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Abstract. The even-even N=90 isotones with Z=60-66 are known to undergo a first order� � � � � � � � � � � � � �
phase transition. Such a phase transition in atomic nuclei is characterized by a sudden change� � � � � � � � � � � � � � �
of the shape of the nucleus due to changes in the location of the potential minimum. In these� � � � � � � � � � � � � � � � � �
proceedings we report a measurement of the B4/2 ratio of 148Ce, which will probe the location of� � � � � � � � � � � � � � � � �
the low-Z boundary of the N=90 phase transitional region. The measured B4/2 value is� � � � � � � � � � � � � �
compared to the prediction from the X(5) symmetry within the interacting boson model at the� � � � � � � � � � � � � � �
critical point between the geometrical limits of vibrators and rigid/axial rotors. The� � � � � � � � � � � �
EXILL&FATIMA campaign took place at the high-flux reactor of the Institut Laue Langevin,� � � � � � � � � � � � �
Grenoble, were 235U and 241Pu fission fragments were measured by a hybrid spectrometer� � � � � � � � � � � � �
consisting of high-resolution HPGe and fast LaBr3(Ce)-scintillator detectors. The fast� � � � � � � � � �
LaBr3(Ce) detectors in combination with the generalized centroid difference method allowed� � � � � � � � � � �

http://creativecommons.org/licenses/by/3.0
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lifetime measurements in the picosecond region. Furthermore, this kind of analysis can serve as� � � � � � � � � � � � � �
preparation for the FATIMA experiments at FAIR.�

�

1. Introduction-Motivation�
The even-even N=90 isotones with Z=60-66, present an interesting phenomenon, known as� � � � � � � � � � � �
shape-phase transition. This phase transition in atomic nuclei is characterized by a sudden change of� � � � � � � � � � � � � � �
the shape of the nucleus due to changes in the location of the potential minimum [1]. Both the� � � � � � � � � � � � � � � � � �
characteristic level schemes and transition strengths, or their ratios, are fingerprints of the location of� � � � � � � � � � � � � � �
an isotope within a phase transition region. As such, the R4/2=E(4+

1)/E(2+
1) and B4/2=B(E2;� � � � � � � � � � � � �

4+
1 2+

1)/B(E2; 2+
1 0+

1) values are sensitive benchmarks for this type of structure of a given nucleus.�
In F. Iachello’s Physical Review Letter [4] a schematic representation of the lowest portion of the� � � � � � � � � � � � � � � �

spectrum of X(5) symmetry is provided, which can be compared to experimental data. For 152Sm and� � � � � � � � � � � � � � � �
150Nd this is presented in R.F. Casten’s Physical Review Letter [1] and reveals the X(5) flavor of the� � � � � � � � � � � � � � � � � �
nuclei. This X(5) symmetry describes nuclei that are located on the critical point between spherical,� � � � � � � � � � � � � � �
U(5) and axially deformed shapes, SU(3). Using the adopted experimental data, the discussed phase� � � � � � � � � � � � � �
transition can be observed in a R4/2 plot of these isotopes over the neutron number (figure 1). The sharp� � � � � � � � � � � � � � � � � � �
transition in the gadolinium and samarium isotopic chains [1, 2, 3] from spherical nuclei (R4/2=2-2.4)� � � � � � � � � � � � � � �
to deformed ones (R4/2=3-3.33) around N=90 is less pronounced in the neodymium and cerium chains.� � � � � � � � � � � � � � �
The latter chains undergo a transitional R4/2 ratio from spherical to deformed nuclei (R4/2=2.93 and� � � � � � � � � � � � � � �
2.86 for neodymium and cerium respectively) at N=90 and the transition from N=88 to N=90 is� � � � � � � � � � � � � � � �
smooth. The B4/2 ratio can give additional information on the shape of the nucleus (B4/2=2 for spherical� � � � � � � � � � � � � � � � �
symmetry, B4/2=1.4 for �-rigid and �-soft deformed). Figure 2 presents the B4/2 ratio for gadolinium,� � � � � � � � � � � � � � �
samarium and neodymium isotopes as a function of the neutron number. The adopted data were used.� � � � � � � � � � � � � � � �
While the transition from N=88 to N=90 from near spherical symmetry to quadrupole deformed� � � � � � � � � � � � � �
shapes is sharp for gadolinium and samarium it is less so for neodymium.�

As indicated in figure 3, the N=90 isotones lie near the X(5) prediction [4]. In the case of 148Ce,� � � � � � � � � � � � � � � � � � �
located at the low-Z boundary of this phase transition, the R4/2 ratio (2.86) matches the X(5) prediction� � � � � � � � � � � � � � � � �
of 2.91 [4]. The P-factor, introduced in [5], defined in terms of number of valence protons and� � � � � � � � � � � � � � � � �
neutrons (Np,Nn) by: P=(Np·Nn)/(Np+Nn), reflects the strength of the valance p-n interaction� � � � � � � � � � � �
(numerator) and the strength of the pairing interaction (denominator). As noted in [2], a typical p-n� � � � � � � � � � � � � � � �
interaction in heavy nuclei is ~ 200 keV and the pairing interaction is of the order of 1 MeV.� � � � � � � � � � � � � � � � � � �
Empirically it is observed that the p-n interaction begins to dominate for P ~ 4 - 5, which provides a� � � � � � � � � � � � � � � � � � � �
pathfinder to possible X(5) candidates. For 148Ce, with 8 valence protons and 8 valence neutrons, P=4,� � � � � � � � � � � � � � � �
making this isotope a candidate for an X(5)-like structure. One signature for such an X(5) symmetry,� � � � � � � � � � � � � � � �
as mentioned above, would be the B4/2 ratio, for 148Ce that has not been measured to date.�
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Figure 1. R4/2 ratio over neutron number. The        

sharp transition of Gd and Sm from spherical        

nuclei (R4/2=2) to deformed ones (R4/2=3.33) is       

not present in Nd and Ce chains. Data taken         

from [6]. 

 Figure 2. B4/2 ratios for Gd, Sm and Nd         

isotopes as a function of neutron number.       

The transition from N=88 to N=90 from       

near spherical symmetry to �-rigid and      

�-soft symmetry is sharp for Gd and Sm but         

not for Nd. Data taken from [6]. 

 
 

 

 
Figure 3. The B4/2 ratio for N=90 isotones. All         

isotopes lie near the X(5) prediction. Data taken from         

[6]. 

�

2. Experiment�
The EXILL&FATIMA campaign provided data for neutron-rich species in the vicinity of N=90. Using� � � � � � � � � � � � � �
cold-neutrons fission of 235U and 241Pu was induced at the Institut Laue-Langevin (ILL) of Grenoble,� � � � � � � � � � � � � � �
France, and the prompt �-rays coming from the nuclei in interest were detected using a hybrid array of� � � � � � � � � � � � � � � � � �
HPGe and Ce-doped LaBr3 detectors, the EXILL&FATIMA spectrometer. The EXILL array was� � � � � � � � � � � �
composed of 8 BGO-shielded EXOGAM Clover detectors, each one consisting of 4 HPGe crystals,� � � � � � � � � � � � � �
with a target-to-detector distance of 14.5 cm, placed at 90° relative to the beam direction, in ring� � � � � � � � � � � � � � � � �
arrangement. FATIMA consisted of 16 (5% Ce-doped) LaBr3 detectors in two rings, at 40° and 140°� � � � � � � � � � � � � � � �
relative to the beam direction. The efficiency of the LaBr3 detectors was crucial for the experiment, so� � � � � � � � � � � � � � � � �
they were placed as close as possible to the target, resulting in a target-to-detector distance of 8.5 cm,� � � � � � � � � � � � � � � � � �
almost touching each other. The neutron flux at the target position was approximately 9·107 n/cm2·s.� � � � � � � � � � � � � � �
More details about the experimental setup can be found in [7].�
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All the fission fragments were stopped by the thick backing of the targets within ~1ps. More than� � � � � � � � � � � � � � � � �
100 different isotopes were produced from the fission, thus multiple coincidences were utilized to� � � � � � � � � � � � � �
separate an isotope of interest. Ge-LaBr3-LaBr3 coincidences were used to gate on the cascade of� � � � � � � � � � � � � � �
interest. The HPGe high-resolution detectors of the EXILL array allowed a precise energy gate to be� � � � � � � � � � � � � � � �
set on a �-ray cascade of interest and, hence, the nuclei of interest. The excellent timing performance� � � � � � � � � � � � � � � � �
of the LaBr3 detectors in combination with the generalized centroid difference method allowed to� � � � � � � � � � � � � �
measure lifetimes down to the ps range [8].�

In this work the investigation at 148Ce is presented.�

3. Fast-timing measurements�
As mentioned in the previous section the hybrid nature of the detector array allows both clean energy� � � � � � � � � � � � � � � � �
gates (using the HPGe detectors of EXILL) and fast-timing measurements (using the the fast LaBr3� � � � � � � � � � � � � � �
detectors of FATIMA). The Ge selection gates were placed in the same cascade as the level of interest� � � � � � � � � � � � � � � � � �
but not on its feeder or decay gammas. The FATIMA detectors were used to measure the lifetimes of� � � � � � � � � � � � � � � � � �
these levels. The LaBr3 detectors were connected to the TACs in such a way that it allowed to know� � � � � � � � � � � � � � � � � � �
which of the two prompt gammas (decay or feeder) was the one providing the start or stop signal. In� � � � � � � � � � � � � � � � � � �
total 15 TACs were used (N-1, with N the number of LaBr3 detectors) in such a way that TACi was� � � � � � � � � � � � � � � � � � � �
able to be started by detector i and to be stopped by detector j, with j>i. A detailed description of the� � � � � � � � � � � � � � � � � � � � �
electronics setup used in the experiment can be found in Ref. [7].��

Two time-difference spectra can be produced depending on whether the decay gamma ray is� � � � � � � � � � � � � �
providing the start (start spectrum) or stop (stop spectrum) signal (whether the feeder gamma ray is� � � � � � � � � � � � � � � �
providing the stop or start signal respectively). In the start spectrum the centroid (Cstart) is shifted, by� � � � � � � � � � � � � � � � �
one lifetime, on the left direction, in the stop spectrum the centroid (Cstop) is shifted on the right� � � � � � � � � � � � � � � � � �
direction. In figure 4 (adapted from [8]), a simpler case of this experimental setup together with the� � � � � � � � � � � � � � � � �
two corresponding time-distribution spectra are presented. The time spectra presented corresponds to a� � � � � � � � � � � � �
short lifetime in the ps range, this is the reason for the two prompt-shaped time distributions. The� � � � � � � � � � � � � � � � �
lifetime derives from the centroid difference (ΔC), see section 3.2. In a case of a long-lived state, a� � � � � � � � � � � � � � � � � �
slope appears on one side of the spectrum, see section 3.1, and the slope corresponds to the lifetime.�
�

 
 

Figure 4. A simpler case of this experimental setup of just two detectors and the two  � � � � � � � � � � � � � �
time-distribution spectra are presented. Two time spectra can be produced depending� � � � � � � � � � �
on whether the decay gamma is providing the start (with the corresponding centroid,� � � � � � � � � � � � �
Cstart) or stop (with the corresponding centroid, Cstop) signal (whether the� � � � � � � � � � �
feeder-gamma is providing the stop or start signal respectively).�

�

�
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3.1 2+
1 lifetime using the slope method 

For the 2+
1 state, the slope method [9,10] was used due to the long lifetime in the order of ns. A Ge� � � � � � � � � � � � � � � � � � � � � �

energy gate, on the decay gamma ray of the 6+
1 4+

1 transition, has been used for the selection of the� � � � � � � � � � � � � � � � � � �
cascade of interest. The start and the stop signals to the TACs were given by the feeder and the decay� � � � � � � � � � � � � � � � � � � �
gamma of the 2+

1 state and detected with FATIMA. After the Ge gate was performed, the feeder� � � � � � � � � � � � � � � � �
gamma ray (4+

1 2+
1 transition) was set as the stop signal and the decay gamma ray (2+

1 0+
1� � � � � � � � � � � � � � � �

transition) as start signal. Two background cuts on the right and left of the feeder gamma ray� � � � � � � � � � � � � � � � �
performed for Compton and random background subtraction from the time-difference spectrum. In� � � � � � � � � � � �
figure 5 the resulting time-difference spectrum is shown. A clear slope was observed, corresponding to� � � � � � � � � � � � � � �
the lifetime of the state. The lifetime measured [11] was in agreement with the literature value [12],� � � � � � � � � � � � � � � � �
giving confidence in our method of handling the Compton and random background.�

 

 

Figure 5. Start time spectrum, after performing the two background cuts. A clear slope can be                

seen. The slope corresponded to the lifetime of the state. The lifetime measured tagreed with the                

literature value [12]. The Ge-gated LaBr3 (green) and Ge (blue) spectra can be seen on the top                 

right. On the left side the level scheme is presented and the gates performed are indicated. 

