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Abstract. In these lectures4 quantum physics in noncommutative spacetime is developed. It
is based on the work of Doplicher et al. which allows for time-space noncommutativity. In
the context of noncommutative quantum mechanics, some important points are explored, such
as the formal construction of the theory, symmetries, causality, simultaneity and observables.
The dynamics generated by a noncommutative Schrödinger equation is studied. The theory
is further extended to certain noncommutative versions of the cylinder, R

3 and R × S3. In
all these models, only discrete time translations are possible. One striking consequence of
quantised time translations is that even though a time independent Hamiltonian is an observable,
in scattering processes, it is conserved only modulo 2π/θ, where θ is the noncommutative
parameter. Scattering theory is formulated and an approach to quantum field theory is outlined.

1. Introduction
Considerations based on quantum gravity and black hole physics led to the suggestion several
years ago [1] that spacetime commutativity may be lost at the smallest scale, the commutators
of time and space coordinates (x̂0 and x̂i) having the form

[x̂µ, x̂ν ] = iθµνI , (1)

with θµν being constants of the order of the square of Planck length. String theory also
incorporates relations like (1).

Commutators such as (1) actually have a much more ancient origin. They seem to have first
appeared in a letter from Heisenberg to Peierls in 1930 [2]. Spacetime noncommutativity was
later revived by Snyder [3] who sought to use it to regularize quantum field theories (qft’s), and
then by Yang [4]. Madore [5] also attributes similar ideas to Dirac. Among the early works in
noncommutative spacetime is that of Kempf et al. [6]. A subsequent related work is that of
Lizzi et al. [7].

Conventional studies of (1) assume that θ0i = 0 so that the time coordinate commutes with
the rest. There are even claims that qft’s based on (1) are nonunitary if θ0i �= 0.

4 Lectures delivered by A P Balachandran.

Institute of Physics Publishing Journal of Physics: Conference Series 24 (2005) 179–202
doi:10.1088/1742-6596/24/1/022 VI Mexican School on Gravitation and Mathematical Physics

179© 2005 IOP Publishing Ltd



In contrast, in a series of fundamental papers, Doplicher et al. [1] have studied (1) in complete
generality, without assuming that θ0i �= 0 and developed unitary qft’s which are ultraviolet finite
to all orders.

These lectures are based on the work of Doplicher et al. Using their ideas, we
systematically develop unitary quantum mechanics based on (1). It indicates where to look for
phenomenological consequences of (1) and also easily leads to the considerations of Doplicher et
al. [1] on qft’s. References to these lectures are [23], [24], [25] and [26].

The relation (1) will be treated with θ being constant. Our focus is on time and its
noncommutativity with spatial coordinates. For this purpose, it is enough to examine (1) on a
(1 + 1)-spacetime. We assume with no loss of generality that θ > 0, as we can change its sign
by flipping x̂1 to −x̂1. We denote by Aθ

(
R

2
)

the unital algebra generated by x̂0, x̂1 and I.

2. Qualitative Remarks
2.1. Symmetries
If a group of transformations cannot be implemented on the algebra Aθ

(
R

2
)

generated by x̂µ

with relation (1), then it is not likely to be a symmetry of any physical system based on (1) [25].
So let us check what are the automorphisms of (1).

2.1.1. Translations
First we readily see that spacetime translations U(�a), �a = (a0, a1), aµ ∈ R, are automorphisms
of Aθ

(
R

2
)
: with

U(�a)x̂µ = x̂µ + aµ , (2)

we see that
[U(�a)x̂µ,U(�a)x̂ν ] = iθεµν . (3)

The existence of these automorphisms allows the possibility of energy-momentum conservation.
The time-translation automorphism

U(τ) := U ((τ, 0)) (4)

is of particular importance. Without it, we cannot formulate conventional quantum physics.
The infinitesimal generators of U(�a) can be defined by writing

U(�a) = e−ia0P̂0+ia1P̂1 . (5)

Then we have

P̂0 = −1
θ
ad x̂1 , P̂1 = −1

θ
ad x̂0 , ad x̂µâ ≡ [x̂µ, â] , â ∈ Aθ

(
R

2
)

. (6)

The relations (6) show that the automorphisms U(�a) are inner.

2.1.2. The Lorentz Group
It is a special feature of two dimensions that the (2 + 1) connected Lorentz group is an inner
automorphism group of (1). The above group is the two-dimensional projective symplectic
group, the symplectic group quotiented by its center Z2. Its generators are adĴ3 and adK̂a,
where

Ĵ3 =
1
4θ

(
x̂2

0 + x̂2
1

)
, K̂1 =

1
4θ

(x̂0x̂1 + x̂1x̂0) , K̂2 =
1
4θ

(
x̂2

0 − x̂2
1

)
, (7)

with the ad notation explained by (6). Although this group generates inner automorphisms, it
cannot be implemented on the quantum Hilbert space because, as we shall later see, x̂0 is not
an operator on the physical Hilbert space. The algebra Aθ

(
R

2
)

is a *-algebra with x̂∗
µ = x̂µ.
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2.1.3. P, T, C Symmetries
There are certain important transformations which are automorphisms for θ = 0, but not for
θ �= 0. One such is parity P :

P : x̂0 → x̂0 , x̂1 → −x̂1 , I → I . (8)

We want it furthermore to be linear. But that does not preserve (1) if θ �= 0:

P : [x̂0, x̂1] → − [x̂0, x̂1] , iθI → iθI . (9)

In contrast, time-reversal T ,

T : x̂0 → −x̂0 , x̂1 → x̂1 (10)

is anti-linear T : iθI → −iθI, so that it is an automorphism of Aθ

(
R

2
)
.

Hence any theory based on (1) violates P and PT . Superficially there seems to be no problem
in writing charge conjugation invariant models based on (1). For such models, CPT will also
fail to be a symmetry [8].

The symmetries P and PT are automorphisms of the algebra which is the direct sum of
Aθ

(
R

2
)

and A−θ

(
R

2
)
. In that case, spacetime will have two leaves. The Doplicher et al.

models are based on such algebras.

2.1.4. Further Automorphisms
As fully discussed in [9, 10], infinitesimal transformations x̂µ → x̂µ + δx̂µ of the form
δx̂µ = f̂µ(x̂0, x̂1) generate automorphisms of Aθ

(
R

2
)

if the condition

[f̂µ, x̂ν ] + [x̂µ, f̂ν ] = 0 (11)

is satisfied. The associated group of transformations exhausts the noncommutative version of the
area-preserving transformations (in two dimensions and connected to the identity), and includes
the Lorentz group as a particular case.

2.2. Causality
It is impossible to localize (the representation of) “coordinate” time x̂0 in Aθ

(
R

2
)

sharply. Any
state will have a spread in the spectrum of x̂0. This leads to failure of causality as explained by
Chaichian et al. [11].

The following important point was emphasised to us by Doplicher [12]. In quantum
mechanics, if p̂ is momentum, exp(iξp̂) is spatial translation by amount ξ. This ξ is not the
eigenvalue of the position operator x̂. In the same way, the amount τ of time translation in (4)
is not “coordinate time”, the eigenvalue of x̂0 [1]. It makes sense to talk about a state and its
translate by U(τ). For θ = 0, it is possible to identify coordinate time with τ : the former is just
a parameter we need for labelling time-slices of spacetime and increasing with τ . But for θ �= 0,
x̂0 is an operator not commuting with x̂1, and cannot be interchanged with τ .

Concepts like duration of an experiment for θ = 0 [13] are expressed using U(τ). They carry
over to the noncommutative case too.

