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In high-energy heavy ion collisions a partonic state of matter known as the quark-gluon
plasma is expected to be formed. The suppression of J/1) meson production in high-energy heavy
ion collisions is expected to be a strong signature for the formation of the quark-gluon plasma, due
to Debye screening of the quark-antiquark potential. To investigate the state of matter produced
in Au+Au collisions at /syy=200 GeV at the PHENIX experiment, we have analyzed forward
rapidity J/v — ptp~ production and find that J/i production is significantly suppressed in
collisions at small impact parameter.

The analysis methods are presented here, as well as results for J/v¢ invariant yields and
nuclear modification factors as functions of impact parameter and .J/v¢ transverse momentum. The
results are compared to previous J/¢ measurements in heavy ion collisions, as well as to current
theoretical models, and the implications for our understanding of .J/v production and suppression

in heavy ion collisions are discussed.
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Chapter 1

Introduction

The modern Standard Model of particle physics states that the matter of the universe is
made up of six flavors of quarks and six types of leptons, along with anti-particles for each of these.
These fundamental particles interact via four forces: gravitational, electromagnetic, and the weak
and strong nuclear interactions. The latter three are known to be mediated by photons, W and Z
bosons, and gluons, respectively [1, 2]. The particles and several of their properties are shown in
Figure 1.1.

Quantum field theory calculations using the Standard Model have been astoundingly accurate
in describing EM and weak interactions, typically with perturbative calculations that expand in
powers of agpyr ~ 1/137 and can be graphically described by Feynman diagrams.

Figure 1.1: The fundamental constituents of matter in the Standard Model. Masses taken from
the Particle Data Book [3].
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Figure 1.2: Feynman diagrams for the vertices of QED and QCD.

QED QCD
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To describe the strong interaction, we turn to Quantum Chromodynamics (QCD). QCD was
so named because quarks have an additional quantum number that can take three values, analogous
to red-green-blue light in optics. Therefore, this quantum number is known as color charge, and
the theory was given the name Chromodynamics. The quarks can be red, green, or blue, while
the gluons have eight color states known as the color octet. The color-neutral singlet state is not
allowed for gluons.

The quark-quark and quark-antiquark interactions induce a color charge-screening effect anal-
ogous to that found between electromagnetic charges. In the EM case, at large distance scales
vacuum polarization effects screen the electric charge, and at large enough distances the effective
charge is the typical value e. However, as the distance scale of the interaction goes to zero, the
effects of vacuum polarization diminish and the “bare” charge is seen by the interaction.

However, in the QCD case gluons are allowed to interact with other gluons, as shown in the
basic Feynman diagram vertices of Figure 1.2. This feature adds an additional term to the QCD
field tensor F},, compared to the EM field tensor, which leads to important physical consequences.

Contrary to the EM case described above, the introduction of gluon-gluon interactions creates
an overall anti-screening effect for color charges in QCD interactions, whereby the interaction
becomes stronger at larger distance scales. As the distance between a pair of quarks grows and the
potential energy increases, it eventually becomes energetically favorable for a new quark-antiquark
pair to tunnel out of the vacuum, and the original pair splits into new pairs. This is known as

confinement, and this is the reason that free quarks are not observed in nature.



3

Figure 1.3: Running of a with respect to @, taken from [4]. The points are various measurements,
while the curves represent the world average as calculated in [4], evolved over the range of (2.
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Confinement also makes some of the traditional perturbative calculations from QED difficult
or impossible in QCD. The coupling constant ay varies depending on the Q? (momentum-transfer
between particles) and distance of the interaction in question. Measurement of this “running”
of ay are shown in Figure 1.3(a) along with their average extrapolated over the Q? range. As
a result, expansions in terms of 1/ags may not converge quickly or at all for interactions at low
energies. Additionally, unlike the mediating bosons of QED, the gluons of QCD may interact with
other gluons, leading to additional terms/diagrams that must be accounted for in the perturbative
expansions.

At short distance scales or large Q?, however, the effective coupling constant becomes small
enough that partons are essentially moving freely, and their interactions may be calculated with

perturbation theory [5, 6]. This effect is known as asymptotic freedom, and the Nobel Prize in



Physics was awarded to Gross, Wilczek, and Politzer in 2004 for its discovery.
One successful application of perturbative QCD has been to the Q?-dependence of proton
structure functions. In Figure 1.3(b) the pQCD curves are overlaid on the measured values of F,

over five orders of magnitude in Q2 [7].

1.1 High Temperature QCD Matter

The behavior of QCD at high temperatures or densities has long been of interest. In the first
few microseconds after the Big Bang, the universe would have had an enormous energy density, and
hence a very high temperature. It is expected that at such temperatures the component quarks
and gluons of normal hadronic matter have enough energy that they are no longer confined to their
usual bound states. This results in a phase transition between normal matter and a new state,
known as the Quark-Gluon Plasma (QGP) in analogy to electromagnetic plasmas in which the
electrons and ions are freed of their atomic bound states. A corresponding phase diagram can be
constructed, as shown in Figure 1.4, which includes normal nuclear and hadronic matter, as well
as the QGP phase. In addition, other phases are expected to exist at higher net baryon chemical
potential, such as in neutron stars.

Unfortunately, the QGP near the transition temperature is an inherently non-perturbative
regime, and other methods must be used to perform calculations. One way around this difficulty
is to perform numerical calculations using lattice QCD, which makes use of a Euclidean space-
time grid to calculate the path integral of the QCD partition function. From there statistical and
thermodynamic properties such as temperature and free energy can be calculated.

Recently lattice QCD has been used to examine the phase transition to a QGP. It was found
that the transition temperature is 7, =170 MeV. This happens to lie very close to the Hagedorn
temperature Ty ~160 MeV, the limiting temperature in high-energy hadronic collisions, above
which only the entropy of the thermodynamic system is increased (i.e. the number of hadronic
states produced) [8].

In order to create such a state of matter in the laboratory, heavy nuclei are collided at



Figure 1.4: QCD phase diagram of matter.
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relativistic velocities such that a portion of the large kinetic energy is converted to thermal energy.
In \/sy~v=200 GeV /u (per nucleon) Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Laboratory, for example, there is as much as 28.8 TeV of the 39.4 TeV
total kinetic energy converted to thermal energy [9].

The temperature dependence of the energy density can be naively calculated by assuming
the QGP is a Stefan-Boltzmann gas of massless, non-interacting particles [10, 11]. The partition

function for fermions (+) and bosons (-) is:

B gV 0 k,4 1 1
InZ(T,u, V)= 2772T/0 3E | e(B-m/T £ 1 + e(B+m)/T £ 1 (1.1)

If we assume that the number of quarks and anti-quarks are equal, then it can be shown that p=0.

For gluons (or other bosons), this becomes

2
gZ VT3 (bosons
mz=24 "% ( ) (1.2)

g% VT3 (fermions)
Now, since energy density is € = (7T2/V)(01n Z/dT), we can calculate:

2

7T o.m
= —gf)—T" 1.
€ (9b + 39) 55 (1.3)



where g ¢ are the degeneracy numbers of the bosons,fermions as calculated below for gluons and

quarks+antiquarks:

9 = Ygluon = (8 color states)(2 spin) (1.4)

gr = (94+95) = 2(3 color)(2 spin)(n flavor) (1.5)

This gives us

37%T 4 (2 quark flavors)
47.5;:—(2]T4 (3 quark flavors)
for the energy density of a gas of massless partons.

Using lattice QCD it is possible to perform a more realistic calculation of the energy density.
Figure 1.5 shows such a calculation of the energy density [12]. At sufficient temperature, this result
shows the same T“-scaling of the plasma energy density as calculated above. It should be noted
that the calculation plateaus at ~80% of the Stefan-Boltzmann gas of non-interacting partons. This
has sometimes been taken as evidence that the plasma weakly-interacting, but other calculations
have shown that even a strongly-interacting plasma could approach this limit [13].

As the medium expands and cools, it passes through several phases, as shown in Figure 1.6.
First hadronization will occur once the temperature becomes low enough that partons are confined
again. Next, kinetic freeze-out occurs when the expanding hadrons are too sparse to interact with
one another. At this point they will continue along their trajectories to be experimentally observed.
In order to extract any properties of the QGP medium, the evolution through other phases must
be accounted for as well. Hadronization in particular is not understood very well.

Topics of interest for the produced medium include the amount of thermalization of the
medium, how strongly-interacting the medium is, the nature of the phase transition itself, among
others.

Unfortunately, we are limited in our capabilities to experimentally study the properties of the
medium, due to its exceedingly short lifetime. Because of this we are constrained to probes that are

produced in the same collision as the medium, such as jets or heavy quarks from a hard scattering.
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Figure 1.5: Energy density in units of 7% as calculated in lattice QCD as calculated in [12]. The
sharp rise at T' = T, corresponds to the phase transition to the QGP. On the right side the energy
density of a simple Stefan-Boltzmann gas of partons (as calculated in the text) is labeled.
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Figure 1.6: The stages of a high-energy nuclear collision.
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To understand the experimental measurements of these probes, however, we must understand their
initial production cross sections as well.

Our available probes and observables for studying the QGP medium include:
e Elliptic flow of particles to study on the shear viscosity/entropy of the medium.
e Jet modification due to in-medium scattering and energy loss.

e Heavy quark flow as a measure of the medium thermalization.



e Hanbury-Brown-Twiss interferometry to evaluate the distribution of matter.
e J/v suppression above the QGP transition temperature as a signature of deconfinement.

For a detailed review of experimental and theoretical status, see [14, 15].

To expand upon the last bullet item in the list, the QGP is expected to exhibit screening of the
interactions between color charges, similar to Debye screening of electric charges in electromagnetic
plasmas. Calculations of the screening length near the transition temperature have led to the
conclusion that the .J/¢ meson (a charm-anticharm bound state) is the right size to have its
constituent quarks Debye-screened from one another just above T,.. This is the core of the proposal
that the disappearance of the .J/v¢ bound state is a signature of the QGP. This effect is the topic

of the current analysis, and is discussed further in the next chapter.



Chapter 2

Charmonia and the J/¢

The .J/1, with mass ~ 3.1 GeV/c? and spin of 1, was discovered concurrently and indepen-
dently by groups at Brookhaven National Laboratory (BNL) [16] and the Stanford Linear Accel-
erator Center (SLAC) [17], and the discoveries were announced together on November 11, 1974.
It was the first discovered hadron containing charm quarks (D mesons, though much lighter, were
not discovered until 1976), as well as the first discovered charm-anticharm meson (charmonium).
The BNL group used the reaction p+Be — J/¢ + X — et + e~ + X, while the SLAC group used
et +e” — J/¢p — {hadrons,ete”, T~ }. Since that discovery, many more charmonium states
have been observed, such as the 9’, 1., and x.! , as well as hadrons containing a mixture of charm
and other quarks (e.g. D mesons and the A.). Several of the most common charmonia states are
listed in Table 2.1. Charmonia which have mass below the energy threshold for producing two D

mesons (3.73 GeV) are shown in Figure 2.1 with their major decay modes.

Table 2.1: Several charmonia states, with their masses, binding energies, and spin states.

state Uls J/T/} Xc0 Xcl Xc2 770(25) W
mass (GeV/c?) 298 3.10 3.42 351 3.56 3.64 3.69
AE (GeV) 0.75 0.64 032 0.22 0.18 0.10 0.05
QS+1LJ 180 381 3P0 3P1 3P2 180 381

One advantage to a bound state of heavy quarks is that it is relatively well-described by

the non-relativistic Schrodinger equation. We can write the QCD potential energy of the bound

! The Xco,1,2 are often listed as a spin-averaged state xc.



10

Figure 2.1: Major charmonia states and decay modes [3].
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state as having two components, one similar to a typical Coulomb potential and a second linear
term for confinement that increases as the quarks are pulled apart. This is known as a “Cornell
potential” [18] and is written:

@

V(r)=rr—— (2.1)

r
Following the procedure of [19] and plugging this potential into the non-relativistic Schrodinger
equation:

{ch - miv2 + V(r)} By(r) = M;Dy(r) (2.2)

and using k ~ 0.2, a ~ 7/12, and m, ~ 1.3 GeV/c? one can reproduce the experimental masses
of the J/v, x¢, and ¥’ to within 1%. The resulting calculated mass of the J/¢ is 3.10 GeV/c?
(compare to the Particle Data Book [20] value of 3.0969 GeV/c?) and the average radius is 0.25

fm. The calculated ¢’ mass is 3.68 GeV/c?, as compared to the PDB value of 3.68609 GeV/c2.

2.1 J /1 Production Mechanisms

There have been several models put forward to calculate the direct J/¢ (and other heavy
quarkonia) production rates. The Color Evaporation Model (CEM) was introduced in 1977 [21, 22],
and was later revived in 1996 by Halzen et al. [23]. It is able to reproduce a number of experimental

results very well, such as the J/1 cross section from p+p or p+p collisions as a function of /s, as
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well as the polarized production cross sections.
The model assumes that the color state of the produced c¢ is completely random, and con-
sequently there is a 1/9 chance of ending up with a colorless (singlet state) meson (the other cases

are assumed to result in open charm mesons). This can be written as:
2mp

_Pp
o)) =% /2 dm

mc

dUCE

(2.3)

dm

where do.z/dm is the differential ¢¢ production cross section with respect to mass, and the natural
value of p is the inverse of the number of quarkonia states between 2m. and 2mp. However, in
practice the determination of p is usually done from the data, leaving the CEM rather phenomeno-
logical.

