−3

0 = 0. In this case, we first let b20 = τ̄ b10 and define

b10 =
√
gshe

iξ, so that (h, ξ) describe the m2 = 21 scalar. Again, the scalar equations

of motion lead to constraints, and in particular the first equation in (IV.25) yields the

equation of motion for h and ξ as well as

(IV.55) d(e3A+C ∗ dτ) + ie3A+C 1
τ 2
dτ ∧ ∗dτ = 0.

This is simply the τ equation of motion without any sources, and the simplest thing to

do is to set τ to be constant, τ = ie−φ0 = ig−1
s . The remaining field content is then

{gµν , A1, ρ, σ, b
m2=21
0 ,A1}, corresponding to the supergravity multiplet coupled to the mas-

sive vector multiplet. It is now straightforward to complete the truncation, and the La-

grangian is given by

L = R ∗ 1 +
(
24e−

16
3
ρ−σ − 4e−

16
3
ρ−6σ − 8e−

40
3
ρ(1 + 6h2)2

)
∗ 1− 40

3 dρ ∧ ∗dρ− 5dσ ∧ ∗dσ

−1
2e

16
3
ρ−4σF2 ∧ ∗F2 − e−

8
3
ρ+2σ(F2 + 1

4F
′
2) ∧ ∗(F2 + 1

4F
′
2)

−1
2e
−8ρ−4σ(A′1 + 8h2Γ) ∧ ∗(A′1 + 8h2Γ)−A1 ∧ (F2 + 1

4F
′
2) ∧ (F2 + 1

4F
′
2)

−8
(
e−4ρ−2σdh ∧ ∗dh+ e−4ρ−2σh2Γ ∧ ∗Γ + e−

28
3 ρ+2σh2 ∗ 1

)
,(IV.56)

where we have defined Γ = dξ − 3A1.

We can further truncate this by removing the m2 = 21 scalar (i.e. by setting h = ξ = 0),

giving the Lagrangian

L = R ∗ 1 + (24e−
16
3
ρ−σ − 4e−

16
3
ρ−6σ − 8e−

40
3
ρ) ∗ 1− 40

3 dρ ∧ ∗dρ− 5dσ ∧ ∗dσ

−1
2e

16
3
ρ−4σF2 ∧ ∗F2 − e−

8
3
ρ+2σ(F2 + 1

4F
′
2) ∧ ∗(F2 + 1

4F
′
2)− 1

2e
−8ρ−4σA′1 ∧ ∗A′1

−A1 ∧ (F2 + 1
4F
′
2) ∧ (F2 + 1

4F
′
2),(IV.57)
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which corresponds to the m2 = 24 massive vector field truncation of [137].

4.4.3 Non-supersymmetric truncations

All the truncations we have listed so far have field content which fills the bosonic

sector of AdS5 supermultiplets and so are presumably supersymmetric truncations. It

is also useful to consider truncations which contain dynamical fields belonging to different

supermultiplets, without keeping the entire multiplet. In this sense these truncations are

not supersymmetric, although they are perfectly consistent truncations and solutions of the

ten-dimensional equations of motion. For these truncations, we start with the complete

Lagrangian given in (IV.30) and (IV.31).

Massive vector field

The first non-supersymmetric truncation we will discuss involves keeping the m2 = 8

vector field, bi1, and has already been noted in [137]. The field content in this truncation

consists of one component of bi1 (denoted b1), τ2, ρ, σ and gµν . Note that the graviphoton is

turned off here so that even at the lowest level this cannot be supersymmetric. Furthermore,

by keeping only one component of bi1, the τ equation of motion demands that we must set

τ1 = 0. With this field content, the D = 10 constraints (IV.24) are trivially satisfied with

φ0 = 0 and p2 = 0, and the Lagrangian (IV.30) becomes [137]

L = R ∗ 1 + (24e−
16
3
ρ−σ − 4e−

16
3
ρ−6σ − 8e−

40
3
ρ) ∗ 1− 40

3 dρ ∧ ∗dρ− 5dσ ∧ ∗dσ

− 1
2τ22

dτ2 ∧ ∗dτ2 − 1
2τ2e

4
3
ρ+4σdb1 ∧ ∗db1 − 4τ2e

−4ρ−2σb1 ∧ ∗b1.(IV.58)

Complex massive anti-symmetric tensor

We can also truncate to theories containing the m2 = 9 complex anti-symmetric tensor

field q2. The field content here is given by, q2, A1, B, C, τ , gµν and A1. The D = 10

constraints become φ0 = 0 and p2 = −dA1 − 1
4dA1. All the other equations of motion are



125

either satisfied by setting the rest of the fields to zero or can be derived from the Lagrangian

L = R ∗ 1 + (24e−
16
3
ρ−σ − 4e−

16
3
ρ−6σ − 8e−

40
3
ρ) ∗ 1− 40

3 dρ ∧ ∗dρ− 5dσ ∧ ∗dσ

−1
2e

16
3
ρ−4σF2 ∧ ∗F2 − e−

8
3
ρ+2σ(p2 ∧ ∗p2 + 4q2 ∧ ∗q̄2)− 1

2τ22
dτ ∧ ∗dτ̄

−1
2e
−8ρ−4σA1 ∧ ∗A1 + 2i

3 (q2 ∧ dq̄2 − q̄2 ∧ dq2)−A1 ∧ p2 ∧ p2 − 4A1 ∧ q2 ∧ q̄2.(IV.59)

Note that it is consistent to further truncate to a constant axi-dilaton τ = τ0.

Real massive anti-symmetric tensor

Along similar lines to the case above for a massive vector field, we can set A1 = 0 and

make a truncation including the m2 = 16 real anti-symmetric tensor doublet bi2 by keeping

only the graviton coupled to bi2, τ , ρ and σ. Again, the equations of motion for the other

fields are trivially satisfied, and the constraints are also trivial φ0 = 0 and p2 = 0. This

leaves the Lagrangian

L = R ∗ 1 + (24e−
16
3
ρ−σ − 4e−

16
3
ρ−6σ − 8e−

40
3
ρ) ∗ 1− 40

3 dρ ∧ ∗dρ− 5dσ ∧ ∗dσ

− 1
2τ22

dτ ∧ ∗dτ̄ − 1
2e

20
3
ρMijdb

i
2 ∧ ∗db

j
2 + 2εijb

i
2 ∧ ∗db

j
2.(IV.60)

As in the previous truncation, it is consistent to further truncate to τ = τ0.

4.5 Discussion

In the above, we have examined massive reductions of 10-dimensional IIB supergravity

on Sasaki-Einstein manifolds. By utilizing the structure of SE5, we have given a general

decomposition of the IIB fields based on the invariant tensors associated with the internal

manifold. The field content obtained in five-dimensions completes the bosonic sector of

various AdS5 supermultiplets, and in particular they fill out the lowest Kaluza-Klein tower

up to the breathing mode supermultiplet. This proves, at least at the level of the bosonic

fields, the conjecture raised in [131] that a consistent massive truncation may be obtained
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by truncating to the singlet sector on the Kahler-Einstein base B (which is CP 2 for the

squashed S5) and further restricting to the level of the breathing mode multiplet and below.

As suggested at the end of Section 4.3, it is this truncation to constant modes on the

base B that ensures the consistency of the reduction. In a sense, this is a generalization of

the old consistency criterion of restricting to singlets of the internal isometry group, except

that here restricting to singlets of an appropriate subgroup turned out to be sufficient. For

this reason, we believe it is not that the breathing mode is special in itself which allows

for a consistent truncation retaining its supermultiplet, but rather that in the examples

given here and in [82], the breathing mode superpartners so happen to be the lowest

harmonics in their respective Kaluza-Klein towers. It is an unusual feature of Kaluza-

Klein compactifications on curved internal spaces that states originating from different

levels of the harmonic expansion may combine into a single supermultiplet. Thus, while

the breathing mode is always the lowest state in its tower (being a constant mode on the

internal space), its superpartners may carry excitations on the internal space. This does

not occur for the N = 2 compactification of IIB supergravity on SE5 (nor does it for

D = 11 supergravity on SE7). However, in extended theories, such as IIB supergravity

on the round S5, the superpartners will involve non-trivial harmonics. In particular, the

N = 8 superpartners to the breathing mode include a massive spin-2 excitation of the

graviton involving the second harmonic (d-waves) on the sphere. Thus we believe it to

be unlikely that an N = 8 massive truncation with the breathing mode multiplet will be

consistent.

