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The Freudenthal triple classification of 3-qubit

entanglement and STU black hole entropy

L Borsten

Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, UK

E-mail: leron.borsten@imperial.ic.ac.uk

Abstract. We show that the 3-qubit entanglement classification is naturally encoded by that
elegant algebraic structure, well known from supergravity, the Freudenthal triple system. In
particular, we show that the six entanglement classes: (1) Separable A-B-C, (2a) Biseparable
A-BC, (2b) Biseparable B-CA, (2c) Biseparable C-AB, (3) W and (4) Greenberger-Horne-
Zeilinger correspond respectively to the Freudenthal triple ranks 1, 2a, 2b, 2c, 3, 4. Based on
work done in collaboration with D. Dahanayake, M. J. Duff, H. Ebrahim and W. Rubens.

1. Introduction
The interdisciplinary nature of Quantum Theory and Symmetries 6 made for a truly unique
and rewarding experience - it was certainly a privilege to be counted amongst its participants.
Moreover, as the week went by, it became apparent that not only is this union of disciplines
exciting, it is unequivocally of our time. We are living at the dawn of the (quantum) information
age whilst, hand-in-hand, pushing the boundaries of fundamental particle physics as we begin
in earnest to probe new unchartered energy scales. In such a light it seems nothing but natural
to bring together the frontiers of quantum information science and high energy physics.

While this is a tall order to live up to, the present work, at least in some limited sense, fits the
bill. On the one hand, its primary focus centres on the classification of quantum entanglement
and, in particular, the 3-qubit system. Entanglement lies at the heart of quantum information
theory and its many diverse applications, such as quantum computation, cryptography and
communication. On the other hand, the mathematical structures employed in this analysis are
imported from the seemingly disparate field of M-theory and, in particular, the study of stringy
black holes, which have played, and continue to play, an essential role in understanding the
non-perturbative aspects of quantum gravity.

Indeed, while logically independent, this work has its provenance in the black-hole/qubit
correspondence, reviewed in [1]. In 2006 [2] it was observed that the measure of 3-qubit
entanglement, the so called 3-tangle [3, 4], and the entropy of the STU black hole [5, 6] are
both given by the same mathematical object, Cayley’s hyperdeterminant [7]. Further work
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1, 20, 21, 22] has led to a more complete dictionary
translating a variety of phenomena in one language to those in the other. In fact, the black holes
of the maximally supersymmetric D = 4,N = 8 supergravity have been related to a very special
tripartite entanglement of seven qubits [11, 12]. It is well known that N = 8 supergravity
is intimately related to the exceptional Jordan algebra of 3 × 3 split-octonionic Hermitian
matrices and the Freudenthal triple system (FTS) [23]. Since the STU model may be consistently
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embedded in theD = 4,N = 8 theory it is natural to study the application of the Jordan algebras
and the FTS to both three qubits and STU black holes [8, 24, 11, 12, 13, 14, 17, 18, 1, 25].

Accordingly, in this contribution we briefly review the FTS classification of 3-qubit
entanglement as presented in [26]. Unfortunately, the corresponding treatment of the STU black
hole will only be touched upon due to limited space. We begin by recalling the conventional
classification of 3-qubit entanglement as first obtained by Dür et al. using the paradigm of
stochastic local operations and classical communication (SLOCC) [27]. We then set up the
FTS framework before illustrating how it reproduces the correct entanglement classification.
The entanglement orbits obtained in [26] via the FTS are also presented. We conclude by
summarising the associated analysis of the STU black hole.

2. Conventional three-qubit entanglement classification
The proper qualitative and quantitative characterisation of multipartite entanglement remains
one of the longest standing open problems in quantum information science. While the complete
picture still eludes us, substantial progress has been made using the SLOCC framework, as
first proposed in [28]. Two quantum states of a composite system are considered SLOCC-
equivalent if and only if they may be probabilistically interrelated using purely local operations,
i.e. operations restricted to act on constituent parts independently, supplemented by the classical
communication of any relevant information between said constituents. The essential observation
is that while such operations may be used to establish arbitrary classical correlations, they are
manifestly unable to create genuine quantum correlations. Hence, two SLOCC-equivalent states
possess the same entanglement. For more details see [29, 30] and the references therein.

