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Abstract: In this paper we present non-singular Bianchi types I and V cosmological models, in the presence of bulk
viscous fluid and within the framework of f(R,T) gravity theory. Exact solutions to the field equations are
obtained by choosing a particular form of the function f(R,T) and a special value for the average scale factor
of the model, which corresponds to a time- dependent deceleration parameter. The cosmological models
initially accelerate for a certain period of time and thereafter decelerate. The physical and kinematical
properties of the models of the universe are discussed.
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1. Introduction

The simplest representation of the expanding universe isgiven by Friedmann-Robertson-Walker models which arespatially homogeneous and isotropic. These models arein some sense a good global approximation to the presentday universeIt is however unreasonable to assume that theearly stages of evolution of the universe may be suitablydescribed by the regular expansion predicted by thesemodels . The aim of modern cosmology is to study thepast history, the present state and future evolution of theuniverse. Recent observational data indicate that our uni-verse is accelerating (Riess et al. [1], Perlmutter et al. [2]).
∗E-mail: srmathitbhu@rediffmail.com (Corresponding author)
†E-mail: kyadav910@gmail.com

Also observations such as cosmic microwave backgroundradiation (Spergel et al. [3]) and large scale structure(Tegmark et al. [4]) provide indirect evidence for the latetime accelerated expansion of the universe.This accelera-tion is explained in terms of so-called dark energy.In view of the late-time acceleration of the universe andthe existence of the dark energy and dark matter, sev-eral modified theories of gravitation have been proposedas alternatives to Einstein’s general theory of relativity.Noteworthy among them is the cosmologically importantf(R ) gravity theory. It has been shown that f(R ) gravitytheory is indeed a realistic alternative to general relativ-ity, being consistent in dark epoch. It has been suggestedthat cosmic acceleration could be achieved by replacingthe Einstein’s Hilbert action of general relativity with ageneral function of Ricci scalar R. Nojiri and Odintsov [5]developed a general program for unification of the mat-ter -dominated era with the accelerated epoch for scalar
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-tensor theory or dark fluid. Nojiri and Odintsov [6] pre-sented an extensive review of modified gravity theorieswhich is considered to be a gravitational alternative fordark energy. Bertolami et al. [7] have proposed a gener-alization of f(R ) gravity theory by including in the theoryan explicit coupling of an arbitrary function of Ricci scalarR to the matter Lagrangian density. Shamir [8] has alsoproposed a physically viable f(R ) gravity model, with theunification of early time inflation and late time acceler-ation, Shamir and Jhangeer[9] investigated static planesymmetric vacuum solutions in f(R ) gravity for (n + 1)dimensional space time. Recently, Adhav [10] studied aBianchi type-III cosmological model in f(R) theory of grav-ity in the presence of cosmic strings.The role played by viscosity and the consequent dissi-pative mechanism in cosmology have been discussed byseveral authors (Misner [11, 12], Murphy [13], Belinskyand Khalatnikov [14]). The heat represented by the largeentropy per baryon in the microwave background providesa useful clue as to the nature of the early universe. Apossible explanation for this huge entropy per baryon isthat it was generated by physical dissipative processesacting at the beginning of evolution. These dissipativeprocesses may indeed be responsible for the smoothingout of initial anisotropics (Weinberg [15]). Misner [11, 12]suggested that neutrino viscosity acting in the early eramight have considerably reduced the present anisotropyof the black-body during the process of evolution. Be-linskyand and Khalatnikov [14] presented some generalcharacteristics of anisotropic cosmological models in thepresence of viscosity. Bulk viscosity is the only dissipa-tive phenomenon occurring in FRW models and is sig-nificant in causing the accelerated expansion of the uni-verse known as inflationary phase, as discussed by Setareand Sheyki [16]. Murphy [13] has obtained a zero cur-vature FRW type model in the presence of bulk viscos-ity alone, which exhibits an interesting property that thebig-bang singularity appears in the infinite past. Roy andTiwari [17] presented plane symmetric solutions to Ein-stein’s field equations representing inhomogeneous cos-mological models with viscous fluid and constant bulk vis-cosity. Szyddowski and Heller [18] constructed models ofthe universe filled with interacting matter and radiation,including dissipation due to bulk viscosity . Mohanty andPradhan [19] obtained a class of exact non-static solu-tion in closed elliptic Robertson-walker space-time filledwith viscose fluid in the presence of an attractive scalarfield. Banerjee et al. [20] obtained some Bianchi type-Isolutions in the case of stiff matter under the assump-tion that the shear viscosity coefficient is a power -lawfunction of energy density. Goener and Kowallski [21]developed a method for obtaining irrotational anisotropic