Consistent truncations of the type discussed here have recently been of particular inter-

est in the growing literature on AdS/CFT applications to condensed matter systems. Until

recently a strictly phenomenological approach has been taken in this area. In these systems

the inclusion of a scalar condensate is required in the gravity theory to source an operator
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whose expectation value acts as an order parameter describing superconductor/superfluid

phase transitions in the strongly coupled system. In the phenomenological approach, the

origin of this scalar and its properties have not been of immediate interest; rather the gen-

eral behavior was determined and many interesting similarities to real condensed matter

systems have been noted. However, this approach lacks strong theoretical control in that

systems are described by a set of free parameters which can be tuned to provide the prop-

erty of interest. Recently there has been some work to embed these models in UV complete

theories, where the parameters are no longer free but are determined by the underlying

features of the theory, such as an origin in string theory. The discussion here has put these

reductions into a more general framework and gives further examples of UV complete

systems whose duals may have useful applications in the AdS/CMT correspondence.

Given that the fields in these truncations fall into specific supermultiplets it is an obvious

and relevant question to discuss their fermionic partners. This would involve reducing the

supersymmetry variations and fermion equations in ten-dimensions down to five-dimensions

and determining the complete supersymmetric action of these truncations. This is also of

interest in terms of AdS/CMT where there has been much interest in describing fermion

behavior in condensed matter systems such as the Fermi-liquid theory using the holographic

correspondence. In particular, the full supersymmetric action could give us examples of

specific interactions studied in these systems coupling scalar condensates to the fermionic

excitations [51, 72, 102]. This is the topic of the remaining sections in this chapter.

4.6 The bosonic reduction of IIB supergravity on SE5

The reduction of the bosonic sector of IIB supergravity on a squashed Sasaki-Einstein

manifold carried out in the previous sections was first done in [43, 133, 88, 163]. From an

N = 2 point of view, the resulting theory has on-shell fields corresponding to that of five-

dimensional gauged supergravity coupled to a massive hypermultiplet, massive gravitino
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multiplet and massive vector multiplet [131, 133].

Before turning to the fermions, we review the reduction of the bosonic sector, following

the notations and conventions of [133]. In particular, here we highlight the truncation to

the N = 2 sector presented in section 4.4.

Although IIB supergravity does not admit a covariant action, we may take a bosonic

Lagrangian of the form

(IV.61) LIIB = R ∗ 1− 1

2τ2
2

dτ ∧ ∗dτ̄ − 1

2
MijF

i
3 ∧ ∗F

j
3 −

1

4
F̃5 ∧ ∗F̃5 −

1

4
εijC4 ∧ F i3 ∧ F

j
3 ,

where self-duality F̃5 = ∗F̃5 is to be imposed by hand after deriving the equations of

motion. Here we have chosen to write the Lagrangian in an SL(2,R) invariant form using

(IV.62) τ = C0 + ie−φ, V =
1
√
τ2

−τ1 1

τ2 0

 , M = VTV =
1

τ2

|τ |2 −τ1

−τ1 1

 .

For convenience when coupling to fermions, we also introduce the complexified vielbein

vi = V1
i − iV2

i, so that

(IV.63) viF
i
3 = τ

−1/2
2 (F 2

3 − τF 1
3 ) = τ

−1/2
2 G3,

where G3 = F 2
3 − τF 1

3 .

The reduction ansatz follows by taking a metric of the squashed Sasaki-Einstein form

(IV.64) ds2
10 = e2Ads2

5 + e2Bds2(B) + e2C(η +A1)2,

where dη = 2J and where we set 3A + 4B + C = 0 to remain in the Einstein frame. The

key to the reduction is to expand the remaining bosonic fields in terms of the invariant

forms J and Ω based on the SU(2) structure of the base B and satisfying

(IV.65) J ∧ Ω = 0, Ω ∧ Ω̄ = 2J ∧ J = 4 ∗4 1, ∗4J = J, ∗4Ω = Ω,

as well as

(IV.66) dJ = 0, dΩ = 3i(dψ +A) ∧ Ω.
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The bosonic reduction follows by expanding the three-form and five-form field strengths

in a basis of invariant tensors on B. Since we will truncate out the massive gravitino

multiplet, we set the corresponding bosonic fields to zero. (The complete reduction is

given in [133].) In this case, the three-form gives rise to two complex scalars bi, and is

given by

(IV.67) F i3 = f i1 ∧ Ω + f̄ i1 ∧ Ω̄ + f i0 ∧ Ω ∧ (η +A1) + f̄ i0 ∧ Ω̄ ∧ (η +A1),

where

(IV.68) f i1 = Dbi, f i0 = 3ibi,

with D the U(1) gauge covariant derivative

(IV.69) Dbi = dbi − 3iA1b
i.

Furthermore, introducing

(IV.70) bi =

1

τ

 bm
2=−3 +

1

τ̄

 bm
2=21,

it is easy to see that

(IV.71) vif
i
0 = 6

√
τ2 b

m2=21, v̄if
i
0 = −6

√
τ2 b

m2=−3,

while

vif
i
1 = −2i

√
τ2[Dbm

2=21 + i
2τ2

(bm
2=−3dτ + bm

2=21dτ̄)],

v̄if
i
1 = 2i

√
τ2[Dbm

2=−3 − i
2τ2

(bm
2=−3dτ + bm

2=21dτ̄)].(IV.72)

These expressions will show up extensively in the fermion reduction below.

For the self-dual five-form, we have

(IV.73) F̃5 = (1 + ∗)[(4 + φ0) ∗4 1 ∧ (η +A1) + A1 ∧ ∗41 + p2 ∧ J ∧ (η +A1)],
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where ∗41 denotes the volume form on the Kahler-Einstein base B. The fields φ0 and p2

are constrained by

φ0 = −2i
3 εij(f

i
0f̄

j
0 − f̄

i
0f

j
0 ),

p2 = −d[A1 + 1
4A1 + i

6εij(f
i
0f̄

j
1 − f̄

i
0f

j
1 )].(IV.74)

Hence the only additional field arising from the five-form is the vector A1.

Finally, we note that the bosonic field content of this massive truncation is that of

gauged supergravity coupled to a hypermultiplet with fields (τ, bm
2=−3) and a massive

vector multiplet with fields (B,C, bm
2=21,A1). This massive multiplet is actually a vector

combined with a hypermultiplet. However, since we are working on shell, one of the scalars

has been absorbed into the massive vector. If desired, this scalar may be restored by an

appropriate Stueckelberg shift of A1.

4.7 Reduction of the IIB fermions

We are now prepared to examine the fermionic sector of IIB supergravity [159]. For

simplicity in working out the reduction, we follow a Dirac convention throughout. In this

case, the fermions consist of a spin-3
2 gravitino ΨM and a spin-1

2 dilatino λ, with opposite

chiralities

(IV.75) Γ11ΨM = ΨM , Γ11λ = −λ.

Our Dirac conventions are detailed in Appendix C.1. In particular, as opposed to [159],

we are using a mostly plus metric signature.