The Color Singlet Model (CSM) is based on the postulate that the creation of the two heavy
quarks and the formation of the meson state can be factorized. The first process is considered to be
perturbative due to the heavy mass of the quarks, allowing the cross section to be calculated using
the usual Feynman diagram techniques. The second step is assumed to happen with the quarks at
rest in the meson frame, and this is known as the static approzimation. Finally, it is assumed that
the color and spin of the ¢G do not change during binding, and therefore the ¢q pair is required to
be produced in the color singlet state. In high energy hadronic collisions, two-gluon fusion is the

leading contribution, and the diagram for this is shown in Figure 2.2.
Figure 2.2: Feynman diagram for the Color Singlet Model [24].
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However, in 1997 the CDF collaboration showed that the direct J/v cross section exceeds

the CSM prediction by a factor of ~ 30 in p+p collisions at /s=1.8 TeV [25], [26], as shown in
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Figure 2.3. CDF had also already shown that the ¢’ predictions did not match the data. These

results left the CSM in a state of disrepute, and other models were turned to.

Figure 2.3: CDF J/v production differential cross section compared to both CSM and COM
calculations [27]. The large (factor ~30) disagreement with the CSM can be seen.
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The Color Octet Model (COM) was proposed in 1995 [28], and offers an alternative to the
CSM-CDF puzzle. It takes the large mass of the charm quark as reason to neglect relativistic effects
and perform calculations within the effective field theory of Non-Relativistic QCD (NRQCD). This
involves expansions in both ay and v/c, the relative quark velocity within the bound state. This

expansion is written as:

do[J /) = Zdacc (0¥ (2.4)

where n are the color (single/octet) and angular momentum Fock states, do[cc] is the ¢é production
cross section in state n, and <O;{/ 7/)> are NRQCD matrix elements. Factorization is assumed to hold,
so that the c¢ cross sections are expanded in powers of a and calculated perturbatively, while the

transition probability from the cé(n) state to the J/v is encapsulated in the matrix elements, which
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can be expanded in powers of v/c. The inclusion of color-octet production cross sections for the
J /1 are what led to the name “Color Octet Model”. Unlike the CSM, the COM is very successful
at reproducing the J/v and 1)’ cross sections at the Tevatron, as seen in Figure 2.3. However, the
matrix elements are tuned to the data, as it is not currently known how to calculate them on the
lattice.

In 2007 CDF published the polarization of prompt (not from b-decays) J/v and 1)’ mesons [29],
which disagrees strongly with COM predictions. If 8* is the angle between the decay u™ and the
boost direction (in the lab frame) of the meson in the meson’s rest frame, then the decay angle
distribution is dN/d cos 8* o 1 + a cos® #*, where a determines the magnitude and direction of the
polarization. The CDF measurements of « are shown in Figure 2.4, along with the COM pre-
dictions. As can be seen, CDF measured J/¢ production to be slightly longitudinally polarized
(a < 0), while the COM predicts a strong transverse polarization (a > 0).

Figure 2.4: The polarization parameter o as measured by CDF for prompt (a) J/¢ and (b) ¢/

production [29]. Overlaid as blue bands are the predictions from the COM, which disagree with
the data.
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Recently work has been done to extend the CSM by including additional diagrams. Lansberg
et al. [30, 31] include terms corresponding to an s-channel cut of § = 4m?2. These diagrams are
similar to those in Figure 2.2, but with different kinematic requirements. The function chosen
to represent cc()g nodes in the calculation contains two free parameters, which were chosen to
match the CDF total cross section up to pr ~ 10 GeV/c. The resulting large contribution from

including the s-channel cut terms results in predictions that agree much better with the CDF data
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on both the J/1 cross section and the polarization, as shown in Figures 2.5, although higher-order
diagrams than those currently included are expected to contribute significantly further out in pr.
The predicted polarization varies due to the large J/1 feed-down contribution from x. decays, but

the case of a transversely polarized x. agrees with the data much better than previous models.

Figure 2.5: Predictions from the CSM with the s-channel cut [32, 31], parametrized to the CDF
total J/1 cross section, (Top Left) compared to CDF J/¢ production cross sections at /s=1.8
TeV (Top Right) compared to PHENIX J /1 production cross sections at 1/s=200 GeV, (Bottom)
compared to CDF measurement of the J/v polarization parameter a.
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PHENIX has also measured J/v¢ production in 1/s=200 GeV p+p collisions using the 2005
dataset [33]. The cross sections as functions of rapidity and pr are shown in Figure 2.6. These
have also been compared to predictions of the CSM model with the s-channel cut, as shown in
Figure 2.5.

There has been much work done on understanding J/v production, but there is still a ways

to go before it is completely understood in p+p and p+p environments, let alone in the more
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Figure 2.6: J/v production in p+p collisions at /s=200 GeV at PHENIX [33]. Top: rapidity
distribution. Bottom: pr distributions.

Bdo/dy (nb)

T

1/2r p_ Bd’c/dydp [nb/(GeV/c)?]

Forw/Mid-Rapidity

60

40

20

102

= [y|<0.35
10° | | | A
A .
U )]
0.5 (o] 9] [‘i'] g
0 2 ‘ ‘ 8

I
Global scale uncertainty: 10.1%

® Uiy > AN

W Jhy->e'e =,

. --g(gg)s+ Feed-down . 2
A == 1.25*"NRQCD (CTEQ6M) “, v,

i +*Double Gaussian e

-2 0 2

® |yle[1.2,2.2]; x10

4
P, (GeV/c)

complicated domain of nuclear collisions.



16

2.2 J/1s as probes of the QGP

In 1986, Matsui and Satz proposed that Debye screening of color charge would take place
in a deconfined quark-gluon medium, just as in an electromagnetic plasma [34]. Further, they
calculated that the radius of the J/1 bound state is larger than the Debye screening radius just
above the transition temperature T, of the plasma. This would lead to the dissolution of the J/«
bound state within the plasma, which would be a clear signal of the existence of such a plasma.

In a medium of charged particles, Debye screening occurs when the interactions of one charge
are reduced or cancelled out by the surrounding charges. Though, this was originally defined for
electromagnetic plasmas, it can be extended to plasmas of color charge as well. It is parametrized
by the Debye screening radius, the radius at which the effective charge of a particle is reduced by
a factor of 1/e.

Inside the QGP, the linear term in our potential model (Equation 2.1) will disappear as
the plasma temperature T approaches the transition temperature, and a screening factor will be
introduced to the Coulombic term, giving rise to the modified potential

V(r) = —W (2.5)
T=T.
The net result is a much shallower potential well, where even small perturbations can knock the c¢
out of the bound state.

Qualitatively, this change can be thought of as the short-range strong interactions in the
medium predominating over the long-range interactions. The key is that the relative scale of long-
range versus short-range for the c¢ changes when it is immersed in the plasma, such that the binding
interaction is no longer dominant. This is expressed pictorially in Figure 2.7.

Some simple calculations can express this quantitatively, as detailed in [10]:

e First, noting that a.ys is dependent on the temperature of the medium, the lattice QCD

results of «=0.52 and 0.2 at T'=0 and 200 MeV, respectively, are used.



17
Figure 2.7: Cartoon of a J/1 in (a) vacuum and (b) the QGP.
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e Next, the screening radius from lowest-order perturbative QCD is used:

o) =[5 26)

e Finally, the semi-classical Bohr radius of the c¢ comes from minimizing the energy equation

for a cé system (u = 1840/2 MeV) with the screened potential (Eq. 2.5) and (p?) ~ 1/r2,
in the limit Ap — oo:

p2

E(r) = 72m+V(7“)
—r/Ap(T)
_ 1 _Ozeff(T)e (2‘7)
27?2 r

The results of these calculations are listed in Table 2.2.

It is clear that the screening radius is much smaller than the J/v radius at T=200 MeV in
this model, and it should also be noted that the radius of the c¢ system has become quite large in
the medium. It is also pointed out in [10] that the lowest-order pQCD estimate of A\p are about a
factor of 2 larger than those from lattice calculations.

The effect of Debye screening is also borne out by lattice calculations of the binding energy
of the cc¢ system. Shown in Figure 2.8 is the result of a lattice calculation by the RBC-Bielefeld

Collaboration [35] of the free energy as a function of the radial separation of the quarks in (2+41)-
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Table 2.2: A comparison of the screening radius Ap and the Bohr radius of the J/1

Tolasma 0 200 MeV
Qeff 0.52 0.2

AD 00 0.59 fm
Rponr 041 fm  1.07 fm

flavor QCD. As can be seen, the energy required to break the binding drops with the increase in
the medium temperature, until it becomes negligible above 27,.

Though a number of lattice calculations show the J/v peak in the spectral function surviving
as high as 27, recently Mécsy and Petreczky [36] argued that even though the spectral functions
exist at higher temperatures, the binding energy still becomes low enough that any c¢ bound state
can be broken simply by interactions with the thermal medium. For example, they calculate that
at 1.17. the J/1 spectral functions still has a resonance peak, but the binding energy has already
been reduced to 0.014 GeV. They also note that the existence of the spectral function peak at
higher temperatures could mean that the cé-pair is still correlated in phase space, which could
encourage later-stage regeneration of J/is after the plasma has cooled.

In any case, the cc interaction will be almost entirely screened away in a hot enough medium,
causing the component charm quarks to become unbound from one another. Experimentally, this
would manifest in the suppression of the J/1 state and would clearly indicate the formation of a
QGP. However, the picture is no longer as straightforward as that laid out by Matsui and Satz and

described here.

2.3 Cold Nuclear Matter

The “smoking gun” quality of J/v¢ suppression has become more complex in the past 15
years due to results on suppression of J/is within normal nuclear matter (usually referred to
as “cold” nuclear matter), which was not accounted for in the original Matsui and Satz paper.
We know that there is significant modification of the parton distribution functions (PDFs) when

the nucleons are bound in the nucleus, compared to the PDFs of free nucleons. This plays a
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Figure 2.8: The color singlet ¢qq free energy as a function of their radial separation, as calculated
in (2+1)-flavor QCD on the lattice [35]. As can be seen, the energy needed to separate the pair
decreases as the medium temperature approaches and then exceeds T,.. The solid line represents
the heavy quark potential V(r) at T=0.
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significant role in quantitatively extracting the cold nuclear effects from the data. For example,
because J/1 production is dominated by gluon-gluon fusion, when p+A or d+A data is compared
to p+p data the gluon distribution in the nucleus must be contrasted to the gluon distribution of
the proton. Experiments at the CERN-SPS have taken a different route by comparing the p+A
J/v production to Drell-Yan production in the same data-set. However, in that case the gluon
PDF must be compared to the quark PDFs in the nucleus over the respective x-ranges of the two
measurements, and the difference must still be accounted for in any analysis of cold nuclear matter
(CNM) effects.

The ratio of the gluon PDF in a heavy nucleus (A=208) to that in a free proton is shown
in Figure 2.9, as calculated by Eskola et al. in [37]. The depletion in the region z < 1072 is
known as “shadowing”, while the enhancement at 2 ~ 107! is known as “anti-shadowing”. In
V/snvny=200 GeV d+Au collisions PHENIX covers a range of z-values in the gold nucleus of roughly

0.002 < x < 0.2. This includes both the shadowing and anti-shadowing regions. It should be noted
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Figure 2.9: Ratio of gluon PDF in an A=208 nucleus to the gluon PDF in a proton as calculated
in [37]. The solid line is for Q?=2.25 GeV?, while the dashed line is for Q?=10000 GeV?2. Vertical
lines delineate the dominant regions of x probed at SPS, RHIC, and the LHC.
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that the exact modification of the gluon PDF is very model-dependent at present.

In addition to the modified PDFs, there is a significant chance that the J/v final state will fail
to form due to the cé-pair interacting with the nucleus after production. This is usually represented
by a break-up (or absorption) cross section, and the .J/v production cross section in p+A4 collisions

can be written in the Glauber formalism as [38]:

Top = ;?r/db [1— (1= Ta(b)ow)"] (2.8)

where o is the nucleon-nucleon charmonium production cross section, oy, is the c¢¢ break-up cross
section, Ta(b) = [ pa(b, z)dz is the nuclear thickness seen by the impacting proton, as a function
of impact parameter b. Thus far there is no first-principles calculation of oy, so it remains a free

parameter that must be extracted from the data.
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2.3.1 SPS p+A Measurements

A number of experiments at CERN-SPS have measured J/1 production in p+A collisions,
recently including the NA50 and NA60 experiments, in addition to several previous experiments
such as NA3. The nuclear targets have included Be, Al, Cu, Ag, W, and Pb, with proton beam
energies of 158, 400, and 450 GeV. The different nuclei provide a varying path length for the c¢
through the nucleus.

Figure 2.10: From [39]: Left: ratio of J/v¢ production cross sections in p+A collisions divided by

p+Be collisions as a function of the path length L from NA60. Right: compilation of oy, as a
function of zp from various experiments.
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NAG60 recently published results for J/v production from p+A collisions with FEpeqmm=158
GeV and 400 GeV [39]. These are presented in Figure 2.10(a) as the ratio of J/v production off
of a heavier nucleus to the production off Be. As can be seen, the nuclear break-up of the cc is
stronger in the 158 GeV case for the same average path length. This is in line with the break-up
cross sections extracted from this data, 03,-[158 GeV] = 7.6 £ 0.7 (stat.) =+ 0.6 (syst.) mb and
o5 [400 GeV] = 4.3 £+ 0.8 (stat.) + 0.6 (syst.) mb. A comparison is also done between the oy,

extracted by a variety of experiments over a range of z values, as is shown in Figure 2.10(b).
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2.3.2 PHENIX d+Au Measurements

In 2003, PHENIX recorded d+Au collisions at /syn=200 GeV/u in order to study cold
nuclear matter effects on J/vs [40]. It was found that J/v production is significantly suppressed
in the deuteron-going direction (forward rapidity in this case), as compared to production in p+p

collisions scaled up by the mean number of binary collisions in a given d+Au centrality bin:

1 do®™v/dy
_ 2.9
RdAu <Ncoll> dapp/dy ( )

The rapidity dependence of Rgay is shown in Figure 2.11(a), and the Ngo-dependence is shown
in Figure 2.11(b) in three bins of rapidity. It can be seen that the suppression at forward rapidity
also increases with N¢q, as would be expected simply due to increased path length through the
thicker part of the nucleus in collisions at small impact parameter.