viscous fluid solutions of a Bianchi type-I model with abarotropic equation of state. Banerjee and Sanyal [22]presented an irrorational Bianchi type V model under theinfluence of both shear and bulk viscosity together withheat flow. Coley [23], Coley and Hoogan [24], while gen-eralizing the work of Coley and Tupper [25], studied di-agonal Bianchi type-V imperfect fluid models with bothviscosity and heat condition with and without the cosmo-logical term. Bali and Meena [26] have investigated tiltedcosmological models filled with disordered radiation forperfect fluid and heat flow. A tilted Bianchi type I cosmo-logical model for perfect fluid distribution in the presenceof a magnetic field is investigated by Bali and Sharma [27].Also, Bali and Anjali [28] presented Bianchi type-I bulkviscous fluid string dust magnetized cosmological modelsin general relativity. Adhav et al. [29] studied Bianchitype-III anisotropic cosmological models with varying Λ.Baghel and Singh [30] considered spatially homogeneousand anisotropic Bianchi type-V space-time with a bulkviscous fluid source, and time varying gravitational con-stant G and cosmological term Λ. Several authors havediscussed the role of bulk viscosity in the early evolutionof the universe in different physical contexts.Harko et al. [31] developed another modification of Ein-stein’s gravity theory, known as f (R, T ) gravity theory,wherein the gravitational Lagrangian is an arbitrary func-tion of the Ricci scalar R and the trace T of the energy-momentum tensor Tij . It is to be noted that the depen-dence from T may be induced by exotic imperfect fluid orquantum effects. They have derived the field equationsof f(R, T ) gravity by varying the action of the gravita-tional field equations with respect to the metric tensor andhave presented a physically realistic model with a certainchoice of the function f(R, T ). Subsequently, several au-thors viz. Myrzabulov [32], Adhav [33], Reddy et al. [34],Chaubey and Shukla [35], Ram et al. [36], Chandel andRam [37] etc. presented spatially homogeneous Bianchitype cosmological models in the presence of a perfect fluidin f(R, T ) gravity theory. Samanta [38] studied the Kan-towski -Sachs space time cosmological model filled withperfect fluid matter in f(R, T ) gravity. Further, Reddy etal. [39], and Ram and Priyanka [40], have investigated fivedimensional Kaluza-Klein cosmological models filled withperfect fluid in f(R, T ) gravity theory. Naidu et al. [41]investigated a Bianchi type -V bulk viscous string cosmo-logical model in f(R,T) gravity theory. Reddy et al. [42]considered LRS Bianchi type II space-time and obtainedthe solutions of field equations with cosmic string andbulk viscous fluid within the framework f(R, T ) theory ofgravity. Recently, Ahmed and Pradhan [43] investigateda cosmological model in f(R, T ) gravity of Bianchi type-V by assuming f (R, T ) = f1(R ) + f2(T) . Chakraborty et
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al. [44] formulated an alternative f(R, T ) gravity theory andthe dark energy problem. Recently, Sharif and Zubair [45]studied Bianchi type-I anisotropic models in f(R,T) gravitytheory. Sahoo et al. [46] considered an axially symmet-ric space -time in the presence of a perfect fluid sourcewithin the framework of f(R,T) gravity theory. Mishraand Sahoo [47] investigated Bianchi type VI cosmologi-cal models filled with perfect fluid within the framework off(R,T) gravity theory. The spatially homogeneous and to-tally anisotropic Bianchi type-II cosmological solutions ofmassive strings in the presence of a magnetic field in thef(R,T) theory of gravity have been studied by Sharma andSingh [48]. Singh and Singh [49] presented the cosmolog-ical viability of reconstructing an alternative gravitationaltheory, namely the modified f(R,T) gravity theory.Motivated by the above studies, we investigate newclasses of spatially homogeneous Bianchi type I and Vbulk viscous fluid cosmological models in the f(R, T ) the-ory of gravity. We also discuss certain physical and kine-matical features of the cosmological models.
2. Field equations
We assume that the cosmic matter may be represented bythe energy-momentum tensor of an imperfect bulk viscousfluid

