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Abstract:

In this paper we present non-singular Bianchi types | and V cosmological models, in the presence of bulk

viscous fluid and within the framework of f(R,T) gravity theory. Exact solutions to the field equations are
obtained by choosing a particular form of the function f(R,T) and a special value for the average scale factor
of the model, which corresponds to a time- dependent deceleration parameter. The cosmological models
initially accelerate for a certain period of time and thereafter decelerate. The physical and kinematical
properties of the models of the universe are discussed.
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1. Introduction

The simplest representation of the expanding universe is
given by Friedmann-Robertson-Walker models which are
spatially homogeneous and isotropic. These models are
in some sense a good global approximation to the present
day universelt is however unreasonable to assume that the
early stages of evolution of the universe may be suitably
described by the regular expansion predicted by these
models . The aim of modern cosmology is to study the
past history, the present state and future evolution of the
universe. Recent observational data indicate that our uni-
verse is accelerating (Riess et al. [1], Perlmutter et al. [2]).

*E-mail: srmathitbhu@rediffmail.com (Corresponding author)
tE-mail: kyadav910@gmail.com

Also observations such as cosmic microwave background
radiation (Spergel et al. [3]) and large scale structure
(Tegmark et al. [4]) provide indirect evidence for the late
time accelerated expansion of the universeThis accelera-
tion is explained in terms of so-called dark energy.

In view of the late-time acceleration of the universe and
the existence of the dark energy and dark matter, sev-
eral modified theories of gravitation have been proposed
as alternatives to Einstein’s general theory of relativity.
Noteworthy among them is the cosmologically important
f(R) gravity theory. It has been shown that f(R) gravity
theory is indeed a realistic alternative to general relativ-
ity, being consistent in dark epoch. It has been suggested
that cosmic acceleration could be achieved by replacing
the Einstein’s Hilbert action of general relativity with a
general function of Ricct scalar R. Nojiri and Odintsov [5]
developed a general program for unification of the mat-
ter -dominated era with the accelerated epoch for scalar
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-tensor theory or dark fluid. Nojiri and Odintsov [6] pre-
sented an extensive review of modified gravity theories
which is considered to be a gravitational alternative for
dark energy. Bertolami et al. [7] have proposed a gener-
alization of f(R) gravity theory by including in the theory
an explicit coupling of an arbitrary function of Ricci scalar
R to the matter Lagrangian density. Shamir [8] has also
proposed a physically viable f(R) gravity model, with the
unification of early time inflation and late time acceler-
ation, Shamir and Jhangeer[9] investigated static plane
symmetric vacuum solutions in f(R) gravity for (n + 1)
dimensional space time. Recently, Adhav [10] studied a
Bianchi type-Ill cosmological model in f(R) theory of grav-
ity in the presence of cosmic strings.

The role played by viscosity and the consequent dissi-
pative mechanism in cosmology have been discussed by
several authors (Misner [11, 12], Murphy [13], Belinsky
and Khalatnikov [14]). The heat represented by the large
entropy per baryon in the microwave background provides
a useful clue as to the nature of the early universe. A
possible explanation for this huge entropy per baryon is
that it was generated by physical dissipative processes
acting at the beginning of evolution. These dissipative
processes may indeed be responsible for the smoothing
out of initial anisotropics (Weinberg [15]). Misner [11, 12]
suggested that neutrino viscosity acting in the early era
might have considerably reduced the present anisotropy
of the black-body during the process of evolution. Be-
linskyand and Khalatnikov [14] presented some general
characteristics of anisotropic cosmological models in the
presence of viscosity. Bulk viscosity is the only dissipa-
tive phenomenon occurring in FRW models and is sig-
nificant in causing the accelerated expansion of the uni-
verse known as inflationary phase, as discussed by Setare
and Sheyki [16]. Murphy [13] has obtained a zero cur-
vature FRW type model in the presence of bulk viscos-
ity alone, which exhibits an interesting property that the
big-bang sinqularity appears in the infinite past. Roy and
Tiwari [17] presented plane symmetric solutions to Ein-
stein’s field equations representing inhomogeneous cos-
mological models with viscous fluid and constant bulk vis-
cosity. Szyddowski and Heller [18] constructed models of
the universe filled with interacting matter and radiation,
including dissipation due to bulk viscosity . Mohanty and
Pradhan [19] obtained a class of exact non-static solu-
tion in closed elliptic Robertson-walker space-time filled
with viscose fluid in the presence of an attractive scalar
field. Banerjee et al. [20] obtained some Bianchi type-|
solutions in the case of stiff matter under the assump-
tion that the shear viscosity coefficient is a power -law
function of energy density. Goener and Kowallski [21]
developed a method for obtaining irrotational anisotropic

