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ABSTRACT 

The predictions of quantum chromodynamics for meson form factors 

at large momentum transfer are given. Evolution equations are derived 

which determine the structure of hadronic wavefunctions at short dis- 

tances from their form at large distances. The eigenvalues of the 

evolution equations appear as exponents in anomalous logarithm correc- 

tions to the nominal power law of form factors determined by dimensional 

counting. The results lead to detailed tests of the spin and scaling 

structure of QCD at short distances. The predictions for the charged 

pion, kaon and rho form factors and the y -+ IT' transition form factor of 

the photon are absolutely normalized. 
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1. Introduction 

Exclusive processes involving large momentum transfer test both the 

internal dynamics of hadrons and the detailed structure of hadronic 

wavefunctions at short distances. In this paper we outline a new 

analysis of exclusive processes in quantum chromodynamics, with emphasis 

on the meson form factors at large momentum transfer Cl]. Further papers 

[2,31 will be devoted to detailed derivations and extensions of these 

techniques to the baryon form factors and exclusive scattering processes 

at large momentum transfer. The same methods can also be used to study 

the x + 1 dependence of hadronic structure functions and the exclusive- 

inclusive connection in QCD Cll. 

The central element of this work involves the derivation of evolu- 

tion equations which determine the short distance behavior of the Fock 

components of the hadronic wavefunctions from their structure at large 

distances. The eigensolutions of the evolution equations determine the 

form of the meson and nucleon wavefunctions, and are directly related 

to terms in operator product expansions at short distances of the wave- 

functions C31. The eigenvalues of the evolution equations appear as 

exponents in anomalous logarithmic corrections to the nominal power law 

fall-off of exclusive amplitudes at large momentum transfer. Our analysis 

shows that the dimensional counting rules [4,51 for form factors and 

other exclusive processes at large momentum transfer are rigorous pre- 

dictions of quantum chromodynamics up to calculable powers of the 

running coupling constant as(Q2) or log -' (Q2/A2>. 
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11. Evolution Equations for Meson Wavefunctions 

A convenient framework for the analysis of hadronic states in QCD 

is time-ordered perturbation theory in the infinite momentum frame (i.e., 

quantization on the light cone) C61. The meson state Y, for example, can 

be represented as a column vector of wavefunctions - one for each of the Fock 

states qi,qig,... in the meson. (The two particle q: wavefunction is the 

positive energy projection of the usual Bethe-Salpeter amplitude evaluated 

+ at relative "time" x = x0+x 3 = 0.) Components having a finite number of 

constituents can only exist for color singlet states C71. In general, Y 

satisfies the bound state equation Y = SKY - an infinite set of coupled 

equations where the matrix K is the completely irreducible kernel, 

S--l n 
=M2w. 5 (2 and 

j=l 
kL + m2)j/xj +ie is the n-particle propagator, 

x. = 
J (k”+k3)j/(p;+~;) 2 0 are the constituents' fractional longitudinal 

momenta 
i 

Fx.=l . 
j=l J ) 

We can separate "hard" from "soft" components 

of the wavefunction by defining a propagator S (A) which vanishes for 

virtual states near the energy shell C81: 

S if 1M2 - c (k,' + m2)j/xj/ r h2 ('hard') 

,(x) = 
j 

(1) 
0 otherwise ('soft') 

We can then write 

Y = (s-+)KI + s(h)KY 

= 'PA + S(X)KY 



where wavefunction YA f (S-d')) KY is non-zero only when its constitu- 

ents are near energy shell. The full wavefunction can be expressed in 

terms of Yh: 

Y = YA + G(h)KYA 

GcA) _ ,(‘) + SC’) KG(‘) 

= + ~(‘1 KS(‘) f ScA) KS(‘) KS(‘) + . . . (2) 

By the definition in eq. (l), the Green's function G(') contains only 

hard loop momenta, and thus it has a sensible perturbative expansion, at 

least in asymptotically free theories. In particular, bound state poles 

cannot develop in G(') since only far off-shell propagation occurs in 

intermediate state (e.g., V(r) = ar8(r < l/A) does not bind for X 

sufficiently large). The soft wavefunction Ix contains all intrinsically 

non-perturbative effects. Given Yx, eq. (2) determines the far off-shell 

structure of the full hadronic wavefunctions Y from perturbation theory. 