Tij = (ρ + p̄)uiuj − p̄gij , (1)where p̄ is the effective pressure given by
p̄ = p− ζuii, (2)

satisfying a linear equation of state
p = ερ, 0 6 ε 6 1. (3)

Here p is the equilibrium pressure, ρ is the energy den-sity of matter, ζ is the coefficient of bulk viscosity andui is the flow vector of the fluid satisfying uiui= 1. Thesemicolon stands for covariant differentiation. On thermo-dynamic grounds bulk viscosity coefficient ζ is positive,assuring that the viscosity pushes the dissipative pres-sure p̄ towards negative values. However, the correctionapplied to the thermodynamical pressure p due to bulkviscous pressure is very small. Therefore, the dynamicsof cosmic evolution are not fundamentally influenced bythe inclusion of the viscous term in the energy-momentumtensor.The field equations in f(R, T ) gravity theory with the par-ticular choice of the function f(R, T ), given by
f (R, T ) = R + 2f (T ) (4)

When the matter source is a bulk viscous fluid, these aregiven by (Reddy et al. [30]):
Rij−

12Rgij = 8πTij+2f ′ (T )Tij+[2p̄f ′ (T ) + f (T )]gij (5)
We further choose that f(T)=λ T, where λ is a constant.This f(R,T) gravity model is equivalent to a cosmologicalmodel with an effective cosmological constant Λ ∝ H2,where H is the Hubble function [50]. It is also interestingto note that generally for this choice of f(R,T) the gravita-tional coupling becomes an effective and time dependentcoupling, of the form Geff = G± 2f′ (T). Thus the term2f(T) in the gravitational action modifies the gravitationalinteraction between matter and curvature, replacing G bya running gravitational coupling parameter.
3. Bianchi type-I model
We consider a spatially homogeneous Bianchi type-Imetric given as:

ds2 = dt2 − A2(t)dx2 − B2(t)dy2 − C 2(t)dz2 (6)
where A, B and C are cosmic scale functions.To discuss the kinematical properties of the models, weintroduce the expansion scalar (θ), shear scalar (σ ),the average Hubble parameter (H) and the anisotropyparameter Am for the metric (6) as follows:

V = a3 = ABC, (7)
H = 13 V̇V = 13

(
Ȧ
A + Ḃ

B + Ċ
C

)
, (8)

θ = 3H = V̇
V = ( ȦA + Ḃ

B + Ċ
C

) (9)
σ 2 = 12

( Ȧ
A

)2 +( ḂB
)2 +( ĊC

)2− 16θ2, (10)
Am = 13Σ3

i=1
(∆Hi

H

)2 (11)
where ∆Hi = Hi − H, (i = 1, 2, 3) andH1 = Ȧ

A , H2 = Ḃ
B ,and H3 = Ċ

C are the directional Hubble parameters.An important observational quantity is the decelerationparameter q (DP) which is defined as
q = −aäȧ2 (12)
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Here a dot denotes derivatives with respect to time t. Thesign of q indicates whether the model inflates or not. Thepositive sign of q corresponds to a standard deceleratingmodel whereas the negative sign indicates inflation.For the metric (6), the field equations (1), (4) and (5) incomoving coordinates lead to the following set equations:
B̈
B + C̈