Also shown in Figure 2.11(a) is a calculation of Rgay [41] incorporating the EKS [37] (top)
and NDSG [42] (bottom) nuclear shadowing-modified PDFs. An additional break-up cross section
(chosen to be constant for simplicity) is included as a free parameter. Curves are shown in the
Figure for several values of op,., along with the best-fit curve, which yields oy, = 2.83:% mb for EKS
shadowing, and oy, = 2.63:% mb for NDSG shadowing. The fits take into account both statistical
and systematic uncertainties in the data, and the 1-sigma region is shown as a band around the
central value.

In Figure 2.11(b) the EKS and NDSG models are fit to Rqay, as a function of Ny, using
a geometric parametrization based on the path of the parton through the nucleus to calculate the
Ncon-dependence. Those fits are used to extract the break-up cross section independently in the
three rapidity bins. The identical appearance of the EKS and NDSG bands is due to using the
same geometric dependence for both cases, so that the only difference is the relative contribution
from the nuclear PDFs vs. the break-up cross section.

Recently, it was pointed out by Ferreiro et al. [43] that the choice of a 2 — 1 or 2 — 2 process
for J/1 production can have a significant effect on the z-values in the nucleus probed by J/vs of

a given pr and y. This has implications for extracting CNM effects from data, where the pr, y of
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Figure 2.11: From [40]: R4ay as a function of (a) rapidity and (b) Neon, compared to both the EKS
and NDSG shadowing models with an additional nuclear break-up term.
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the J/1 is mapped to the xo within the nucleus. The two cases are shown in Figure 2.12, where
“Intrinsic” refers to the 2 — 1 case in which the J/v pr,y are determined entirely by the incoming
gluons, while “Extrinsic” refers to the 2 — 2 where the J/1 kinematics also depend on those of the
outgoing gluon. As would be expected, for a given rapidity in the extrinsic case there is a much
wider range of xo values sampled due to the extra freedom introduced by the additional outgoing

parton.

2.4 A+ A Collisions

2.4.1 NA50 Pb+Pb Program

NA50 was a fixed-target experiment at the CERN Super Proton Synchrotron (SPS) that
studied dimuon production in Pb+Pb collisions, including J/v, ¢', and Drell-Yan production.
As a fixed-target experiment it had lower |/syy than collider experiments, but an advantage in
statistics due to the higher collision probability, a boon for rare physics processes such as J/1
production.

Using Epeam=158 GeV/u Pb+Pb data (\/syn=17.2 GeV /u) taken in 1998 and 2000, NA50
measured [44] both the J/i¢ and the Drell-Yan cross sections. The total J/v¢ production cross

section should nominally (absent medium effects) scale with the Drell-Yan cross section for all

Figure 2.12: x5 vs. y distribution from [43] for J/s in simulated /syy=200 GeV d+Au collisions.
Left: Intrinsic case of the 2 — 1 production process. Right: Extrinsic case of the 2 — 2 process.
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Figure 2.13: Left: NA50 measurement of the ratio of J/1 to Drell-Yan production as a function of
the transverse energy of the collision, Ep = Epartides FE;sinf;. Right: NA50 and previous results
for J/v/Drell-Yan production divided by the expectations based on p+A data, mapped to the
energy density of the system. Both from [44].
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impact parameters, and Drell-Yan processes are not expected to be modified by medium effects,
so the ratio of 0/, /opy is a measure of J/1¢ suppression by the medium. This ratio is shown as

a function of transverse energy Ep = ) FE;sin@; in Figure 2.13, compared to the expected

particles
ratio based on CNM effects measured in p+A collisions. The total transverse energy is a direct
observable that can be mapped to impact parameter or energy density. Also shown is the previous
ratio divided by the CNM expectation, plotted against the energy density as calculated in the
Bjorken energy density formula:

_ dEr/dy

= 2.1
¢ et X Ar (2.10)

with a medium lifetime of 7=1 fm/c, where Ap is the transverse area of the collision, and c¢ is the
speed of light. The significant suppression beyond expected CNM effects has been referred to as
“anomalous suppression”, and helped form the basis of a CERN announcement in 2000 that they
had observed the quark-gluon plasma at the CERN-SPS in Pb+Pb collisions [45, 46]. It should be

mentioned that in the right-hand plot of Figure 2.13 (1) the z-axis is dependent on that equation
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for the medium energy density, and (2) none of the plotted datasets have large statistics on both
sides of the turn-on point of the anomalous suppression (¢ ~ 2.4 GeV/fm?). Nonetheless, the NA50

anomalous J/1 suppression remains an intriguing result.

2.4.2 PHENIX Au+Au Program

Following the d+Au run of 2003, PHENIX recorded its first statistically significant .J/1
sample from Au+Au collisions in 2004 [47]. The J/¢ nuclear modification factor (Raa) as a
function of the number of participant nucleons (Npar¢) is shown in Figure 2.14. As can be seen
in the figures, J/s are significantly suppressed in Au+Au collisions compared to the naive Ngo)-

scaling of J/v production in p+p collisions.

Figure 2.14: Top: PHENIX J/1¢ Raa as a function of Npu at (blue) forward and (red) mid-
rapidities [47]. Bottom: ratio of Raa at mid-rapidity to forward rapidity.
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The PHENIX Raa points, however, are of the same order of suppression as that seen by
NAS50, as can be seen in Figure 2.15. This came as something of a surprise, since the higher energy

density and temperature at RHIC were expected to lead to greater suppression than was seen at
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the CERN-SPS. The NA50 data and PHENIX data are overlaid in Figure 2.15, along with several

model calculations.

Figure 2.15: Raa data as a function of Npap from NA50 and PHENIX. Overlaid are several models
from the same time period. It should be noted that Grandchamp et al. also included a regeneration
component which is not plotted here, but is discussed in the next section.
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Additionally, PHENIX found that J/¢s are more suppressed at forward rapidity than at
mid-rapidity in central collisions, as can be seen from the ratio of the two rapidities in the lower
panel of Figure 2.14. This would seem to be in contradiction to a simple energy-density picture
of suppression, where J/vs at forward rapidity would be subject to lower energy densities and

therefore less suppressed.

2.4.3 J/1¢ Regeneration

J/1 regeneration (also sometimes referred to as “statistical hadronization” or J/v¢ coales-
cence) has seen much interest due to its ability to explain both the similarity in suppression between

SPS and RHIC, as well as the difference in suppression at forward and mid-rapidity measured by
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PHENIX. In this picture the larger number of cc-pairs produced at RHIC (of order 10 in central
Au+Au collisions) are allowed to recombine at the hadronization stage of medium evolution to
form new J/1s. In such a scenario J/vs are still more suppressed at RHIC than at the SPS by the
higher medium temperature, but the cé-pairs recombining into J/1s lead to an enhancement that
balances out the Debye screening contribution in the overall J/1 measurement. A model calcula-
tion by Zhao and Rapp from [48] which includes the two contributions is shown in Figure 2.16 for

both NA50 and PHENIX.

Figure 2.16: J/v suppression at NA50 (left) and PHENIX (right) using the model of Zhao and
Rapp [48]. Shown for both is the suppression of direct J/is, as well as the contribution from
regeneration (AKA coalescence), which is much larger at RHIC.

L B B HL T T T T T
r * NASO b 1.4 L ] PHENIX a
350 Pb-Pb (17.3 A GeV) —— direct E I Au-Au (200 A GeV) direct 1
w F coalescence 1 [ - — coalescence
< . F — total ] 12 lyl<0.35 — total
/g 30; ++++ Nuc. Abs. E F -+« Nuc. Abs.
S sk E
@/ 25E ............................
L 20p : B
o f 1
5 15; A
© r L) h‘ ]
310 + -
I
Sj 4 - e e m T = — B
0baim b nm =TT R R I O’Mn’w‘i"‘\H"\HH\HH\HH\HH\HH’
0 20 40 60 80 100 120 0 50 100 150 200 250 300 350
E. (GeV) Noart

Since the amount of regeneration would statistically increase as ~ N, fharm,

the rapidity distri-
bution for recombined J/1s would be narrower than that of direct J/s. The rapidity distribution
shown in Figure 2.17 is based on a calculation of .J/v regeneration by Thews [49]. The difference
in the distributions implies that even if the suppression of direct .J/¢s is identical at forward and
mid-rapidity, the enhancement from regeneration at mid-rapidity will be greater and lead to higher

Raa there than at forward rapidity, as is seen by PHENIX.

2.4.4 Sequential Charm Dissociation

Sequential charm dissociation is another model that attempts to explain the similarity in

suppression between NA50 and PHENIX. As proposed by Karsch, Kharzeev, and Satz [50], it is
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Figure 2.17: Rapidity distribution of J/vs from [49], where “diagonal pairs” refers to cc pairs
produced together in the initial collisions, while “all pairs” includes J/vs from regeneration.
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based on the significant feed-down contribution to J/v¢ production from higher-energy cc states
like the ¢’ and x.. In this picture it is argued that the .J/v itself does not melt until temperatures
above 2T, or energy densities above 25 GeV/fm?, which is not achieved at the SPS or RHIC.

Figure 2.18: Left: J/v survival probability vs. energy density, showing the broad range of € where

the ¢' and y. are melted, but not the J/1. Right: Survival probability as calculated from the
SPS and RHIC data [19], as described in the text. It should be noted that the PHENIX points are

based on the preliminary 2004 results, not the final published values.
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Instead, the observed suppression in both cases is caused by the ¢ and . melting, and the
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resulting loss of their feed-down .J/¢s that would have been produced. It is assumed that the
feed-down rates are the same as those in p+p collisions, i.e. 60% direct J/¢, 30% decay from Y.,
and 10% decay from ¢’. For this model the x. and 1)’ melting points are taken to be just above T,
or > 1 GeV/fm? based on lattice QCD spectral functions, while the .J /1 dissociation temperature
is assumed to be >1.5T,, or ~10-30 GeV/fm3. With these melting temperatures, the x. and 1’
states should melt in quick succession, followed by a broad range in energy density where only the
direct J/1) contribution remains. This is shown in cartoon form in Figure 2.18(a).

In order to compare to the data, the authors combine the measured Raan vs. Npare with a
break-up cross section for the J/v passing through the nuclei, and extract the survival probability
as a function of energy density. The resulting values are shown in Figure 2.18(b). To verify
this picture of sequential charm dissociation at RHIC, measurements of x. production in Au+Au
collisions are probably needed to demonstrate the y. suppression occurs over the same range of
energy density as the .J/1 suppression.

To determine whether regeneration or sequential dissociation is the explanation behind the
comparable results at RHIC and SPS we can make use of the fact that J/¢s from regeneration
are expected to have a softer pr-distribution than direct J/vs, due to the Ngharm—dependence of
the enhancement. However, to distinguish the two cases at RHIC a precision measurement of the
pp-distribution in Au+Au collisions is needed. Current measurements extend to only pr=5 GeV /e,
and even there have large uncertainties (as will be further discussed in Section 2.4.6), resulting in
a poor constraint on the slope parameter of the pr-distribution at present.

Within the authors’ assumption that direct J/ts are not dissociated at RHIC, the LHC J /4
measurements should be conclusive on the matter . The LHC is expected to achieve sufficient energy
density in nuclear collisions to cause the melting of the direct J/1 contribution even if Tgissoc ~ 21,
while regeneration models typically predict a large enhancement at the LHC with respect to RHIC,
due to the larger number of c¢¢ pairs produced. It is believed that these opposite behaviors at higher

energy will allow discrimination between the regeneration and sequential dissociation pictures.



2.4.5

In order to unequivocally refer to the measured .J/v¢ suppression as coming from a quark-
gluon plasma, it is essential to compare to the suppression that is known to be caused by the
interaction of the c¢¢ with normal cold nuclear matter. This has been done in two ways in [40],

first by projecting the nuclear PDF and break-up cross section model of the d+Au data to Au+Au

Cold Nuclear Matter Contribution

collisions, and secondly by using the d4+Au data itself to form a prediction.

Figure 2.19: Raa projections using the 2003 d+Au data for both (a) Cu+Cu and (b) Au+Au,
overlaid on the PHENIX data points from the 2004 Au+Au Run and 2005 Cu+Cu Run. Taken

from [40].
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Monte Carlo simulation of the A4+ A collision and a simulation of the PHENIX trigger and cen-
trality selection to extrapolate to Raa in Cu+Cu and Au+Au collisions. The resulting curves and
one-sigma uncertainty regions are shown in Figure 2.19. As can be seen, due to the large uncertain-
ties the suppression in Cu+Cu collisions and at mid-rapidity in Au+Au collisions is statistically
consistent with cold nuclear matter suppression. It is only at forward rapidity in Au+Au that the
suppression exceeds that of the CNM projection by at least 2-sigma.

In the second case it is assumed that the CNM effects at a given rapidity in a Au+Au
collision would be the product of the measured Rqa, at that rapidity in d+Au collisions and the
Rgay at the opposite rapidity (equivalent to a Au-+d collision). This model has the advantage of
not assuming a particular shadowing model or break-up cross section, but instead relies directly
upon the impact parameter-dependence of the measured data. This is combined with a Au+Au
Glauber MC in which the radial position of a given nucleon-nucleon collision is explicitly known,
and the total Rax is calculated for various centrality bins (or Npa bins). The distributions of Neon
and the radial impact position are shown in Figure 2.20(a) for the four d+Au centrality bin. The
parametrization of the modification factor as a function of the radial position is widely varied in
order to produce a one-sigma uncertainty band for the projected Raa. The resulting projections are
shown in Figure 2.20(b). Similar to the previous case, the suppression at mid-rapidity is consistent
with CNM effects. The forward rapidity suppression is consistent with the CNM projection at
about the two-sigma level.

Both of the previous two projections would benefit greatly from higher-precision d+Au data.
In 2008 PHENIX recorded a factor of ~ 30 more d+Au data than in the 2003 run. The final analysis

of this data should yield much better CNM projections for comparison to Au+Au suppression.