In the following we always work to lowest order in the fermions. In this case, the IIB
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supersymmetry variations on the fermions are given by [159]

δλ =
i

2τ2
ΓA∂Aτε

c − i

24
ΓABCviF

i
ABCε,

δΨM = DM ε ≡
(
∇M +

i

4τ2
∂Mτ1 +

i

16 · 5!
ΓABCDEF̃ABCDEΓM

)
ε

+
i

96

(
ΓM

ABC − 9δAMΓBC
)
viF

i
ABCε

c.(IV.76)

The supersymmetry parameter ε is chiral with Γ11ε = ε, and the complexified SL(2,R)

vielbein, vi, was defined above in (IV.63). In addition the fermion equations of motion are

[159]

0 = ΓMDMλ−
i

8 · 5!
ΓMNPQRFMNPQRλ,

0 = ΓMNPDNΨP +
i

48
ΓNPQΓMv∗i F

i∗
NPQλ−

i

4τ2
ΓNΓM∂Nτλ

c,(IV.77)

where the supercovariant derivative acting on the gravitino is defined in the gravitino

variation (IV.76). On the other hand, the supercovariant derivative acting on the dilatino

takes the form

(IV.78) DMλ =

(
∇M +

3i

4τ2
∂Mτ1

)
λ− i

2τ2
ΓN∂NτΨc

M +
i

24
ΓNPQviF

i
NPQΨM ,

and is defined so that ∇M ε terms drop out of the variation DMδλ, as appropriate to

supercovariantization.

4.7.1 Killing spinors on SE5

The starting point of the fermion reduction is the construction of Killing spinors on

SE5. Starting with the undeformed Sasaki-Einstein metric

(IV.79) ds2(SE5) = ds2(B) + (dψ +A)2,

the Killing spinor equations then follow from the internal components of the gravitino

variation in (IV.76) with a constant five-form flux

(IV.80) F̃5 = 4 ∗5 1 + 4 ∗4 1 ∧ (dψ +A)
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and take the form

0 = δΨa = D̂aη ≡ [∇̂a −Aa∂ψ + 1
2Jabτ

bτ9 + i
2τa]η,

0 = δΨ9 = [∂ψ − 1
4Jabτ

ab + i
2τ9]η.(IV.81)

We proceed by assigning a U(1) charge q to the Killing spinor η, so that ∂ψη = iqη.

Furthermore, since (Jabτ
ab)2 = −8(1−τ9), we see that Jabτ

ab has eigenvalues (4i,−4i, 0, 0)

with corresponding τ9 eigenvalues (−1,−1, 1, 1). The variation δΨ9 then vanishes for the

charges q = (3
2 ,−

1
2 ,−

1
2 ,−

1
2). The N = 2 Killing spinor is thus obtained by taking q = 3

2

and Jabτ
abη = 4iη.

Having exhausted the content of the δΨ9 equation, we now turn to integrability of δΨa,

which gives the requirement

(IV.82) 0 = τ b[D̂a, D̂b]η = τ b[δab(τ
9 − 1)− iJab(τ9 + 2q)]η.

For q = 3
2 and τ9η = −η, this gives the condition Jabτ

bη = iτaη, which is easily seen to be

consistent with the above requirement that Jabτ
abη = 4iη. After defining η = e3iψ/2η̃, we

are finally left with the condition

(IV.83) [∇̂a − 3i
2 Aa]η̃ = 0,

which is solved by taking η̃ to be a gauge covariantly constant spinor on the Kahler-Einstein

base [90].

To summarize the above, the system (IV.81) may be solved to yield a single complex

Killing spinor η satisfying

(IV.84) ∂ψη = 3i
2 η, τ9η = −η, τ bJabη = iτaη, τ bΩabη = 0.

The final condition may be obtained by multiplying the penultimate one by Ωca on both

sides and making use of the identity ΩcaJab = −iΩcb, which follows from the relations [88]

(IV.85) ΩacΩ
bc = 0, ΩacΩ̄

bc = 2δa
b − 2iJa

b.
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The Killing spinor η and its conjugate ηc provide a natural basis of invariant spinors in

which to expand the fermions. Furthermore, as discussed in [10], these represent singlets

of the SU(2) structure group, thus ensuring consistency of the reduction. Note that η and

ηc are related by

(IV.86) τ bΩ̄abη = 2τaη
c,

and ηc satisfies the conjugated relations

(IV.87) ∂ψη
c = −3i

2 η
c, τ9ηc = −ηc, τ bJabη

c = −iτaηc, τ bΩ̄abη
c = 0.

4.7.2 IIB spinor decomposition

We are now in a position to present the fermion decomposition ansatz by expanding the

ten-dimensional fermions in terms of η and ηc. Although we will ultimately truncate away

the massive gravitino multiplet, we find it instructive to start with the complete ansatz.

This allows us to identify which fermions belong in which multiplets, and hence will guide

the truncation.

Starting with the IIB dilatino, since it has negative chirality, it may be decomposed as5

(IV.88) λ = e−A/2λ⊗ η ⊗
[

0

1

]
+ e−A/2λ′ ⊗ ηc ⊗

[
0

1

]
.

The IIB transformation parameter ε and gravitino ΨA each have positive chirality. Thus

we expand the gravitino in ten dimensional flat indices as

Ψα = e−A/2ψα ⊗ η ⊗
[

1

0

]
+ e−A/2ψ′α ⊗ ηc ⊗

[
1

0

]
,

Ψa = e−A/2ψ ⊗ τaη ⊗
[

1

0

]
+ e−A/2ψ′ ⊗ τaηc ⊗

[
1

0

]
,

Ψ9 = e−A/2ψ9 ⊗ τ9η ⊗
[

1

0

]
+ e−A/2ψ′9 ⊗ τ9η

c ⊗
[

1

0

]
,(IV.89)

and the transformation parameter as

(IV.90) ε = eA/2ε⊗ η ⊗
[

1

0

]
.

5Note that this is a slight abuse of notation, in that λ shows up as both ten-dimensional and five-dimensional
fields. The correct interpretation will be obvious from the context.
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Note that in all the above we have included relevant warp factors to account for the

breathing and squashing modes.

While we have started with a theory with 32 real supercharges, only a quarter of these

are preserved in the AdS5×SE5 background. By focusing on supersymmetries generated by

(IV.90), we are thus restricting our study to five-dimensional supersymmetry parameterized

by a single Dirac spinor. This corresponds to an N = 2 theory, and provides a motivation

for us to remove the massive gravitino from subsequent consideration. (If desired, the

full spontaneously broken N = 4 symmetry may be obtained by introducing an ε ⊗ ηc

component in (IV.90). However, we will not pursue this here.)

4.7.3 Linearized analysis and the N = 2 supermultiplet structure

Before presenting the fermionic reduction, it is instructive to analyze the linearized

equations of motion. Doing so allows us to group the effective five-dimensional fermions

into the relevant N = 2 supermultiplets as highlighted in [133]. We start by noting that

the five-dimensional fermions consist of the two gravitini ψα and ψ′α, two dilatini λ and λ′

and four additional spin-1/2 fields ψ, ψ′, ψ9 and ψ′9 arising from the internal components

of the ten-dimensional gravitino.