2.3. The Spin-Statistics Connection
With loss of causality, one loses local qft’s as well. As the best proofs of the spin-statistics
connection require locality [14], we can anticipate the breakdown of this connection as well
when Aθ

(
R

2
)

is generalised to (3 + 1) dimensions. Precision experiments to test the spin-
statistics connection are possible [15]. If signals for this violation due to θ �= 0 can be derived,
good phenomenological bounds on |θ| should be possible.
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3. Representation Theory
Observables, states and dynamics of quantum theory are to be based on the algebra Aθ

(
R

2
)

defined by (1). The formalism for their construction, using the methods of the GNS approach
[16] in the commutative and non-commutative contexts, will be explored in the following.

Now to each α̂ ∈ Aθ

(
R

2
)
, we can canonically associate its left and right regular

representations α̂L and α̂R,

α̂Lβ̂ = α̂β̂ , α̂Rβ̂ = β̂α̂ , β̂ ∈ Aθ

(
R

2
)

, (12)

with α̂Lβ̂L =
(
α̂β̂

)L
and α̂Rβ̂R =

(
β̂α̂

)R
. The carrier space of this representation is Aθ

(
R

2
)

itself.
But such representations are not enough for quantum physics. An “inner” product on Aθ

(
R

2
)

is needed for an eventual construction of a Hilbert space.
Doplicher et al. get this inner product using positive maps. Consider a map χ : Aθ

(
R

2
)
→ C

with the usual properties of C-linearity and preservation of ∗: χ (α̂∗) = χ(α̂) (bar meaning
complex conjugation). It is a positive map if χ (α̂∗α̂) ≥ 0.

Given such a map, we can set
〈
α̂, β̂

〉
= χ

(
α̂∗β̂

)
. It will be a scalar product if χ (α̂∗α) = 0

implies α̂ = 0. If that is not the case, it is necessary to eliminate nonzero vectors of zero norm
(null vectors).

We illustrate these ideas first in the context of the commutative case, when θ = 0. Then
we generalise these ideas to (1) and discuss a positive map. There are actually several possible
maps at our disposal, but they lead to equivalent physics [23].

3.1. The Commutative Case
3.1.1. The Positive Map
The algebra C in the commutative case is A0

(
R

2
)

= C∞ (R × R), the product being point-wise
multiplication, and ∗ being complex conjugation. If ψ ∈ C, then ψ(x0, x1) ∈ C, where (x0, x1)
are coordinates of R

2.
There is no distinction now between α̂L and α̂R: α̂L = α̂R.
There is actually a family of positive maps χt of interest obtained by integrating ψ in x1 at

“time” t:
χt(ψ) =

∫
dx1 ψ(t, x1) , χt(ψ∗ψ) ≥ 0 . (13)

This defines a family of spaces Ct with a positive-definite sesquilinear form (an “inner product”)
(. , .)t:

(ψ, ϕ)t =
∫

dx1 ψ∗(t, x1)ϕ(t, x1) . (14)

(We associate χt with C to get Ct.)

3.1.2. The Null Space N 0
t

Every function α̂ which vanishes at time t is a two-sided ideal Iθ=0
t := I0

t of C. As elements of
Ct , they become null vectors N 0

t in the inner product (14). (We associate χt also to I0
t to get

N 0
t .) Thus as in the GNS construction [16], we can quotient by these vectors and work with

Ct/N 0
t . For elements ψ + N 0

t and χ + N 0
t in Ct/N 0

t , the scalar product is(
ψ + N 0

t , χ + N 0
t

)
t
= (ψ, χ)t . (15)
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There are no non-trivial vectors of zero norm now. The completion Ct/N 0
t of Ct/N 0

t in this
scalar product gives a Hilbert space Ĥ0

t . We have also that Ct/I0
t acts on it faithfully, preserving

its ∗, (
ψ + I0

t

)∗ = ψ∗ +
(
I0

t

)∗ = ψ∗ + I0
t . (16)

In the expression above, S∗ is the set obtained from S by taking the complex conjugate of each
element. Hence

(
I0

t

)∗ = I0
t .

3.1.3. The Quantum Mechanical Hilbert Space H0
t

The quantum mechanical Hilbert space however is not Ĥ0
t . It is constructed in a different way,

starting from a subspace H̃0,t ⊂ Ct which contains only {0} as the null vector: H̃0,t ∩N 0
t = {0}.

Then χt is a good scalar product on H̃0,t and the quantum mechanical Hilbert space is given by
H0

t = H̃0,t, the completion of H̃0,t.
The subspace H̃0,t depends on the Hamiltonian H and is chosen as follows. Suppose first that

H is a time-independent Hamiltonian on commutative spacetime, self-adjoint on the standard
quantum mechanical Hilbert space L2 (R). It acts on Ct and obeys (ψ, Hχ)t = (Hψ, χ)t.

We now pick the subspace H̃0,t of Ct by requiring that vectors in Ct obey the time-dependent
Schrödinger equation:

H̃0,t = {ψ ∈ Ct : (i∂x0 − H) ψ(x0, x1) = 0} . (17)

The operator i∂x0 is not “hermitian” on all vectors of Ct:

(ψ, i∂x0χ)t �= (i∂x0ψ, χ)t for generic ψ, χ ∈ Ct , (18)

but on H̃0,t, it equals H and does fulfill this property:

(ψ, i∂x0χ)t = (i∂x0ψ, χ)t for generic ψ, χ ∈ H̃0,t . (19)

Since [i∂x0 , H] = 0, both i∂x0 and H leave the subspace H̃0,t invariant:

i∂x0H̃0,t = HH̃0,t ⊆ H̃0,t . (20)

We see also that since

ψ(x0 + τ, x1) =
(
e−iτ(i∂x0)ψ

)
(x0, x1) =

(
e−iτHψ

)
(x0, x1) , (21)

time evolution preserves the norm of ψ ∈ H̃0,t. Therefore if it vanishes at x0 = t, it vanishes
identically and is the zero element of H̃0,t: the only null vector in H̃0,t is 0: N 0

t ∩ H̃0,t = {0}.
That means that χt gives a true scalar product on H̃0,t. The completion of H̃0,t is the quantum
Hilbert space H0

t .
We can find no convenient inclusion of H0

t in Ĥ0
t . The reason is that N 0

t is not in the kernel
of (i∂x0 − H), only its zero vector is.

Elements of H̃0,t are very conventional. Let x̂µ be coordinate functions (x̂µ(x0, x1) = xµ) so
that i∂x0 x̂µ = iδ0µ, and let ψ0 be a constant function of x0 so that i∂x0ψ0 = 0. Then

ψ = e−ix̂0Hψ0 ∈ H̃0,t . (22)

Under time evolution by amount τ , ψ becomes

e−iτHψ = e−i(x̂0+τ)Hψ0 ∈ H̃0,t . (23)

The conceptual difference between coordinate time x̂0 and amount of time translation τ is
apparent here. As one learns from Doplicher et al. [1], this difference cannot be ignored with
spacetime noncommutativity.

As ψ0 is constant in x0, its values may be written as ψ0(x1).

183



3.1.4. On Observables
An observable K̂ has to respect the Schrödinger constraint and leave H̃0,t (and hence H0

t )
invariant. This means that [

i∂x0 − H, K̂
]

= 0 . (24)

Let L̂ be any operator with no explicit time dependence so that L̂ is a function of x̂1 and
momentum. Then

K̂ = e−ix̂0H L̂e+ix̂0H (25)

is an observable. We have also that K̂ acts on ψ in a familiar manner:

K̂ψ =
(
L̂ψ0

)
e−ix̂0H . (26)

Under time translation, x̂0 in K̂ shifts to x̂0 + τ as it should:

e−iτHK̂e+iτH = e−i(x̂0+τ)HL̂e+i(x̂0+τ)H . (27)

Response under time-translations is dynamics, it gives time-evolution. Just as in
the conventional approach, here and elsewhere we should time-evolve either vector states
(Schrödinger representation) or observables (Heisenberg representation). One can also formulate
the interaction representation.