2.4.6 Suppression vs. Transverse Momentum

In addition to the Npa distributions of Figure 2.14, in 2004 PHENIX also measured J/1
Raa as a function of transverse momentum. The results are shown in Figure 2.21 in four broad

bins of centrality, for both forward and mid-rapidities.
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Figure 2.20: Left (a): Neon (top) and Au nucleus radial impact position (bottom) for the four broad
d+Au centrality classes. Right (b): Raa projections using the 2003 d+Au data for both Cu+Cu
and Au+Au, overlaid on the PHENIX data points from the 2004 Au+Au Run and 2005 Cu+Cu

Run.
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Recent theoretical predictions and experimental results have driven interest in whether J/1

Raa at high pr (> 5 GeV/c) flattens out, drops further, or increases to 1.
One source of such interest is the so-called “Hot Wind Model” of Liu, Rajagopal, and Wiede-

mann [5

1]. They make use of AdS/CFT correspondence to calculate the screening length L in a
hot medium for a moving heavy ¢g-pair in A'=4 super Yang-Mills theory. As a result, they find a

1/,/7-dependence in the screening length, resulting in .J/¢s at higher pr being more suppressed.
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Figure 2.21: Raa as a function of transverse momentum at (blue) forward and (red) mid-rapidities,
in four centrality bins.
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This is plotted as a modification to the dissociation temperature in Figure 2.22. As the screening
length shrinks with increasing momentum, the cc¢ will become unbound at lower and lower tem-
peratures, implying that Raa should decrease as a function of pr. Additionally, it was pointed out
by T. Gunji et al. [52] that there should be a relatively sharp turn-on in the suppression at the pr
where the dissociation temperature is less than the temperature of the medium.

The two-component model of Zhao and Rapp [53] is the source of another recent prediction
of J/1 Raa vs. pr. They incorporate both direct .J/v¢ production and coalescence of c¢ pairs at
hadronization time. For the direct component they use a Glauber model with a nuclear break-up
cross section to initially distribute the .J/vs, and a transport model to propagate them through the
medium. The normalization of the coalescence component is determined by the number of c¢ pairs

produced in the collision, while the kinematics of the resulting .J/vs are calculated via a blast-wave
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Figure 2.22: The dissociation temperature as a function of transverse momentum in the Hot Wind
model [51]. The top curve is the dissociation temperature for the T, while the bottom curve is for
the J/1.

formula, which assumes the charm quarks flow along with the thermalized medium. The resulting
pr distributions from both components, as well as the sum, are shown in Figure 2.23 and compared
to PHENIX Au+Au data.

While experiments have struggled to collect enough Au+Au data to measure Raa at high
pr, there have been recent results from Cu+Cu data for Raa at pr > 5 GeV/c. STAR measured
J/¥ Raa using the 2005 Cu+Cu dataset in two bins covering 5 < pr < 8 GeV/c [54], and found
Raa to be above unity for both 0-60% and 0-20% centralities. This result is shown in Figure 2.24,
with the PHENIX Cu+Cu data for comparison. It should be noted, however, that due to the large
uncertainties the STAR points are still compatible with Raa ~0.6-0.8 at the 1-sigma level. More

statistics will be needed for a precise determination of the high-p; behavior of Raa.

2.5 Motivation for the Current Analysis

The overview presented in this chapter summarized the current state of .J/1 affairs, both

experimental and theoretical. It is clear that more precise models and measurements are needed
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Figure 2.23: J/¢¥ Raa vs. pr as calculated in a two-component model [53]. Also shown are the
separated components of J/is from direct production and those from coalescence. Overlaid are
the PHENIX 2004 Au+Au data.
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before we can fully disentangle the various effects involved in J/1) production in heavy ion collisions.
Therefore there is ample motivation to make more precise measurements of J/i suppression as
functions of both impact parameter and transverse momentum.

To this end, the current analysis makes use of PHENIX Au+Au data recorded during 2007
that has roughly 3 times the integrated luminosity as the previously-published 2004 dataset. It
is hoped that the increase in statistics will lead to better constraints on the various theoretical

models, as well as encourage further refinement of said models.
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syn=200 GeV /u Cu+Cu collisions as measured by STAR [54] in

0-20% and 0-60% centralities. Also included is the curve from the two-component model of Zhao
and Rapp [53], as well as the Hot Wind Model. Included for comparison are the PHENIX 2005

Cu+Cu data points.
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Chapter 3

Experimental Setup

3.1 The Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider (RHIC) is a superconducting hadron collider located at
Brookhaven National Laboratory in Upton, New York. It is capable of colliding gold ions over a
range of nucleon-nucleon center-of-mass energies \/syy = 7.7-200 GeV /u, as well as protons up
to /s = 500 GeV. There are six points of intersection of the twin concentric beamlines, four of
which are occupied by experiments. Figure 3.1 is a recent aerial view of RHIC and its supporting
facilities.

The process for accelerating ions to RHIC energies is as follows: gold ions are first accelerated
by a Tandem Van de Graaff to 1 MeV /u, then by the Booster Synchrotron to 95 MeV /u, and finally
by the Alternating Gradient Synchrotron (AGS) to 10.8 GeV /u, the injection energy for RHIC. At
this point, the ions have been stripped of all electrons, and are injected into the RHIC rings, and
finally accelerated to the desired energy for collisions.

RHIC runs for several months per year, typically in the winter but occasionally going all the
way through June. The convention at RHIC is to refer to the running period of each year as a
“Run”, and the sequential numbering of the Runs fortuitously corresponds to the winter/spring in
which the data was taken (e.g. Run 7 corresponds to the data taken in spring of 2007). The RHIC
running periods to date are listed in Table 3.1.

There are four major experiments located at RHIC: BRAHMS, PHENIX, PHOBOS, and

STAR. BRAHMS makes use of two small, mobile spectrometers to cover a wide kinematic range.
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Figure 3.1: Aerial photograph of RHIC (top) and other accelerator facilities taken in 2010.

PHOBOS is optimized for measuring charged-particle multiplicity over almost the full 47 solid
angle, charged-particle tracking in two spectrometers, and particle identification (PID) for low-py
(<2 GeV/e) m,K,p. STAR is based around a large time projection chamber (TPC) and solenoidal
magnet, which provides excellent tracking and PID. PHENIX is the focus of this analysis, and is

described in more detail below.
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Table 3.1: RHIC Running Periods with colliding species, CMS energy, and luminosity delivered (to

all experiments).

Dates Designation | Colliding  /snn Delivered
Species  (GeV/u) Luminosity

3/00-9/00 Run 1 Au+Au 130 20 ub~t
5/01-1/02 Run 2 Au+Au 200 258 pb~!

Au+Au 19.6 0.4 b=t

p+p 200 1.4 pb~!

12/02-5/03 Run 3 d+Au 200 73 nb~!

p+p 200 5.5 pb~!

11/03-5/04 Run 4 Au+Au 200 3.53 nb~!

Au+Au 62.4 67 b=t

p-+p 200 7.1 pb~!

11/04-6/05 Run 5 Cu+Cu 200 42.1 nb~!

Cu+Cu 62.4 1.5 nb™!

Cu+Cu 22.4 0.02 nb~!

p+p 200 29.5 pb~!

2/06-6/06 Run 6 p+p 200 88.6 pb~!
p+p 62.4 1.05 pb~!

2/07-6/07 Run 7 Au+Au 200 7.25 nb~!
11/07-3/08 Run 8 d+Au 200 437 nb~!
p+p 200 38.4 pb~!
2/09-7/09 Run 9 p+p 500 110.4 pb~!
p+p 200 114 pb!

12/09-6/10 | Run 10 Au+Au 200 10.3 nb~!
Au+Au 62.4 0.544 nb~!
Au+Au 39 0.206 nb~!

Au+Au 7.7 2.1 ub~t

Au+Au 11.5 4.7 ub™!

3.2 PHENIX

The PHENIX! experiment consists of a multitude of detectors, mostly as part of four spec-

trometers or “arms”: the East and West Central Arm detectors, and the North and South Muon

Arm detectors. There are also several “global” detectors for measuring global event characteristics

such as multiplicity and collision vertex. For a general overview, see [55].

The Central Arm detectors are located on either side of the interaction region, so that they

! Pioneering High-Energy Nuclear Interaction eXperiment
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are centered around y = 0 with a coverage of roughly —0.35 < n < 0.35 in pseudo-rapidity.
They consist of the Pad Chambers and Drift Chambers for particle tracking [56], the ElectroMag-
netic Calorimeter [57] and Time-of-Flight detectors for general particle ID, and the Ring-Imaging
Cherenkov Detector for electron ID [58]. A beams-eye view of the Central Arm detector layout is

shown in the top of Figure 3.2.

Figure 3.2: PHENIX detector configuration for Run-7, where the orange regions are the actual
detector volumes. Top half is the x-y plane at z = 0, which shows the Central Arm detectors.
Bottom half is the y-z plane cutaway view, showing the Muon Arms and global detectors.
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The Muon Arm spectrometers are located further out along the beam line in order to cover




42

an angular range from the beam-line of about 12°-35°, which corresponds to forward and backward
rapidity ranges of roughly 1.2 < |y| < 2.2 for J/¢ — pp [59]. Both arms consist of a Muon Tracker
(MUTR) for tracking and Muon Identifier (MUID) for muon identification. As these detectors are
used in the current analysis, they are described in more detail below.

Additionally, there are several detectors used for measuring global variables and for trigger-
ing [60]. The Beam Beam Counters (BBCs) cover roughly 3.0 < |n| < 3.9, while the Zero-Degree
Calorimeters (ZDCs) are located along the z-axis. Finally, the Reaction Plane detector (RXNP)
was first added for Run 7 specifically for measuring the event-by-event reaction plane (the plane
formed by the impact parameter vector and the z-axis). A cutaway side view of the Muon Arm
detector layout is shown in the bottom of Figure 3.2, along with the BBC, ZDC, and RXNP.

The Muon Arms are designed in the traditional muon detector fashion, with plenty of steel to
absorb the hadronic background particles and take advantage of the penetrating ability of muons.
For this purpose the pole tips of the Central Magnet (which are located between the interaction
point and the Muon Tracker; see Figure 3.2) consist of 60 cm of low-carbon steel and a 20 cm brass
“nosecone” pointed towards the interaction region. The back-plate of the Muon Magnets adds 20
cm of low-carbon steel in the South Arm, and 30 cm in the North Arm. Finally, there are four
layers of steel in the MUID, with thicknesses of (in order) 10 cm, 10 cm, 20 cm, and 20 cm, that
particles must pass through to reach the last detecting layer.

The minimum momentum required for a muon to penetrate to the last gap can be calculated
by integrating the Bethe-Bloch formula for electronic energy loss for heavy particles passing through

matter [20]. That formula is:

dE Z [ 1 2m.c? B2, 3(B)
_ (YN K 24 | e maz 4 9P 1
<dm> A [252 . 2 2 (3:1)

where E is the energy of the incident particle in MeV, K is 0.307075 MeV cm?, ze is the charge
of the incident particle, 5 and ~ are v/c and 1/4/1 — 32 for the incident particle, Z and A are the
atomic number and atomic mass of the absorber, I is the mean excitation energy of the absorber

(286 eV for iron), Tjpe, is the maximum kinetic energy which can be imparted to a free electron in
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a single collision, and §(/37) is the density effect correction. T4, is given by:

T B 2m602ﬂ272
T 4 2yme /M + (me/M)?

for an incident particle of mass M.

Figure 3.3: Stopping power (dE/dz) for u* in copper, as detailed in [20]. The region between the
shaded bands labeled Bethe-Bloch is where Equation 3.1 is applicable.
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Muon momentum

One of the primary goals of the many layers of steel is to reduce the background of pions from
the event vertex that are mis-reconstructed as muons. The u/m ratio due to weak decays before
the nosecone and absorber is ~ 1073, and the design goal was to reduce this further to 2.5x1074
so that the background muons are the largest remaining contributor. The total thickness of steel
was chosen to achieve this level of suppression for the punch-through pions.

For a muon to penetrate to the last gap of the South Muon Arm, it must pass through 140
cm of steel and 20 cm of brass, while the North Muon Arm has 150 cm of steel with 20 cm of
brass. This results in a minimum momentum of 2.31 GeV/c in the South Arm and 2.45 GeV/c
in the North Arm, assuming the average dF/dx of the Bethe-Block equation. Of course, muons

going into the Muon Arm acceptance see more material due to their non-zero incident angle, but
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the factor of cosf for additional material cancels with that in p, = pcos#, such that we can treat
these numbers as the minimum p, instead of total momentum. The number of nuclear interaction

lengths contributed by each layer of absorber is shown graphically in Figure 3.4.

3.2.1 Muon Tracker

The Muon Trackers (MUTR) are spectrometers situated at forward and backward rapidities
with acceptance for J/¢ — u™p~ of roughly 1.2 < |y| < 2.2. The North Arm actually goes out
to y = 2.4, but the anodes closest to the beam-line are turned off during Au+Au running to help
reduce the high North Arm occupancy, and that is the region that extends the acceptance further
out in rapidity.

The MUTRs consist of multiple tracking layers in a roughly radial magnetic field (see Fig-
ure 3.5(a)), such that particles coming from the interaction point will bend mostly in the ¢-direction.

The tracking layers are made up of two layers of 5 mm-wide cathode strips on either side of a layer of

Figure 3.4: Integrated nuclear interaction lengths of steel in the South Muon Arm as a function
of the distance from the interaction point. Hatched regions represent absorber layers, while lines
indicate the rough position of tracking layers [61].
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anode wires, the combination of which is referred to as a gap or gas gap. The layers are grouped into
three Stations, with Stations 1 and 2 having three gaps and Station 3 having two gaps, for a total
of 8 gaps and 16 cathode planes. A cutaway view of the South MUTR is shown in Figure 3.5(b).