The meson form factor FM(Q2) can now be represented as a sum of 

matrix elements between initial and final Yx states: 

F 
u 

= Yx(q4) P) (q&q{) JIA(4i) + Yx(qi) r(X)(qi,qid +1(q4d + - l l 

The amplitudes r ('I (qi,qi), etc. consist of all connected diagrams (re- 

ducible and irreducible), but with all loop momenta hard as in G ('). In 

light-cone gauge (A+ =O>, the nominal power law contribution to FM(Q2) as 

Q2 -+m is F,(Q2) - l/(Q 
2 n-l 

> if n quark or gluon constituents are forced 

to change direction'. Thus only the qs component of Yx contributes to 

the leading (1/Q2) behavior of FM(Q2). (Higher Fock states in which 
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constituents annihilate before the exchange of the hard momentum q' can 

be treated as corrections to the qq components of YA.) 

The leading logarithmic corrections to this power-law behavior are 

readily identified in each order of perturbation theory. They are order 

(~(~1ogQ~)~ in nth order; double logarithmic terms, (aslogQ210gQ2)n, 

do not appear due to infrared cancellations in the color singlet state. 

We choose a frame where q' is transverse to the direction of the incident 

meson (-q2 = Q2 =s:,. To leading order: the dominant momentum flow 

occurs through the minimal exchange graphs TB; only planar ladder graphs 

are required (in light-cone gauge); and the transverse momentum integra- 

tions are ordered, as indicated in fig. 1. Up to neglected terms of 

order a,(Q') and m/Q, the meson form factor in QCD now takes the form 

1 1 

FM(Q2) = 
/ 
0 

dxl dX2 '(1 - 5 Xj)[ dYldY2 ‘(1 - 7 Yj) 

X #‘(Yi,Q) TB(Yi,Xi,Q) @(Xi,Q) (3) 

where 

TB 
= 161~ CF 

as(Q2) 1 

Q2 x2y2 

as(Q2) = 
4n 

B log Q2/A2 

i CF = $ 1 

for mesons with zero helicity, and 

E X1 ~2 ~(Xi,Q) (5) 
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is the two-body wavefunction integrated over transverse momenta kf 5 Q 2 , 

The factor (log Q2> 
-c,/ B 

in 9 is due to vertex and fermion self-energy 

corrections in TB. 

Defining 
2 

5 
Q dk; 

B - 
=-G s 

c++ = log log 

0 

we find that, because of the strong ordering 

Fig. l), T satisfies an evolution equation2 

of the zf integrations (see 

= 
/ 
0 

dYl dY2 ‘(I- F Yj) V(Xi,Yi) T(Yi,Q) (64 

where 

v(xi’Yi) 
cF = 2 B yp2 UY2-x2) 

i 

A 
'hli;, + y2-x2 + (l- 2) 

(6b) 

represents the one-gluon exchange interaction. The quantity 6hl12 is 

defined to be O(1) when the qn helicities are parallel (anti-parallel). 

The terms cancelling the infrared divergences at xi=yi are due to self- 

energy corrections to the q and 4 legs. 

The evolution equation has a general solution 

~(Xi,Q) = ~1x2 c an Cn 3’2 (x 1-x2> e 
-3,s 

(7) 

n= 0 
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3/2 where the Gegenbauer polynomials Cn are eigenfunctions of V(xi,yi). 

The corresponding eigenvalues are 

cF 
n+l 

y, = 7 I 1+4 c 
1 26 h1ii2 

2 ii - (n+l)(n+2) ' O (8) 

The coefficients an can be determined from the soft wavefunction: 

1 

= (;s;& 
312 d(xl --x2) Cn (x1 - x2> 9 (xi,x2) 

-1 

(9) 

(If we assume isospin symmetry for the pion wavefunction, $(xX,x2) = 

@(x2,x,) and only n = even terms contribute). Notice that as Q2 -t m 

hl+h2 = 0 

'(xi'Q) + [ ao x1 x2 (log$rF'" Ihl+h21 = 1 (lo) 

where a o is 6 times the wavefunction at the origin (by eqs. (5) and (9)). 

