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Universidad de Costa Rica
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The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction
representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a Fock
space built on a trivial vacuum. The AdS/CFT correspondence has led to important insights into the properties
of quantum chromodynamics even though QCD is a broken conformal theory. We have recently shown how a
model based on a truncated AdS space can be used to obtain the hadronic spectrum of qq, qqq and gg bound
states, as well as their respective light-front wavefunctions. Specific hadrons are identified by the correspondence of
string modes with the dimension of the interpolating operator of the hadron’s valence Fock state, including orbital
angular momentum excitations. The predicted mass spectrum is linear M ∝ L at high orbital angular momentum,
in contrast to the quadratic dependence M2 ∝ L found in the description of spinning strings. Since only one
parameter, the QCD scale ΛQCD, is introduced, the agreement with the pattern of physical states is remarkable.
In particular, the ratio of ∆ to nucleon trajectories is determined by the ratio of zeros of Bessel functions. As a
specific application of QCD dynamics from AdS/CFT duality, we describe a computation of the proton magnetic
form factor in both the space-like and time-like regions. The extended AdS/CFT space-time theory also provides
an analytic model for hadronic light-front wavefunctions, thus providing a relativistic description of hadrons in
QCD at the amplitude level. The model wavefunctions display confinement at large inter-quark separation and
conformal symmetry at short distances. In particular, the scaling and conformal properties of the LFWFs at high
relative momenta agree with perturbative QCD. These AdS/CFT model wavefunctions could be used as an initial
ansatz for a variational treatment of the light-front QCD Hamiltonian.

1. Introduction

One of the important advantage of light-front
quantization is the ability to describe the struc-
ture and dynamics of hadrons at the amplitude
level, Fock state by Fock state. The light-front
Fock expansion provides a physical, relativistic,
frame-independent description of hadrons as com-
posites of quarks and gluons analogous to the
ψ(~p) momentum-space wavefunction description
of nonrelativistic bound states of the Schrödinger
theory. Although the vacuum is formally triv-
ial; i.e., it is an eigenstate of the free light-front
Hamiltonian, the possibility of zero modes (fields
with k+ = 0) allows one to describe spontaneous
symmetry breaking such as the Higgs mechanism
of the Standard Model [1].

The light-front Fock expansion follows from
the quantization of QCD at fixed light-front time
x+ = x0+x3. The bound-state hadronic solutions
|ΨH〉 are eigenstates of the light-front Heisenberg
equation HLF |ΨH〉 = M2

H |ΨH〉 [2]. The spec-
trum of QCD is given by the eigenvalues M2

H .
The projection of each hadronic eigensolution on
the free Fock basis: 〈n |ΨH〉 ≡ ψn/H(xi,~k⊥i, λi)
then defines the LF Fock expansion in terms of
the quark and transversely polarized gluon con-
stituents in A+ = 0 light-cone gauge. The light-
front wavefunctions ψn/H(xi,~k⊥i, λi) are func-
tions of the constituent light-cone fractions xi =
k+

i /P+ = (k0 + kz)i/P+, relative transverse mo-
menta ~k⊥i, and spin projections Sz

i = λi. They
are relativistic and frame-independent, describing
all particle number excitations n of the hadrons
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The expansion has only transversely polarized
gluons. The freedom to choose the light-like
quantization four-vector provides an explicitly
covariant formulation of light-front quantization
and can be used to determine the analytic struc-
ture of light-front wave functions and to define a
kinematical definition of angular momentum [3].
The front form thus provides a consistent defi-
nition of relative orbital angular momentum and
Jz conservation: the total spin projection Jz =∑n

i=1 Sz
i +

∑n−1
i Lz

i is conserved in each Fock
state. The cluster decomposition theorem [4] and
the vanishing of the “anomalous gravitomagnetic
moment” B(0) [5] are immediate properties of the
LF Fock wavefunctions [6].

In principle, one can solve for the LFWFs
directly from the fundamental theory using
methods such as discretized light-front quanti-
zation (DLCQ) [7], the transverse lattice [8–
10], lattice gauge theory moments [11], Dyson-
Schwinger techniques [12], and Bethe–Salpeter
techniques [3]. DLCQ has been remarkably suc-
cessful in determining the entire spectrum and
corresponding LFWFs in one space-one time field
theories [13], including QCD(1+1) [14] and super-
symmetric QCD(1+1) [15]. The DLCQ boundary
conditions allow a truncation of the Fock space
to finite dimensions while retaining the kinematic
boost and Lorentz invariance of light-front quan-
tization. There are also light-front solutions for
Yukawa theory in physical (3+1) space-time di-
mensions [16,17] with a limited Fock space. As
emphasized by Weinstein and Vary, new effec-
tive operator methods [18,19] which have been
developed for Hamiltonian theories in condensed
matter and nuclear physics, could also be applied
advantageously to light-front Hamiltonian. A re-
view of nonperturbative light-front methods may
be found in Ref. [20].