In the linearized theory, the equations are greatly simplified and the fermions satisfy

free massive Dirac and Rarita-Schwinger equations. The λ and λ′ equations are naturally

diagonal and the gravitino equations are diagonalized by the following modes,

ψ̂α = ψα + i
3γα (4ψ + ψ9) , ψm=11/2 = 4ψ + ψ9, ψm=−9/2 = ψ − ψ9,

ψ̂′α = ψ′α + i
10 (γα + 2∇α)

(
4ψ′ + ψ′9

)
, ψ′m=5/2 = ψ′ − ψ′9.(IV.91)
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n Multiplet State Field
0 supergraviton D(4, 1, 1)0 gµν

D(3 1
2 , 1,

1
2 )−1 +D(3 1

2 ,
1
2 , 1)1 ψ̂µ

D(3, 12 ,
1
2 )0 A1 + 1

6A1

0 LH+RH chiral D(3, 0, 0)±2 bm
2=−3

D(3 1
2 ,

1
2 , 0)1 +D(3 1

2 , 0,
1
2 )−1 λ′

D(4, 0, 0)0 +D(4, 0, 0)0 τ

1 LH+RH massive gravitino D(5 1
2 ,

1
2 , 1)1 +D(5 1

2 , 1,
1
2 )−1 ψ̂′µ

D(5, 12 ,
1
2 )0 +D(5, 12 ,

1
2 )0 bi1

D(5, 0, 1)2 +D(5, 1, 0)−2 q2
D(6, 0, 1)0 +D(6, 1, 0)0 bi2
D(4 1

2 , 0,
1
2 )1 +D(4 1

2 ,
1
2 , 0)−1 ψ′m=5/2

D(5 1
2 , 0,

1
2 )−1 +D(5 1

2 ,
1
2 , 0)1 λ

2 massive vector D(7, 12 ,
1
2 )0 A1

D(6 1
2 ,

1
2 , 0)−1 +D(6 1

2 , 0,
1
2 )1 ψm=−9/2

D(7 1
2 , 0,

1
2 )−1 +D(7 1

2 ,
1
2 , 0)1 ψm=11/2

D(6, 0, 0)0 σ

D(7, 0, 0)±2 bm
2=21

D(8, 0, 0)0 ρ

Table 4.3: Identification of the bosonic and fermionic states in the Kaluza-Klein spectrum with the
linearized modes in the reduction.

In all, the linearized modes satisfy,

γµαβ∇αψ̂β = 3
2γ

µαψ̂α, γµαβ∇αψ̂′β = −7
2γ

µαψ̂′α,

γα∇αλ = 7
2λ, γα∇αλ′ = −3

2λ
′,

γα∇αψm=11/2 = 11
2 ψ

m=11/2, γα∇αψm=−9/2 = −9
2ψ

m=−9/2,

γα∇αψ′m=5/2 = 5
2ψ
′m=5/2.(IV.92)

Note that the massive gravitino obtains its mass by absorbing the spin-1/2 combination

4ψ′ + ψ′9.

As with the fields in the bosonic truncation, we have arrived at a field content which, in

the case of the round five-sphere, saturates the lowest harmonic in each of the respective

Kaluza-Klein towers as determined in [104, 124]. Noting that, in five dimensions, the

relation between the conformal weight ∆ and mass m of the fermions is |m| = ∆ − 2, we

can map the fermion fields into N = 2 AdS multiplets. First, it is straightforward to see

that ψ̂µ has m = 3/2, corresponding to a massless spin-3/2 field in AdS5. Hence it should
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be identified with the massless gravitino sitting in the supergraviton multiplet. Also at the

zeroth Kaluza-Klein level, the LH+RH chiral multiplet contains an m = 3/2 fermion which

may be identified as λ′. At level n = 1, the massive gravitino multiplet has three fermions;

one spin-3/2 particle with m = −7/2 corresponding to the massive gravitino ψ̂′µ and two

spin-1/2 particles with m = 5/2 corresponding to ψ′m=5/2 and m = 7/2 corresponding to λ.

Finally, at the n = 2 Kaluza-Klein level, the massive vector multiplet contains two spin-1/2

particles, ψm=−9/2 and ψm=11/2. These identifications will be further justified by examining

the supersymmetry transformations. The complete field content of the supermultiplets is

shown in Table 4.3, where the bosonic fields are fully defined in [133].

4.8 The Five-dimensional Theory and N = 2 Supergravity

The linearized analysis above demonstrates that the fields ψ′α, ψ′, ψ′9 and λ belong to

the massive gravitino multiplet. We thus proceed with the N = 2 truncation by setting

these to zero

(IV.93) ψ′α = 0, ψ′ = 0, ψ′9 = 0, λ = 0.

It is straightforward to show that this is a consistent truncation, provided the bosonic

fields in the massive graviton multiplet are set to zero6. Moreover, other than just simpli-

fying the resulting equations, this truncation is natural when explicitly discussing N = 2

supersymmetry as the massive gravitino should really be thought of as descending from a

spontaneously broken N = 4 theory.

4.8.1 Supersymmetry Variations

We start with the reduction of the IIB supersymmetry variations given in (IV.76).

Inserting the fermion ansätze (IV.88), (IV.89) and (IV.90) into the IIB variations, we

6The consistency of this truncation in the bosonic sector has been previously shown in [133, 88, 43].
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arrive at the following five-dimensional variations7

δψ̂α ≡ Dαε =
[
Dα + i

24e
C−A (γα

νρ − 4δα
νγρ)

(
Fνρ − 2e−2B−2Cpνρ

)
+ 1

12γα
(
4eA−2B+C + 6eA−C − (4 + φ0)eA−4B−C) ]ε

−e−2B
(
vif

i
α − i

3e
A−Cvif

i
0γα
)
εc,(IV.94)

δψm=11/2 =
[
− i

2γ
µ∂µ (4B + C)− 3

8e
−4BγµAµ + 1

8e
C−Aγµν

(
Fµν + e−2B−2Cpµν

)
− ieA−2B+C

−3i
2 e

A−C + 5i
8 (4 + φ0)eA−4B−C

]
ε+ e−2B

(
3i
4 γ

µvif
i
µ + 7

4e
A−Cvif

i
0

)
εc,(IV.95)

δψm=−9/2 =
[
− i

2γ
µ∂µ (B − C)− 1

4e
−4BγµAµ − 1

8e
C−Aγµν

(
Fµν + e−2B−2Cpµν

)
−3i

2 e
A−2B+C + 3i

2 e
A−C

]
ε+ e−2B

(
i
2γ

µvif
i
µ − 1

2e
A−Cvif

i
0

)
εc,(IV.96)

δλ′ = − 1
2τ2
γµ∂µτε

c − ie−2B
(
γµvif̄

i
µ − ieA−Cvif̄ i0

)
ε.

(IV.97)

The gauge covariant derivative Dα acting on ε is given by Dα ≡ ∇α− 3i
2 (Aα+ 1

6e
−4BAα)+

i
4τ2
∂ατ1, where the latter term descends from the traditional charge with respect to the

U(1) compensator field, QM , in the ten dimensional IIB theory [159]. Furthermore, we have

defined the five-dimensional supercovariant derivative Dα through the gravitino variation

in (IV.94).

There are several facts worth noting about these expressions. Firstly, we see that these

variations fit nicely into the multiplet structure as presented in Table 4.3. In particular,

the dilatino variation is built out of τ and v̄if
i, both of which belong to the LH+RH chiral

multiplet, since the latter corresponds to bm
2=−3 according to (IV.71). On the other hand,

δψm=11/2 and δψm=−9/2 contain only terms involving fields from the graviton and massive

vector multiplets. [Note that the combination F2 + e−2B−2Cp2 appearing in (IV.96) and

(IV.97) essentially selects the field strength of the massive vector A1, as can be seen from

the definition of p2 given in (IV.74)]. These observations give further justification for the

7Note that with the Dirac matrix conventions described in the appendix we have εc = iεc ⊗ ηc ⊗
[ 1
0

]
.
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multiplet structure presented in section 4.7.3.

Furthermore, since the breathing mode is ρ ∼ 4B + C, and the squashing mode is

σ ∼ B − C, we can identify ψm=11/2 with the fermionic partner of the breathing mode

and ψm=−9/2 as the fermionic partner of the squashing mode as first demonstrated in

[131]. Finally, from the gauge covariant derivative, it is evident that the combination Aµ+

1
6e
−4BAµ may be identified with the graviphoton, which is consistent with the linearized

analysis in [133]. (The combination F2 − 2e−2B−2Cp2 appearing in the gravitino variation

is similarly the effective graviphoton field strength.)

The gravitino variation (IV.94) is particularly interesting, as we may attempt to read

off an N = 2 superpotential from the term proportional to γαε

(IV.98) W = 2eA−2B+C + 3eA−C − 1

2
(4 + φ0)eA−4B−C .