A final important point is the following. The observables have the expected reality properties.
In particular, C is a ∗-algebra, with star being complex conjugation, denoted here by a bar. So
are the functions L̂ on R

2 which are constant in x0, that is, functions of position only. If K̂ is
its image on H0

t , as in (25), then L̂ has image K̂†: we have a ∗-representation of these functions.
Momentum too is a self-adjoint operator on H0

t .

3.1.5. Time-dependent H
We refer to [23] for the treatment of time-dependent H.

3.1.6. Is Time an Observable?
What we have described above leads to conventional physics. Just as in the latter, here too, x̂0

is not an observable as it does not commute with i∂x0 − H:

[x̂0, i∂x0 − H] = −iI . (28)

Transformations with exp (−ix̂0H) or U does not affect x̂0. So we cannot construct an observable
therefrom as we did to get K̂ from L̂.

3.1.7. On the Time-dependence of H0
t

In conventional quantum physics, the Hilbert space has no time-dependence, whereas H0
t has a

label t. This is puzzling.
But the puzzle is easy to resolve: H0

t is independent of t. Thus the solutions ψ of the
Schrödinger constraint do not depend on t and are elements of every H0

t . Their scalar products
too are independent of t because of the unitarity of H. There is thus only one Hilbert space
which we call H0 (0 standing for the value of θ). We also denote H̃0,t by H̃0 henceforth. Further
the observables have no explicit t-dependence and act on H0 as in standard quantum theory.
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3.2. The Noncommutative Case
The above discussion shows that for quantum theory, what we need are: (1) a suitable inner
product on Aθ

(
R

2
)
; (2) a Schrödinger constraint on Aθ

(
R

2
)
; and (3) a Hamiltonian Ĥ and

observables which act on the constrained subspace of Aθ

(
R

2
)
. We also require that (1) is

compatible with the self-adjointness of Ĥ and classically real observables.
We now consider these items one by one.

3.2.1. The Inner Product
There are several suitable inner products at first sight. But it can be argued that they are all
equivalent [23]. So we work with just the one described below.

This inner product is based on symbol calculus. If α̂ ∈ Aθ

(
R

2
)
, we write it as

α̂ =
∫

d2k α̃(k)eik1x̂1eik0x̂0 , (29)

and associate the symbol αS with α̂ where

αS(x0, x1) =
∫

d2k α̃(k)eik1x1eik0x0 . (30)

The symbol is a function on R
2. It is not the Moyal symbol. For the latter, the exponentials in

(29) must be written as exp (ik1x̂1 + ik0x̂0).
Using this symbol, we can define a positive map St by

St (α̂) =
∫

dx1 αS(t, x1) . (31)

Properties of St are similar to χt. In particular it gives the inner product (., .)t, where(
α̂, β̂

)
t = St

(
α̂∗β̂

)
=

∫
dx1 α∗

S(t, x1)βS(t, x1) . (32)

This inner product has null vectors N θ
t : α̂ ∈ N θ

t if αS(t, .) = 0. But that result is not important
for what follows as the Hilbert space is obtained only after constraining the vector states by the
noncommutative Schrödinger equation.

3.2.2. The Schrödinger Constraint
The noncommutative analogue “i ∂

∂x0
” of the corresponding commutative operator is

i
∂

∂x0
≡ P̂0 = −1

θ
ad x̂1 , (33)

since
−1

θ
ad x̂1x̂λ = iδλ0I . (34)

If the Hamiltonian Ĥ is time-independent,[
i∂x0 , Ĥ

]
= 0 , (35)

it depends on the momentum P̂1 in (6) and x̂L
1 , and we can write it as

Ĥ = Ĥ
(
x̂L

1 , P̂1

)
. (36)
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It can depend on x̂R
1 as well if we rely just on (35). But since x̂R

1 = −ad x̂1 + x̂L
1 , that means Ĥ

has dependence also on i∂x0 and we can write

Ĥ = Ĥ
(
x̂L

1 , P̂1, i∂x0

)
. (37)

This generalisation however seems unwarranted: there is never such dependence of H on i∂x0 for
θ = 0, and we will generally obtain Ĥ from H in a manner that does not induce this dependence.

If Ĥ has time-dependence and (35) is not correct, it will have x̂L
0 , x̂R

0 or both in its arguments.
But x̂L

0 = θP̂1 + x̂R
1 , so in the time-dependent case we write

Ĥ = Ĥ
(
x̂R

0 , x̂L
1 , P̂1

)
, (38)

ignoring a possible i∂x0 dependence for reasons above.
The family of vector states constrained by the Schrödinger equation is

H̃θ =
{

ψ̂ ∈ Aθ

(
R

2
)

:
(
i∂x0 − Ĥ

)
ψ̂ = 0

}
, (39)

where arguments of Ĥ can be appropriately inserted.
The solutions of (39) are easy to come by. For the time-independent case,

ψ̂ ∈ H̃θ =⇒ ψ̂ = e−i(x̂R
0 −τI)Ĥ(P̂1,x̂L

1 )χ̂ (x̂1) . (40)

The product x̂R
0 Ĥ has no ordering problem since

[
x̂R

0 , Ĥ
(
x̂L

1 , P̂1

)]
= 0. Also τI is the initial

time when ψ̂ = χ̂. Since x̂R
0 , x̂L

1 occur in the first factor, we should read the R.H.S. as the
exponential acting on the algebra element χ̂ (x̂1).

Suppose next that Ĥ depends on x̂R
0 as in (38). As x̂R

0 commutes with P̂1 and x̂L
1 , we can

easily generalise the formula (40) to write

ψ̂ ∈ H̃θ =⇒ ψ̂ = U
(
x̂R

0 , τI

)
χ̂ (x̂1) ,

U
(
x̂R

0 , τI

)
= T exp

[
−i

(∫ x0

τI

dτ Ĥ
(
τ, x̂L

1 , P̂1

))]∣∣∣∣
x0=x̂R

0

. (41)

Just as in (40), the dependence of U on x̂R
0 and τI has been displayed, while τI is the initial

time when ψ̂ = χ̂.
Time translation by amount τ shifts x̂R

0 to x̂R
0 + τ in both (40) and (41).

An alternative useful form for ψ̂ in (41) is

ψ̂ = V
(
x̂R

0 ,−∞
)
χ̂ (x̂1) , (42)

V
(
x̂R

0 ,−∞
)

= T exp
[
−i

∫ 0

−∞
dτ Ĥ

(
x̂R

0 + τ, x̂L
1 , P̂1

)]
, (43)

where the integral can be defined at the lower limit using the usual adiabatic cut-off.
The Hilbert space Hθ based on the scalar product (., .)t is obtained from H̃θ by completion.

Our basic assumption is that Ĥ is self-adjoint in the chosen scalar product. Then as before, the
resultant Hilbert space Hθ has no dependence on t.

Assuming that

Ĥ =
P̂ 2

1

2m
+ V (x̂1) (44)
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is a self-adjoint Hamiltonian for θ = 0, then we note that its θ �= 0 version

Ĥ =
P̂ 2

1

2m
+ V

(
x̂L

1

)
(45)

is self-adjoint on Hθ.
If Ĥ

(
x̂0, x̂1, P̂1

)
is time-dependent for θ = 0, we can form its θ �= 0 version

Ĥ
(
x̂L

0 , x̂L
1 , P̂1

)
= Ĥ

(
−θP̂1 + x̂R

0 , x̂L
1 , P̂1

)
. (46)

As x̂L
0 and P̂1 do not commute with x̂L

1 , we should check this Ĥ for factor-ordering problems.
But for this potential trouble, Ĥ is self-adjoint if H is.