As we shall discuss below, one can use the cor-
respondence between theories defined in anti-de
Sitter space and conformal field theories in 3+1
dimensions to obtain a remarkably simple but
compelling phenomenological model of QCD. In
particular, the AdS/CFT holographic model with
a truncated warped space provides an explicit an-
alytic form for the valence (lowest Fock state)
light-front wavefunctions of hadrons with zero

mass quarks but arbitrary internal orbital angu-
lar momentum. The predicted wavefunctions dis-
play confinement at large inter-quark separation
and conformal symmetry at short distances. In
particular, the scaling and conformal properties
of the LFWFs at high relative momenta agree
with perturbative QCD. These AdS/CFT model
wavefunctions could be used as an initial ansatz
for a variational treatment of the full light-front
QCD Hamiltonian.

2. Phenomenology of Light-Front Wave-
functions

Given the light-front wavefunctions
ψn/H(xi,~k⊥i, λi), one can compute a large range
of hadron observables. For example, the valence
and sea quark and gluon distributions which are
measured in deep inelastic lepton scattering are
defined from the squares of the LFWFS summed
over all Fock states n. Form factors, exclusive
weak transition amplitudes [21] such as B → `νπ,
and the generalized parton distributions [22] mea-
sured in deeply virtual Compton scattering are
(assuming the “handbag” approximation) over-
laps of the initial and final LFWFS with n = n′

and n = n′ + 2. The gauge-invariant distribution
amplitude φH(xi, Q) defined from the integral
over the transverse momenta ~k2

⊥i ≤ Q2 of the
valence (smallest n) Fock state provides a funda-
mental measure of the hadron at the amplitude
level [23,24]; they are the nonperturbative input
to the factorized form of hard exclusive am-
plitudes and exclusive heavy hadron decays in
perturbative QCD. The resulting distributions
obey the DGLAP and ERBL evolution equations
as a function of the maximal invariant mass, thus
providing a physical factorization scheme [25].
In each case, the derived quantities satisfy the
appropriate operator product expansions, sum
rules, and evolution equations. However, at large
x where the struck quark is far-off shell, DGLAP
evolution is quenched [26], so that the fall-off of
the DIS cross sections in Q2 satisfies inclusive-
exclusive duality at fixed W 2.

The light-front Fock-state wavefunctions of
hadrons in QCD display novel features, such as
intrinsic gluons, asymmetric sea-quark distribu-
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tions u(x) 6= d(x), s(x) 6= s(x), and intrinsic
heavy-quark Fock states [27]. Intrinsic charm and
bottom quarks appear at large x in the light-front
wavefunctions since this minimizes the invariant
mass and off-shellness of the higher Fock state.
One can use the operator product expansion to
show that the probability of such states scales
as 1/M2

Q in contrast to 1/M4
` fall-off of abelian

theory [28]. The remarkable observations of the
SELEX experiment of the double-charm baryon
Ξccd in pA → ΞccdX and Σ−A → ΞccdX at large
xF [29] provides compelling evidence for double-
charm intrinsic Fock states in the proton. The co-
herence of multi-particle correlations within the
Fock states leads to higher-twist bosonic pro-
cesses such as e(qq) → e′(qq)′; although sup-
pressed by inverse powers of Q2, such subpro-
cesses are important in the duality regime of fixed
W 2, particularly in σL [30]. In the case of nuclei,
one must include non-nucleonic “hidden color”
[31] degrees of freedom of the deuteron LFWF.

2.1. Measurements of the LFWFs
The E791 experiments at Fermilab [32,33] has

shown how one can measure the valence LFWF
directly from the diffractive di-jet dissociation of
a high energy pion πA → qqA′ into two jets,
nearly balancing in transverse momentum, leav-
ing the nucleus intact. The measured pion dis-
tribution in x and (1 − x) is similar to the form
of the asymptotic distribution amplitude and the
AdS/CFT prediction discussed below. The E791
experiment also find that the nuclear amplitude
is additive in the number of nucleons when the
quark jets are produced at high k⊥, thus giving
a dramatic confirmation of “color transparency”,
a fundamental manifestation of the gauge nature
of QCD [34,35].

2.2. Effects of Final State Interactions
The phase structure of hadron matrix elements

is an essential feature of hadron dynamics. Al-
though the LFWFs are real for a stable hadron,
they acquire phases from initial state and final
state interactions. In addition, the violation of
CP invariance leads to a specific phase structure
of the LFWFs.