Recalling the relations 3A + 4B + C = 0 and φ0 = −2i
3 εij

(
f i0f̄

j
0 − f̄ i0f

j
0

)
, we see that the

scalar potential can be written as

(IV.99) V = 2(G−1)ij∂iW∂jW −
4

3
W 2,

where (G−1)ij is the inverse scalar metric which can be read off from the scalar kinetic

terms in the Lagrangian and {i, j} run over all scalars in the theory.

To verify (IV.99), we made use of the fact that the scalar metric given in [133] is

composed of three independent components, pertaining to the independent sets of scalars

{B,C}, {b10, b20} and τ , with explicit components

(IV.100) (G−1
{B,C})

ij =
1

16

 1 −1

−1 7

 , (G−1
{b10,b20}

)ij =
e4B

4τ2

 1 τ1

τ1 |τ |2

 , G−1
τ = τ2

2 .

Inserting these expressions into (IV.99) then exactly reproduces the scalar potential ap-

pearing in the bosonic Lagrangian. This is, however, a somewhat surprising relation as the
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actual gravitino variation (IV.94) contains not only the term proportional to the super-

potential written above, but another term involving vif
i
0ε
c where vif

i
0 is proportional to

bm
2=21

0 , as indicated in (IV.71). Based on general N = 2 gauged supergravity arguments,

this should conceivably also contribute to the scalar potential, but is not taken into account

by (IV.99).

4.8.2 Equations of Motion

Turning to the equations of motion, the reduction of the dilatino equation is the most

straightforward. After a bit of manipulation, we obtain

(IV.101)

0 =
[
γµDµ + i

8γ
µν
(
eC−AFµν − 2e−A−2B−Cpµν

)
− 1

4(4 + φ0)eA−4B−C + eA−2B+C + 3
2e
A−C]λ′

−e−2Bvi
[

4
5γ

µf̄ iµ + 28i
15 f̄

i
0

]
ψm=11/2 − e−2Bvi

[
4
5γ

µf̄ iµ − 4i
5 f̄

i
0e
A−C]ψm=−9/2,

where the supercovariant derivative acting on the dilatino is defined by

(IV.102) Dµλ′ ≡ Dµλ
′ −K(λ′)ψ̂µ =

[
∇µ + 3i

4τ2
∂µτ1 + 3i

2

(
Aµ + 1

6e
−4BAµ

)]
λ′ −K(λ′)ψ̂µ.

The supercovariantization term K(λ′) acting on ψ̂µ is given by the right hand side of the

dilatino variation (IV.97) with ε replaced by ψ̂µ (and similarly εc replaced by ψ̂cµ).

Starting with the IIB gravitino, we arrive at three equations, corresponding to the α,

a, and 9 components. After a fair bit of manipulations, and the appropriate redefinitions
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given in the first line of (IV.91), we obtain the ψm=11/2 and ψm=−9/2 equations

(IV.103)

0 =
[
γµDµ + 3i

5 e
−4BγµAµ − i

120e
C−AγµνFµν − 11i

60 e
−A−2B−Cγµνpµν

+eA
(
−17

12(4 + φ0)e−4B−C + 1
15e
−2B+C − 1

10e
−C)]ψm=11/2

+
[

3i
5 e
−4BγµAµ + i

5e
C−AγµνFµν − i

10e
−A−2B−Cγµνpµν + eA

(
12
5 e
−2B+C − 12

5 e
−C)]ψm=−9/2

+vie
−2B

[(
−2

5γ
µf iµ + 34i

15 e
A−Cf i0

)
ψcm=11/2 +

(
3
5γ

µf iµ − 7i
5 e

A−Cf i0
)
ψcm=−9/2

]
+v̄ie

−2B
(

3
4γ

µf iµ + 7i
4 e

A−Cf i0
)
λ′,

(IV.104)

0 =
[
γµDµ + 2i

5 e
−4BγµAµ − 3i

40e
C−AγµνFµν − 3i

20e
−A−2B−Cγµνpµν

+eA
(

1
4(4 + φ0)e−4B−C + 13

5 e
−2B+C + 9

20e
−C)]ψm=−9/2

+
[

2i
5 e
−4BγµAµ + 2i

15e
C−AγµνFµν − i

15e
−A−2B−Cγµνpµν + eA

(
8
5e
−2B+C − 8

5e
−C)]ψm=11/2

+vie
−2B

[(
2
5γ

µf iµ − 14i
5 e

A−Cf i0
)
ψcm=11/2 +

(
−3

5γ
µf iµ − 3i

5 e
A−Cf i0

)
ψcm=−9/2

]
+v̄ie

−2B
(

1
2γ

µf iµ − i
2e
A−Cf i0

)
λ′.

As in the dilatino case, we have defined the supercovariant derivatives

(IV.105)

Dµψm=11/2 =
[
∇µ + i

4τ2
∂µτ1 − 3i

2 (Aµ + 1
6e
−4BAµ)

]
ψm=11/2 −K(ψm=11/2)ψ̂µ,

Dµψm=−9/2 =
[
∇µ + i

4τ2
∂µτ1 − 3i

2 (Aµ + 1
6e
−4BAµ)

]
ψm=−9/2 −K(ψm=−9/2)ψ̂µ,

with K(ψm=11/2) and K(ψm=−9/2) similarly obtained from the variations (IV.96) and

(IV.97), respectively.

Finally, the gravitino equation takes the form

(IV.106)

0 = γµνρDνψ̂ρ − 8
15K̃(ψm=11/2)γµψm=11/2 − 4

5K̃(ψm=−9/2)γµψm=−9/2 − 1
2K̃(λ′)γµλ′,
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where the supercovariant derivative acting on the gravitino is given by the right hand

side of the gravitino variation (IV.94), and where the K̃ terms are essentially the Dirac

conjugates of K. The above equations have the appropriate structure to be obtained from

an effective N = 2 Lagrangian of the form8

(IV.107)

e−1L =
¯̂
ψµγ

µνρDνψ̂ρ + 8
15 ψ̄

m=11/2γµDµψ
m=11/2 + 4

5 ψ̄
m=−9/2γµDµψ

m=−9/2 + 1
2 λ̄
′γµDµλ

′

+
[

¯̂
ψµ

(
− 8

15K̃(ψm=11/2)γµψm=11/2 − 4
5K̃(ψm=−9/2)γµψm=−9/2 − 1

2K̃(λ′)γµλ′
)

+ h.c.
]

+ · · · .

The full fermionic Lagrangian (to quadratic order in the fermions) is given in Appendix C.2.

Although we have worked only to quadratic order in the fermions, it is clear from the

nature of the invariant spinors η and ηc that higher spinor harmonics would not be excited

by this subset of states. Thus, if desired, the consistent truncation may be extended to the

four-fermi terms as well. However, we expect this to be quite tedious and not particularly

worth pursuing.

4.9 A supersymmetric holographic superconductor

In this final section we demonstrate the consistency of a particularly interesting trunca-

tion to the lowest Kaluza-Klein level, namely the supersymmetric completion of the bosonic

truncation first demonstrated in [99]. As we demonstrate, this is a fully consistent trunca-

tion, so long as we keep all fields in the graviton and LH+RH chiral multiplets. However,

it is a nontrivial truncation, in that it is not consistent to naively set the other fields in

the above reduction to zero. Instead, the “backreaction” on the truncated fields must be

taken into account, effectively setting these modes equal to something depending on the

8Note that some care must be taken when considering the conjugate spinor terms. Nevertheless, the various
conjugate terms do assemble themselves properly into a consistent effective fermionic Lagrangian. This is one place
where a more conventional symplectic-Majorana approach would allow the manipulations to be more transparent.
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dynamical fields. Due to this backreaction on the non dynamical fields, the resulting La-

grangian is nonlinear and so describes a non-trivial coupling of N = 2 supergravity with a

single hypermultiplet.