In [27] it was argued that two states of an n-qubit system are SLOCC-equivalent if and only
if they are related by [SL(2,C)]⊗n, which we will refer to as the SLOCC-equivalence group. It
may be usefully thought of as the “gauge” group of n-qubit entanglement. In particular, the
3-qubit (Alice, Bob and Charlie) state vector is given by,

|ψ〉 = aABC |ABC〉, A,B,C = 0, 1, (1)

where aABC transforms as a (2,2,2) under the 3-qubit SLOCC-equivalence group SLA(2,C)×
SLB(2,C)× SLC(2,C).

Dür et al. [27] used simple arguments involving the ranks and ranges of the reduced density
matrices to show that there are six SLOCC equivalence classes, representing six physically
distinct forms of entanglement: (1) Separable A-B-C, (2a) Biseparable A-BC, (2b) Biseparable
B-CA, (2c) Biseparable C-AB, (3) W and (4) Greenberger-Horne-Zeilinger (GHZ). These six
classes may be distinguished [27] by the three local entropies,

SA = det ρA, SB = det ρB, SC = det ρC , (2)

(ρA = trBC |ψ〉〈ψ| and similarly for ρB and ρC) and Cayley’s hyperdeterminant [7, 4],

Det aABC = −1
2ε

A1A2εA3A4εB1B2εB3B4εC1C3εC3C4aA1B1C1aA2B2C2aA3B3C3aA4B4C4 , (3)

which is the unique [SL(2,C)]3 quartic invariant also displaying a permutation symmetry under
the interchange of Alice, Bob and Charlie. This classification of classes is summarised in Table 1.
It is only the W and GHZ classes that possess genuine tripartite entanglement - “three qubits
can be entangled in two inequivalent ways” [27]. The GHZ class is distinguish by non-vanishing
hyperdeterminant and has the highest order of entanglement in the sense that it maximally
violates the principle of local realism [31, 32]. The non-invertible SLOCC operations (lying
outside the SLOCC-equivalence group) may be used to descend through these classes, creating
the entanglement hierarchy as depicted on the right of Figure 1. Let us now turn our attention
to FTS analysis of three qubits.
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Table 1: The values of the local entropies SA, SB, and SC and the hyperdeterminant Det a are
used to partition three-qubit states into entanglement classes.

Class Representative
Condition

ψ SA SB SC Det a

A-B-C |000〉 6= 0 = 0 = 0 = 0 = 0
A-BC |010〉+ |001〉 6= 0 = 0 6= 0 6= 0 = 0
B-CA |100〉+ |001〉 6= 0 6= 0 = 0 6= 0 = 0
C-AB |010〉+ |100〉 6= 0 6= 0 6= 0 = 0 = 0

W |100〉+ |010〉+ |001〉 6= 0 6= 0 6= 0 6= 0 = 0

GHZ |000〉+
√

Det a|111〉 6= 0 6= 0 6= 0 6= 0 6= 0

Figure 1: Left: Classification of N = 8 black holes according to susy. N denotes the number of
intersecting D-branes in the microscopic picture. Right: The entanglement classification of
3-qubits. The arrows represent the removal of a D-brane or a non-invertible SLOCC operation.
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3. The FTS classification of qubit entanglement
3.1. Cubic Jordan algebras and the Freudenthal triple system
A Jordan algebra J is vector space defined over a ground field F equipped with a bilinear product
satisfying

X ◦ Y = Y ◦X, X2 ◦ (X ◦ Y ) = X ◦ (X2 ◦ Y ), ∀ X,Y ∈ J. (4)

The class of cubic Jordan algebras are constructed as follows. Let V be a vector space equipped
with a cubic norm, i.e. a homogeneous map of degree three, N : V → F s.t. N(λX) = λ3N(X),
∀λ ∈ F, X ∈ V , with trilinear linearisation

N(X,Y, Z) :=
1

6
[N(X+Y +Z)−N(X+Y )−N(X+Z)−N(Y +Z)+N(X)+N(Y )+N(Z)]. (5)

If V further contains a base point N(c) = 1, c ∈ V one may define the following three maps,

Tr : V → F; X 7→ 3N(c, c,X),

S : V × V → F; (X,Y ) 7→ 6N(X,Y, c),

Tr : V × V → F; (X,Y ) 7→ Tr(X) Tr(Y )− S(X,Y ).