Contrary to parton model expectations, the

rescattering of the quarks in the final state in DIS
has important phenomenological consequences,
such as leading-twist diffractive DIS [36] and the
Sivers single-spin asymmetry [37]. The Sivers
asymmetry depends on the same matrix elements
which produce the anomalous magnetic moment
of the target nucleon as well as the phase dif-
ference of the final-state interactions in differ-
ent partial waves. The rescattering of the struck
parton generates dominantly imaginary diffrac-
tive amplitudes, giving rise to an effective “hard
pomeron” exchange and a rapidity gap between
the target and diffractive system, while leaving
the target intact. This Bjorken-scaling physics,
which is associated with the Wilson line connect-
ing the currents in the virtual Compton ampli-
tude survives even in light-cone gauge. Thus
there are contributions to the DIS structure func-
tions which are not included in the light-front
wave functions computed in isolation and can-
not be interpreted as parton probabilities [36].
Diffractive deep inelastic scattering in turn leads
to nuclear shadowing at leading twist as a re-
sult of the destructive interference of multi-step
processes within the nucleus. In addition, multi-
step processes involving Reggeon exchange leads
to antishadowing. In fact, because Reggeon cou-
plings are flavor specific, antishadowing is pre-
dicted to be non-universal, depending on the type
of current and even the polarization of the probes
in nuclear DIS [38].

Another interesting consequence of QCD at the
amplitude level is the Q2-independent “J = 0
fixed-pole” contribution M(γ∗p → γp) ∼ s0F (t)
to the real part of the Compton amplitude, re-
flecting the effective contact interaction of the
transverse currents [39]. Deeply virtual Comp-
ton scattering can also be studied in the time-
like domain from e+e− → H+H−γ; the lepton
charge asymmetry and single-spin asymmetries
allow measurements of the relative phase of time-
like form factors and the γ∗ → H+H−γ ampli-
tude.
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3. AdS/CFT Predictions for Hadron Spec-
tra and Wavefunctions

The AdS/CFT correspondence [40], be-
tween strongly-coupled conformal gauge theory
and weakly-coupled string theory in the 10-
dimensional AdS5 × S5 space is now providing a
remarkable new insight into the hadron wavefunc-
tions of QCD. The central mathematical principle
underlying AdS/CFT duality is the fact that the
group SO(2, 4) of Poincaré and conformal trans-
formations of physical 3+1 space-time has an ele-
gant mathematical representation on AdS5 space
where the fifth dimension has the anti-de Sitter
warped metric. The group of conformal transfor-
mations SO(2, 4) in 3+1 space is isomorphic to
the group of isometries of AdS space, xµ → λxµ,
r → r/λ, where r represents the coordinate in the
fifth dimension. The dynamics at x2 → 0 in 3+1
space thus matches the behavior of the theory at
the boundary r →∞. This allows one to map the
physics of quantum field theories with conformal
symmetry to an equivalent description in which
scale transformations have an explicit representa-
tion in AdS space.

Even though quantum chromodynamics is a
broken conformal theory, the AdS/CFT corre-
spondence has led to important insights into the
properties of QCD. For example, as shown by
Polchinski and Strassler [41], the AdS/CFT dual-
ity, modified to give a mass scale, provides a non-
perturbative derivation of the empirically success-
ful dimensional counting rules [42,43] for the lead-
ing power-law fall-off of the hard exclusive scat-
tering amplitudes of the bound states of the gauge
theory. The modified theory generates the hard
behavior expected from QCD instead of the soft
behavior characteristic of strings. Other impor-
tant applications include the description of space-
like hadron form factors at large transverse mo-
mentum [44] and deep inelastic scattering struc-
ture functions at small x [45]. The power falloff
of hadronic light-front wave functions (LFWF) in-
cluding states with nonzero orbital angular mo-
mentum is also predicted [46].

In the original formulation by Maldacena [40],
a correspondence was established between a su-
pergravity string theory on a curved background

and a conformally invariant N = 4 super Yang-
Mills theory in four-dimensional space-time. The
higher dimensional theory is AdS5 × S5 where
R = (4πgsNC)1/4α

′1/2
s is the radius of AdS and

the radius of the five-sphere and α
′1/2
s is the

string scale. The extra dimensions of the five-
dimensional sphere S5 correspond to the SU(4) ∼
SO(6) global symmetry which rotates the par-
ticles present in the supersymmetric Yang Mills
supermultiplet in the adjoint representation of
SU(NC). In our application to QCD, baryon
number in QCD is represented as a Casimir con-
stant on S5.