viscous fluid solutions of a Bianchi type-I model with a
barotropic equation of state. Banerjee and Sanyal [22]
presented an irrorational Bianchi type V model under the
influence of both shear and bulk viscosity together with
heat flow. Coley [23], Coley and Hoogan [24], while gen-
eralizing the work of Coley and Tupper [25], studied di-
agonal Bianchi type-V imperfect fluid models with both
viscosity and heat condition with and without the cosmo-
logical term. Bali and Meena [26] have investigated tilted
cosmological models filled with disordered radiation for
perfect fluid and heat flow. A tilted Bianchi type | cosmo-
logical model for perfect fluid distribution in the presence
of a magnetic field is investigated by Bali and Sharma [27].
Also, Bali and Anjali [28] presented Bianchi type-I bulk
viscous fluid string dust magnetized cosmological models
in general relativity. Adhav et al. [29] studied Bianchi
type-lll anisotropic cosmological models with varying A.
Baghel and Singh [30] considered spatially homogeneous
and anisotropic Bianchi type-V space-time with a bulk
viscous fluid source, and time varying gravitational con-
stant G and cosmological term A. Several authors have
discussed the role of bulk viscosity in the early evolution
of the universe in different physical contexts.

Harko et al. [31] developed another modification of Ein-
stein's gravity theory, known as f(R, T) gravity theory,
wherein the gravitational Lagrangian is an arbitrary func-
tion of the Ricci scalar R and the trace T of the energy-
momentum tensor T;. It is to be noted that the depen-
dence from T may be induced by exotic imperfect fluid or
quantum effects. They have derived the field equations
of f(R, T) gravity by varying the action of the gravita-
tional field equations with respect to the metric tensor and
have presented a physically realistic model with a certain
choice of the function f(R, T). Subsequently, several au-
thors viz. Myrzabulov [32], Adhav [33], Reddy et al. [34],
Chaubey and Shukla [35], Ram et al. [36], Chandel and
Ram [37] etc. presented spatially homogeneous Bianchi
type cosmological models in the presence of a perfect fluid
in f(R, T) gravity theory. Samanta [38] studied the Kan-
towski -Sachs space time cosmological model filled with
perfect fluid matter in f(R, T) gravity. Further, Reddy et
al. [39], and Ram and Priyanka [40], have investigated five
dimensional Kaluza-Klein cosmological models filled with
perfect fluid in f(R, T) gravity theory. Naidu et al. [41]
investigated a Bianchi type -V bulk viscous string cosmo-
logical model in f(R,T) gravity theory. Reddy et al. [42]
considered LRS Bianchi type Il space-time and obtained
the solutions of field equations with cosmic string and
bulk viscous fluid within the framework f(R, T) theory of
gravity. Recently, Ahmed and Pradhan [43] investigated
a cosmological model in f(R, T) gravity of Bianchi type-
V by assuming f(R, T) = f(R) + £5(T) . Chakraborty et
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al. [44] formulated an alternative f(R, T) gravity theory and
the dark energy problem. Recently, Sharif and Zubair [45]
studied Bianchi type-I anisotropic models in f(R,T) gravity
theory. Sahoo et al. [46] considered an axially symmet-
ric space -time in the presence of a perfect fluid source
within the framework of f(RT) gravity theory. Mishra
and Sahoo [47] investigated Bianchi type VI cosmologi-
cal models filled with perfect fluid within the framework of
f(R,T) gravity theory. The spatially homogeneous and to-
tally anisotropic Bianchi type-Il cosmological solutions of
massive strings in the presence of a magnetic field in the
f(R,T) theory of gravity have been studied by Sharma and
Singh [48]. Singh and Singh [49] presented the cosmolog-
ical viability of reconstructing an alternative gravitational
theory, namely the modified f(R,T) gravity theory.
Motivated by the above studies, we investigate new
classes of spatially homogeneous Bianchi type | and V
bulk viscous fluid cosmological models in the f(R, T) the-
ory of gravity. We also discuss certain physical and kine-
matical features of the cosmological models.