3.2.3. Remarks on Time for θ �= 0
In the passage from H to Ĥ, there is an apparent ambiguity. Above we replaced x0 by x̂L

0 ,
but we may be tempted to replace x0 by x̂R

0 . In that case the passage to θ �= 0 will involve no
factor-ordering problem as x̂R

0 commutes with x̂L
1 and P̂1. At the same time, θ-dependent terms

in Ĥ disappear.
But it is incorrect to replace x0 by x̂R

0 and at the same time x1 by x̂L
1 . Time and space should

fulfill the relation (1) when θ becomes nonzero whereas x̂R
0 and x̂L

1 commute.
Note that x̂L,R

0 do not preserve the Schrödinger constraint so that there is no time operator
for θ �= 0 as well.

3.2.4. Time-dependence for θ = 0 =⇒ Spatial nonlocality for θ �= 0
We noted above that x̂L

0 = −θP̂1 + x̂R
0 and that x̂R

0 behaves much like the θ = 0 time x0.
Thus if H has time-dependence, its effect on Ĥ is to induce new momentum-dependent terms.
The x0-dependence in H need not to be polynomial so that in Ĥ they induce nonpolynomial
interactions in momentum, that is, instantaneous spatially nonlocal (“acausal”) interactions.

3.2.5. Observables
We can construct observables as in (25) or its version for time-dependent Hamiltonians. No
complications are encountered.

4. Examples
4.1. Plane Waves
Let

Ĥ0 =
P̂ 2

1

2m
(47)

be the free Hamiltonian. Its eigenstates are

ψ̂k = eikx̂1e−iω(k)x̂0 , ω(k) =
k2

2m
, k ∈ R . (48)

The eigenvalues are k2/2m:

Ĥ0ψ̂k =
(
Ĥ0e

ikx̂1

)
e−iω(k)x̂0 = ω(k)ψ̂k . (49)

The second factor in ψ̂k is dictated by the Schrödinger constraint:

P̂0ψ̂k = eikx̂1P̂0e
−iω(k)x̂0 = ω(k)ψ̂k =⇒

(
P̂0 − Ĥ

)
ψ̂k = 0 . (50)
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The spectrum of Ĥ0 is completely conventional while the noncommutative plane waves too
resemble the ordinary plane waves. But phenomena like beats and interference show new features
[26].

The coincidence of spectra of the free Hamiltonians in commutative and noncommutative
cases is an illustration of a more general result which we now establish.

4.2. A Spectral Map
For θ = 0 consider the Hamiltonian

H = − 1
2m

∂2

∂x2
1

+ V (x̂1) (51)

with eigenstates ψE fulfilling the Schrödinger constraint:

ψE (x̂0, x̂1) = ϕE(x̂1)e−iEx̂0 , (52)

HϕE = EϕE . (53)

The Hamiltonian Ĥ associated to H for θ �= 0 is

Ĥ =
P̂ 2

1

2m
+ V (x̂1) . (54)

Then Ĥ has exactly the same spectrum as H while its eigenstates ψ̂E are obtained from ψE just
by regarding x̂0 and x̂1 as fulfilling (1):

ψ̂E = ϕE(x̂1)e−iEx̂0 , (55)

ĤϕE(x̂1) = EϕE(x̂1) . (56)

The proof of (56) follows from (54) as it involves no feature associated with spacetime
noncommutativity. Since

P̂0ψ̂E = ϕE(x̂1)P̂0e
−iEx̂0 = Eψ̂E , (57)

we see that ψ̂E fulfills the Schrödinger constraint as well.
When the spatial slice for a commutative spacetime R

d is of dimension two or larger, one
can introduce space-space noncommutativity as well. That would change the noncommutative
Hamiltonian. The spectral map may not then exist.

5. Conserved Current
The existence of a current jλ which fulfills the continuity equation has a particular importance
when θ = 0. It is this current which after second quantization couples to electromagnetism [17].

There is such a conserved current also for θ �= 0. It follows in the usual way from (39) and
its ∗: (

P̂0ψ̂
)∗

− ψ̂∗Ĥ = −P̂0ψ̂
∗ − ψ̂∗Ĥ = 0 . (58)

Here we assumed that V̂ ∗ = V̂ .
Multiplying the Schrödinger constraint in (39) on left by ψ̂∗ and (58) on right by ψ̂ and

subtracting,

P̂0

(
ψ̂∗ψ̂

)
= ψ̂∗

(
P̂ 2

1

2m
ψ̂

)
−

(
P̂ 2

1

2m
ψ̂∗

)
ψ̂ =

P̂1

2m

[
ψ̂∗

(
P̂1ψ̂

)
−

(
P̂1ψ̂

∗
)

ψ̂
]

. (59)

With
ρ̂ = ψ̂∗ψ̂ , ĵ =

1
2m

[
ψ̂∗

(
P̂1ψ̂

)
−

(
P̂1ψ̂

∗
)

ψ̂
]

(60)

as the noncommutative charge and current densities, (59) can be interpreted as the
noncommutative continuity equation.
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6. Towards Quantum Field Theory
Perturbative quantum field theories (qft’s) based on algebras like (1) have been treated with
depth by Doplicher et al. [1]. We can also see how to do perturbative qft’s, our approach can
be inferred from the work of Doplicher et al.

In the interaction representation, an operator UI determines the S-matrix. It is in turn
determined by the interaction Hamiltonian ĤI . The latter is based on “free fields” which are
solutions of the Klein-Gordon equation (We assume zero spin for simplicity). Examples of ĤI

can be based on interaction Hamiltonians HI such as λ
∫

dx1Φ(x0, x1)4 (with Φ† = Φ being a

free field) for θ = 0. For this particular HI , ĤI can be something like λSx0

[
Φ̂(x̂0, x̂1)4

]
(cf.

(31)), where Φ̂ is the self-adjoint free field for θ �= 0. We make this expression more precise
below.

We require of Φ̂ that it is a solution of the massive Klein-Gordon equation:(
adP̂ 2

0 − adP̂ 2
1 + µ2

)
Φ̂ = 0 . (61)

The plane wave solutions of (61) are

φ̂k = eikx̂1e−iω(k)x̂0 , ω(k)2 − k2 = µ2 . (62)

So for Φ̂, we write [11]

Φ̂ =
∫

dk

2ω(k)

[
akφ̂k + a†kφ̂

†
k

]
, (63)

where ak and a†k commute with x̂µ and define harmonic oscillators:
[
ak, a

†
k

]
= 2ω(k)δ(k − k′).

The expression (63) is the “free” field “coinciding with the Heisenberg field initially”. After
time translation by amount τ using the free Schrödinger Hamiltonian

Ĥ0 =
∫

dk

2ω(k)
a†kak , (64)

it becomes
U0(τ)

(
Φ̂

)
= eiτĤ0Φ̂e−iτĤ0 , (65)

The interaction Hamiltonian is accordingly

ĤI (x0) = λ : Sx0

(
U0(τ)

(
Φ̂

)4
)

: = λ : Sx0+τ

(
Φ̂4

)
: , λ > 0 , (66)

where : : denotes the normal ordering of ak and a†k.
The S-matrix S can be worked out as usual:

S = T exp
[
−i

∫ +∞

−∞
dτ λ : Sτ

(
Φ̂4

)
:
]

. (67)

It is important to recognise, as is clear from Doplicher et al. [1], that time-ordering is with respect
to the time-translation parameter τ and not the spectrum of the operator x̂L

0 . Its perturbation
series can be developed since we understand the relevant properties of Φ̂.