Figure 3.5: Left: Magnet field lines in PHENIX [62]. Red regions represent the coils used to

generate the fields. Right: Drawing of the South MUTR with a portion of the detector cut out to
show the internal structure.
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The anode wires are oriented in the azimuthal direction, and are not included in the data
output stream. The cathode strips of one plane in each gap are perpendicular to the wires (roughly
radially outward from the beam pipe), while the other plane are set at a small (< 12°) “stereo”
angle with respect to the non-stereo plane. The stereo angle for each gap is listed in Table 3.2.
This was done to maximize the measurement of the ¢-position, since that is the bending direction
in the B-field. The gas mixture that flows within the gaps is 50% Ar + 30% COqy + 20% CF4, and
the nominal operating high voltage for the anode wires is 1850 V.

Stations 2 and 3 were constructed as separate octants, with the strips oriented together within
each half-octant. Due to Station 1’s smaller size, it was constructed in quadrants, but the strip

layout was still done in octants to match the other Stations. In order to maintain good momentum
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Table 3.2: Orientations of the stereo planes

Station Gap angle (degrees)
1 1 -11.25
+6

+11.25
+7.5
+3.75

+11.25

-11.25

-11.25

N R W N W

resolution, Station 2 was required to be <0.1% of a radiation length to minimize interactions with
muons passing through. To accomplish this, the cathodes of Station 2 are made of etched copper-
coated Mylar foil, held taut by a thick outer aluminum support frame. Station 1 is 1.25m from
inner radius to outer radius, while Station 3 is 2.4m. The Muon Arm dimensions in the z-direction

can be seen in the schematic of Figure 3.6.

3.2.2 Muon Identifier

The Muon Identifiers (MUID) consist of layers of Iarocci streamer tubes interleaved with
layers of steel. The purpose of the MUID is to reject hadron tracks by requiring the candidate tracks
to pass through multiple layers of steel, and to provide fast muon and dimuon triggers, although
these are not used in Au+Au collisions due to their low rejection power in high multiplicity events,
and because the Au+Au collision rate is low enough that the minimum bias BBC trigger (which
doesn’t select any specific physics process) is adequate.

Tarocci tubes were chosen for the detector layers for their reliability and inexpensiveness when
covering a large area. Within each 8.35 cm x 1.3 cm plastic casing are eight channels, each with
a 100 pym CuBe anode wire down the center and graphite coating to form the cathode. The eight
wires are electrically connected to form a single output. The tubes are arranged in “two-packs”
of two staggered tubes offset by half a channel’s width, and are logically ORed together, allowing

one tube to cover the other’s dead area, resulting in higher overall efficiency. A cutaway view of a
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Figure 3.6: PHENIX side view with distances to MUTR tracking layers included.
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13mm_f

9mmx9mm
cell
anod? wire / PVC
y < jacket
HEEMEREE
cathode
Ll-ded-d-0-1-1 Crofile

two-pack is shown in Figure 3.7.

Y

o
w
o
3
3



48

The two-packs are combined into panels, each with a horizontal layer and a vertical layer
of tubes. Six panels are located in each gap between layers of steel in the MUID, and the panels

slightly overlap so as to reduce dead area. An example gap is shown in Figure 3.8.

Figure 3.8: Layout of MUID panels in the South Arm as seen from the interaction point. Panels
are hung in two layers, with the shaded panels mounted closer to the interaction point.
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3.2.3 Beam-Beam Counter

The North and South Beam-Beam Counters (BBC) are located 144 cm from the center of
the interaction region, directly behind the Central Magnet. They are also located with their inner
radius only 1 cm away from the beam-line, so that they lie at very forward rapidity (3.0< || <3.9).
They consist of an arrangement of 64 1-inch diameter photo-multiplier tubes (PMTs) arranged
behind 3-inch quartz radiators to provide Cherenkov light as particles impact the Counter.

The primary function of the BBCs is to provide high-resolution time measurements of the
collision. The time-difference between the BBCs is used to find the z-position, and the average
gives time of the collision. The crossing time is then used in conjunction with the time-of-flight

detectors in the Central Arms to calculate the particle velocity. Particle ID can then be done using
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Figure 3.9: Left: single BBC photo-multiplier tube. Middle: Fully constructed BBC. Right: BBC
installed behind the Central Magnet.

that velocity and the momentum from the spectrometer. The timing resolution of one BBC is 52+4
ps.

The BBCs are also used as a minimum-bias trigger in Au+Au events, where a requirement
of two tubes firing in each Counter allows us to record 93% of inelastic collisions. Additionally, the
charge deposited in the BBC is used to gauge the impact parameter of the collision in d+Au and

Au+Au events. The procedure for this is described in Section 3.3.1.

3.24 The Data Acquisition System

The PHENIX Data Acquisition System (DAQ) is designed to record data at high rates and
volumes for the large-multiplicity environment at RHIC. The overall layout of the data-flow is
shown in Figure 3.10. Front End Modules (FEMs) located on or near each detector collect and
process the analog signals, such as the charge deposited on a cathode wire, or the electron avalanche
in a photo-multiplier tube.

Hardware-based triggers are used to quickly decide whether there was a collision for a given
bunch crossing, and whether interesting physics processes took place and the event should be
recorded. The individual triggers, known as Local Level 1 (LL1) triggers, decide based on the
output of one or two detector subsystems, e.g. the minimum bias trigger using the BBC, or the

dimuon trigger using the MUID. They therefore receive the data from those detectors for every
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Figure 3.10: The data collecting portion of the PHENIX data acquisition system.
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bunch crossing and send their decision to the Global Level 1 (GL1), which decides whether the
event should be recorded or not. The decision to record is then passed back to the FEMs, which
send their data over fiber optic connections to the Data Collection Modules (DCMs).

The detector signal from each crossing is stored in either analog or digital buffers in the FEMs
for up to 40 crossings. Within this time, the triggers must decide whether to issue an “accept”
signal to the FEMs, at which point they would send up the signal from the buffer corresponding
to the same bunch crossing as the trigger. The RHIC crossing frequency is 9.4 MHz, so there is a
bunch crossing in the interaction region every 106 ns. This is too fast for the detector data to be
read out (the time to transfer a full event to the DCMs is &40 us), so it was decided to limit the
PHENIX trigger accept rate to 12.5kHz, and require the FEMs to buffer enough events to cover
the latency between the collision time and the accept-event signal time.

The DCMs consist of four daughtercards with Altera FPGAs attached to the main board,
which are piped into four Analog Devices ADSP-21062 SHARC DSPs (1-4), and the data is funneled
to a final DSP (DSP5) before being output from the board. An example DCM board is shown
in Figure 3.12. The boards are designed to output the data over a custom backplane using the

VMEG4X standard. The FPGAs on the daughtercards are responsible for zero-suppression of the
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Figure 3.11: Layout of a DCM board with FPGA daughtercards attached. Fiber optic inputs are
on the left, connector for VME64X backplane is on the right.
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data, which removes samples that are below a threshold low enough to be considered zero signal.
They also repackage the data into more efficient formats for some subsystems. The DSPs run
at 40 MHz and use binaries programmed in C and assembler, and compiled with Analog Devices
VisualDSP. They are typically the throughput-limiting component of the DCMs, so their only task
is to repackage the data into the standard PHENIX packet format. The data is transferred from
DSPs 1-4 to DSP 5 through the link ports of the DSP, which are capable of transferring 4 bits per
clock cycle. This leads to a theoretical maximum throughput of 19.1 MB/s for each of DSP1-4,
and a total from the board of 76.4 MB/s.

The event data from several DCMs is collected by a Partitioner board and transferred to a
Sub-Event Builder (SEB), which combines the data from a single partition of DCM boards. At

this point the data for a single event is spread across many SEBs, which are connected to ATPs via
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Figure 3.12: Block diagram of data flow through a DCM board from optical inputs on the left, to
the back-plane connector on the right.
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a gigabit Ethernet switch. An ATP is assigned an event number, requests the data for that event
from each SEB, and combines all the data for that event. Software Level-2 filters may also be run
in the ATPs. The event data is collected from the ATPs and merged into files by six buffer boxes,
which are Linux-based storage devices with sixteen hard drives in a RAID array. The buffer boxes
store the data locally at the experiment hall until it can be transferred to permanent tape storage
in the RHIC High Performance Storage System (HPSS).

Work was done before and during Run 7 to increase the DAQ rate for Au4+Au running. As
the DAQ is a large parallel, pipelined system, the overall throughput is determined by the slowest
component. The DCM throughput is set by the size of the event data, so efforts were made to
reduce the size by using more efficient data formats. Although LZO compression is applied to the
final data files that are written to disk, this step is too late to affect DAQ performance. The MUTR
and EMCal are two subsystems with large data volume that were found to have formats that could
be rearranged to hold the data more compactly with no loss of information. To accomplish this,
the DSP output routines were rewritten in assembly code to repack the data before placing it in

the link port. The original MUTR format stored one 12-bit ADC sample per 32-bit word, while
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the repacked format held two ADC samples per word, resulting in an almost 2-to-1 improvement
in data size. The EMCal data holds one TDC and four ADC 12-bit samples per detector element,
so in that case five samples are repacked into three words. The remaining space in both cases is
used for the unique 8-bit channel identifier, which is needed when zero suppression is applied and

channels are no longer strictly sequential.

Figure 3.13: Comparison of DAQ performance of Run 4 vs. Run 7, both of which were ,/syy=200
GeV Au+Au Runs. Plotted is the live time (% of events where the DAQ was ready to record the
event) vs. the DAQ archiving rate.
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In addition, the per-event overhead in DSP5 was reduced by eliminating extraneous data
being transferred in the event header from DSP1-4, and instead loading it into DSP5 at run-time.
As a result of these changes the DAQ up through the DCMs was capable of running at or above
5 kHz, and by the end of Run 7 the entire DAQ could run at these rates, as can be seen in the
right-most points of Figure 3.13. This is significant, because the min bias trigger rate was at or
below 5 kHz for the majority of a store. In Table 3.3, the sizes of the largest packets are listed as
they were at the end of the Run. As can be seen, the limiting subsystems were the Hadron Blind
Detector (HBD) and Reaction Plane Detector (RXNP), which were newly installed that year, and

hot channels in the Drift Chamber (DC). It was found that removing the packets larger than the
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Table 3.3: Largest DCM average packet sizes and RMS values at the end of Run 7. Each fiber carries
one or two packets to the DCM, and flows through the FPGA and DSP before being combined
with other packets from the same event.

Subsystem  Packet Avg Size RMS
Number  (bytes) (bytes)

HBD 22006 1272.8 923.6
DC 3145 1177.6 196.4
DC 3011 11544 167.2
DC 3125 1153.2 169.2
HBD 22011 1093.6 795.6
RXNP 23001 1032.0 0.0
HBD 22010 955.6 839.2
MPC 21031 932.0 345.2
MPC 21032 907.2 299.2
MPC 21022 876.8 340.0
BBC 1003 860.0 0.0
BBC 1002 860.0 0.0

RXNP packet increased the DAQ rate to 6.4 kHz, so additional work was done after Run 7 to

reduce the data sizes of the HBD, MPC, and RXNP, and fix or remove the hot channels of the DC.

3.3 Event Reconstruction

Before a physics analysis of the data can be performed, the physical properties of the events
must be reconstructed from the raw data. This typically involves converting the charge deposited on
the detector elements back to spatial coordinates of where the particle passed through the detector,
followed by combining the coordinates into the particle trajectories, known as tracking. Within a
magnetic field, the bending of the trajectory tells us the momentum of the particle. This is the

principle behind most spectrometers in high-energy particle physics.

3.3.1 Collision Centrality and Number of Binary Collisions

Because global geometric variables like impact parameter (b), the number of participant nucle-
ons (Npart), and the number of binary nucleon-nucleon collisions (Neop) are not direct observables,

PHENIX categorizes events into percentile bins of multiplicity, ranging from 0-100%, and referred
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Figure 3.14: The red and blue histogram is the BBC charge distribution from data, while the black
line is the best-fit result from the Glauber simulation.

=102
- A Au+Au 200GeV
m [ —
S i k=1.2
310-3 r €=92%
L
10
10°
: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600

N . in BBC

hit

to as “centrality”. This takes advantage of the monotonic scaling between mean multiplicity and
Npart. In other words, the 0-10% centrality bin corresponds to the 10% of collisions with the largest
multiplicity in some region. Therefore, by definition, the (per-event) centrality distribution should
be flat.

In PHENIX, the centrality is calculated for each event using a mapping of BBC charge to
centrality, calculated separately for different running periods to account for variations in BBC
gain, etc. This assumes that the charge deposited on the BBC is proportional to the multiplicity of
charged particles going into the BBC (3.0< |n| <3.9), and this is done on an event-by-event basis.

The mapping of centrality back to the geometric quantities like impact parameter and Ncon
is done by using a Glauber Monte Carlo simulation [63] of Au+Au collisions in which the geometric
quantities are exactly known event by event. The multiplicity within the BBC is randomly generated

by assuming that for each nucleon-nucleon collision the multiplicity fluctuates as a negative binomial
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Figure 3.15: Npart (left) and Neop (right) distributions for 10% centrality bins in the Glauber Monte
Carlo.
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distribution (NBD). W. Knox discussed in [64] why a NBD matched the multiplicity distribution of
negative particles in 405 GeV (fixed target) p+p collisions at Fermilab much better than a Poisson
distribution. He proposed that it was due to identical mesons being produced within phase-space
cells of size Az3Ap? = h3. Bose-Einstein statistics apply within each phase-space cell, and the
overall multiplicity will follow a NBD, or generalized Bose-Einstein distribution for k identical

cells [65]:

P G B (71
T T+ DT (k) (u/k + 1)n

(3.3)

For k=1, Eq 3.3 becomes the usual Bose-FEinstein distribution, while for k >> p it approaches
a Poisson distribution. u is the mean number of particles, and k is related to the variance via

2

k= m The PHENIX BBC charge distribution and the Glauber MC BBC charge distribution
convoluted with a NBD are in good agreement, as shown in Figure 3.14.