C + ḂĊ
BC = λρ − (8π + 3λ)p̄, (13)

C̈
C + Ä

A + Ċ Ȧ
CA = λρ − (8π + 3λ)p̄, (14)

Ä
A + B̈

B + ȦḂ
AB = λρ − (8π + 3λ)p̄. (15)

ȦḂ
AB + ḂĊ

BC + Ċ Ȧ
CA = (8π + 3λ)ρ − λp̄, (16)

These are four highly non-linear equations in six un-knowns A,B, C, ρ, p̄ and ζ . Therefore to find a consistentsolution to these equations, valid assumptions will needto be made to simplify the physics or the mathematics.Subtracting Eq. (14) from Eq. (13), Eq. (15) from (14),Eq.(15) from Eq.(13) and integrating the resulting equa-tions, we obtain
B
A = d1 exp(c1

∫ dt
a3
)
, (17)

C
B = d2 exp(c2

∫ dt
a3
)
, (18)

A
C = d3 exp(c3

∫ dt
a3
) (19)

where c1, c2, c3 and d1, d2, d3 are integration constantswhich satisfy the relations
c1 + c2 + c3 = 0, d1d2d3 = 1. (20)

From Eqs. (17)-(19), we can obtain the scale factors A, Band C metric functions explicitly as
A = ap1 exp(q1

∫ dt
a3
)
, (21)

B = ap2 exp(q2
∫ dt
a3
)
, (22)

C = ap3 exp(q3
∫ dt
a3
) (23)

where
p1 = (d−21 d−12 ) 13 , p2 = (d1d−12 ) 13 , p3 = (d1d22) 13 (24)

and
q1 = −2c1 + c23 , q2 = c1 − c23 , q3 = c1 + 2c23 .(25)The constants p1, p2, p3 and q1, q2, q3 satisfy the relations

p1p2p3 = 1, q1 + q2 + q3 = 0. (26)
It is obvious that we determine the scale factors A, B, Cfrom Eqs. (21)-(23) the average scale factor a(t) is known.For constructing physically relevant cosmological models,the Hubble parameter and deceleration parameter (DP)play important roles. It has been common practice to usea constant DP. Berman [51], Berman and Gomide [52] pro-posed a law of variation of Hubble parameter in the FRWmodel that yields a constant value of DP, which subse-quently leads to power-law and exponential forms of theaverage scale factor. The recent observations of SNe Ia(Riess et al. [1], Perlmutter et al. [2]) indicate that theuniverse is presently accelerating while there was decel-erated expansion in the past, and the universe undergoestransition from decelerated expansion to accelerated ex-pansion and vice-versa at present. Therefore, in generalDP is expected to be not a constant but rather a func-tion of time. Some authors have proposed time-dependentforms of DP and derived a differential form of the aver-age scale factor of the model. Alternatively, some authorshave chosen the average scale factor and then deducedthe time-dependent DP. Eq. (12) can also be written as

q = −1 + d
dt

( 1
H

)
. (27)

Abdussattar and Prajapati [53] proposed a solution for thetime dependent form of q as
q = − αt2 + (β − 1) (28)

The Fig. 1 depicts the behavior of the deceleration pa-rameter with time.Eq. (12) can be integrated to give scale factor a(t) as
a(t) = eδ exp ∫ dt∫ (1 + q)dt + γ

(29)
where γ and δ are arbitrary constants of integration. Sub-stituting Eq. (28) into Eq. (29) and integrating the re-sult, Abdussattar and Prajapati [53] derived three differentforms of a(t), the simplest form among them is given by

a(t) = eδ
(
t2 + α

β

) 12β
. (30)
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Figure 1. The plot of deceleration parameter q verses cosmic time
t,β= 32 α=1;

They have also discussed the non-singular bouncing FRWcosmological models with a(t) give by Eq. (30).Here we use this form of a(t) to determine the scale factorsA, B and C from Eqs. (21)-(23). If we use the value ofa(t) in Eqs. (21) -(23) the integration is rather difficult.Therefore, we take δ = 0 and β = 32 in Eq. (30) so that
a(t) = (t2 + 2α3