Scattering amplitudes can be calculated from (67). There is no obvious reason why they are
not compatible with perturbative unitarity [18].
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7. Quantised Evolutions
We now study three algebras where time evolution becomes discrete because of noncommuta-
tivity. Their physics have striking features.

7.1. The Noncommutative Cylinder Aθ

(
R × S1

)
It is generated by x̂0 and e−ix̂1 with the relation[

x̂0 , e−ix̂1

]
= θ e−ix̂1 . (68)

7.2. Noncommutative R
3

The algebra ê2 in this case is the enveloping algebra of e2, the Lie algebra of the Euclidean group
E2. Spacetime coordinates x̂µ form a basis of e2 and fulfill the commutation relations

[ x̂i , x̂j ] = 0 , [ x̂0 , x̂i] = iθ εij x̂j , εij = −εji , ε12 = 1 . (69)

Thus x̂i are identified with translations and x̂0/θ is the canonically normalised angular
momentum J :

ei2πJ x̂µe−i2πJ = x̂µ . (70)

The Lie algebra e2 is a contraction of so(2, 1), the Lie algebra of SO(2, 1). The latter and its
enveloping algebra have occurred as spacetime algebras in 2+1 gravity [19]. (See also [20]-[22]
and also [27] in this connection.)

7.3. The Noncommutative R × S3, Aθ

(
R × S3

)
We can represent S3 =

〈
x ∈ R

4 :
∑

λ x2
λ = 1

〉
by SU(2) matrices:

x0I + i�τ · �x ∈ SU(2) , (71)

where I is the 2×2 unit matrix and τi are Pauli matrices. In this way we identify S3 and SU(2).
Left- and right- regular representations of SU(2) act on functions C∞ (SU(2)) on SU(2).

Let su(2) be the Lie algebra of SU(2) with conventional angular momentum operators Ji.
Then in particular, J3 has a right action JR

3 on C∞ (SU(2)):(
eiθJR

3 f̂
)

(g) = f̂
(
g eiθJ3/2

)
(72)

for f̂ ∈ C∞ (SU(2)) and g ∈ SU(2).
In the algebra Aθ

(
R × S3

)
, the spatial slice S3 is represented by the commutative algebra

C∞ (SU(2)), and time x̂0 is identified with 2θJR
3 in the following way:(

eiωx̂0 f̂ e−iωx̂0

)
(s) :=

(
eiω2θJR

3 f̂
)

(s) . (73)

Cases 1) and 3) are actually very similar. In case 1), the spatial slice has algebra C∞ (
S1

)
and J = x̂0/θ is the canonically normalised generator of rotations: ei2πJ α̂ e−i2πJ = α̂, for
α̂ ∈ Aθ

(
R × S1

)
.

In all these cases, time translations get quantised in units of θ in quantum physics. This
result is known for cases 1) and 2) [11], [19]-[22]. It comes from the fact that the spectrum
spec J or spec J3 of J or J3 in an irreducible representation of the associated algebra is spaced
in units of θ. We will prove it fully as we go along.

Using a different approach, a model with quantised evolution was also constructed in [27].

190



There are generalisations of these constructions to manifolds R × M where R accounts for
time and M is the spatial slice, provided M admits a U(1) action. If J is its generator on
C∞(M), we can set x̂0 = θJ and get an algebra Aθ (R × M) with quantised evolution.

The mathematical approach to noncommutativity in this paper is similar to that of Rieffel,
Connes, Landi and others [28]-[29]. We have drawn much inspiration from their work.

After reviewing [23] in the next section, we will study the three preceding examples in the
subsequent sections. Issues related to energy nonconservation and also scattering and quantum
field theory are taken up after that.

8. The Noncommutative Cylinder
The noncommutative cylinder Aθ

(
R × S1

)
has been considered in great detail by Chaichian

et al. [11], especially as regards its quantum field theory aspects. They have pointed out and
emphasised that time gets quantised on Aθ

(
R × S1

)
(see also [27]) and studied the impact of this

quantisation on causality and unitarity. Below, we review how this quantisation comes about
and develop quantum physics on Aθ

(
R × S1

)
. We do not encounter problems with unitarity.

For θ = 0, there is a close relation between C∞ (R × R) and the functions C∞ (
R × S1

)
on a

cylinder. The former is generated by coordinate functions x̂0 and x̂1, and the latter by x̂0 and
eix̂1 , eix̂1 being invariant under the 2π-shifts x̂1 → x̂1 ± 2π. Following this idea, we can regard
the noncommutative R × S1 algebra Aθ

(
R × S1

)
as generated by x̂0 and eix̂1 with the defining

relation
eix̂1 x̂0 = x̂0e

ix̂1 + θeix̂1 . (74)

For C∞ (
R × S1

)
, the momentum p̂1 is the differential operator defined by[

p̂1, e
ix̂1

]
= eix̂1 . (75)

By evaluating (75) at x1, we can write it in the usual way:
[
−i ∂

∂x1
, eix1

]
= eix1 .

It follows from (75) that
ei2πp̂1eix̂1e−i2πp̂1 = eix̂1 . (76)

So ei2πp̂1 is in the center of the algebra generated by p̂1, eix̂1 with the relation (75). In an
irreducible representation (IRR), it is a phase eiϕ times I. The spectrum of p̂1 in an IRR is
hence

spec p̂1 = Z +
ϕ

2π
≡

{
n +

ϕ

2π
: n ∈ Z

}
. (77)

Its domain Dϕ(p̂1) in such an IRR is spanned by quasi-periodic functions χn:

χn = ei(n+ ϕ
2π )x̂1 , n ∈ Z , χn(x̂1 + 2π) = eiϕχn(x̂1) . (78)

If for example

H =
p̂2
1

2m
(79)

is the Hamiltonian, its domain Dϕ(H) fulfilling the Schrödinger constraint as well is spanned by

ψn = χne−iEnx̂0 , (80)

with ψn being eigenstates of H:
Hψn = Enψn , (81)

En =
1

2m

(
n +

ϕ

2π

)2
. (82)
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The quantity ϕ is generally interpreted as the flux through the circle.
For the noncommutative cylinder, (76) generalises in a striking manner:

e−i 2π
θ

x̂0eix̂1ei 2π
θ

x̂0 = eix̂1 . (83)

Hence in an IRR,
e−i 2π

θ
x̂0 = e−iϕ

I , (84)

so that for the spectrum spec x̂0 of x̂0 in an IRR, we have,

spec x̂0 = θZ +
θϕ

2π
= θ

(
Z +

ϕ

2π

)
≡

{
θ
(
n +

ϕ

2π

)
: n ∈ Z

}
. (85)

We can realise Aθ

(
R × S1

)
irreducibly in the auxiliary Hilbert space L2

(
S1, dx1

)
. It has the

scalar product given by

(α, β) =
∫ 2π

0
dx1 α∗ (

eix1
)
β

(
eix1

)
, α, β ∈ L2

(
S1, dx1

)
. (86)

On this space, eix̂1 acts by evaluation map,(
eix̂1α

) (
eix1

)
= eix1α

(
eix1

)
, (87)

while x̂0/θ acts like the θ = 0 momentum with domain Dϕ(p̂1).

We denote this particular representation of Aθ

(
R × S1

)
as Aθ

(
R × S1 , ei ϕ

2π

)
.

Let us examine Aθ

(
R × S1 , ei ϕ

2π

)
more closely. We can regard it as generated by eix̂1 and

eiωx̂0 where ω is real. Now because of the spectral result (85),

ei(ω+ 2π
θ )x̂0 = eiϕeiωx̂0 . (88)

Thus elements of Aθ

(
R × S1 , ei ϕ

2π

)
are quasiperiodic in ω just as χn is quasiperiodic in x̂1,

and we can restrict ω to its fundamental domain: ω ∈
[
−π

θ , π
θ

]
. The general element of

Aθ

(
R × S1 , ei ϕ

2π

)
is thus

α̂ =
∑
n∈Z

∫ +π
θ

−π
θ

dω α̃n(ω)einx̂1eiωx̂0 , (89)

as first discussed by Chaichian et al. [11].