The reason why AdS/CFT duality can have at
least approximate applicability to physical QCD
is based on the fact that the underlying clas-
sical QCD Lagrangian with massless quarks is
scale-invariant [47]. One can thus take conformal
symmetry as an initial approximation to QCD,
and then systematically correct for its nonzero
β function and quark masses [48]. This “con-
formal template” approach underlies the Banks-
Zak method [49] for expansions of QCD expres-
sions near the conformal limit and the BLM
method [50] for setting the renormalization scale
in perturbative QCD applications. In the BLM
method the corrections to a perturbative series
from the β-function are systematically absorbed
into the scale of the QCD running coupling. An
important example is the “Generalized Crewther
Relation” [51] which relates the Bjorken and
Gross-Llewellyn sum rules at the deep inelastic
scale Q2 to the e+e− annihilation cross sections at
specific commensurate scales s∗(Q2) ' 0.52 Q2.
The Crewther relation [52] was originally derived
in conformal theory; however, after BLM scale
setting, it becomes a fundamental test of physi-
cal QCD, with no uncertainties from the choice
of renormalization scale or scheme.

QCD is nearly conformal at large momentum
transfers where asymptotic freedom is applicable.
Nevertheless, it is remarkable that dimensional
scaling for exclusive processes is observed even
at relatively low momentum transfer where gluon
exchanges involve relatively soft momenta [53].
The observed scaling of hadron scattering at mod-
erate momentum transfers can be understood if
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the QCD coupling has an infrared fixed point [54].
In this sense, QCD resembles a strongly-coupled
conformal theory.

3.1. Deriving Hadron Spectra from
AdS/CFT

The duality between a gravity theory on
AdSd+1 space and a conformal gauge theory at
its d-dimensional boundary requires one to match
the partition functions at the AdS boundary,
z = R2/r → 0. The physical string modes
Φ(x, r) ∼ e−iP ·xf(r), are plane waves along the
Poincaré coordinates with four-momentum Pµ

and hadronic invariant mass states PµPµ = M2.
For large-r or small-z, f(r) ∼ r−∆, where the di-
mension ∆ of the string mode must be the same
dimension as that of the interpolating operator O
which creates a specific hadron out of the vacuum:
〈P |O|0〉 6= 0.

The physics of color confinement in QCD can
be described in the AdS/CFT approach by trun-
cating the AdS space to the domain r0 < r < ∞,
where r0 = ΛQCDR2. The cutoff at r0 is dual to
the introduction of a mass gap ΛQCD; it breaks
conformal invariance and is responsible for the
generation of a spectrum of color-singlet hadronic
states. The truncation of the AdS space insures
that the distance between the colored quarks and
gluons as they stream into the fifth dimension
is limited to z < z0 = 1/ΛQCD. The resulting
3 + 1 theory has both color confinement at long
distances and conformal behavior at short dis-
tances. The latter property allows one to derive
dimensional counting rules for form factors and
other hard exclusive processes at high momentum
transfer. This approach, which can be described
as a “bottom-up” approach, has been successful
in obtaining general properties of the low-lying
hadron spectra, chiral symmetry breaking, and
hadron couplings in AdS/QCD [55] in addition
to the hard scattering predictions [41,45,46].

In this “classical holographic model”, the
quarks and gluons propagate into the truncated
AdS interior according to the AdS metric with-
out interactions. In effect, their Wilson lines,
which are represented by open strings in the fifth
dimension, are rigid. The resulting equations
for spin 0, 1

2 , 1 and 3
2 hadrons on AdS5 × S5

lead to color-singlet states with dimension 3, 4
and 9

2 . Consequently, only the hadronic states
(dimension-3) JP = 0−, 1− qq pseudoscalar and
vector mesons, the (dimension- 9

2 ) JP = 1
2

+
, 3

2

+

qqq baryons, and the (dimension-4) JP = 0+ gg
gluonium states, can be derived in the classical
holographic limit [56]. This description corre-
sponds to the valence Fock state as represented
by the light-front Fock expansion. Hadrons also
fluctuate in particle number, in their color repre-
sentations (such as the hidden-color states [31] of
the deuteron), as well as in internal orbital an-
gular momentum. The higher Fock components
of the hadrons are manifestations of the quan-
tum fluctuations of QCD; these correspond to the
fluctuations of the bulk geometry about the fixed
AdS metric. For spinning strings orbital excita-
tions of hadronic states correspond to quantum
fluctuations about the AdS metric [57]. It is thus
also natural to identify higher-spin hadrons with
the fluctuations around the spin 0, 1

2 , 1 and 3
2

classical string solutions of the AdS5 sector [56].
As a specific example, consider the twist-two