In the bosonic sector the truncation amounts to keeping only {τ, bm2=−3} and the gravi-

ton and graviphoton dynamical. In what follows, we will denote bm
2=−3 simply as b so

that (b10, b
2
0) = (b, τb). This requires the following constraints on the other terms in the

reduction [43, 133]

(IV.108) bm
2=21 = 0, e4B = e−4C = 1−4τ2|b|2, A1 = −4iτ2(bDb̄−b̄Db)+4|b|2dτ1,

and

(IV.109) φ0 = −24τ2|b|2, p2 = −dA1.

For the fermions, by analyzing the supersymmetry transformations of the spin-1
2 fields

in this truncation, it is evident that if we set

(IV.110) ψ = −ψ9 = − i
2
bτ

1/2
2 e−2Bλ′,

the resulting system will be consistent with the supersymmetry transformations. It turns

out that under this identification the fermion equations of motion also degenerate into a

single expression, resulting in a theory containing only λ′ and ψ̂µ in the fermionic sector.

Moving directly to the Lagrangian, we write this as a sum of bosonic and fermionic

contributions L = Lb + Lf , where

Lb = R ∗ 1 +
6(2− 3χ)

(1− χ)2
− dχ ∧ ∗dχ

2(1− χ)2
∗ 1− (1 + χ)dτ ∧ ∗dτ̄

2(1− χ)τ2
2

− 3

2
F2 ∧ ∗F2 −

A1 ∧ ∗A1

2(1− χ)2

−8τ2Db ∧ ∗Db̄
1− χ

− 2i

1− χ
(b̄Db ∧ ∗dτ̄ − bDb̄ ∧ ∗dτ)−A1 ∧ F2 ∧ F2,(IV.111)
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and

e−1Lf =
¯̂
ψαγ

αβσDβψ̂σ + 3i
8

¯̂
ψα

(
γαβρσ + 2gαβgρσ

)
Fβρψ̂σ + 1

2
¯̃
λγαDαλ̃+ 3i

16
¯̃
λγµνFµν λ̃

+1
2e
−4B

(
3τ2(bD̄µb− b̄Dµb)

¯̃
λγµλ̃+ 3

2(1 + 8τ2|b|2)
¯̃
λλ̃
)

+e−4B
(
−3

2
¯̂
ψαγ

ασψ̂σ + τ2(b̄Dβb− bD̄βb)
¯̂
ψαγ

αβσψ̂σ

)
+τ

1/2
2 e−4B

(
Dµb

¯̂
ψαγ

µγαλ̃+ 3b
¯̂
ψαγ

αλ̃+ h.c.
)

+
e−2B

τ
1/2
2

(
−b ¯̂
ψαγ

αβσ∂βτψ̂
c
σ + τ

1/2
2

¯̂
ψαγ

µ∂µτγ
αλ̃c + h.c.

)
,(IV.112)

where we have defined λ̃ ≡ e−2Bλ′, χ = τ2|b|2 and we have redefined the gauge covariant

derivative acting on b as Dµb =
(
∂µ − 3iAµ − i

2τ2
∂µτ1

)
b, and similarly for λ̃ and ψ̂α.

This truncation is of interest for many of the condensed matter applications of the

AdS/CFT correspondence involving the coupling of a charged scalar and fermion. In

particular the original motivation for the bosonic truncation was in describing a supercon-

ducting phase transition using holographic methods within a controlled system, i.e, one

which is derived directly from a UV complete theory. This truncation hence completes the

story by demonstrating the embedding into a fully supersymmetric theory. It would be

interesting to consider the dynamics of this theory, and whether there is a supersymmetric

superconducting phase transition. Note however that this analysis would be complicated

by the presence of the gravitino. After all, it is not consistent to simply set the gravitino

field defined here to be zero. Since the gravitino couples to the supercurrent, this suggests

that the holographic superconductor model of [99] in fact has an underlying (although

spontaneously broken) supersymmetry.

While the truncation first presented in [99] did not include the axi-dilaton, as in the
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bosonic case, it is consistent to fix τ as well. This simplifies the Lagrangian to be

e−1L = R− 3
4FµνF

µν − e−1A1 ∧ F2 ∧ F2

+12
(1− 6f2)

(1− 4f2)2
− 8

∂µf∂
µf

(1− 4f2)2
− 8f2 (∂µθ − 3Aµ)(∂µθ − 3Aµ)

(1− 4f2)2

+
¯̂
ψαγ

αβσDβψ̂σ + 1
2
¯̃
λγαDαλ̃+ 3i

8
¯̂
ψα

(
γαβρσ + 2gαβgρσ

)
Fβρψ̂σ + 3i

16
¯̃
λγµνFµν λ̃

1

1− 4f2

(
3
4(1 + 8f2)

¯̃
λλ̃− 3

2
¯̂
ψαγ

ασψ̂σ − if2(∂µθ − 3Aµ)
(

3
¯̃
λγµλ̃+ 2

¯̂
ψαγ

αβσψ̂σ

))
+

(
eiθ

1− 4f2

(
(∂µf + if(∂µθ − 3Aµ))

¯̂
ψαγ

µγαλ̃+ 3f
¯̂
ψαγ

αλ̃
)

+ h.c.

)
,(IV.113)

where we have defined b =
√
gsfe

iθ and τ = ig−1
s .

Finally, it is worth noting that although this theory involves a charged scalar coupled to

the fermion λ̃, it lacks the Majorana coupling φλλ that has been of recent interest in studies

involving gapped fermions in the bosonic condensate [51, 72, 102]. While this coupling is

allowed by charge conservation, the explicit reduction shows that it is not present. More

generally, examination of Table 4.3 demonstrates that the bm
2=21 scalar in the massive

vector multiplet may have such a coupling, and in fact the equations of motion (IV.103)

and (IV.104) show that it is exists for both ψm=11/2 and ψm=−9/2. It would be curious to

see if this bm
2=21 scalar may play a role in novel models of holographic superconductors.
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Final remarks

We have presented various excursions away from the standard AdS/CFT paradigm.

First, concentrating on bulk physics, we discussed the effects of higher derivative inter-

actions to the effective five-dimensional Lagrangian. From the boundary perspective,

these terms describe deviations from the large-N or large λ limit, depending on their

ten-dimensional origin. We presented a discussion of the effects on R-charged black holes,

highlighting some technical details concerning field redefinitions and Gibbons-Hawking sur-

face terms. Additionally we constructed the supersymmetric four-derivative completion of

minimal gauged supergravity and examined the effects on the shear viscosity to entropy

density ratio.

In the final chapter we presented results of consistent truncations of IIB supegravity

on squashed Sasaki-Einstein manifolds. The novel feature of these truncations is that

they include a finite number of massive supergravity multiplets. The hope is that these

and similar truncations can be utilized to construct new solutions of IIB/M-theory which

describe dual gauge theories where conformal invariance or in some cases even Lorentz

invariance is broken. Additionally these types of constructions may provide insights into

interesting regimes of both the quark/gluon plasma and various condensed matter systems.

There has been somewhat of a paradigm shift in the string theory community over the

past fifteen years. While a large portion of the community continues to pursue the goal
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of realizing a UV complete theory of the standard model, many practitioners have shifted

attention to the utility of string theory in describing strongly coupled gauge theories. As

discussed, the relevant gauge theories are similar to QCD, which describes the quark/gluon

plasma being studied experimentally in large particle colliders, although a precise string

theory dual to QCD itself has not been discovered. In addition these gauge theories can

potentially be applied to effective field theory descriptions of various condensed matter

systems studied in table-top experiments.

The possibility that string theory may provide the mathematical machinery to describe

novel states of matter actually seen in a laboratory is an exciting development. However,

the application of string theory to these areas should not be considered a test of string

theory as a fundamental theory of gravity or in relation to its prospects as a completion

to the standard model of particle physics. The distinction as to whether string theory is a

UV complete description of physics is still an unanswered question.