8.1. Positive Maps and Inner Products
A positive map on Aθ

(
R × S1 , ei ϕ

2π

)
can be found from symbol calculus. Since the spectrum of

x̂0 is θ
(
Z + ϕ

2π

)
and the spectrum of eix̂1 is S1, the symbol of α̂ is a function α on θ

(
Z + ϕ

2π

)
×S1:

α : θ
(
Z +

ϕ

2π

)
× S1 → C . (90)

It is defined by

α
(
θ
(
m +

ϕ

2π

)
, eix1

)
=

∑
n∈Z

∫ +π
θ

−π
θ

dω α̃n(ω)einx1eiωθ(m+ ϕ
2π ) . (91)
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Before proceeding, we show that α̂ determines α̃n and hence α uniquely, so that the map
α̂ → α is well-defined. We show also the converse, that α determines α̃n and hence α̂ uniquely,
so that the map α̂ → α is bijective.

Let |n〉 be the normalised eigenstates of x̂0:

x̂0 |n〉 = θ
(
n +

ϕ

2π

)
|n〉 , 〈m|n〉 = δmn , n ∈ Z . (92)

Then
eix̂1 |n〉 = |n − 1〉 . (93)

Therefore

〈m| α̂ |n〉 =
∫ +π

θ

−π
θ

dω α̃n−m(ω)eiωθ(n+ ϕ
2π ) , (94)

and since
θ

2π

∑
n

ei(ω−ω′)θn = δ(ω − ω′) , (95)

we find
θ

2π

∑
n

e−iωθ(n+ ϕ
2π ) 〈n − m| α̂ |n〉 = α̃m(ω) . (96)

The inverse map follows similarly:

α̃n(ω) =
θ

(2π)2
∑
m

e−iωθ(m+ ϕ
2π )

∫ 2π

0
dx1 e−inx1α

(
θ
(
m +

ϕ

2π

)
, eix1

)
. (97)

Our positive map is Sθ(m+ ϕ
2π ):

Sθ(m+ ϕ
2π ) (α̂) =

∫ 2π

0
dx1 α

(
θ
(
m +

ϕ

2π

)
, eix1

)
. (98)

Just as in (32), we then have, for inner product,(
α̂, β̂

)
θ(m+ ϕ

2π )
= Sθ(m+ ϕ

2π )
(
α̂∗β̂

)
=

∫ 2π

0
dx1 α∗

(
θ
(
m +

ϕ

2π

)
, eix1

)
β

(
θ
(
m +

ϕ

2π

)
, eix1

)
. (99)

There are other possibilities for inner product such as the one based on coherent states. The
equivalence of theories based on different inner products is discussed in [23].

8.2. Spectrum of Momentum
We can infer the spectrum of the momentum operator P̂1 when it acts on Aθ

(
R × S1, ei ϕ

2π

)
.

Since this algebra allows for only integral powers of eix̂1 , and

P̂1e
inx̂1 = neinx̂1 , (100)

we have spec P̂1 = Z. The flux term is 0 in this spectrum.
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For the construction of a Hilbert space, we do not need this algebra. It is enough to have an
Aθ

(
R × S1, ei ϕ

2π

)
-module which can be consistently treated. Such a module is

Aθ

(
R × S1, ei ϕ

2π , ei ψ
2π

)
=

〈
γ̂ = ei ψ

2π
x̂1

∑
n∈Z

∫ π
θ

−π
θ

dωγ̃n(ω)einx̂1eiωx̂0

〉
. (101)

The eigenvalues of P̂1 are now shifted by ψ
2π :

P̂1e
i ψ
2π

x̂1einx̂1 =
(

n +
ψ

2π

)
ei ψ

2π
x̂1einx̂1 , n ∈ Z . (102)

So we now have a flux term ψ
2π .

We have to check that Aθ

(
R × S1, ei ϕ

2π , ei ψ
2π

)
also has an inner product. That is so because

if
γ̂, δ̂ ∈ Aθ

(
R × S1, ei ϕ

2π , ei ψ
2π

)
, (103)

then
γ̂∗δ̂ ∈ Aθ

(
R × S1, ei ϕ

2π

)
, (104)

(the ψ-dependent factors ei ψ
2π

x̂1 cancelling out), so that the inner product is still like (99):

(γ̂, δ̂)θ(m+ ϕ
2π ) = Sθ(m+ ϕ

2π )(γ̂
∗δ̂) . (105)

It is interesting that the flux terms in time and momentum can be different.
We remark that the Schrödinger constraint below does not alter the spectrum of P̂1.

8.3. The Schrödinger Constraint
8.3.1. The Time-Independent Hamiltonian
Since

i∂x0e
iωx̂0 = −ωeiωx̂0 (106)

is not quasiperiodic in ω, continuous time translations and the Schrödinger constraint in the
original form cannot be defined on Aθ

(
R × S1

)
.

But translation of x̂0 by ±θ leaves its spectrum intact. Hence the operator

e−iθ(i∂x0) = eiad x̂1 , (107)

and its integral powers act on Aθ

(
R × S1

)
. The conventional Schrödinger constraint is

thus changed to a discrete Schrödinger constraint. In the time-independent case when the
Hamiltonian can be written as Ĥ

(
eix̂L

1 , P̂1

)
, the family of vector states constrained by the

discrete Schrödinger equation is

H̃θ

(
ei ϕ

2π , ei ψ
2π

)
=

{
ψ̂ ∈ Aθ

(
R × S1, ei ϕ

2π , ei ψ
2π

)
: e−iθ(i∂x0)ψ̂ = e−iθĤ ψ̂

}
. (108)

It has solutions

ψ̂ = e
−ix̂R

0 Ĥ
(
eix̂L

1 ,P̂1

)
ei ψ

2π
x̂1χ̂

(
eix̂1

)
, (109)

just as in (40).
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8.3.2. The Time-Dependent Hamiltonian
Reference [24] contains its treatment.

8.4. Remarks
We point out that we can see the absence of nontrivial null states in H̃θ

(
ei ϕ

2π , ei ψ
2π

)
as before

so that the inner product becomes a true scalar product for H̃θ

(
ei ϕ

2π , ei ψ
2π

)
. Also, the Hilbert

space Hθ

(
ei ϕ

2π , ei ψ
2π

)
obtained by completion of H̃θ

(
ei ϕ

2π , ei ψ
2π

)
is independent of m in (105)

while x̂L,R
0 do not act on Hθ

(
ei ϕ

2π , ei ψ
2π

)
.

Note that while e−i 2π
θ

x̂R
0 acts on Hθ

(
ei ϕ

2π , ei ψ
2π

)
, it is e−iϕ

I. So it cannot be the starting
point to define a time operator.

These remarks generalise to the other examples of discrete evolution considered below.

9. Noncommutative R
3

Here we show that the algebra ê2 admits a positive map. With that, one can proceed to develop
quantum physics.

If x̂0, x̂a (a = 1, 2) are time and space coordinate functions in commutative spacetime, we
call their noncommutative analogues also by x̂0, x̂a. They fulfill the relations

[x̂a, x̂b] = 0 , a, b = 1, 2 , [x̂0, x̂a] = iθεabx̂b , ε12 = −ε21 = 1 , θ > 0 . (110)

(110) defines the Lie algebra of the two-dimensional Euclidean group, and admits a ∗-operation:
x̂∗

µ = x̂µ. Equally important, it admits the time-translation automorphism U(τ) : U(τ)x̂0 =
x̂0 + τ . But it is not an inner automorphism, x̂0 having no conjugate operator.