(dimension minus spin) gluonium interpolating
operator O`1···`m

4+L = FD{`1 . . . D`m}F with to-
tal internal space-time orbital momentum L =∑

i=1 `i and conformal dimension ∆L = 4 + L.
We match the large r asymptotic behavior of
each string mode to the corresponding confor-
mal dimension of the boundary operators of each
hadronic state while maintaining conformal in-
variance. In the conformal limit, an L quan-
tum, which is identified with a quantum fluctu-
ation about the AdS geometry, corresponds to
an effective five-dimensional mass µ in the bulk
side. The allowed values of µ are uniquely de-
termined by requiring that asymptotically the di-
mensions become spaced by integers, according
to the spectral relation (µR)2 = ∆L(∆L−4) [56].
The four-dimensional mass spectrum follows from
the Dirichlet boundary condition Φ(x, zo) = 0,
z0 = 1/ΛQCD, on the AdS string amplitudes for
each wave function with spin < 2. The eigen-
spectrum is then determined from the zeros of
Bessel functions, βα,k. The predicted spectra [56]
of mesons and baryons with zero mass quarks is
shown in Figs. 1 and 2. The only parameter is
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ΛQCD = 0.263 GeV, and 0.22 GeV for mesons
and baryons, respectively.

L L
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Figure 1. Light meson orbital states for ΛQCD =
0.263 GeV: (a) vector mesons and (b) pseu-
doscalar mesons. The dashed line is a linear
Regge trajectory with slope 1.16 GeV2.
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Figure 2. Light baryon orbital spectrum for ΛQCD

= 0.22 GeV: (a) nucleons and (b) ∆ states.

3.2. Dynamics from AdS/CFT
Current matrix elements in AdS/QCD are com-

puted from the overlap of the normalizable modes
dual to the incoming and outgoing hadron ΦI and
ΦF and the non-normalizable mode A(Q, z), dual
to the external source [58,59]

F (Q2)I→F (1)

' R3+2σ

∫ zo

0

dz

z3+2σ
ΦF (z) A(Q, z) ΦI(z),

where σn =
∑n

i=1 σi is the spin of the interpolat-
ing operator On, which creates an n-Fock state
|n〉 at the AdS boundary. A(Q, z) has the value
1 at zero momentum transfer as the boundary
limit of the external current; thus Aµ(x, z) =
εµeiQ·xA(Q, z). The solution to the AdS wave
equation subject to boundary conditions at Q = 0
and z → 0 is [45] A(Q, z) = zQK1(zQ), for Q2 À
ΛQCD. At large enough Q ∼ r/R2, the most
important contribution to the form factor comes
from the region near z ∼ 1/Q. At small z, the n-
mode Φ(n) scales as Φ(n) ∼ z∆n , and we recover
the power law scaling [42], F (Q2) → [

1/Q2
]τ−1,

where the twist τ = ∆n − σn, is equal to the
number of partons, τn = n.

For Q ∼ ΛQCD the simple expression for
the non-normalizable mode A(Q, z) given above
should be modified to include boundary con-
ditions on the five-dimensional field strength,
F (x, z) = ∂A(x, z), at the infrared wall located
at z0 = 1/ΛQCD. The external electromag-

-10 -5 0 5 10 15
0

0.5

1.0

1.5

2.0

2.5

3.0

q2  (GeV2)

G
p M

 (
q

2
)

10-2005
8729A3

Figure 3. Space-like and time-like structure of
the proton magnetic form factor in AdS/QCD
for ΛQCD = 0.15 GeV and ε = 40 MeV. The
space-like data are from the compilation given in
Ref. [60] and the time-like data from the compila-
tion given in [61]. The prediction in the domain
0 < q2 < 4M2

p represents an analytic continua-
tion into the unphysical region.
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netic field originates from lepton scattering and
should not be confined. On the other hand, the
dressed hadronic current inside the AdS cavity is
coupled to quark-antiquark pairs which are con-
fined, so it cannot propagate beyond the wall
at z = z0. The space-like expression for the
non-normalizable mode Asl(Q, z) satisfying the
boundary conditions F (x, z = z0) = 0 is

Asl(Q, z) = (2)

zQ

[
K1(zQ) +

K0(Q/ΛQCD)
I0(Q/ΛQCD)

I1(zQ)
]

,

in the gauge where Az(x, z) = 0. The expression
for the mode dual to the external source Atl(Q, z)
in the time-like region, follows from analytic con-
tinuation Q → −iQ in Asl(Q, z). Thus

Atl(Q, z) = Asl(−iQ, z) = (3)

−zQ
π

2

[
Y1(zQ)− Y0(Q/ΛQCD)

J0(Q/ΛQCD)
J1(zQ)

]
.