2. Field equations

We assume that the cosmic matter may be represented by
the energy-momentum tensor of an imperfect bulk viscous
fluid

Ty = (p+p)uiu; — pgi, (1)

where p is the effective pressure given by
p=p—Cu (2)
satisfying a linear equation of state
p=¢€p, 0<e<. (3)

Here p is the equilibrium pressure, p is the energy den-
sity of matter,  is the coefficient of bulk viscosity and
u’ is the flow vector of the fluid satisfying u;u’= 1. The
semicolon stands for covariant differentiation. On thermo-
dynamic grounds bulk viscosity coefficient ¢ is positive,
assuring that the viscosity pushes the dissipative pres-
sure p towards negative values. However, the correction
applied to the thermodynamical pressure p due to bulk
viscous pressure is very small. Therefore, the dynamics
of cosmic evolution are not fundamentally influenced by
the inclusion of the viscous term in the energy-momentum
tensor.

The field equations in f(R, T) gravity theory with the par-
ticular choice of the function f(R, T), given by

f(R.T)=R+2f(T) (4)

When the matter source is a bulk viscous fluid, these are
given by (Reddy et al. [30)):

1 ! ’

We further choose that f(T)=A T, where A is a constant.
This f(R,T) gravity model is equivalent to a cosmological
model with an effective cosmological constant A oc H?,
where H is the Hubble function [50]. It is also interesting
to note that generally for this choice of f(R,T) the gravita-
tional coupling becomes an effective and time dependent
coupling, of the form Gus = G= 2f(T). Thus the term
2f(T) in the gravitational action modifies the gravitational
interaction between matter and curvature, replacing G by
a running gravitational coupling parameter.

3. Bianchi type-l model

We consider a spatially homogeneous Bianchi type-I
metric given as:

ds? = dt* — A% (t)dx* — B (t)dy? — C%(t)dz*  (6)

where A, B and C are cosmic scale functions.

To discuss the kinematical properties of the models, we
introduce the expansion scalar (6), shear scalar (o),
the average Hubble parameter (H) and the anisotropy
parameter A, for the metric (6) as follows:

V =a® = ABC, 7)
1v 1[A B ¢
H=3v=3\ats*c) )
1% A B ¢
9_3H_V_(A+B+C) ©)
1] (A)\° 8\’ o\
2 _ - = ~ _ 'n?
! [ A et
1o [AH\?
an=3ti (57) (1)
where AH; = H; — H,(i = 1,2,3) andH, = 4,H, = &,
and H; = % are the directional Hubble parameters.

An important observational quantity is the deceleration
parameter q (DP) which is defined as

g=-% (12)
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Here a dot denotes derivatives with respect to time t. The
sign of q indicates whether the model inflates or not. The
positive sign of q corresponds to a standard decelerating
model whereas the negative sign indicates inflation.