Spatial translations are not automorphisms of (110). That means that momenta, free
Hamiltonian or plane waves do not exist for (110).

The algebra ê2 with relations (110) has been treated in detail by Chaichian et al. [11]. As
they observe, the operator

ρ2 =
∑

x̂ax̂a (111)

is in the center of ê2. We can fix its value to be r2 in an IRR just as we fixed the value of
e−i 2π

θ
x̂0 ∈ Aθ

(
R × S1

)
. For r2 > 0, we have the polar decomposition

x̂1 ± ix̂2 = re∓ix̂ . (112)

Now
eix̂x̂0 = x̂0e

ix̂ + θeix̂ , (113)

and x̂0, eix̂ generate Aθ

(
R × S1

)
, the algebra treated before. Hence we can borrow ideas from

the treatment of Aθ

(
R × S1

)
.

We briefly treat (110) regarding x̂a as generators of C∞ (
R

2
)

and x̂0/θ as the generator of
rotations in the 1 − 2 plane. The algebra will be realised by operators on the auxiliary Hilbert
space L2

(
R

2, d2x
)

with its standard scalar product ( . , . ) where

(α, β) =
∫

d2x α∗(x)β(x) . (114)

On this space, x̂a acts by evaluation map,

x̂aα(x) = xaα(x) , (115)

195



while x̂0/θ acts like angular momentum with

ei2πx̂0/θ = I . (116)

Then for the spectrum of x̂0,
spec x̂0 = θZ . (117)

Time is quantised in units of θ as for Aθ

(
R × S1

)
, but there is no shift from θZ by a flux term

θϕ/2π.
There are also ray representations of the Euclidean group which are representations of (110),

where the spectrum θZ is shifted by a flux term θϕ
2π . Our discussion can be adapted to this case

as well.
We now give the positive map and inner product for ê2. The algebra ê2 is generated by

eiωx̂0 , ei
p.x̂ , �p.x̂ = p1x̂1 + p2x̂2 , ω, pa ∈ R , (118)

where because of the spectral condition (117),

ei(ω+ 2π
θ )x̂0 = eiωx̂0 . (119)

Thus we restrict ω according to |ω| ≤ π/θ.
The general element of the algebra is

α̂ =
∫

d2p

∫ +π
θ

−π
θ

dω α̃(ω, �p)ei
p.x̂eiωx̂0 . (120)

The symbol we associate to α̂ is the function

α : θZ × R
2 → C ,

α(θn, x) =
∫

d2p

∫ +π
θ

−π
θ

dω α̃(ω, �p) ei
p.
x eiωθn , n ∈ Z . (121)

This gives the map

Sθn (α̂) =
∫

d2x α(θn, x) . (122)

We can show that (122) is a positive map. We have the identity

e−iωx̂0 x̂ae
iωx̂0 = Rab (θω) x̂b , R (θω) =

(
cos (θω) sin (θω)
− sin (θω) cos (θω)

)
. (123)

A short calculation which uses this identity shows, in an obvious manner, that

Sθn (α̂∗α̂) = (2π)2
∫

d2p

∣∣∣∣∫ dω α̃ (ω, �p) eiωθn

∣∣∣∣2 ≥ 0 . (124)

Thus an inner product for ê2 is (
β̂, α̂

)
= Sθn

(
β̂∗α̂

)
. (125)
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10. The Noncommutative R × S3

The noncommutative R × S3 � R × SU(2) is denoted by Aθ

(
R × S3

)
. Section I indicates its

construction: we set the time operator x̂0 equal to 2θJR
3 where θ is the noncommutativity

parameter. With C∞ (SU(2)) denoting the commutative algebra of functions on SU(2),
Aθ

(
R × S3

)
is generated by C∞ (SU(2)) and x̂0 with relation (73).

Let L2 (SU(2) , dµ) denote the Hilbert space of functions on SU(2) with scalar product (· , ·)
given by the Haar measure dµ:

(â , b̂) =
∫

dµ(s) â∗(s) b̂(s) . (126)

Then Aθ

(
R × S3

)
acts naturally on this Hilbert space, C∞(SU(2)) acting by point-wise

multiplication and x̂0 as the differential operator 2θJR
3 .

The spectrum spec JR
3 of JR

3 is Z/2. Hence spec x̂0 = θZ. Therefore

ei2πx̂0/θ = I . (127)

It follows that time evolution is quantised in units of θ. Furthermore

ei(ω+ 2π
θ )x̂0 = eiωx̂0 . (128)

Hence we can restrict ω to
[
−π

θ , π
θ

]
and represent an element ψ̂ of Aθ

(
R × S3

)
as

ψ̂ =
∫ π/θ

−π/θ
dω ψ̂ω eiωx̂0 , ψ̂ω ∈ C∞(SU(2)) . (129)

The symbol of ψ̂ is the function ψ : (spec x̂0 = θZ) × SU(2) −→ C defined by

ψ(θn , s) =
∫ π

θ

−π
θ

dω ψ̂ω(s) eiωθn , n ∈ Z . (130)

The inner product can be obtained from an associated map Sθn:

Sθn(ψ̂) =
∫

dµ(s)ψ(θn , s) . (131)

We can check using the right-invariance of the Haar measure that

Sθn(ψ̂∗ϕ̂) =
∫

dµ(s)ψ∗(θn, s)ϕ(θn, s) , (132)

where ϕ is the symbol of ϕ̂. Hence Sθn is a positive map. The rest of the treatment involving
the Schrödinger constraint follows previous sections.

11. On Energy Conservation
We focus on time-independent Hamiltonians Ĥ. In that case, the Schrödinger constraint such
as (108) is preserved by Ĥ,

ψ̂ ∈ H̃θ

(
ei ϕ

2π , ei ψ
2π

)
=⇒ Ĥψ̂ ∈ H̃θ

(
ei ϕ

2π , ei ψ
2π

)
, (133)

and consequently Ĥ is an observable for Aθ

(
R × S1

)
. The same is true for ê2 and Aθ

(
R × S3

)
.
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However time evolution involves

U(θ) = e−iθĤ , (134)

its inverse and powers. It is the same for Ĥ and Ĥ + 2π
θ . Hence time evolution need conserve

energy only mod 2π
θ .

This energy nonconservation should show up in scattering and decay processes. In either
case, if Ei and Ef are initial and final energies, then for θ = 0, energy conservation is enforced
by the factor ∫ ∞

−∞
dτ e−iτ(Ef−Ei) = 2πδ(Ef − Ei) (135)

in the scattering matrix element. For quantised evolutions such as ours, the factor becomes∑
n∈Z

e−inθ(Ef−Ei) = 2πδS1 [θ(Ef − Ei)] (136)

where δS1 is the δ-function on S1: δS1(θ + 2π) = δS1(θ). Thus from an initial state of energy
Ei, there can be transitions to energies Ef = Ei + 2π

θ n, n ∈ Z.
In specific models, the probability Pn(E) for transitions from Ei = E to Ef = E + 2π

θ n can
be calculated. We initiate the theory for this purpose in the next section. We are looking for a
manageable model for a specific calculation.

Suppose that we start with a state of sharp energy E and let it undergo multiple scattering.
Let the probability for finding energy E + 2π

θ n after k scatterings be Pn(E , k). Then

Pn(E , k + 1) =
∑
m

Pn−m

(
E +

2π

θ
m , 1

)
Pm(E , k) (137)

where Pn(E , 1) = Pn(E). Equation (137) defines a Markov process with Pn(E , 1) giving the
rule for updating at each step. It is of considerable interest to study Pn(E , k) and its limit
k → ∞.