In the space-like region the string mode (2) is
damped inside the cavity, but for time-like pro-
cesses the effect from (3) is amplified. The re-

5.0 7.5 10.0 12.5 15.0 17.5
0

0.1

0.2

0.3

0.4

0.5

0.6

q2  (GeV2)

G
p M

 (
q

2
)

10-2005
8729A2

Figure 4. Time-like results for the proton mag-
netic form factor in AdS/QCD for ΛQCD = 0.15
GeV and ε = 40 MeV. The data are from the
compilation given in Ref. [61].

sults thus become sensitive to the behavior of
the A near the cutoff at z = z0. We intro-
duce a small shift in ΛQCD in the expression
for Atl, ΛQCD → ΛQCD − iε, to smear out the
truncation boundary conditions in the fifth di-
mension, to avoid sharp cusps in the results for
the time-like form factor. A numerical compu-
tation for the proton magnetic form factor in
the space and time-like regions, gives the gen-
eral structure shown in Fig. 3. The results cor-
respond to a L = 0 proton state. It is interest-
ing to compare the holographic predictions with a
model-independent analysis of nucleon form fac-
tors using dispersion relations [60]. A more de-
tailed comparison including recent time-like data
is given in Fig. 4.

4. AdS/CFT Predictions for Light-Front
Wavefunctions

The AdS/QCD correspondence provides a sim-
ple description of hadrons at the amplitude level
by mapping string modes to the impact space
representation of LFWFs. It is useful to de-
fine the partonic variables xi~r⊥i = xi

~R⊥ + ~b⊥i,
where ~r⊥i are the physical position coordinates,
~b⊥i are frame-independent internal coordinates,∑

i
~b⊥i = 0, and ~R⊥ is the hadron transverse cen-

ter of momentum ~R⊥ =
∑

i xi~r⊥i,
∑

i xi = 1.
We find for a two-parton LFWF the Lorentz-
invariant form

ψ̃L(x,~b⊥) = C x(1− x) (4)

×
J1+L

(
|~b⊥|

√
x(1− x) β1+L,kΛQCD

)

|~b⊥|
√

x(1− x)
.

The β1+L,k are the zeroes of the Bessel functions
reflecting the Dirichlet boundary condition. The
variable ζ = |~b⊥|

√
x(1− x), 0 ≤ ζ ≤ Λ−1

QCD, rep-
resents the invariant separation between quarks.
In the case of a two-parton state, it gives a direct
relation between the scale of the invariant sep-
aration between quarks, ζ, and the holographic
coordinate in AdS space: ζ = z = R2/r. The
ground state and first orbital eigenmode are de-
picted in Fig. 5. The distribution in x and (1−x)
measured in the E791 experiment for diffractive
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Figure 5. Prediction for the square of the
two-parton bound-state light-front wave function
ψ̃L(x,~b⊥) as function of the constituents longitu-
dinal momentum fraction x and 1 − x and the
impact space relative coordinate ~b⊥: (a) L = 0
and (b) L = 1.

dijet production πA → Jet Jet A is consistent
with the AdS/CFT prediction [32,33].

5. Concluding Remarks

The holographic model is quite successful in de-
scribing the known light hadron spectrum and
hadronic form factors. Since basically only one
parameter, the QCD scale ΛQCD, is introduced,
the agreement with the pattern of masses of the
physical hadronic states and the space and time-
like proton form factor data is remarkable. In
particular, the ratio of ∆ to nucleon trajectories
is determined by the ratio of zeros of Bessel func-
tions. As we have described, non-zero orbital an-
gular momentum and higher Fock-states require
the introduction of a Casimir operator derived
from quantum fluctuations. It is interesting to
note that the predicted mass spectrum M ∝ L
at high orbital angular momentum, in contrast
to the quadratic dependence M2 ∝ L found in
traditional string theory. The only mass scale is
ΛQCD. Only dimension-3, 9

2 and 4 states qq, qqq,
and gg appear in the duality at the classical level,
thus explaining the suppression of C = + odderon
exchange.

We have also shown how one can use the ex-
tended AdS/CFT space-time theory to obtain
a model for the form of hadron LFWFs. The
model wavefunctions display confinement at large
inter-quark separation and conformal symmetry
at short distances. In particular, the scaling and
conformal properties of the LFWFs at high rela-
tive momenta agree with perturbative QCD [62].
These AdS/CFT model wavefunctions could be
used as an initial ansatz for a variational treat-
ment of the light-front QCD Hamiltonian. The
dominance of the quark-interchange mechanism
in hard exclusive processes also emerges natu-
rally from the classical duality of the holographic
model.

Acknowledgments

Presented by SJB at the Workshop On Light-
Cone QCD And Nonperturbative Hadron Physics
2005 (LC 2005), 7-15 July 2005, Cairns, Queens-
land, Australia. We thank Simone Pacetti and



9

Diego Bettoni for making available their data
files for the proton form factor. This work was
supported by the Department of Energy contract
DE–AC02–76SF00515.