For the metric (6), the field equations (1), (4) and (5) in
comoving coordinates lead to the following set equations:

B ¢ BC i
Bt ge =M~ Br+3Ap, (13)
C A CA i
Ctatea=Are—Br+32p, (14)
A B AB i
AT 5T ag =0~ (B7+30p. (15)
AB  BC CA i
5t BE T ca = Br+30p—2p, (16)

These are four highly non-linear equations in six un-
knowns AB, C, p, p and (. Therefore to find a consistent
solution to these equations, valid assumptions will need
to be made to simplify the physics or the mathematics.
Subtracting Eq. (14) from Eq. (13), Eq. (15) from (14),
Eq.(15) from Eq.(13) and integrating the resulting equa-
tions, we obtain

B dt
Z:d1exp(c1/5), (17)

= dyexp (Cz/%), (18)
:d3exp(c3/%) (19)

where ¢1, ¢, ¢3 and dq, d2, ds are integration constants
which satisfy the relations

ANlx @O

& +C2+C3:0, d1d2d3:1. (20)

From Egs. (17)-(19), we can obtain the scale factors A, B
and C metric functions explicitly as

dt
A:ap1exp(q1/5), (21)
dt
B:apzexp(qzlg), (22)
dt
c=apew (0 [ %) 23

where

pr=(di2dy")3, pr=(dhdy")3, ps=(didd)}  (24)

and

20+ ¢ G —Q

__2a+ta a-a _at2o
g, = 3 q2 3 g3 = .

(25)
The constants p1, p2, p3 and g1, g2, g5 satisfy the relations
pipep3=1,  qi+q:+q3=0. (26)
It is obvious that we determine the scale factors A, B, C
from Eqgs. (21)-(23) the average scale factor a(t) is known.
For constructing physically relevant cosmological models,
the Hubble parameter and deceleration parameter (DP)
play important roles. It has been common practice to use
a constant DP. Berman [51], Berman and Gomide [52] pro-
posed a law of variation of Hubble parameter in the FRW
model that yields a constant value of DP, which subse-
quently leads to power-law and exponential forms of the
average scale factor. The recent observations of SNe la
(Riess et al. [1], Perlmutter et al. [2]) indicate that the
universe is presently accelerating while there was decel-
erated expansion in the past, and the universe undergoes
transition from decelerated expansion to accelerated ex-
pansion and vice-versa at present. Therefore, in general
DP is expected to be not a constant but rather a func-
tion of time. Some authors have proposed time-dependent
forms of DP and derived a differential form of the aver-
age scale factor of the model. Alternatively, some authors
have chosen the average scale factor and then deduced
the time-dependent DP. Eq. (12) can also be written as

q:—1+%(1ﬁ). (27)

Abdussattar and Prajapati [53] proposed a solution for the
time dependent form of q as

g=—5+(B-1) (28)

The Fig. 1 depicts the behavior of the deceleration pa-
rameter with time.

Eq. (12) can be integrated to give scale factor a(t) as

s dt
a(t) =e e><p/7ﬂ1 T adtty (29)

where y and 0 are arbitrary constants of integration. Sub-
stituting Eq. (28) into Eq. (29) and integrating the re-
sult, Abdussattar and Prajapati [53] derived three different
forms of a(t), the simplest form among them is given by

a(t):e‘s(t2+%)2?. (30)
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0.4+

Deceleration parameter(q)

. . . .
20 40 60 80 100
Cosmic time (t)

Figure 1. The plot of deceleration parameter q verses cosmic time
=3 a=1;

They have also discussed the non-singular bouncing FRW
cosmological models with a(t) give by Eq. (30).