We remark that the limiting distribution Pn(E , ∞) may be of use to provide bounds on
θ in conjunction with cosmological data. Presumably distant star or quasar signals arrive at
us after a large number of scattering processes. We can imagine estimating their frequency
dispersion after accounting for energy loss by standard θ = 0 effects, and getting information on
θ therefrom.

12. Scattering Theory
We consider only a situation where the Hamiltonian Ĥ is time-independent. The transition
amplitude from the in state vector |+ , α〉 with label α to an out state vector |− , β〉 with label
β defines the matrix element Sβα of the S-matrix S:

Sβα = 〈− , β|+ , α〉 . (138)

Let Ĥ0 be the “free” or “comparison” Hamiltonian. Then |+ , α〉 has the property

U(θ)N |+ , α〉 = U0(θ)N |α〉 as N → −∞, with N ∈ Z (139)

where
U0(θ) = e−iθĤ0 . (140)
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The meaning of (139) is that in the distant past, |+ , α〉 evolves like the free evolution of the
vector |α〉.

The label α can be given a meaning in terms of observables of the free system such as energy.
The limit involved requires care. It is to be understood in the strong sense. It defines the

Møller operator

Ω+ = lim
N→−∞ ,

N∈Z

U(θ)−NU0(θ)N (141)

with the properties

Ω+|α〉 = |+ , α〉 , (142)

Ω+e−iθĤ0 = e−iθĤΩ+ . (143)

Equation (142) follows from (139) while the proof of (143) is as follows:

Ω+e−iθĤ0 = lim
N→−∞ ,

N∈Z

U(θ)−NU0(θ)N+1 = lim
N′→−∞ ,

N ′∈Z

U(θ)−(N ′−1)U0(θ)N ′
= e−iθĤΩ+ . (144)

Thus Ω+ intertwines the quantised evolutions due to Ĥ0 and Ĥ.
For θ = 0, time t is continuous. In that case, (143) is replaced by

Ω+e−itĤ0 = e−itĤΩ+ . (145)

So for θ = 0, by differentiating in t, we get the stronger result

Ω+Ĥ0 = ĤΩ+ . (146)

But we cannot get such a stronger equation from (143) for θ �= 0. This is yet another indication
that for θ �= 0, energy is conserved only mod 2π

θ .
Just as |+ , α〉 fulfills the Schrödinger constraint involving Ĥ, |α〉 fulfills the Schrödinger

constraint involving Ĥ0 as follows from (143):

e−iθP̂0 |α〉 = e−iθĤ0 |α〉 . (147)

So scalar products involving |α〉’s are also time-independent and admit a general solution of a
form such as (109).

In a similar way, if
Ω− = lim

M→∞ ,

M∈Z

U(θ)−MU0(θ)M , (148)

then
Ω−|β〉 = |− , β〉 , Ω−e−iθĤ0 = e−iθĤΩ− . (149)

Hence
Sβα = lim

M→∞ ,
N→−∞ ,

M,N∈Z

〈β|U0(θ)−MU(θ)M−NU0(θ)N |α〉 := lim
M→∞ ,

N→−∞ ,

M,N∈Z

〈β|UI(θ, M, N)|α〉 , (150)

UI(θ, M, N) = U0(θ)−MU(θ)M−NU0(θ)N = eiMθĤ0e−i(M−N)θĤe−iNθĤ0 . (151)
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In commutative physics, where θ = 0, the corresponding expression UI(t , t′) is

UI(t , t′) = eitĤ0e−i(t−t′)Ĥe−it′Ĥ0 = T exp

{
−i

∫ t

t′
dτ ĤI(τ)

}
, (152)

ĤI(τ) = eiĤ0τ (Ĥ − Ĥ0)e−iĤ0τ , (153)

T denoting time-ordering, the interaction representation S-matrix being UI(∞ , −∞).
Comparison of (151) and (152) shows that

UI(θ, M, N) = T exp

{
−i

∫ Mθ

Nθ
dτ ĤI(τ)

}
, (154)

ĤI(τ) = eiĤ0τ (Ĥ − Ĥ0)e−iĤ0τ . (155)

For θ = 0, (152) has a power series expansion in ĤI . But there is a problem with such an
expansion of (151): U(θ), U0(θ) and UI(θ, M, N) are invariant under separate shifts of Ĥ and
Ĥ0 by ±2π

θ , however ĤI(τ) and hence the terms of the perturbation series are invariant only
under the joint shift of both by the same amount, the joint shift leaving ĤI(τ) invariant. Thus
perturbative approximation disturbs an essential feature of quantised evolution.

It remains to find a substitute for perturbation theory. Perhaps an approximation based on
the K-matrix formalism and effective range expansion [30], [31] or separable potentials [32] may
be acceptable.

13. On Quantum Fields
As the spacetime algebras of our interest admit only quantised time evolutions as automorphisms,
a field cannot be the solution of a Klein-Gordon or Dirac equation. We need another approach
to quantising spacetime fields for purposes of constructing quantum fields.

One way is to define the quantum field Φ̂ by expanding it in a basis of orthonormal solutions
of the Schrödinger constraint. The coefficients of the expansion would be annihilation operators.
This is a common approach in condensed matter theory.

For specificity consider Aθ

(
R × S1

)
and the “free” Hamiltonian

Ĥ0 =
P̂ 2

1

2M
. (156)

In that case, H̃θ

(
ei ϕ

2π , ei ψ
2π

)
of (108) is spanned by

ψ̂n =
1√
2π

ei(n+ ψ
2π )x̂1e−iωnx̂0 , (157)

where

ωn =
1

2M

(
n +

ψ

2π

)2

, (158)

Ĥ0ψ̂n =
1

2M

(
n +

ψ

2π

)2

ψ̂n , (159)

(ψ̂m , ψ̂n)θ(m+ ϕ
2π ) = δmn . (160)
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We can now write

Φ̂ =
∑

n

anψ̂n,
[
an , a†m

]
= δnm (161)

where Φ̂ describes a free “nonrelativistic” spin-zero field.
The second-quantised free Hamiltonian associated with Φ̂ is

ˆ̂
H0 =

∑
n

ωna†nan . (162)

Φ̂ fulfills the second-quantised Schrödinger constraint:

e−iθP̂0Φ̂ = U0(θ)−1Φ̂U0(θ) , (163)

U0(θ) ≡ e−iθ
ˆ̂
H0 . (164)

The next step is to introduce an interaction Hamiltonian. We follow earlier works [1], [23] in
this regard. An example of an interaction Hamiltonian in interaction representation is

ˆ̂
HI(τ) = : eiτ

ˆ̂
H0λSθ(m+ ϕ

2π )
(
Φ̂†Φ̂ Φ̂†Φ̂

)
e−iτ

ˆ̂
H0 : (165)

where : · : denotes normal ordering of an, a†n.
The expression for UI(θ, M, N) follows from (154):

UI(θ, M, N) = T exp

{
−i

∫ Mθ

Nθ
dτ

ˆ̂
HI(τ)

}
, M, N ∈ Z , (166)

the S-matrix being

S = lim
M→∞ ,

N→−∞ ,

M,N∈Z

UI(θ, M, N) . (167)

As before, perturbation series, term by term, is not invariant under the shifts of ˆ̂
HI(τ) by ±2π

θ ,
whereas (166) is. That leaves us with a problem. It is also important to know if and how S
depends on

(
m + ϕ

2π

)
.

14. Final Remarks
There exist several models of noncommutative spacetimes wuth time-space noncommutativity
which admit consistent formulations of quantum physics. We have discussed many such models
in these lectures. Some are striking in their novel features, admitting only quantised evolutions
and predicting energy nonconservation in a controlled manner. Phenomenological consequences
of these models are yet to be explored.
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