(6)

A cubic Jordan algebra J, with multiplicative identity 1 = c, may be derived from any such
vector space if N is Jordan cubic. That is: (i) the trace bilinear form (6) is non-degenerate (ii)
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the quadratic adjoint map, ] : J → J, uniquely defined by Tr(X], Y ) = 3N(X,X, Y ), satisfies
(X])] = N(X)X, ∀X ∈ J. The Jordan product is then given by

X ◦ Y = 1
2

(
X × Y + Tr(X)Y + Tr(Y )X − S(X,Y )1

)
, (7)

where, X × Y is the linearisation of the quadratic adjoint, X × Y = (X + Y )] −X] − Y ].
Given a cubic Jordan algebra J defined over a field F, one is able to construct an FTS by

defining the vector space F(J)(= F),

F(J) = F⊕ F⊕ J⊕ J. (8)

An arbitrary element x ∈ F(J) may be written as a “2× 2 matrix”,

x =

(
α X
Y β

)
where α, β ∈ F and X,Y ∈ J. (9)

The FTS comes equipped with a non-degenerate bilinear antisymmetric quadratic form, a quartic
form and a trilinear triple product [33, 34, 35, 36, 37]:

(i) Quadratic form {x, y}: F× F→ F

{x, y} = αδ − βγ + Tr(X,W )− Tr(Y,Z), where x =

(
α X
Y β

)
, y =

(
γ Z
W δ

)
. (10a)

(ii) Quartic form q : F→ F

q(x) = −2[αβ − Tr(X,Y )]2 − 8[αN(X) + βN(Y )− Tr(X], Y ])]. (10b)

(iii) Triple product T : F× F× F→ F which is uniquely defined by

{T (x, y, w), z} = q(x, y, w, z) (10c)

where q(x, y, w, z) is the full linearisation of q(x) such that q(x, x, x, x) = q(x).

The automorphism group is given by the set of invertible F-linear transformations preserving
the quadratic and quartic forms [33, 34],

Aut(F) = {σ ∈ IsoF(F)|q(σx) = q(x), {σx, σy} = {x, y}, ∀x, y ∈ F}. (11)

The automorphism group corresponds to the U-duality group of a variety 4-dimensional
supergravities (see for example [38, 39] and the references therein). The conventional concept of
matrix rank may be generalised to Freudenthal triple systems in a natural and Aut(F) invariant
manner. The rank of an arbitrary element x ∈ F is uniquely defined by [36, 37]:

Rankx = 1⇔ 3T (x, x, y) + x{x, y}x = 0 ∀y;

Rankx = 2⇔ ∃y s.t. 3T (x, x, y) + x{x, y}x 6= 0, T (x, x, x) = 0;

Rankx = 3⇔ T (x, x, x) 6= 0, q(x) = 0;

Rankx = 4⇔ q(x) 6= 0.

(12)
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3.2. FTS representation of three-qubits
To define the 3-qubit FTS we use the particularly simple cubic Jordan algebra JABC :=
C⊕ C⊕ C with cubic form

N(X) = X1X2X3, where X = (X1, X2, X3) ∈ JABC . (13)

It is not difficult to verify that this defines a bona fide cubic Jordan algebra [40, 26].
We are now in a position to define our 3-qubit FTS,

FABC := F(JABC) = C⊕ C⊕ JABC ⊕ JABC , (14)

as the representation space of three qubits. We identify three qubit wavefunctions |ψ〉, |φ〉 . . .
with elements Ψ,Φ, . . . of the 8-dimensional complex vector space FABC via,

|ψ〉 = aABC |ABC〉 ←→ Ψ =

(
a111 (a001, a010, a100)

(a110, a101, a011) a000

)
, (15)

The powerful machinery of the FTS may now be applied to the 3-qubit system.
First, we note that the automorphism group is the SLOCC-equivalence group, Aut(FABC) =