For pions this constant can be determined from the weak decay amplitude 

for TT +- Uv: 

3 a0 = f IT (fn * 93 MeV) (11) 
Jn colors 

It is remarkable that the eqs. (10) and (11) completely determine the 

short distance structure of the pion wavefunction. An analogous result 

is obtained for the kaon. The decay p -t La can be used to normalize 

the asymptotic p wavefunction. If we define <OIJulp(p,~)> = mfpcu, 

then a0 is 3folq. 
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The convergence of series (7) is assured if the qy wavefunction 

satisfies the boundary condition 

~(Xi,Q) 5 K X4 as x. + 0 1 (12) 

for some E > 0. This condition is satisfied by wavefunctions representing 

truly composite system - i.e., by solutions of the homogeneous bound 

state equations which are regular at high energies 3 . In theories with 

an elementary field representing (or mixing strongly with) the meson, the 

bound state equation has a source term corresponding to the bare coupling 

$r5$, and consequently $ tends to a constant as xi + 0. Precisely this 

type of analysis is required in the case of photon structure functions 

and transition form factors in QCD. 

Because of the boundary condition (12), the singularity in TB at 

x2=0, Y2 =0 (eq. (4)) does not result in additional factors of log Q 24 
. 

The behavior of FM(Q2) is thus determined by TB and the short distance 

behavior of the wavefunction $(xi,kL) (i.e., kL-too, xiZO). Since the 

wavefunction is essentially <OlT(+(r)$(O))lM>, the anomalous dimensions 

yn of #(xi,Q2) are those associated with the twist two operators 

appearing in the operator product expansion of $(r)$(O) [3,11]. Further- 

more, the usual renormalization group arguments imply that the leading 

logarithms summed by eqs. (3)-(6) are in fact the dominant contribution 

as QL+cv. Of course non-leading terms may be relevant at present energies, 

but these too may be computed in the framework described above. 

Combining eqs. (3),(4), and (7), we find the QCD predictions for 

helicity zero mesons (r,K,pD,...) [11,12l, 
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FM(Q2> = 
47~ CF as(Q2) 

Q2 
2 an (log $-r" 

n=O 

X 1 f 0 (as(Q2) , m/Q> 1 

2 

(13) 

Asymptotically the a0 term dominates and from eq. (11) Cl21 

FTCQ2) -f 
f2 

161~ as(Q2) -$ as Q2 -+ 03 (14) 
Q 

Identical results follow for FK and F 
pL 

if fr is replaced by fK and f 
P 

respectively. 

Although eqs. (13) and (14) agree asymptotically, the n#O terms 

in (13) can result in sizeable corrections to both the normalization and 

shape of FM(Q2) until Q2 is quite large. In general these terms tend to 

compensate for the fall-off in as(Q2). If we assume that Qi(xi,X) is 

sharply peaked at xi N -$, as is characteristic of non-relativistic bound 
n 

states, then the evolution equation causes $(xi,Q) to broaden, as QL 

increases, out to its asymptotic form x x 
1 2' Since TB is maximum at x2=0, 

this effect enhances the form factor. Figure 2 illustrates predictions 

for Q2Fn assuming that $(x i,A) is either strongly peaked at xi = +, or 

has a smooth x1x2 dependence (no evolution). In neither case is the 

normalization arbitrary; both tend to the form given in eq. (14) as 

Q2+C0.5 

The factor c an (log Q2/A2) -'n 
in (13) can in fact be measured 

n 

directly by studying the transition form factor of the photon: 

y(Q2) + v(k2mO) -f r". Using the techniques described above, we find 
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a transition form factor 

FT,(Q2) = 
2(e; + e;, 5 

Q2 

f7r +E-- 
3 Q2 

as Q2 -f m (15) 

(The y*y?p vertex is defined ie2Fry (Q2) euvap p", qp e5 ). 

For mesons with helicity 21 (e.g., p,) or for transition between 

mesons of differing helicities (e.g., y*pL -t p,), TB vanishes as a power 

of Q faster than eq. (4).6 One significant consequence of this is the 

suppression of reactions e+e- + PTPT 3 PLPT , mp by a factor m2/Q2 (in 

the cross section) relative to e+e- 
+- +nlr , PLPL, G c131. Furthermore, 

each of the leading processes has a positive form factor at large Q2 

relative to its sign at Q2 =o c141. These are all non-trivial consequences 

of QCD dynamics. By way of comparison, e+e- + pTpT is not suppressed in 

theories with either scalar or pseudo-scalar gluons. In addition F 
'T ' 

F 
oL 

in scalar theories, and Fr, FK in pseudo-scalar theories become 

relatively negative for large Q2 and thus must vanish at some finite Q2. 

Current data for Fr already rules out the pseudo-scalar theory. 