It was found that values of u=4 and k=1.4 reproduce the PHENIX BBC multiplicity distribu-
tion in 200 GeV Au+Au collisions relatively well. Applying the minimum bias trigger requirement
(two tubes fired in both BBC North & South) to the Glauber collisions shows that PHENIX sees
93% of the total inelastic cross section when using this trigger. It would be expected that the NBD
parameters vary with the z-vertex of the collision, due to the changing solid angle seen by the

BBC detectors as the collision is closer or further away. However, it was found that even when the

z-vertex dependence is taken into account, there is little variation (<2%) in (Npart) or (Neon)-
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For each Glauber-simulated collision, the BBC response for the thrown multiplicity is mod-
eled, and the BBC charge is used to assign a centrality for the simulated event. After running
many events, the mean impact parameter, eccentricity, Npart, and Neon are calculated for several
binnings of centrality, as well as the standard deviation. Npayt and Neop distributions for 10%
centrality bins can be seen in Figure 3.15. Systematics are calculated by varying the parameters
of the Glauber simulation. The resulting quantities for Run 7 are listed in Table 3.4 for 5%, 10%

and 20% centrality bins.

3.3.2 Track Reconstruction in the Muon Arms

Reconstruction and tracking in the Muon Arms is performed using the MUTOO package, an
object-oriented C++ collection of modules that run within the standard PHENIX Fun4All data-
processing framework. MUTOO makes extensive use of the C++ Standard Template Library, the
GNU Scientific Library, and the Boost Libraries. One design goal was simplifying access to objects
that are associated with one another, and to that end the ability to “associate” one object with
another was built into the base class for all tracking objects. For example, a cluster object is
associated with the hit objects that make it up, and a track object is associated with the cluster
objects that it is fit to. A MUTR track is associated with a MUID track, and when running
simulations, a Monte Carlo particle can be associated with a reconstructed track. Making an
association between objects is as simple as:

PHKey: :associate( some_object, some_other_object );
Likewise, getting the associated objects is quite simple. For example:
cluster_pointer->get_associated<TMutHit>();
returns a container of hit objects that make up that particular cluster.

MUTOO, like most PHENIX software, uses schema evolution to allow class definitions to be
modified while still maintaining the ability read/write older versions of that class. This works by
deriving different versions of a class from a common abstract base class, and then writing analysis

code that only makes use of base class pointers. Thanks to the built-in polymorphism of objects
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Table 3.4: Mean Npart, Neoll, and impact parameter values and systematic uncertainties in each of
5%, 10%, and 20% centrality bins, as calculated in the Glauber Monte Carlo simulation.

Centrality (%) (Npart) (Neon) (b) (fm)
0-5 350.8 £3.092 1067 £107.7 2.284 £0.0746
5-10 301.7 £4.665 857.8 £85.45 3.949 £+0.1421
10-15 255.7 £5.426  680.2 £67.26 5.161 £0.1923
15-20 216.4 £5.619 538.7 £52.39  6.13 +0.2258
20-25 182.4 £5.743 424.4 £40.37 6.96 +0.2666
25-30 152.7 £5.903 330.9 £32.68 7.705 £0.2919

30-35 126.8 £5.945 254.7 £25.78 8.385 £0.3193
35-40 104.2 £5.758 193.1 £20.71 9.014 £0.3426
40-45 84.59 £5.639 143.9 £16.51 9.603 £0.3798
45-50 67.73 £5.405 105.4 £13.50 10.15 £0.4027
50-55 53.16 £4.960 75.22 £10.53 10.69 £0.4180
55-60 40.96 £4.478 52.52 £8.164 11.19 £0.4369
60-65 30.77 £3.911  35.67 £6.135 11.69 £0.4549
65-70 22.64 £3.406 23.77 £4.658 12.16 £0.4844
70-75 16.14 £2.791 15.37 £3.323 12.63 £0.5007
75-80 11.15 £2.194 9.686 £2.323 13.09 +0.5223
80-93 5.601 £0.810 4.193 £0.761 13.92 £0.5059
0-10 325.8 £3.810 960.2 £96.14 3.132 £0.1079
10-20 236.1 £5.517 609.5 £59.81 5.645 £0.2092
20-30 167.6 £5.811 377.6 £36.39 7.333 £0.2783
30-40 115.5 £5.841 223.9 £23.20 8.699 £0.3311
40-50 76.15 £5.502 124.6 £14.94 9.877 £0.3908
50-60 47.07 £4.726  63.90 £9.359 10.94 +0.4278
60-70 26.72 £3.669 29.75 £5.410 11.92 £0.4699
70-80 13.67 £2.492 12.55 +£2.822 12.86 +0.5104
80-90 6.153 £1.359 4.688 £1.252 13.80 £0.5484
0-20 280.5 £4.58 783.2 £77.47 4.401 £0.1584
20-40 141.5 £5.817 300.8 £29.64 8.016 £0.3049
40-60 61.6 £5.08  94.23 £12.03 10.41 £0.4089
60-93 14.4 £2.148  14.48 £2.75  12.99 £0.4949

in C++ , this allows new versions of a class with new functionality to be added without breaking

older code in most cases.

Event reconstruction in the Muon Arms begins in the MUID, where the tracks are more

spread out and occupancy is lower, and progresses backwards towards the event vertex. First,

hit Tarocci two-packs are combined into clusters if they are adjacent, but only two two-packs are
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allowed per cluster since tracks that come from the interaction region must be almost perpendicular
to the plane of the tubes. Next, 2D tracks are found separately in the z-z and y-z planes using
vertically and horizontally oriented two-packs, respectively. Finally, the 2D tracks are combined
into three-dimensional tracks, and the clusters of the 3D track are fit to a straight line (since there
is no magnetic field in the MUID).

In the MUTR, adjacent hit strips are first combined into clusters. The cluster charge dis-
tributions are fit to a Mathieson distribution to extract the centroid along the axis perpendicular
to the strips, usually referred to as the w-axis. The cathode planes on either side of each gas
gap are compared, and nearby clusters (with their 2-D coordinates) are combined into a 3-D “gap
coordinate”.

To seed the MUTR tracking, the MUID tracks are projected to Station 3 of the MUTR, and
the gap coordinates within a specific window can be combined across planes into track “stubs” that
span only that Station. Due to the very small z-distance covered by a Station, the stub pointing
resolution is quite bad. At this point, there is still no momentum estimate, so in spite of the
magnetic field a straight-line project is done to Station 2. Again, stubs are built within a window
around the projected position, but now the bend-plane approximation is applied to the magnetic
field between Stations 2 and 3, and is combined with the stub coordinates in each station to update
the track momenta. This allows a more accurate projection to Station 1, where the occupancy is
highest, without the time required for a full Kalman-fit trajectory calculation within the magnetic
field. Stubs are built in Station 1 around the track projection.

At this point there may be multiple tracks that share the same cluster in one or more stations,
so-called “ghost tracks”. To eliminate these, the bend-plane fit is again performed, this time using
all three Stations. Tracks which share hits are then compared, and the candidate with larger
x2/NDF and fewer hits is deleted. Candidates are also deleted if they have the same number of
hits but x?/NDF worse by at least a factor of 5.

Once the set of track candidates has been narrowed down, a full Kalman fit [66] is performed

using all of the MUTR cluster coordinates associated with the track, as well as the position of the



60

event vertex. The particle’s momentum vector and position are calculated at each MUTR Station,
and extrapolated to both the collision vertex and the first gap of the MUID. At this point the
tracking is complete, and physics analysis can be performed using the calculated momentum vectors

and trajectories of the particles.



Chapter 4

Data Analysis

In order to arrive at the physical quantity we are interested in, i.e. the J/v production rate
in /syy=200 GeV Au+Au collisions, we must correct the measured J/v¢ counts by the number of
observed collisions, as well as the PHENIX acceptance and efficiency for J/¢ — pump~. We can

calculate this invariant yield (times the up branching fraction) as:

dNypp 1 Ny
a dy B Ay Ae Nevts

(4.1)

where Ngys is the number of BBC minimum bias-triggered events that were processed, N I 18
the extracted signal counts, Ae is the detector acceptance X efficiency correction, and Ay is the
rapidity bin width. The will be described in Sections 4.1, 4.3, and 4.4, respectively. The invariant

yields themselves will be presented in the next chapter.

4.1 Dataset and Quality Assurance

The full reconstruction of the Run 7 Muon Arm data was done using the pro.80 version of the
PHENIX software library (PHENIX CVS tag: run07_production_C_01) running within the ROOT
software framework. The dataset consists of 5.236 billion events recorded with the BBC minimum
bias trigger during ,/syy=200 GeV Au+Au collisions, and includes DAQ runs 228042-240121.

Quality Assurance (QA) checks were performed on the data to ensure that running periods
with poor detector performance were removed from the analyzed sample. In addition, it is desirable
that the detector performance be roughly uniform over as long a running period as possible to make

simulations more representative of the real data.
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Initial QA was performed by using the online monitoring information and shift crew logs to
remove runs in which essential detectors were deactivated or misbehaving. These runs were rejected
before data reconstruction took place in order to save time. In addition, 428 runs were rejected
because they had less than 500,000 events, as that usually meant the shift crew detected problems
within the first few minutes and stopped the DAQ. Of 1005 physics runs taken during the 2007
Au+Au running period, 917 were reconstructed, comprising 4911663621 events.

Next, runs with a large number (> 75) of disabled MUTR channels are removed. The run-
by-run distributions for the South and North MUTRs are shown in Figure 4.1. These runs are
not necessarily “bad”, but removing runs that deviate largely from the average detector efficiency

makes the overall calculation of yields more robust.

Figure 4.1: Number of disabled MUTR channels in the South (left) and North (right) Muon Arms.
The red dashed lines demarcate the cutoff values for “bad” runs, > 75 disabled channels.
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Additional QA cuts were applied to remove runs with a large number of dead channels or hot
channels in the North and South MUTRs. Finally, 5- or 10-sigma cuts are applied to the average
charge of the cluster peak strip, the number of clusters per MUTR station, and the number of
MUTR hits per event.

Lastly, it was found after the full reconstruction had been completed that there were 39 (104)
runs in the South (North) Arm for which the gain calibrations for the MUTR were incorrect in

the calibrations database. These runs were also removed, although they could be reconstructed at
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some later date now that the database has been corrected.
The remaining runs are fairly uniform in detector performance. The resulting good runs lists

comprise 3951695369 events for the South Arm and 3826584595 for the North Arm.

4.2 Analysis Cuts

After QA cuts are applied, the remaining runs are listed in the “good run list” for each arm
separately, since the arms are completely independent sets of detectors. The analysis software,
which forms track pairs, calculates the pair mass and kinematics, and estimates the combinatoric
background, is then run over all of the reconstructed events in the good runs. At this point track-,

pair-, and event-level quality cuts are applied. These cuts are explained in the following subsections.

4.2.1 Event z-vertex

Events where the event vertex z-position is outside £30 cm are rejected. Events which are
outside of this range deviate from the NBD hit distributions for the BBC and thus a reliable event
centrality is not +possible. Because the majority of collisions fall within 430 cm, the others are

simply rejected.

4.2.2 MUTR and MUID Track Agreement

Tracks in the MUTR and MUID are associated during reconstruction by projecting the
MUID track to the MUTR, which has relatively poor pointing precision, and looking within a large
window. In low-occupancy collisions such as p+p this is probably sufficient, but in Au+Au events
where there may be multiple tracks in both detectors, it is possible that associations are made
between tracks that did not come from the same particle.

Therefore, at the analysis stage we reevaluate the associated tracks by projecting the MUTR
track to the first gap of the MUID. The association is rejected if the radial distance between the
projection and the MUID track is greater than 20 ¢m in the South Arm or 15 cm in the North Arm.

Additionally, the two associated tracks are required to have the same 6-slope to within 9 degrees.
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4.2.3 MUTR and MUID Number of Hits per Track

We require tracks to have a minimum number of hits to reduce the chance of tracks being
built from a few random hits. MUTR tracks are required to have at least 8 of 16 possible planes
hit. MUID tracks are required to have at least 8 of 10 possible planes hit, with at least one hit in

the last gap to ensure the muon passed through the maximum amount of steel.

4.2.4 Minimum p,

Muons must have a minimum p, in order to penetrate to the last gap of the MUID, as
described in Section 3.2. The minimum values are different from those listed previously because
the momentum is measured by the MUTR after the muon has passed through the front absorber.
Muons are rejected if they have |p,| < 1.17 GeV/c in the South Arm, or < 1.05 GeV/c in the North

Arm.

4.2.5 Tracking x?/ndf

When the tracks are fit to the MUTR hit positions, the x?/ndf is also calculated and saved
for each track. Unfortunately, the distribution is very broad, and so good tracks are only required
to have x?/ndf< 30.

A simultaneous fit is also done for each pair of tracks with the event vertex from the BBC.

The x?/ndf from this fit gives a much narrower distribution, so that we reject pairs for which

x%/ndf>4.

4.2.6 Kinematic Cut

J/1 candidate pairs are required to have rapidity within 1.2 < |y| < 2.2. This ensures that
false pairs that have a rapidity outside the actual acceptance are rejected. It also makes the rapidity
bin of the two arms symmetric, so that the forward and backward rapidity results can be averaged

in symmetric colliding species such as Au+Au.
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4.2.7 Event Mixing Cuts

The above cuts are identical to the Run-4 Au+Au analysis, with the exception of two new
cuts. A requirement was added that the two MUTR tracks come from different octants, and that
the MUID roads do not share a hit tube. Since only the hit position is stored for the MUID roads,
we required the hits to either be in different MUID panels, or to be separated by at least 100 cm
in x (for vertical tubes) or y (for horizontal tubes).