SLA(2,C)× SLB(2,C)× SLC(2,C). Using (10b) one finds that the quartic norm q(Ψ) is related
to Cayley’s hyperdeterminant by

q(Ψ) = {T (Ψ,Ψ,Ψ),Ψ} = 2 det γA = 2 det γB = 2 det γC = −2 Det aABC , (16)

where, following [41], we have defined the matrix γA by

(γA)A1A2 = εB1B2εC1C2aA1B1C1aA2B2C2 , (17)

and similar for γB,C , which transform respectively as (3,1,1), (1,3,1), (1,1,3) under
[SL(2,C)]3. The γ’s are related to the local entropies of section 2 by

SA = 4
[

tr γB†γB + tr γC†γC
]
, (18)

and its cyclic permutations. The triple product maps a state Ψ, which transforms as a (2,2,2) of
[SL(2,C)]3, to another state T (Ψ,Ψ,Ψ), cubic in the state vector coefficients, also transforming
as a (2,2,2). Explicitly, T (Ψ,Ψ,Ψ) may be written as

T (Ψ,Ψ,Ψ) = TABC |ABC〉, where TABC = εA
′A′′

aA′BC(γA)A′′A. (19)

Note, TABC may also be written using γB,C in the obvious manner. We may now assign an
abstract FTS rank to an arbitrary 3-qubit state Ψ using (12).

3.3. The FTS rank entanglement classes
Rank 1 and the class of separable states: A non-zero state Ψ is rank 1 iff

Υ := 3T (Ψ,Ψ,Φ) + {Ψ,Φ}Ψ = 0, ∀ Φ, (20)

In particular, (20) implies T (Ψ,Ψ,Ψ) = 0, from which we deduce that at most one γ is non-
vanishing since

(γA)A1A2(γC)C1C2 = εB2B1aA1B1C1TA2B2C2 + εB1B2aA2B2C1TA1B1C2 (21)
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Table 2: The entanglement classification of three qubits as according to the FTS rank system.

Class Rank
FTS rank condition

vanishing non-vanishing

Null 0 Ψ −
A-B-C 1 3T (Ψ,Ψ,Φ) + {Ψ,Φ}Ψ Ψ
A-BC 2a T (Ψ,Ψ,Ψ) γA

B-CA 2b T (Ψ,Ψ,Ψ) γB

C-AB 2c T (Ψ,Ψ,Ψ) γC

W 3 q(Ψ) T (Ψ,Ψ,Ψ)
GHZ 4 − q(Ψ)

and similarly for (γB)B1B2(γA)A1A2 and (γC)C1C2(γB)B1B2 . Then, using

−ΥA1B1C1 = εA2A3bA3B1C1(γA)A1A2 + εB2B3bA1B3C1(γB)B1B2 + εC2C3bA1B1C3(γC)C1C2 (22)

where

|φ〉 = bABC |ABC〉 ←→ Φ =

(
b111 (b001, b010, b100)

(b110, b101, b011) b000

)
, (23)

we observe that (20) implies all three γ’s must vanish. Using (18) it is then clear that all three
local entropies vanish.

Conversely, from (18), SA = SB = SC = 0 implies that each of the three γ’s vanish and the
rank 1 condition is satisfied.

Rank 2 and the class of biseparable states: A non-zero state Ψ is rank 2 or less if and only if
T (Ψ,Ψ,Ψ) = 0. To not be rank 1 there must exist some Φ such that 3T (Ψ,Ψ,Φ)+{Ψ,Φ}Ψ 6= 0.
It was shown above that this is equivalent to one and only one non-vanishing γ matrix.

Using (18) it is clear that the choices γA 6= 0 or γB 6= 0 or γC 6= 0 give SA = 0, SB,C 6= 0 or
SB = 0, SC,A 6= 0 or SC = 0, SA,B, 6= 0, respectively. These are precisely the conditions for the
biseparable class A-BC or B-CA or C-AB presented in Table 1.

Conversely, using (18) and the fact that both the local entropies and tr(γ†γ) are positive
semidefinite, we find that all states in the biseparable class are rank 2, the particular subdivision
being given by the corresponding non-zero γ.