REFERENCES

1. P. P. Srivastava and S. J. Brodsky, Phys. Rev.
D 66, 045019 (2002) [arXiv:hep-ph/0202141].

2. S. J. Brodsky, H. C. Pauli and S. S. Pin-
sky, Phys. Rept. 301, 299 (1998) [arXiv:hep-
ph/9705477].

3. S. J. Brodsky, J. R. Hiller, D. S. Hwang and
V. A. Karmanov, Phys. Rev. D 69, 076001
(2004) [arXiv:hep-ph/0311218].

4. S. J. Brodsky and C. R. Ji, Phys. Rev. D 33,
2653 (1986).

5. O. V. Teryaev, arXiv:hep-ph/9904376.
6. S. J. Brodsky, D. S. Hwang, B. Q. Ma and

I. Schmidt, Nucl. Phys. B 593, 311 (2001)
[arXiv:hep-th/0003082].

7. H. C. Pauli and S. J. Brodsky, Phys. Rev. D
32, 2001 (1985).

8. W. A. Bardeen, R. B. Pearson and E. Rabi-
novici, Phys. Rev. D 21, 1037 (1980).

9. S. Dalley, Few Body Syst. 36, 69 (2005)
[arXiv:hep-ph/0409139].

10. M. Burkardt and S. Dalley, Prog. Part. Nucl.
Phys. 48, 317 (2002) [arXiv:hep-ph/0112007].

11. L. Del Debbio, M. Di Pierro, A. Dougall
and C. T. Sachrajda [UKQCD collabora-
tion], Nucl. Phys. Proc. Suppl. 83, 235 (2000)
[arXiv:hep-lat/9909147].

12. P. Maris and C. D. Roberts, Int. J.
Mod. Phys. E 12, 297 (2003) [arXiv:nucl-
th/0301049].

13. D. J. Gross, A. Hashimoto and I. R. Kle-
banov, Phys. Rev. D 57, 6420 (1998)
[arXiv:hep-th/9710240].

14. K. Hornbostel, S. J. Brodsky and H. C. Pauli,
Phys. Rev. D 41, 3814 (1990).

15. M. Harada, J. R. Hiller, S. Pinsky and
N. Salwen, Phys. Rev. D 70, 045015 (2004)
[arXiv:hep-th/0404123].

16. S. J. Brodsky, J. R. Hiller and G. McCar-
tor, Annals Phys. 305, 266 (2003) [arXiv:hep-
th/0209028].

17. S. J. Brodsky, J. R. Hiller and G. McCartor,

arXiv:hep-ph/0508295.
18. M. Weinstein, arXiv:hep-th/0410113.
19. H. Zhan, A. Nogga, B. R. Barrett, J. P. Vary

and P. Navratil, Phys. Rev. C 69, 034302
(2004) [arXiv:nucl-th/0401047].

20. S. J. Brodsky, Few Body Syst. 36, 35 (2005)
[arXiv:hep-ph/0411056].

21. S. J. Brodsky and D. S. Hwang, Nucl. Phys.
B 543, 239 (1999) [arXiv:hep-ph/9806358].

22. S. J. Brodsky, M. Diehl and D. S. Hwang,
Nucl. Phys. B 596, 99 (2001) [arXiv:hep-
ph/0009254].

23. G. P. Lepage and S. J. Brodsky, Phys. Lett.
B 87, 359 (1979).

24. A. V. Efremov and A. V. Radyushkin, Phys.
Lett. B 94, 245 (1980).

25. G. P. Lepage and S. J. Brodsky, Phys. Rev.
D 22, 2157 (1980).

26. S. J. Brodsky and G. P. Lepage, SLAC-PUB-
2294, Presented at the Workshop on Current
Topics in High Energy Physics, Cal Tech.,
Pasadena, Calif., Feb 13-17, 1979.

27. S. J. Brodsky, P. Hoyer, C. Peterson and
N. Sakai, Phys. Lett. B 93, 451 (1980).

28. M. Franz, M. V. Polyakov and K. Goeke,
Phys. Rev. D 62, 074024 (2000) [arXiv:hep-
ph/0002240].

29. J. Engelfried [SELEX Collaboration], Nucl.
Phys. A 752, 121 (2005).

30. S. J. Brodsky, E. L. Berger and G. P. Lepage,
SLAC-PUB-3027, Presented at the Workshop
on Drell-Yan Processes, Batavia, Ill., Oct 7-
8, 1982.

31. S. J. Brodsky, C. R. Ji and G. P. Lepage,
Phys. Rev. Lett. 51, 83 (1983).

32. D. Ashery [E791 Collaboration], arXiv:hep-
ex/0205011.

33. E. M. Aitala et al. [E791 Collaboration],
Phys. Rev. Lett. 86, 4768 (2001) [arXiv:hep-
ex/0010043].

34. G. Bertsch, S. J. Brodsky, A. S. Goldhaber
and J. F. Gunion, Phys. Rev. Lett. 47, 297
(1981).

35. S. J. Brodsky and A. H. Mueller, Phys. Lett.
B 206, 685 (1988).

36. S. J. Brodsky, P. Hoyer, N. Marchal, S. Peigne
and F. Sannino, Phys. Rev. D 65, 114025
(2002) [arXiv:hep-ph/0104291].