This thesis presented two avenues of exploration towards more realistic models within

the developing paradigm of gauge/string duality. By studying the inclusion of higher

derivative terms in the action we can probe small deviations from the regime of large

number of degrees of freedom (colors) and large coupling in the gauge theory. Second, the

discussion on consistent truncations makes progress in understanding the duals to theories

with lower supersymmetry. Much work is to be done in this area to make solid predictions

for any real laboratory system. The material presented here represents a small subset of the

possible approaches towards a description of these systems in this context. It is hoped that

the progress made herein will provide some additional insight into more realistic settings.
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APPENDIX A

Shear Viscosity
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A.1 Explicit Form of Quadratic Action and Solution to Metric Fluctua-
tion

The quadratic action for the scalar channel perturbation φ is given in (III.123) in terms

of six coefficients A, . . . , F . Here we present their explicit forms:

(A.1)

A(u) =
4

u
f0 + c̄2

[
− ω2

g2

H2
0

3
+

2uf0(1 + q)3(5qu− 1)

H3
0

− 32g2qu2(1 + q)3

3
+
g2u3(1 + q)6

H0

]
,

B(u) =
3f0

u
+ c̄2

[
− ω2

g2
H2

0 +
g2(4qu+ 1)2H3

0

3u
− g2u(1 + q)3(56q2u2 + 7qu+ 11)

6

+
g2u3(1 + q)6(26q2u2 − 17qu+ 17)

6H3
0

− 8g2(1 + q)3qu2 +
3g2u3(1 + q)6

4H0

]
,

C(u) =
2g2(4qu− 3)H2

0

u2
− 2g2(1 + q)3(2qu+ 1)

H0

+c̄2

[
− ω2

6uf0

(
(4qu+ 1)H4

0 − (1 + q)3(−11qu3 + 13u2)H0

)
−g

2(1 + q)3(4q2u2 + 45qu+ 3)

3H0
+
g2u2(1 + q)6(4q3u3 − 7q2u2 − 32qu+ 15)

2H4
0

]
,

D(u) =
2g2H3

0 − g2qu3(1 + q)3

u3H2
0

+ ω2 H3
0

4u2f0

+c̄2

[
ω4

g2

H5
0

12uf2
0

+
ω2g2(1 + q)3

48f2
0

(
2(31qu− 9)H3

0 − 3u2(1 + q)3(5q2u2 − 4qu+ 11)
)

−19g2q(1 + q)3

3H2
0

− 3g2u(1 + q)6(6q2u2 − 17qu+ 1)

2H5
0

]
,

E(u) = c̄2
4uf2

0

3g2H0
,

F (u) = c̄2 f0
2(2(4qu+ 1)H3

0 − u2(1 + q)3(7qu+ 4))

3H2
0

.

Here we also present the O(c̄2) solution for φ. Writing φ(u) = f(u)νF (u), we may

expand F (u) to first order in both c̄2 and ω

(A.2) F (u) = F0(u, ω) + c̄2(F10(u) + ωF11(u)).

Since F (u) satisfies a second order equation (after linearizing in c̄2 and using the lowest

order equation of motion), it is consistent to choose the boundary conditions such that

F (u) is normalized at the boundary (F (0) = 1) and is regular at the horizon.



150

The function F0(u, ω) is given by the expression in the curly brackets in (III.130), while

the remaining functions are

F10(u) = 0,

F11(u) =
(1 + q)3/2(11q5 + 4q4 + 179q3 − 10q2 − 8q − 16)

32q2(1 + q)2(q − 2)3

[
i ln(q3u2 − 3qu− u− 1) + π

]
+
i(q + 1)3/2(60q6 + 99q5 + 648q4 − 69q3 − 154q2 − 104q − 16)

16(4q + 1)3/2(q + 1)2(q − 2)3
×[

tanh−1 −(1 + 3q)

(4q + 1)1/2(q + 1)
− tanh−1 2q3u− (1 + 3q)

(4q + 1)1/2(q + 1)

]
− i ln(1 + qu)(1 + q)3/2

8q2
− i(q + 1)3/2(−4q5 + 21q4 + 143q3 − 21q2 − 39q − 6)

8q4(4q + 1)(q − 2)2

− i(q + 1)3/2(4q7 − 27q6 + 64q5 + 511q4 + 137q3 − 128q2 − 57q − 6)qu2

8(1 + qu)q4(q3u2 − 3qu− u− 1)(4q + 1)(q − 2)2

+
i(−12q6 + 102q5 + 605q4 + 63q3 − 177q2 − 63q − 6)u

8(1 + qu)q4(q3u2 − 3qu− u− 1)(4q + 1)(q − 2)2

− i(4q5 + 21q4 + 143q3 − 21q2 − 39q − 6)

8(1 + qu)q4(q3u2 − 3qu− u− 1)(4q + 1)(q − 2)2
.(A.3)
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APPENDIX B

Charge to Mass Ratio

B.1 The mass to charge ratio in AdS

For the case of asymptotically AdS solutions with a flat boundary, i.e. k = 0, g 6= 0, we

find that the mass to charge ratio is:

m

q
=

(
m

q

)
0

(
1− α̃1g

2 (d− 1)(7d3 − 27d2 + 8d+ 32)

2(d− 2)(3d− 7)

−α̃2g
2 (d− 1)(2d3 − 3d2 − 19d+ 32)

2(d− 2)(3d− 7)
− α3g

2 (d− 3)(d− 4)

2

)
=

(
m

q

)
0

(
1− α1g

2 (d− 1)(7d3 − 27d2 + 8d+ 32)

2(d− 2)(3d− 7)

−α2g
2 (d− 1)(2d3 − 3d2 − 19d+ 32)

2(d− 2)(3d− 7)

−α3g
2 (2d4 − 10d3 + 21d2 − 37d+ 36)

(d− 2)(3d− 7)

)
,(B.1)

where

(B.2)

(
m

q

)
0

= gr+

√
2(d− 2)3

(d− 1)(d− 3)2
.

We note that if the redshift factor λ had not been taken into account, the correction to the

mass/charge ratio for the k = 0 Gauss-Bonnet term (α̃1 = 0, α̃2 = 0) would have vanished.

It is precisely the addition of the redshift factor which is responsible for generating the

correction.
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For the case of asymptotically AdS solutions with a spherical horizon, i.e. k = 1, g 6= 0,

the expressions are rather more complicated. For d = 4, we find(
m

q

)
d=4

=

(
m

q

)
0

(
1− 12α̃1g

2 − α̃2
(54β2 + 21β + 1)

5r2
+(1 + 2β)

)
=

(
m

q

)
0

(
1− 12α1g

2 − α2
(54β2 + 21β + 1)

5r2
+(1 + 2β)

− 4α3
(24β2 + 6β + 1)

5r2
+(1 + 2β)

)
,(B.3)

where β = g2r2
+, and

(B.4)

(
m

q

)
0,d=4

=
2(1 + 2β)√

1 + 3β
.

For d = 5, we have(
m

q

)
d=5

=

(
m

q

)
0

(
1− α̃1

(816β3 + 1024β2 + 300β + 1)

6r2
+(1 + 2β)(2 + 3β)

−α̃2
(336β3 + 392β2 + 132β + 11)

6r2
+(1 + 2β)(2 + 3β)

− α3
(3β2 + 2β − 2)

r2
+(2 + 3β)

)
=

(
m

q

)
0

(
1− α1

(816β3 + 1024β2 + 300β + 1)

6r2
+(1 + 2β)(2 + 3β)

−α2
(336β3 + 392β2 + 132β + 11)

6r2
+(1 + 2β)(2 + 3β)

− α3
(564β3 + 586β2 + 216β + 31)

6r2
+(1 + 2β)(2 + 3β)

)
,(B.5)

where

(B.6)

(
m

q

)
0,d=5

=

√
3(2 + 3β)

2
√

1 + 2β
.

This result corresponds to (II.116) given in Section 2.2.5.