) 13
. (31)

Substituting Eq. (31) in Eqs. (21)− (23) and integrating,we obtain expression for the metric functions as
A = p1

(
t2 + 2α3

) 13 exp[q1 tan−1 ( 32α
) 12

t
]
, (32)

B = p2
(
t2 + 2α3

) 13 exp[q2 tan−1 ( 32α
) 12

t
]
, (33)

C = p3
(
t2 + 2α3

) 13 exp[q3 tan−1 ( 32α
) 12

t
]
. (34)

For the model represented by metric functions in (32)-(34)the energy density ρ and the bulk viscous pressure p̄ aregiven by
ρ = 19(8π + 2λ)(8π + 4λ)(t2 + 2α3 )2[t2[(8π + 3λ)(12 + 18q21)− (q21 + q23)(144π + 64λ)
− 18λ(q2 + q3)]− λ(8t + 12α(q2 + q3))], (35)
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Figure 2. The plot of density ρ verses cosmic time t,λ =1, α=1.

p̄ = 19λ(t2 + 2α3 )2 [(18(q21 + q22 + q23)− 12
+ (8π + 3λ)(8π + 2λ)(8π + 4λ) (12 + 18q21(8π + 3λ))
− (q22 + q23)(144π + 64λ)− 18(q2 + q3))t2
− (8π + 3λ)(8π + 2λ)(8π + 4λ)λ(8t + 12α(q2 + q3))]. (36)
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Figure 3. The plot of bulk viscous pressure p̄ verses cosmic time t,
λ =1,α=1.

The Figs. 2 and 3 depict the behavior of energy densityand bulk viscous pressure with cosmic time respectively.The barotropic equation of state parameter may be used toobtain the coefficient of bulk viscosity, which is obtainedfrom Eqs. s(4) and (37) as
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ζ = t54λ(8π + 4λ)(8π + 2λ)(t2 + 2α3 ) ∗ [ελ(8λ+ 3λ)(12 + 18q21)− (q21 + q22)(144 + 64λ)− 18λ(q2 + q3)
− (8π + 3λ)(12 + 18q21(8π + 3λ))− (q22 + q23)(144π + 64λ)− 18(q2 + q3)]
− 154λ(8π + 4λ)(8π + 2λ)t(t2 + 2α3 ) ∗ [εt2(8t + 12α(q2 + q3)) + 18(8π + 2λ)(8π + 4λ)(q21 + q22 + q23)
− 12(8π + 2λ)(8π + 4λ) + (8π + 3λ)λ(8t + 12α(q2 + q3))] (37)
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Figure 4. The plot of Bulk viscosity coefficient ζ verses cosmic time
t, λ =1,α=1.

Fig. 4 shows behavior of bulk viscosity coefficient withcosmic time.For the model 1 the energy density conditions ρ + p ≥ 0and ρ + 3p ≥ 0 are identically satisfied as shown, in theFig. 5.
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Figure 5. The plot of Energy density condition ρ + p verses cosmic
time t, λ =1, α=1.

We now discuss the physical and kinematical behaviours

of the Bianchi type-I cosmological model with metricfunctions given by Eqs. (32)-(34). The directional Hubbleparameters and the average Hubble parameter are givenby
H1 = 2t3 (t2 + 2α3 ) (3q1 + 1) , (38)
H2 = 2t3 (t2 + 2α3 ) (3q2 + 1) , (39)
H3 = 2t3 (t2 + 2α3 ) (3q3 + 1) , (40)

H = 2t(
t2 + 2α3 ) . (41)
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Figure 6. The plot of Hubble parameter H verses cosmic time t, α=1.

The expansion scalar, shear scalar and mean anisotropicparameters are found as
θ = 3H = ( 6t

t2 + 2α3
)
. (42)
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Figure 7. The plot of expansion scalar θ verses cosmic time t, α=1.