III. Conclusions 

As we have shown in this paper, the testing ground of quantum 

chromodynamics can be extended to exclusive processes at large momentum 

transfer. The essential features which are required in the calculation 

of form factors are: (a) the separation of hard (far-off-shell) and soft 

regimes of each hadronic Fock component, and (b) the derivation of evolu- 
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tion equations which determine the form of the hadronic wavefunctions 

at short distances. The eigenvalues of the evolution equations yield the 

anomalous logarithmic corrections to the leading power behavior of large 

momentum transfer amplitudes. The dimensional counting rules for hadronic 

form factors, modulo calculable logarithmic corrections, thus emerge as 

predictions of perturbative QCD. 

The Fock space light-cone gauge description used here, provides an 

exact description of QCD which is a direct analogue of the parton model. 

In general, the lowest-particle-number Fock state dominates the power-law 

behavior of large momentum transfer exclusive reactions and inclusive 

reactions at x -f 1. 

It is important to emphasize that power-law scaling of the hadronic 

form factors directly reflect the scaling behavior of quark interactions 

within hadrons. The nominal power behavior Q -2 in eqs. (13) and (15) is 

consequence of the underlying scale-invariance of quark-quark interactions 

in QCD, as well as the existence of a color singlet q{ component in the 

meson wavefunction. Further, as we have discussed in Section II, the 

presence or absence of zeroes as well as the helicity dependence of 

mesonic form factors, allows a systematic determination of the spin 

structure of quark-quark scattering. These results, together with the 

predictions of scale-breaking from the hadronic wavefunction evolution 

euqations, provide detailed tests of the short distance structure of 

quantum chromodynamics. 
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FOOTNOTES 

1. The analysis described here has also been performed in general 

covariant gauges (see ref. [21 for details). The final results are 

demonstrably gauge invariant even though the covariant analysis 

involves Fock states in YA containing any number of longitudinally 

polarized gluons. 

2. This result follows by integrating eq. (16) over k," < Q2, where 

K is approximated by single gluon exchange and the transverse 

momentum integrals are strongly ordered; i.e., 

S(h)(k) K(k& $hL,) -f S(‘)(kL) K(k&> $(a,) e++ . 
Differentiating with respect to 5 leads immediately to eq. (6). 

3. Bound state equations and formal expansions as in eq. (2) are 

mathematically undefined until boundary conditions are specified. 

The choice of acceptable boundary condictions depends upon details 

of the interaction. However condition (12) is required if the 

"kinetic energy" operator M2 - c (k:+m2)i/xi is to be self- 
i 

adjoint. Furthermore this condition appears in confining theories 

such as 2-d QCD. Finally, perturbative analyses of the xi -t 0 

region in QCD suggest that (12) is correct in QCD (see ref. c21). 

4. In super-renormalizable theories such as 2-d QCD [91 or 4-d I$~ 

field theory [lo], TB has quadratic divergences at x2,y2 = 0. In 

these theories additional factors of (Q2)lWE come from the x- 

integrations which can result in substantial modifications C91 

to dimensional counting predictions. 
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5. It should be possible to predict the structure of $(xi,A) directly 

from bag and other models used in hadronic spectroscopy. 

6. This is a consequence of the vector nature of the gluon. The 

helicity of massless fermions is conserved by vector couplings 

and thus any helicity-flip amplitude TB vanishes as the quark 

masses become negligible. Furthermore, in the Breit frame 

($I = -$), the change in longitudinal angular momentum for a 

helicity-conserving amplitude is A?* i = 2h where h is the 

helicity of the initial and final hadrons. Since a photon 

induces the transition, angular momentum conservation requires 

(2hl I 1. Consequently form factors for lhl 2 1 hadrons, as 

do those for transitions with Ah # 0, are suppressed by factors 

of m/Q relative to the leading form factors. 
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FIGURE CAPTIONS 

1. Leading logarithmic contributions to the meson form factors. The 

dominant momentum flow is through TB. The light-cone gauge ladder 

and self-energy insertions yield the evolution equation (6). 

2. QCD prediction for the meson form factor for two exteme cases: 

(a)-T(xi,X) Q &(x,--g) or (b) T(xi,h) 0~ x1x2. In the latter case 

the wavefunction is unchanged under evolution. The asymptotic 

predictions are absolutely normalized, according to eq. (14). 

The bands correspond to -+as(Q2)/r. We take A2 = 1 GeV2; notice 

that because of momentum sharing the natural argument of as is N 

Q2/4 so this value is equivalent to A:,, N .25. The determination 

of a value for A2 requires the computation of the order as(Q2) 

terms in eq. (13). The data are from the analysis of electro- 

production e-p + e-+a++n [15]. 
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