These cuts have essentially no effect on pairs from the same event, since the offline recon-
struction already requires that tracks don’t overlap. The pairs from mixed events, however, may
contain overlapping hits that would not occur in the normal reconstructed event, so these cuts were
added to enforce the same requirements in same-event and mixed-event pairs. Their largest effect

is at small opening angles and therefore low mass.
4.3 Signal Extraction

To extract the J/1 yield from the data, the recipe is as follows:

(1) Create the mass spectrum
(2) Estimate and subtract the combinatoric background

(3) Fit the spectra and extract the J/v yield

Each of these steps will be described below.
The mass spectrum we are interested in is that of the parent-particles that decayed into two
muons. The parent invariant mass is calculated by conservation of energy and momentum:
E? = p*+m? (4.2)
M?(pair) = E?(pair) — p*(pair)
= (B"+E ) = (et a) = oy +a)° — (- +¢2)°
= (2 2 1aR) ) (0t ) (s 02’

= 2m2 +2\/(m2 + [pP)(m2 + laf2) — 20 g (4.3)
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Figure 4.2: Unsubtracted mass distribution from the South Arm, 20-40% centrality.
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where p and ¢ are the pt and g~ momentum vectors, and M(pair) is the invariant mass of the
parent particle. Of course, not all of the possible pairs of tracks came from an actual parent particle,
and we need to subtract this “combinatoric” pair background from the spectrum. As can be seen
in the mass histogram of Figure 4.2, the combinatoric background is quite significant compared to

the J/1¢ peak in Au+Au collisions.

4.3.1 Combinatoric Background Estimation and Subtraction

The combinatoric background is estimated first through the standard PHENIX event mixing
software with a Muon Arm-specific module to apply the event- and track-level cuts and fill the
invariant mass histograms. The events which pass analysis cuts are stored in mixing pools, up to
ten at a time. Each pool has only events within a 2.5% centrality and 1 cm z-vertex bin, so that
particle multiplicity and position are roughly the same between mixed events. As each event is
added, replacing the oldest event in the mixing pool, all two-track combinations are made within
that event. Any pair which passes the track and pair cuts is written to the output histograms
(2D histograms of invariant mass vs. pair pr). The newly-added event is then mixed with all the
currently stored events, i.e. pairs are made with one track from the new event and one track from

a stored event. Again, any pair passing track and pair cuts is stored to the output histograms (a
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separate set are kept for mixed events). The process then moves on to the next event.

The mixed-pair histograms should have no resonance peak, since no mixed pair could have
come from an actual J/1¢ decay. Therefore, the mixed event invariant mass spectra should only be
representative of the combinatoric background, and we refer to it as the “mixed background”.

The mixed background can be normalized either by absolute or relative methods. The abso-
lute normalization method is based on the ratio of real to mixed events that were processed, while
relative normalization uses the real and mixed like-sign (++ and ——) pairs (in which there is no
J /1 signal) to determine the normalization level. Absolute normalization also requires correction
factors to account for the fact that the mixed events did not actually have the same impact pa-
rameter or collision vertex, even though they are required to be similar. Because these correction
factors introduce additional uncertainties compared to the relative normalization, the latter is used
in this analysis.

To calculate the normalization, we make use of the like-sign estimate of the combinatoric
background (derived later) N,_ = 24/N,,-N__. We calculate this for both the foreground
(same-event) and background (mixed) pairs over the mass range 1.7-10 GeV/c?>. We ignore the
low-mass region because in the past there have been distortions in the spectra down there, and it

is below the region we are interested in. We can write this as:

2/ FGFG__
2/BG, . BG__

combinatoric bgnd = (mixed bgnd) (4.4)

We also subtract the ++ and —— pair histograms, with the mixed background simply normalized
to the ratio of the foreground/background counts, since there is no signal to worry about in this
case. The resulting spectra should be flat, as there is no same-sign muon background in the
J/¢ mass region. Two example like-sign spectra are shown in Figure 4.3 for 0-10% centrality,
and Figure 4.4 for 60-70% centrality. As would be expected, the largest fluctuations are where
combinatoric background is greatest, around M~1.5-2 GeV/c?.

Figures 4.5 and 4.6 show example background-subtracted mass distributions for two centrality

and two pr bins in the South Arm. Additional curves are overlaid that are the £1% and +2% times
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the mixed background to demonstrate the sensitivity of the subtracted spectra to the background
normalization. Of course the effect is much smaller for peripheral collisions, where there is little

combinatoric background due to the lower multiplicity.
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Figure 4.3: Example same-sign mass plots from South Arm 0-10% centrality, all prs. The mixed
background contribution is shown scaled by 1% and £2% (blue points), and the residual counts
in the J/1 mass region [2.6,3.6] are listed.
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Figure 4.4: Example same-sign mass plots from South Arm 60-70% centrality, all prs. The mixed
background contribution is shown scaled by 1% and £2% (blue points), and the residual counts
in the J/1 mass region [2.6,3.6] are listed.
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Figure 4.5: Example mass plots from South Arm 0-20% centrality, pr=0-1 and p;=2-3GeV /c. The
mixed background contribution is shown scaled by £1% and +2% (blue points).
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Figure 4.6: Example mass plots from South Arm 40-60% centrality, pr=0-1 and p;=2-3GeV/c.
The mixed background contribution is shown scaled by +1% and +2% (blue points).
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As mentioned above, the background can also be estimated directly from like-sign pairs using
the usual formula (2,/N;;N__). For large N, this converges to the unlike-sign combinatoric
background, although it does not work well when the per-mass-bin counts are ~0 or 1. In this
analysis, this method appears to leave more distortion in the subtracted spectra (see, for example,
Figure 4.7), but it is unclear which method produces a more accurate signal. Therefore, we will
proceed with both methods.

The like-sign background formula can be arrived at via two assumptions. If we assume that

all tracks are from J/1s, then

N = NyN_ = Nygnai
= N2, — Nsig
= Nsig(Nsig 1) (4.5)
o0 /N N = \/N+ Ny — (N2 1)
= /(N (Naig — 1))2

= N{omb (4.6)

Alternatively, if we assume that N; ~ N_, both are >> 1, and the signal /background is very low,

then:

N = NyN_ — Ngnal
~ NyN_
~ (4.7)

o /NN — \/N+ Ny -1)N (N2—1)

= V(N (N} — 1))
~ Ni
~ N§omb (4.8)

The latter case should hold true in central Au+Au collisions, and the former in peripheral events.
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Figure 4.7: Example like-sign subtracted mass plots from South Arm 0-10% and 50-60% centrality,
all prs. As can be seen, while the peripheral bin looks reasonable, the central bin has large
distortions.
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4.3.2 Mass Fits

Once the background is calculated and subtracted, several different fits are performed inde-
pendently on the resulting invariant mass histograms for both methods of background subtraction.
The background-subtracted spectra and several associated fits can be seen in Appendix B.

A log-likelihood fit is performed such that proper Poisson statistical errors are used for each
mass bin. Because the ROOT log-likelihood fitter expects a histogram of raw counts, it is incorrect
to apply it to a subtracted distribution. A custom TVirtualFitter class was written to instead apply
the log-likelihood method to the foreground histogram of same-event pairs (which is a histogram
of counts), and the sum of the signal fit function and the background distribution are treated as
the total fit function, also in counts.

The actual fit function builds upon those used in previous PHENIX Muon Arm analyses.
Two Gaussians are used for the .J/1 peak, and the non-combinatoric background is accounted for
by an exponential. The total fit function is convoluted with a function representing the acceptance

as a function of mass. We can write out the fit function as:

9(M) =
A(M) Nypp {(1— f) Gaus(M; p1,01) + f Gaus(M; p2,09)} +

A(M) a Exp(M; b)

The seven fit parameters are constrained using PHENIX p+p data to the values in Table 4.1. We
allow the normalization of the exponential to be negative, even though this may be unphysical,
because in some bins with large fluctuations the positive-constrained exponential will hit the limits
of the parameters and lead to very large errors on the fit result.

The acceptance function is generated by a toy Monte Carlo simulation of dimuons going into
the Muon Arms. The p, required to penetrate to the last gap of the MUID is accounted for, as well
as the effect of the event mixing cuts described in Section 4.2.7. Some examples of the acceptance
functions are shown in Figure 4.8.

Since the functional form is not exactly known for the Au+Au dimuon spectra, the fit is
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Table 4.1: Mass Fit Parameters

Limits

Parameter Description South North
Do Integral of Both Gaus 0.0-1.e7 0.0-1.e7
D1 Gaus One Mean Mjy My,
D2 Gaus One Sigma 0.138 0.136
P3 Gaus Two Fraction 0.267 0.210
D4 Gaus Two Sigma 0.310 0.409
D5 Exp Norm Ips| < 1e9  |ps| < 1e9
D6 Exp Slope 0-25.0 0-25.0
p7 Gaus Two Mean — Gaus One Mean 0.0 0.0

Figure 4.8: Acceptance functions used to modulate the mass fits, generated by the fast MC in
several J/1 pr bins. The dashed lines delineate the J/1¢ peak region.
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performed multiple times while varying several parameters. The background normalization is varied
by £2%, the relative fractions of the two Gaussians is varied by +25% from their nominal value, and
three different fit ranges (of invariant mass in GeV/c?) are used: [0.5,8.0], [1.8,7.0], and [2.2,6.0].
The variation in fit range can be seen in the example fits of Figure 4.9.

A common problem with the Au+Au dimuon spectra is that there are very few counts above
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Figure 4.9: Example subtracted mass plots with overlaid fits for South Arm 20-40% centrality,
pr=3-4 GeV/c (top), and 40-60% centrality, pr=0-1 GeV/c (bottom). The large peak at low mass
due to the vector mesons can be seen in the top plot, but in the lower plot pr=0-1 GeV/c there is
no acceptance for the vector mesons.
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the J/1¢ mass region, as well as large uncertainties on the points just below the .J/¢ peak due to

the large background being subtracted in that region. This gives very little leverage with which to
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establish the amount of physical background, and leaves the results sensitive to the fit range that
is chosen. Therefore multiple fit ranges are used to try to account for this.

When fitting down below masses of ~1.5 GeV/c?, there are additional resonances in the
spectra due to the low-mass vector mesons ¢, p, and w. The acceptance for dimuon decays from
these mesons is greatly reduced by the absorber, and there is essentially no peaks present at pr <
1 GeV/c. The mesons need to be added to the fit in the kinematic bins where their acceptance
is non-negligible, which is ~ 1 < py < 4. The parameters for the vector meson peaks were taken
from a Muon Arms simulation and are listed in Table 4.2. The p and w are too close in mass to be
resolved, and so are fit to a single Gaussian. An additional Gaussian is used for the ¢ meson. The

fit including the vector mesons can be seen in the top plot of Figure 4.9.

Table 4.2: Fit parameters for the low-mass vector mesons.

Parameter South Arm  North Arm
p,w mean (GeV/c?) 0.781 0.785
p,w width (GeV/c?) 0.143 0.143
¢ mean (GeV/c?) 1.021 1.020
¢ width (GeV/c?) 0.078 0.076

4.3.3 Final Values

The final signal value we quote for each kinematic bin is the average of the various fits, with
their RMS included as a point-to-point uncorrelated systematic error. The signals extracted using
the two background subtraction methods are averaged, with |Spized — Slikesign|/ V12 taken to be
a the systematic uncertainty due to their disagreement. This uncertainty is chosen because it is
not clear which method is more correct, so a (worst-case) flat probability distribution between the
two measurements is assumed, for which the RMS is |21 — x2|/v/12. The signal counts are listed
in Tables A.2 and A.3, along with the statistical errors and the uncorrelated systematic from the
RMS of the different fit methods. The relative errors for each bin are also graphically tabulated
in Figure 4.10. The different contributions to the RMS systematic error are listed separately in

Tables A.4 and A.5. The signal-to-background for the .J/1) mass region (2.6-3.6 GeV/c?) and the
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(subtracted counts)/background for a region of background only (1.8-2.0 GeV/c?) are listed in
Tables A.6 and A.7.
There are several bins where the signal is statistically insignificant. The procedure chosen

is to use only a 90% confidence level upper limit (CLUL) for bins where N/, < /0%, + 025
This is reflected in Tables A.2, A.3. The CLUL was calculated using the likelihood function for

Poisson-distributed foreground and background counts [67],[68]:

L(N,M;vs,vp) = Poisson(N,vy) Poisson(M,vy) (4.9)
vie v yMe—w
- - e (4.10)
N M

fooo L(N, M;vs + vy, vp)dvy,
fOOO f()oo L(N7 M7 Vs + UV, Vb)dVde/s

L(vg; N, M) (4.11)

TCL
09 = / L(vs; N, M )dvs (4.12)
0

where N is the foreground counts and M is the background counts in the mass range [2.6,3.6], vy,
vy, and vg are the foreground, background, and signal expected values, and z¢p, is the CLUL we
are trying to calculate. A Runge-Kutta algorithm with adaptive step-sizing, taken from Numerical
Recipes [69], is used to calculate the integrals.

A simple consistency check of the signal extraction method is to compare the signal summed
over pr bins to the signal summed over centrality bins within 20% centrality bins. These values
are listed in Table A.8 using mixed background subtraction, and shows good agreement in all bins
except for the most central North Arm bin, where there is very little signal to fit one way or another.

Included in the mass plots are the non-standard y? values as calculated for Poisson distribu-
tions in [70]:

Xap =2 yi = ni+niln (ni/y) (4.13)

7

In our case y; represents the fit function + mixed background, while n; is the number of foreground
counts in that bin. This x? test is used in place of the standard version, which assumes that the

values are Gaussian-distributed, and therefore is invalid for small-valued Poisson quantities.
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4.4 Detector Acceptance and Efficiency Correction

The detector geometric acceptance and reconstruction efficiencies for a J/v in the Muon
Arms are calculated as a single quantity (often written accxeff) as described below. The PYTHIA
event generator [71] is used to simulate .J/1v samples, which are then fed through a GEANT3-
based [72] simulation of the PHENIX detectors (known as PISA). They are next embedded in a
Au+Au event sample (to add detector occupancy-related effects) and then run through the usual
PHENIX reconstruction software. The overall accxeff is simply the number of reconstructed .J/s
in a particular kinematic (pr, y) bin, divided by the number of J/s thrown in that bin. Note that
this quantity does not include trigger efficiencies, only detector-related effects. However, because
the minimum bias trigger was the only trigger used during Run 7, there is no separate dimuon

trigger efficiency to account for as there has been in PHENIX p+p and d+Au datasets.