10

37. S. J. Brodsky, D. S. Hwang and I. Schmidt,
Phys. Lett. B 530, 99 (2002) [arXiv:hep-
ph/0201296].

38. S. J. Brodsky, I. Schmidt and J. J. Yang,
Phys. Rev. D 70, 116003 (2004) [arXiv:hep-
ph/0409279].

39. S. J. Brodsky, F. E. Close and J. F. Gunion,
Phys. Rev. D 5, 1384 (1972).

40. J. M. Maldacena, Adv. Theor. Math. Phys.
2, 231 (1998) [Int. J. Theor. Phys. 38, 1113
(1999)] [arXiv:hep-th/9711200].

41. J. Polchinski and M. J. Strassler, Phys.
Rev. Lett. 88, 031601 (2002) [arXiv:hep-
th/0109174].

42. S. J. Brodsky and G. R. Farrar, Phys. Rev.
Lett. 31, 1153 (1973).

43. V. A. Matveev, R. M. Muradian and
A. N. Tavkhelidze, Lett. Nuovo Cim. 7, 719
(1973).

44. J. Polchinski and L. Susskind, arXiv:hep-
th/0112204.

45. J. Polchinski and M. J. Strassler, JHEP 0305,
012 (2003) [arXiv:hep-th/0209211].

46. S. J. Brodsky and G. F. de Teramond,
Phys. Lett. B 582, 211 (2004) [arXiv:hep-
th/0310227].

47. G. Parisi, Phys. Lett. B 39, 643 (1972).
48. S. J. Brodsky, Y. Frishman and G. P. Lepage,

Phys. Lett. B 167, 347 (1986).
49. T. Banks and A. Zaks, Nucl. Phys. B 196,

189 (1982).
50. S. J. Brodsky, G. P. Lepage and P. B. Macken-

zie, Phys. Rev. D 28, 228 (1983).
51. S. J. Brodsky, G. T. Gabadadze, A. L. Kataev

and H. J. Lu, Phys. Lett. B 372, 133 (1996)
[arXiv:hep-ph/9512367].

52. R. J. Crewther, Phys. Rev. Lett. 28, 1421
(1972).

53. G. F. de Teramond and S. J. Brodsky,
arXiv:hep-ph/0507273.

54. S. J. Brodsky, arXiv:hep-ph/0408069.
55. H. Boschi-Filho and N. R. F. Braga, JHEP

0305, 009 (2003) [arXiv:hep-th/0212207];
S. Hong, S. Yoon and M. J. Strassler,
arXiv:hep-ph/0501197; G. F. de Teramond
and S. J. Brodsky, arXiv:hep-th/0409074;
J. Erlich, E. Katz, D. T. Son and
M. A. Stephanov, arXiv:hep-ph/0501128;

L. Da Rold and A. Pomarol, Nucl. Phys.
B 721, 79 (2005) [arXiv:hep-ph/0501218];
arXiv:hep-ph/0510268; N. Evans, J. P. Shock
and T. Waterson, Phys. Lett. B 622, 165
(2005) [arXiv:hep-th/0505250]; J. Hirn and
V. Sanz, arXiv:hep-ph/0507049; H. Boschi-
Filho, N. R. F. Braga and H. L. Carrion,
arXiv:hep-th/0507063.

56. G. F. de Teramond and S. J. Brodsky, Phys.
Rev. Lett. 94, 201601 (2005) [arXiv:hep-
th/0501022].

57. S. S. Gubser, I. R. Klebanov and
A. M. Polyakov, Nucl. Phys. B 636, 99
(2002) [arXiv:hep-th/0204051].

58. S. Hong, S. Yoon and M. J. Strassler, JHEP
0404, 046 (2004) [arXiv:hep-th/0312071].

59. S. Hong, S. Yoon and M. J. Strassler,
arXiv:hep-th/0409118.

60. R. Baldini, S. Dubnicka, P. Gauzzi, S. Pacetti,
E. Pasqualucci and Y. Srivastava, Eur. Phys.
J. C 11, 709 (1999).

61. D. Bettoni, Presented at the Workshop on
Nucleon Form Factors, Frascaty, Italy, Oct
12-14, 2005.

62. X. d. Ji, J. P. Ma and F. Yuan, Phys.
Rev. Lett. 90, 241601 (2003) [arXiv:hep-
ph/0301141].