Here we use this form of a(t) to determine the scale factors
A, B and C from Egs. (21)-(23). If we use the value of
a(t) in Egs. (21) -(23) the integration is rather difficult.
Therefore, we take 6 =0 and B = % in Eq. (30) so that

a(t)z(t2+%a)§. (31)

Substituting Eq. (31) in Egs. (21) — (23) and integrating,
we obtain expression for the metric functions as

%
A:p1(t2+2?a) exp q1tan_1(%) t], (32

=

—_
Nl=
-
w
=

] _
2a\3 43
B:pz(tz—l—?) exp qztan1(£

Nl=

. _
20\ 3 3
C=p3 (tz-i-?a) exp | g3 tan™ (ﬂ) t]. (34

For the model represented by metric functions in (32)-(34)
the energy density p and the bulk viscous pressure p are
given by

]
T 9B + 20) (8 + 4A) (2 + L)
[£2[(87 + 3X)(12 4 18g3) — (g7 + q3)(1447 + 641)
—18A(g2 + g3)] — A8t + 12a(q2 + g3))], (35)

P

0.4

0.35 1
0.3H
0.25H

0.2

density(rho)

0.15F
0.1F

0.05F
0

. . . .
0 20 40 60 80 100
cosmic time (t)

Figure 2. The plot of density p verses cosmic time t,A =1, a=1.

p =m[(18(q? +q5+q3)—12
(87 + 34)
(87 + 2)(87 + 4A)
— (g5 + q5) (1447 + 642) — 18(q2 + q3))t*
(87 + 34)

(84248 + 4)\))‘(8t +12a(g2 + q3))]  (36)

(12 +18¢3(8 + 34))

x10"%

-0.51

bulk viscous pressure(p bar)

25 . . . .
0 20 40 60 80 100
cosmic time(t)

Figure 3. The plot of bulk viscous pressure p verses cosmic time t,
A=1,a=1.

The Figs. 2 and 3 depict the behavior of energy density
and bulk viscous pressure with cosmic time respectively.
The barotropic equation of state parameter may be used to
obtain the coefficient of bulk viscosity, which is obtained
from Egs. s(4) and (37) as
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t
= *[€A(BA + 34)(12 + 18g7) — (g7 + q3)(144 + 644) — 18A(q2 +
e T A T I ) AT 312+ 1840) — (0 + ) )= 18X(q2 + q2)
— (85 + 3A)(12 + 18q7 (87 + 34)) — (g5 + q3)(1447 + 644) — 18(q2 + g3)]
1 2 2 2 2
— *[et*(8t + 12a(q2 + +18(87 + 24) (87 + 4A)(q7 + g5 +
5478 + 4R B+ Ve + 2 [et™( (g2 + q3)) +18(87 + 24)(87 + 44)(q7 + g3 + q3)
—12(87 + 2A)(871 + 4A) + (87 + 3A)A(8t + 12a(q2 + g3))] (37)
(

110" ‘ ‘ ‘ ‘ of the Bianchi type-lI cosmological model with metric
functions given by Egs. (32)-(34). The directional Hubble
parameters and the average Hubble parameter are given

:f by
2t
> Hi = —F/——~3g1+1), 38
_.g 1 3 (t2 + 2?0() ( a1 ) ( )
s 2t
Hy= —F———+3g,+1), 39
2 3 (t2 + 2?0() ( q2 ) ( )
00 2‘0 4‘0 éO 80 100 2t
cosmic time t H- = 3 +1 , 40
b= 5y Pe ) (40)
Figure 4. The plot of Bulk viscosity coefficient { verses cosmic time
t, A=1,a=1. 2¢
H=F———. 4
(7 +%) ”
Fig. 4 shows behavior of bulk viscosity coefficient with
cosmic time.
For the model 1 the energy density conditions p+p > 0
and p + 3p > 0 are identically satisfied as shown, in the
Fig. 5.
5
0.9+ g
08y ]
207} =
g 0.6
2‘0.5*
g 0.4 L T
‘; 40 60 80 100
S 0af i cosmic time (t)
“ 0.2
o Figure 6. The plot of Hubble parameter H verses cosmic time t, a=1.
0

0 20 40 60 80 100
cosmic time t

The expansion scalar, shear scalar and mean anisotropic
Figure 5. The plot of Energy density condition p + p verses cosmic parameters are found as
timet, A =1, a=1.