σ 2 = ( 2t2(t2 + 2α3 )2
)(

q21 + q22 + q23) . (43)
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Figure 8. The plot of shear scalar σ verses cosmic time t, α=1.

Am = 13 (q21 + q22 + q23) . (44)Figs. 6, 7 and 8 depict the variation of H , θ and σ respec-tively. We observe that the model has no initial singularityat t= 0. Also, we see that H , θ, σ , p̄, ρ and ξ , are finite att= 0. These parameters are decreasing functions of timewhich tend to zero for large values of time. Since σ2
θ2 6= 0,the model is anisotropic throughout the evolution of theuniverse.

4. Bianchi type-V model
The diagonal form of the metric of Bianchi type V cosmo-logical model is given by
ds2 = dt2 −A2(t)dx2 − e2mx [B2(t)dy2 + C 2(t)dz2] (45)

Here A, B and C are also cosmic scale factors and m isan arbitrary constant.Using Eqs. (1), (4), (5) and (45) we obtain the followingset of equations
ȦḂ
AB + ḂĊ

BC + Ċ Ȧ
CA −

3m2
A2 = (8π + 3λ)ρ − λp̄, (46)

B̈
B + C̈

C + ḂĊ
BC −

m2
A2 = λρ − (8π + 3λ)p̄, (47)

C̈
C + Ä

A + Ċ Ȧ
CA −

m2
A2 = λρ − (8π + 3λ)p̄, (48)

Ä
A + B̈

B + ȦḂ
AB −

m2
A2 = λρ − (8π + 3λ)p̄ (49)

2Ȧ
A −

Ḃ
B −

Ċ
C = 0. (50)

After integrating Eq. (50), we get A2 =kBC, where k isan integration constant. Without loss of generality, wetake k=1. The same procedure as for the Bianchi type-Isolution is used here to solve these equations By makinguse of Eq. (50), we get the constraint equations as follows:
p1 = 1, p2 = p−13 = P, q1 = 0, q2 = −q3 = Q.(51)Then, From Eqs. (46)- (51), we readily obtain

A = a, B = aP exp [Q ∫ dt
a3
]
,

C = aP−1 exp [−Q ∫ dt
a3
] (52)

Subsituting the value a(t) given in Eq. (31) into Eqs. (46)-(49) into the equations in (52), we obtain the metricfunctions A, B and C as follows:
A = (t2 + 2α3

) 13
, (53)

B = (t2 + 2α3
) 13

P exp[Q tan−1 ( 32α
) 12

t
]
, (54)

C = (t2 + 2α3
) 13

P−1 exp[−Q tan−1 ( 32α
) 12

t
] (55)

The energy density and bulk viscous pressure for theBianchi type-V space -time model have values give as
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ρ = 19(8π + 4λ)(8π + 2λ)(t2 + 2α3 )2
[(8π + 3λ)(12− 36Q2)t2 − λ(12− t2(12− t2(6 + 34Q2)))− 3m2(8π + 2λ)(t2 + 2α3 ) 13

]
, (56)

p̄ = 19(t2 + 2α3 )2
[ (8π + 3λ)
λ(8π + 2λ)(8π + 4λ) [(8π + 3λ)(12− 36Q)t2 − λ(12− t2(6 + 34Q2))]− (12− 36Q2)t2]

−
[ (8π + 3λ)
λ(8π + 2λ)(8π + 4λ) − 1] m23(t2 + 2α3 ) 23 . (57)

Using the equation of state parameter gives the bulk viscosity coefficient
ζ = 136t(8π + 4λ)(8π + 2λ)(t2 + 2α3 ) ∗ [λ(8π + 3λ)(12− 36Q2)ε + λ(8π + 2λ)(8π + 4λ)(12− 36Q2)
− (8π + 3λ)(12− 36Q2)] + 136λ(8π + 2λ)(8π + 4λ)(t2 + 2α3 )t ∗ [λ(12− t2(6 + 34Q2))− λ2ε∗
(12− t2(6 + 34Q2))]− m212(8π + 2λ)(8π + 4λ)tλ(t2 + 2α3 ) 43 ∗ [ε(8π + 2λ) + (8π + 3λ)] + m212t(t2 + 2α3 ) 43 (58)
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Figure 9. The plot of density ρ verses cosmic time t, Q=1, λ=1,
m=0.5, α=1.