 
3.2 4+

1 lifetime using the Generalized Centroid Difference method 
For the 4+

1 state the generalized centroid shift method [13] has been used for the determination of the� � � � � � � � � � � � � � � � � �
lifetime (in the ps range). A Ge energy gate was set on the decay gamma of the 2+

1 state to select the� � � � � � � � � � � � � � � � � � � � � �
cascade of interest. The start and the stop spectra were produced by gating the decay gamma ray on the� � � � � � � � � � � � � � � � � � �
start and stop signal respectively (gatting the feeder gamma ray on the stop and start signal� � � � � � � � � � � � � � � �
respectively). From the centroid difference (ΔC), of the centroids of the two time-difference spectra� � � � � � � � � � � � � �
produced (see figure 7), the lifetime (�) of the state could be measured. From using 

� = ( ΔC – PRD ) / 2  ,�

where the prompt response difference (PRD=PRD(Efeeder-Edecay)=PRF(Efeeder)-PRF(Edecay)) is reflecting� � � � � � � �
the different time that the setup requires to record gammas with different energies (the so-called time� � � � � � � � � � � � � � � �
walk). The prompt response function (PRF) was calibrated by measuring known cascades from a 152Eu� � � � � � � � � � � � � � �
source and the 48Ti(n, )49Ti reaction. In figure 6 the produced PRF can been seen, adjusted for the� � � � � � � � � � � � � � � � �
reference energy of 342 keV. A precise description of the PRD calibration procedure is given in [14].� � � � � � � � � � � � � � � � �
The Compton contribution to the time spectrum has been eliminated by performing two background� � � � � � � � � � � � � �
cuts on the right and the left of the feeding gamma peak and subtract the mean time spectrum from the� � � � � � � � � � � � � � � � � � � �
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time spectrum produced by cutting on the peak. The two time-spectra (start and stop) are shown in� � � � � � � � � � � � � � � � �
figure 7, together with the centroids.��

From the measured lifetimes the B(E2; 4+
1 2+

1) and B(E2; 2+
1 0+

1) were calculated to be 140 (7)� � � � � � � � � � � � � � � �
W.u. and 88 (3) W.u. [11] respectively, the B4/2 ratio was calculated to be 1.6 (1), very near to the X(5)� � � � � � � � � � � � � � � � � � � � �
prediction (figure 8). In Ref. [15], an early state of the analysis was presented; quadruple coincidences� � � � � � � � � � � � � � � �
have been used (Ge-Ge-LaBr3-LaBr3) for the measurement of the 4+

1 lifetime. Beside the low statistics� � � � � � � � � � � � � � �
on the quadruple-gated case, which resulted in a large uncertainty, the B4/2 ratios detected through the� � � � � � � � � � � � � � � �
two methods (triple and quadruple gates) are in agreement, within the errors.�
�

 

 

 
Figure 6. The prompt response function (PRF), adjusted for the reference energy of  � � � � � � � � � � �
342 keV, has been calibrated by measuring known cascades from a 152Eu source and� � � � � � � � � � � � � �
the 48Ti(n, )49Ti reaction. 

 
 

Figure 7. The two time-spectrum (start and stop), the centroids are also pictured. By  � � � � � � � � � � � �
measuring the lifetime the B4/2 ratio was calculated. Also the Ge-gated LaBr3 (green)� � � � � � � �      

and Ge (blue) spectra can be seen on the top right. On the left side the level scheme                  

and and the gates selected are indicated. 

4. B4/2 ratio – X(5) character of 148Ce�
By measuring the 4+

1 lifetime for first time, the the B4/2 ratio was obtained, after correction for internal� � � � � � � � � � � � � � � � � �
conversion. The calculated B4/2 ratio is very near to the X(5) symmetry prediction for nuclei on the� � � � � � � � � � � � � � � � �
transition phase between spherical, U(5) and axially deformed shapes, SU(3). Plotting the energy� � � � � � � � � � � � �
levels emanating from X(5) and the experimentally measured in 148Ce side by side (figure 8, left), one� � � � � � � � � � � � � � � � �
can perceive the good agreement between them.�

148Ce seems to follow the N=90 isotones’ picture of the X(5) symmetry. In figure 8 one can witness� � � � � � � � � � � � � � � � � �
the trend over the isotones. Together, all the above can designate 148Ce as a good X(5) candidate.� � � � � � � � � � � � � � � � �
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�
�
�
�
�
�

Further indicators for the X(5) symmetry would be additional transition strengths’ ratios, that were not� � � � � � � � � � � � � � �
obtained from the experimental data due to low statistics on higher excited levels. 

 

 
 

Figure 8. B4/2 ratio of N=90 isotones. 148Ce seems to follow the X(5) trend of               

the rest isotopes. Data, except for 148Ce, taken from [8]. On the left the              

comparison between the X(5) prediction for the energy levels (normalized to           

the 2+
1 state) and the experimental values is presented. 
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