We now discuss the physical and kinematical behaviours

ot ) . (42)
3
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Expansion scalar (theta)

. n n
0 20 40 60 80 100
cosmic time (t)

Figure 7. The plot of expansion scalar 6 verses cosmic time t, a=1.

2¢?
(2 + %)?

2:

(g7 + g5+ q3) . (43)

shear scalar(sigma)

n n
40 60 80 100
cosmic time (t)

Figure 8. The plot of shear scalar o verses cosmic time t, a=1.

1
A,nzg(q$+q§+q§)~ (44)

Figs. 6, 7 and 8 depict the variation of H, 6 and o respec-
tively. We observe that the model has no initial singularity
at t= 0. Also, we see that H, 0, g, p, p and &, are finite at
t= 0. These parameters are decreasing functions of time
which tend to zero for large values of time. Since g—i +0,
the model is anisotropic throughout the evolution of the
universe.

4. Bianchi type-V model

The diagonal form of the metric of Bianchi type V cosmo-
logical model is given by

ds? = dt* — A(t)dx* — 2™ [B*(t)dy’ + C*(1)d7?] (45)

Here A, B and C are also cosmic scale factors and m is
an arbitrary constant.

Using Eqgs. (1), (4). (5) and (45) we obtain the following
set of equations

AB BC CA 3m? )
E_,_E_;_a_?:(871'+3)\)p—)\p, (46)

g+%+357’%§:@48n+y)p, (47)
%+§+C2—Z—§:Ap—(8n+3)\)p, (48)
§+g+%_%§:)\p—(8n+3/\)p (49)

#_B.C (50)

After integrating Eq. (50), we get A> =kBC, where k is
an integration constant. Without loss of generality, we
take k=1. The same procedure as for the Bianchi type-I
solution is used here to solve these equations By making
use of Eq. (50), we get the constraint equations as follows:

pr=1, p=p5' =P, ¢=0, q=-q3=0.
(51)

Then, From Egs. (46)- (51), we readily obtain

dt
A:G, B:aPexp[Q/E],

C=aP'exp [—Q/ %] (52)

Subsituting the value a(t) given in Eq. (31) into Egs. (46)-
(49) into the equations in (52), we obtain the metric
functions A, B and C as follows:

2a0\3
A:(t2+?) , (53)

1

B:(t2+2;()3Pexp[Qtan_1(;})Zt], (54)

C= (t2+ 2?01)7 P exp [—Qtan1 (%)j t] (55)

The energy density and bulk viscous pressure for the
Bianchi type-V space -time model have values give as
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1
9(8sr + 44) (8 + 24)(12 + &)

p:

1 (87 + 34)
P=ow + L) [A(&r +22)(87 + 4A)
(87 + 3A) m?
B [)\(811 +20)(8r +44) ] 3(12 4+ )3

[(8n +3X)(12 =360%)t — A(12 — t2(12 — £2(6 + 34Q?)))

_3m2(8ﬂ+?)\) . 56)
(2 + %)

(8 +3A)(12 — 36Q)t* — A(12 — t%(6 + 340%))] — (12 — 3602)t2]

Using the equation of state parameter gives the bulk viscosity coefficient

!
© = 36187 + 4A)Bx + 20)(C + Z)

1

— (87 +3X)(12 —360Q7%)] +

m2

36A(87 + 24)(87 + 4A)(12 + %)t

(12 — t2(6 + 340%)] -

12877 + 22)(87 + 4N tA(2 +

0.7

density(rho)

. . .
40 60 80 100
cosmic time (t)

Figure 9. The plot of density p verses cosmic time t, Q=1, A=1,
m=0.5, a=1.

The directional Hubble parameters H;, H, and Hs are
given the form:

2t
= 3e ) )
2t
Hz—BQ-i—”mr (60)
2t

The mean anisotropic parameter A, has the value

(57)
* A8 + 3A)(12 — 36Q%)e + A8 + 24)(87 + 41)(12 — 36Q?)
*[A(12 — (6 4 340Q%)) — ex
m2
e [e(8+24) + (8 + 3N+ — (58)
)3 126(12 + 22)3
x10"
0
2+
= 4r
£ s
g 10
3 12
14
-16 . . . .
0 20 40 60 80 100

cosmic time(t)

Figure 10. The plot of bulk viscous pressure j5 verses cosmic time
t,Q=1,A=1,m=0.5, a=1.