The directional Hubble parameters H1, H2 and H3 aregiven the form:
H1 = 2t3(t2 + 2α3 ) , (59)

H2 = [3Q + 1] 2t3(t2 + 2α3 ) , (60)
H3 = [−3Q + 1] 2t3(t2 + 2α3 ) . (61)

The mean anisotropic parameter Am has the value
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Figure 10. The plot of bulk viscous pressure p̄ verses cosmic time
t,Q=1,λ=1,m=0.5, α=1.

Am = 6 (1 + 72Q2) . (62)
The shear scalar for this model is given by

σ 2 = ( 2Qt
t2 + 2α3

)2
. (63)

Figs. 9–15 depict the variation of ρ, p̄, ζ , ρ+p, H , thetaand σ with time. From the above results it can be observed
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Figure 11. The plot of Bulk viscosity coefficient ζ verses cosmic time
t,Q=1,λ=1,m=0.5, α=1.
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Figure 12. The plot of Energy density condition ρ+p verses cosmic
time t, Q=1λ=1, m=0.5, α=1.
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Figure 13. The plot of Hubble parameter H (for second model)
verses cosmic time t,Q=1, α=1.

that the model has no singularity at t= 0 and the spatialvolume increases as t increases giving the accelerated ex-
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Figure 14. The plot of expansion scalar θ (for model second) verses
cosmic time t,Q=1, α=1.
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Figure 15. The plot of shear scalar σ cosmic time t,Q=1, α=1.

pansion of the universe. In this model, we also note that
σ 2, p̄, p, ρ, and ζ are finite at t= 0 while they vanish forinfinitely large t. However, σ2

θ2 6= 0, which shows that themodel does not approach isotropy for large time t. FromEq. (28) we see that q< 0 for t < √(2α) and q> 0 for t
>
√(2α). It is worth mentioning that Shamir et al. [54]have also presented exact solutions of Bianchi type I andV models in f(R, T ) gravity theory by applying the law ofvariation of Hubble’s parameter proposed by Berman [51],and Berman and Gomide [52]. Different models were usedin that case.

5. Conclusion
In this paper, we have investigated spatially homogeneousand anisotropic cosmological models of Bianchi type I andV, filled with bulk viscous fluid in the framework of f(R,T)gravity theory. The absence of an initial time singularity
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in both models is a significant feature of the results. Thescale factors admit constant values at early times of theuniverse (t→ 0), after which the scale factors increasewith cosmic time without showing any type of initial sin-gularity and finally tend to ∞ as t → ∞. Therefore,the universe represented by both models starts with zerovolume in the initial past and expands exponentially ap-proaching infinite volume.The expansion scalar θ and shear scalar σ are decreas-ing functions of time and ultimately become zero for largetime. The ratio σ
θ tends to a constant as t→ ∞, andtherefore the anisotropy in both models are maintainedthroughout the passage of time. The deceleration param-eter q is negative for t< √(2α) and positive for t > √(2α).Therefore, the cosmological models initially accelerate fora certain period of time and thereafter decelerate.The behavior of the bulk viscosity is illustrated graph-ically in Figs. 4 and 11. The bulk viscosity decreaseswith time to give models which are ultimately inflationary(Padmanabhan and Chitre [55]). The matter pressure andenergy density are monotonically decreasing functions oftime which ultimately tend to zero for large time. Thus, themodels would essentially correspond to an empty universefor large time. The conditions (a) ρ+p > 0 (b) ρ+p > 0are identically satisfied. Models presented in this papermay be useful for understanding the role of bulk viscosityin explaining the decelerating and accelerating behaviorsand to understand structure formation in the universe.
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