Similarly, for d = 6:(
m

q

)
d=6

=

(
m

q

)
0

(
1− 1α̃1

(15500β3 + 23445β2 + 8325β + 81)

22r2
+(3 + 4β)(3 + 5β)

−α̃2
(275β2 + 195β + 27)

4r2
+(3 + 5β)

− 3α3
(20β3 + 27β2 − 7β − 9)

r2
+(3 + 4β)(3 + 5β)

)
=

(
m

q

)
0

(
1− α1

(15500β3 + 23445β2 + 8325β + 81)

22r2
+(3 + 4β)(3 + 5β)

−α2
(275β2 + 195β + 27)

4r2
+(3 + 5β)

− 3α3
(3340β3 + 4549β2 + 2153β + 369)

22r2
+(3 + 4β)(3 + 5β)

)
,(B.7)

where

(B.8)

(
m

q

)
0,d=6

=
2
√

2(3 + 4β)

3
√

3 + 5β
.
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A general d-dimensional expression may be obtained in principle, although it is not expected

to be particularly illuminating.
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APPENDIX C

Fermion Conventions and Reduced Action

C.1 Dirac Matrix Conventions

We work with a mostly plus metric signature, and take the conventional Clifford algebra

{ΓA,ΓB} = 2ηAB. Note, in particular, that Γ0 is anti-hermitian, so that (Γ0)† = −Γ0 and

(Γi)† = Γi. The ten-dimensional Chirality matrix is given by

(C.1) Γ11 ≡ 1

10!
εA1···A10ΓA1 · · ·ΓA10 = Γ0 · · · Γ9,

and squares to the identity.

Corresponding to the metric reduction (IV.64), we decompose the ten-dimensional Dirac

matrices according to

Γα ≡ γα ⊗ 14 ⊗ σ1,

Γa ≡ 14 ⊗ τa ⊗ σ2,

Γ9 ≡ 14 ⊗ τ9 ⊗ σ2,(C.2)

where γα are Dirac matrices in the 5d spacetime with γ4 ≡ iγ0γ1γ2γ3 and τa are Dirac

matrices in the 5d internal space with τ9 ≡ τ5τ6τ7τ8. The Chirality matrix Γ11 is then

given by

(C.3) Γ11 = Γ0 · · · Γ9 = 14 ⊗ 14 ⊗ σ3.
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We furthermore take the following conventions for the A, C and D intertwiners which

map between different representations of the Dirac matrices

(C.4) A10ΓMA
−1
10 = Γ†M , C−1

10 ΓMC10 = −ΓTM , D−1
10 ΓMD10 = −Γ∗M .

Here C10 denotes the charge conjugation matrix. These may be decomposed as

(C.5) A10 = A4,1 ⊗A5 ⊗ σ1, C10 = C4,1 ⊗ C5 ⊗ σ2, D10 = iD4,1 ⊗D5 ⊗ σ3,

where the five-dimensional intertwiners are defined as

A4,1γµA
−1
4,1 = −γ†µ, C−1

4,1γµC4,1 = γTµ , D−1
4,1γµD4,1 = −γ∗µ

A5τaA
−1
5 = τ †a , C−1

5 τaC5 = τTa , D−1
5 τaD5 = τ∗a .(C.6)

It turns out the following is a consistent decomposition:

(C.7) A10 = Γ0 = γ0 ⊗ 1⊗ σ1, C10 = C4,1 ⊗ C5 ⊗ σ2, D10 = iγ0C4,1 ⊗ C5 ⊗ σ3.

The five dimensional charge conjugation matrices on both spacetime and the internal man-

ifold satisfy

(C.8) C5 = −CT5 = C∗5 = −C−1
5 .

Finally, we define the charge conjugate of a spinor in any dimension to be ψc = CATψ∗,

which is equivalent to ψc = −Γ0C10ψ
∗. Therefore, letting χ and η be spinors on M and

SE5, respectively, the charge conjugates are given by χc = −γ0C4,1χ
∗ and ηc = C5η

∗.
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C.2 The Reduced Lagrangian

The bosonic Lagrangian with the massive gravitino multiplet removed was presented in

[133], and takes the form

Lb = R ∗ 1 + (24e2A−2B − 4e5A+3C − 1
2e

8A(4 + φ0)2) ∗ 1− 28
3 dB ∧ ∗dB −

8
3dB ∧ ∗dC

−4
3dC ∧ ∗dC −

1
2τ22

dτ ∧ ∗dτ̄ − 1
2e

2C−2AF2 ∧ ∗F2 − eA−C(F2 + 1
4F
′
2) ∧ ∗(F2 + 1

4F
′
2)

−1
2e
−8B[A′1 − 2i

3 εij(f
i
0f̄

j
1 − f̄

i
0f

j
1 )] ∧ ∗[A′1 − 2i

3 εij(f
i
0f̄

j
1 − f̄

i
0f

j
1 )]

−2Mij [e
5A−C(f i0f̄

j
0 + f̄ i0f

j
0 ) ∗ 1 + e−4B(f i1 ∧ ∗f̄

j
1 + f̄ i1 ∧ ∗f

j
1 )]

−A1 ∧ (F2 + 1
4F
′
2) ∧ (F2 + 1

4F
′
2),(C.9)

where A′1 = A1 + 2i
3 εij(f

i
0f̄

j
1 − f̄ i0f

j
1 ), and where F′2 = dA′1.

The corresponding fermionic Lagrangian may be obtained from the equations of motion
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presented in Section 4.8.2. At quadratic order in the fermions, we have

e−1Lf =
¯̂
ψµγ

µνρDνψ̂ρ

+
[
− 8

15 ψ̄
m=11/2γµK(ψm=11/2)ψ̂µ − 4

5 ψ̄
m=−9/2γµK(ψm=−9/2)ψ̂µ

−1
2 λ̄
′γµK(λ′)ψ̂µ + h.c.

]
+ 8

15 ψ̄
m=11/2

[
γµDµ + 3i

5 e
−4BγµAµ − i

120e
C−AγµνFµν − 11i

60 e
−A−2B−Cγµνpµν

+eA
(
−17

12(4 + φ0)e−4B−C + 1
15e
−2B+C − 1

10e
−C)]ψm=11/2

+4
5ψ

m=−9/2
[
γµDµ + 2i

5 e
−4BγµAµ − 3i

40e
C−AγµνFµν − 3i

20e
−A−2B−Cγµνpµν

+eA
(

1
4(4 + φ0)e−4B−C + 13

5 e
−2B+C + 9

20e
−C)]ψm=−9/2

+1
2 λ̄
′
[
γµDµ + i

8γ
µν
(
eC−AFµν − 2e−A−2B−Cpµν

)
−1

4(4 + φ0)eA−4B−C + eA−2B+C + 3
2e
A−C

]
λ′

+ 8
15

[
ψ̄m=11/2

(
3i
5 e
−4BγµAµ + i

5e
C−AγµνFµν − i

10e
−A−2B−Cγµνpµν

+eA
(

12
5 e
−2B+C − 12

5 e
−C))ψm=−9/2 + h.c.

]
+ 8

15

[
vie
−2Bψ̄m=11/2

(
−2

5γ
µf iµ + 34i

15 e
A−Cf i0

)
ψcm=11/2 + h.c.

]
+ 8

15

[
vie
−2Bψ̄m=11/2

(
3
5γ

µf iµ − 7i
5 e

A−Cf i0
)
ψcm=−9/2 + h.c.

]
+4

5

[
vie
−2Bψ̄m=−9/2

(
−3

5γ
µf iµ − 3i

5 e
A−Cf i0

)
ψcm=−9/2 + h.c.

]
+ 8

15

[
v̄ie
−2Bψ̄m=11/2

(
3
4γ

µf iµ + 7i
4 e

A−Cf i0
)
λ′ + h.c.

]
+4

5

[
v̄ie
−2Bψ̄m=−9/2

(
1
2γ

µf iµ − i
2e
A−Cf i0

)
λ′ + h.c.

]
,(C.10)

and the full Lagrangian up to quadratic order in the fermions is given by

(C.11) L = Lb + Lf .
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