An =6 (1+720%). (62)

The shear scalar for this model is given by

2

2
20t ) _ 63

2 2
2+ 5

Figs. 915 depict the variation of p, p, {, p+p, H, theta
and o with time. From the above results it can be observed
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4=1=]

(Bulk viscosity coefficent) &
1) o
o ®

o
~

0.2

. . .
40 60 80 100
cosmic time t

Figure 11. The plot of Bulk viscosity coefficient ¢ verses cosmic time
1,Q=1,A=1,m=0.5, a=1.

Energy density condition (p +p)

40 60 80 100
cosmic time t

Figure 12. The plot of Energy density condition p+ p verses cosmic
time t, Q=1A=1, m=0.5, a=1.

Hubble parameter(H)

.
40 60 80 100
cosmic time(t)

0 20

Figure 13. The plot of Hubble parameter H (for second model)
verses cosmic time t,Q=1, a=1.

that the model has no sinqularity at t= 0 and the spatial
volume increases as t increases giving the accelerated ex-

Expansion scalar(theta)

° o ° o

- Q9 I S w 9 P
o1 N a w a1 S a <

o

0.05

. n
0 20 40 60 80 100
cosmic time (t)

Figure 14. The plot of expansion scalar 6 (for model second) verses
cosmic time t,Q=1, a=1.

shear scalar(sigma)

40 60 80 100
cosmic time(t)

Figure 15. The plot of shear scalar o cosmic time t,Q=1, a=1.

pansion of the universe. In this model, we also note that
a?, p. p. p, and ¢ are finite at t= 0 while they vanish for
infinitely large t. However, g—i # 0, which shows that the
model does not approach isotropy for large time t. From
Eq. (28) we see that g< 0 for t < \/(2a) and g> O for t
> V/(2a). It is worth mentioning that Shamir et al. [54]
have also presented exact solutions of Bianchi type | and
V models in f(R, T) gravity theory by applying the law of
variation of Hubble’s parameter proposed by Berman [51],
and Berman and Gomide [52]. Different models were used
in that case.

5. Conclusion

In this paper, we have investigated spatially homogeneous
and anisotropic cosmological models of Bianchi type | and
V, filled with bulk viscous fluid in the framework of f(R,T)
gravity theory. The absence of an initial time singularity
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in both models is a significant feature of the results. The
scale factors admit constant values at early times of the
universe (t— 0), after which the scale factors increase
with cosmic time without showing any type of initial sin-
gularity and finally tend to oo as t — oo. Therefore,
the universe represented by both models starts with zero
volume in the initial past and expands exponentially ap-
proaching infinite volume.

The expansion scalar 6 and shear scalar o are decreas-
ing functions of time and ultimately become zero for large
time. The ratio § tends to a constant as t— oo, and
therefore the anisotropy in both models are maintained
throughout the passage of time. The deceleration param-
eter q is negative for t< /(2a) and positive for t > \/(2a).
Therefore, the cosmological models initially accelerate for
a certain period of time and thereafter decelerate.

The behavior of the bulk viscosity is illustrated graph-
ically in Figs. 4 and 11. The bulk viscosity decreases
with time to give models which are ultimately inflationary
(Padmanabhan and Chitre [55]). The matter pressure and
energy density are monotonically decreasing functions of
time which ultimately tend to zero for large time. Thus, the
models would essentially correspond to an empty universe
for large time. The conditions (a) p+p >0 (b) p+p >0
are identically satisfied. Models presented in this paper
may be useful for understanding the role of bulk viscosity
in explaining the decelerating and accelerating behaviors
and to understand structure formation in the universe.
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