Rank 3 and the class of W-states: A non-zero state Ψ is rank 3 if q(Ψ) = −2 Det a = 0 but
T (Ψ,Ψ,Ψ) 6= 0. From (19) all three γ’s are then non-zero but from (16) all have vanishing
determinant. In this case (18) implies that all three local entropies are non-zero but Det a = 0.
So all rank 3 Ψ belong to the W-class.

Conversely, from (18) it is clear that no two γ’s may simultaneously vanish when all three
S’s are non-zero (> 0). T (Ψ,Ψ,Ψ) = 0 implies at least two of the γ’s vanish. Consequently, for
all W-states T (Ψ,Ψ,Ψ) 6= 0 and, therefore, all W-states are rank 3.

Rank 4 and the class of GHZ-states: The rank 4 condition is given by q(Ψ) 6= 0 and, since for
the 3-qubit FTS q(Ψ) = −2 Det a, we immediately see that the set of rank 4 states is equivalent
to the GHZ class of genuine tripartite entanglement as in Table 2. Note, the GHZ class is a one
complex dimensional space of orbits parameterised the quartic norm q.

These results are summarised in Table 2. The stability groups H for each orbit coset
[SL(2,C)]3/H, as obtained using the FTS framework in [26], are also presented in Table 3.
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Table 3: Stability groups and complex dimensions of the 3-qubit entanglement orbits

Class FTS Rank Stabiliser dim Projective stabiliser dim

Separable 1 [SO(2,C)]2 n C3 4 [SO(2,C) n C]3 3
Biseparable 2 SO(3,C)× C 5 SO(3,C)× (SO(2,C) n C) 4

W 3 C2 7 SO(2,C) n C2 6
GHZ 4 [SO(2,C)]2 7 [SO(2,C)]2 7

Table 4: Orbits stabilisers of STU black holes in the real case JSTU = R⊕R⊕R.

Class FTS Rank q(Ψ) Stabiliser dim Black hole Susy

Separable 1 = 0 [SO(1, 1)]2 nR3 4 Small 1/2
Biseparable 2 = 0 SO(2, 1)×R 5 Small 1/2

W 3 = 0 R2 7 Small 1/2
GHZ 4 > 0 [U(1)]2 7 Large 1/2
GHZ 4 > 0 [U(1)]2 7 Large 0
GHZ 4 < 0 [SO(1, 1)]2 7 Large 0

Note, we consider the states as both points in the Hilbert space and rays in its projectivisation.
The 3-qubit separable projective coset is just a direct product of three individual qubit cosets
SL(2,C)/ SO(2,C)nC. The biseparable projective coset is just the direct product of an entangled
2-qubit coset [SL(2,C)]2/SO(3,C) with a 1-qubit coset as one would expect.

4. Black holes
As emphasized in section 1 there is a growing dictionary relating various features of qubit systems
to aspects of black holes in supergravity. Using the dictionary relating the STU black hole to
the 3-qubit system it is clear that this FTS analysis carries through. The results are summarised
in Table 4. We see that the physically distinct forms of 3-qubit entanglement are directly related
to physically distinct STU black hole solutions [8]. The entangled GHZ class corresponds to
“large” black holes with non-vanishing classical horizon, while the remaining classes are related
to “small” black holes with vanishing classical horizon. However, there are differences. The black
hole charges are real valued (with Jordan algebra JSTU = R⊕R⊕R) and really correspond
to the case of real qubits or “rebits’ which are, as noted in [42, 9], qualitatively different from
the complex case. This feature manifests itself in the different real forms appearing in the GHZ
class as in Table 4. For details see [23, 38, 43, 44, 1, 26]. A microscopic interpretation of this
correspondence may be given by embedding the STU model in type II string theory compactified
on a 6-torus [16]. The 3-qubit states are given by the possible wrapping configurations of
intersecting D-branes around the three 2-tori of the compact space, explaining the origin of their
binary nature. In this case the entanglement classes are related to the amount of supersymmetry
preserved by the corresponding intersecting D-brane configuration as in Figure 1. For more
details the interested reader is referred to [16, 1].
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