4.4.1 Particle Generation

Simulated J /1 samples were generated using PYTHIA version 6.205, with the g+g9 — J/v¥+g
process selected (MSUB(86)=1) and the pu decay channel activated (MDME(859,1)=1) while
throwing /s=200 GeV p+p collisions. The output was filtered prior to the GEANT stage by
requiring at least one muon to go into 143° < 6 < 171° for the South Arm, or 9° < § < 37° for the
North Arm, and only the two muons descended from a .J/1 parent are written out. The PYTHIA
statistics used for embedding are listed in Table 4.3.

When embedding PYTHIA J/4s into real data events, the collision spatial coordinates are
first read out from the data events into a text file, and then used to shift the PYTHIA event to
the same z-coordinate. Because the collision z-position (as determined by the BBC North-South
timing difference) is only known to about £0.5 cm, we blur the J/1 z-position event-by-event by
a Gaussian distribution of ¢ = 0.5 cm.

For unembedded PYTHIA events where there is no data vertex to read in, a vertex is thrown

event-by-event with a z-distribution (from data) of o = 24.4cm. A redistribution of the J/1s with
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Table 4.3: Pythia J/vs generated for embedding in real data.

Arm  ppcut  J/is Generated J/¢s Embedded

South >0 32,101,727 2,303,807
North >0 32,150,330 2,393,807
South > 2.5 31,044,298 2,393,807
North > 2.5 31,075,599 2,393,807

respect to the collision vertex is done similarly to above. The collision z-position is relevant, because
the geometric acceptance changes with the distance between the collision and the detectors. The
signal to background also changes as a function of z, because background particles like pions and
kaons have more time to decay to muons when the collision is further from the detector in question,
while the number of J/vs (and muons from J/vs) remains constant. This feature has been used

in single muon heavy flavor analyses, where the “decay muon” component must be subtracted.

4.4.2 PISA and Detector Response

The PHENIX GEANT3 simulation (PISA) propagates the initial particles through the detec-
tors and other materials, and accounts for both dE/dx and deflections in the materials and bending
in the magnetic field.

The MUTR response to a particle is simulated as follows: the particle’s dE/dx through each
of the MUTR gas gaps is thrown using a Landau distribution. The energy deposited is converted
into a Mathieson distribution of charge on the cathode strips on either side of the gap, centered on
the intersection point. The charge is then converted to ADC values and zero-suppression applied,
in order to simulate the electronics of the actual detector.

The MUTR response also accounts for disabled high voltage modules, dead anode wires, dead
FEMs, the scratched cathodes in the North Arm, and the gain and pedestal calibrations. A run
number is chosen when the simulation is run, and the disabled high voltage and calibrations are
loaded from the PHENIX database for that particular run. That way the simulation represents

the detector state at a given point in time, and this is used in the next section to account for the
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time-variation of the accxeff.

The MUID simulated response is much simpler, since the tubes are merely hit or not hit. For
each MC particle, the MUID two-packs that it passes through are found. Whether each two-pack
fires is thrown randomly with a probability equal to the two-pack efficiency that is input into the
simulation. The two-pack efficiency is calculated from the real data tracks themselves. For any
two-pack, we select the tracks which passed through it, and rerun the track-finding algorithm to
require that the track would have been found with or without a hit in that two-pack. Then the
efficiency for that two-pack is simply the fraction of tracks in the sample that actually did have a
hit in the two-pack.

Cases where the particle passes through two or more two-packs are also accounted for in the
full calculation. The effect of random hits on the measured efficiency was studied and was found
to be only a few percent effect or less.

If the simulated event is being embedded into a real data event, at this point the MUTR
charge and ADC values for MC and real data are merged into a single hit strip-by-strip. If both
the MC and real data have a hit on the same strip, the charges are literally added. Also, the MUID
hits are merged such that a tube is listed as having fired if either a real data or MC hit occurred
there.

From here the event is a collection of hit strips and tubes just as in the real data, and
the reconstruction proceeds just as for real data. It is important to use the same version of the
reconstruction code as was used for the real data, otherwise other effects may be inadvertently
included if the reconstruction algorithms have been modified.

Unfortunately, the embedded event samples cannot exactly recreate the signal-to-background
(combinatoric or physical) levels seen in real events, because J/s are literally being injected into
every event, while in real data they exist in only a small fraction of events. Because of this, after
the event-mixing stage we use a modified signal extraction procedure for simulated events. The
biggest difference is that no background exponential is used for unembedded data or embedded

data with centrality > 30%. In addition, the fit to the ¢, p,w mesons is excluded, because they
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With the number of reconstructed J/1s in hand, we can calculate the accxeff in a given bin

as:

4.4.3

€ = Nreconst.

J/

Time-averaged AccxEff

thrown

/Ny

cent, pr,y bin

(4.14)

Figure 4.11: Accxeff vs. centrality for both the North and South Arms for the six reference runs.
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The dataset (after quality cuts) consists of >700 individual runs, with variations due to HV

channels that are tripped and disabled and FEMs that are disabled, along with environmental

effects such as humidity and barometric pressure. Ideally, the accxeff using the embedding method

would be calculated for each run and then averaged, to account for all variations in the detectors

between runs. Because this is computationally prohibitive (due to the size of the Au+Au events

being used for the embedding), instead we divide the data into six periods of similar detector

performance, mainly due to changes in the number of disabled MUTR HV channels in the South

Arm (the North Arm performance was much more stable). Within each period a representative run
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is chosen to be the reference for that particular time period. These runs and their corresponding
periods are listed in Table 4.4, along with the number of events for each. The embedded accxeff is

calculated for each reference run, and the values are shown in Figure 4.11 and Tables A.18-A.22.

Table 4.4: Reference runs and their corresponding periods, where '[" and ’)’ are the inclusive and
exclusive set delimiters, respectively.

Run Events Period Events in period
230956 4168993 | [228042,231100) 669212982
231429 5270319 | [231100,231850) 232499773
231920 13399077 | [231850,231970) 75131222

)
)
)

232005 1076450 | |231970,232050 95732027
232460 8476600 | [232050,236700 1326274554
240100 3208425 | |236700,240200 1607881326

— i — —— —

To account for the relative run-to-run variations within each time period, the accxeff cal-
culation was performed for each individual run using purely PYTHIA J/vs (not embedded) and
is shown in Figure 4.12. This is used to calculate a correction factor for the embedded accxeff of
the reference run. Note the this only includes pr- and y-dependence, since there is no centrality
variable for PYTHIA J/v events. This correction factor assumes that the centrality distributions
of accxeff for each run are related by a simple scale factor, at least within each time period. For
reference run ¢, in each kinematic bin of pr and y, we average the runs j in that period and calculate

the correction factor:
c; = Z N;vtS(Ej/efmbed)/ Z N]c;vts (4‘15)
J J

The correction factors are typically less than 5%, and are listed in Table A.17.
We then average across the reference runs ¢ in a similar fashion to get the total accxeff for
that bin:
€= Z NEvEs e eembed | Z Ngvts (4.16)
i i
The resulting values are shown for centrality bins in Figure 4.13 and for p; bins Figure 4.14.
listed in the last column of Tables A.18-A.22. As can be seen, the accxeff is lowest in the most cen-

tral collisions, due to the higher occupancy in the detectors. The North Arm has worse occupancy
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Figure 4.12: Run-by-run accxeff for pure PYTHIA J/4s, for both the South (top) and North
(bottom) Arms. The blue dashed lines delineate the time periods used for averaging the accxeff

values.
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Figure 4.13: Run-averaged accxeff vs. centrality for both the North and South Arms.
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than the South Arm in central events, and hence a steeper drop in efficiency. The accxeff vs. pr is

very similar in shape between the two arms, with the only difference being the occupancy-related
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Figure 4.14: Run-averaged accxeff vs. pr for both the North and South Arms in 20% centrality
bins.
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Chapter 5

Experimental Uncertainties and Results

5.1 Systematic Uncertainties

The various systematic uncertainties in this analysis are classified as either Type A, B, or
C. Type A refers to uncertainties which are uncorrelated between points, Type B refers to uncer-
tainties which are correlated between points to some degree (i.e. the points would move in some
coherent fashion), and Type C refers to “global” uncertainties which are identical and completely
correlated across all points. The Type A uncertainties are added in quadrature with the statistical
uncertainties and displayed as error bars, the Type B uncertainties are displayed as boxes behind
the points, and the total Type C uncertainty is labeled in text on the plots. The systematics and

their Type when plotting vs. centrality, pr, or rapidity are listed in Table 5.1.

5.1.1 Signal Extraction (Type A and B)

The systematic uncertainty on the extracted signal is estimated as described in Section 4.3.3.
The RMS of the 27 various fits (3 fit functions, 3 Gaussian relative normalizations, 3 background
normalizations) is taken to be the systematic on the signal extraction. It is considered to be
uncorrelated point-to-point.

In addition, the difference between the signal extracted using mixed background and like-
sign background is taken as the limits of the real signal. This error is calculated as the difference
between the signals divided by v/12. The sign of the difference appears to be correlated between

points, so this is taken to be type B.
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Table 5.1: Systematic uncertainties for arm-averaged invariant yields and Raa. The bottom
section only applies to Raa. How the uncertainties are treated as functions of centrality, pr, and
rapidity are included, as well as how they are treated when averaging South Arm and North Arm
invariant yields.

Value Type of Uncertainty

Systematic Peripheral | Central | vs. Cent. | vs. pr | vs. Rap. | Arm-to-arm
Signal Extr. 1.6% 9.8% A A A uncorrelated
Background Est. 0.6% 5.0% B B B correlated
Acceptance 2.2% 3.6% B B B uncorrelated
MC Input Dists. 4% 4% B B B correlated
MUTR Eff. 1.4% 2% B B B uncorrelated
MUID Eff. 2.8% 4% B B B uncorrelated
MC and Data match 0% 16% B C C correlated
Neon 19% 10% B C C -

p+p Errors varies C A/B/C | A/B/C -

5.1.2 Acceptance (Type B)

The uncertainty on the acceptance between octants is measured by comparing the ¢-distribution
of tracks in the MUTR. The Monte Carlo (MC) distribution of tracks is compared to that of the
real data (RD) tracks, where the MC histogram is normalized to the RD total integral. Examples of
these distributions can be seen in Figure 5.1 for runs 230956 and 231429. The RMS of the relative
octant-by-octant difference is taken to be the uncertainty for one track passing through one octant

of the detector. The RMS about the mean is calculated for one reference run as:

MC; — RD;
X, =27 -7 1
1 octs _

The uncertainty determined for each particular reference run is then averaged, weighting by

the number of events in the corresponding period of running.

runs runs

(RMS) =Y Nf"RMS;/ > N (5.3)

7

This is the uncertainty for a single track in one octant of the MUTR. Because the total J/4

acceptance is the average of the acceptance of the octants for single tracks, and then squared to
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Figure 5.1: Track ¢ distributions from both simulation (blue) and data (black). The distributions

have been normalized to the same integral.
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get the pair acceptance, the uncertainty on the total pair acceptance is found by dividing by v/8
because the total acceptance is an average across the eight octants, and multiplying by 2 because

the total is for pairs of tracks. This is written out below:

1
Apair = Ni Z Azmgle,oct (54)
oct "oy
0Apair
O-Izmir = Z (M) o-zingle = (205in9l6/8)2 (55)
single,oct

oct

Ototal = <RMS>/2 (56)

This results in a 3.8% systematic uncertainty for the South Arm, and 2.5% for the North
Arm. The one section of the detector not accurately described by the simulation is the half-octant

near -150° in the South Arm, as can be seen in the top plot of Figure 5.1. This disagreement only
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existed for the first running period, with reference run 230956. In later periods the detector is

better described, as can be seen in the lower plot of the Figure.

5.1.3 Acceptance Input Distributions (Type B)

The uncertainty in the acceptance due to the J/v distribution which is input to the simula-
tion was determined in [47] to be 4%. This value was derived by varying the input p; and rapidity
distributions, as well as the z-distribution of the J/v production vertex. This is considered cor-
related point-to-point, as it would affect all the acceptance values similarly. The p; distributions
were varied by changing the P; parameter in the phenomenological function:

1 &N 2\
2npe dydpr (1 i <11)3T1) > 57)

as shown in Figure 5.2(a). The rapidity distributions were derived from empirical fits to several

PDFs, and are shown in Figure 5.2(b).

Figure 5.2: J/¢ pr (left) and rapidity (right) distributions used as input to calculated accxeff
systematic.
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5.1.4 MUTR and MUID Efficiencies (Type B)

There is additional uncertainty on the acc xeff from the MUTR and MUID detector efficiencies

that are used in the simulation, and these were calculated for [47]. The uncertainty on the MUTR
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efficiency was determined to be 2%. This includes the effect due to hot packets in the detector
which are not accounted for (runs with many hot packets are removed from the dataset before
analysis).

A 2.2% uncertainty on the individual MUID tube efficiencies was propagated to the overall
detector efficiency by varying the efficiencies in the simulation. This resulted in a 4% uncertainty

on the overall accxeff. Both of the MUID and MUTR uncertainties are correlated point-to-point.

5.1.5 Monte Carlo and Data Matching (Type B)

This uncertainty attempts to encompass the difference between the acceptancexefficiency
calculated by embedding PYTHIA J/4s in real data and the efficiency of actual J/vs in the data.
This was done by embedding p+p events with excellent J/v¢ candidates into Au+Au events, and
comparing the resulting accxeff. It was found that the embedded p+p sample always had a lower
efficiency than PYTHIA J/4s, and only in the 0-40% centrality range. Therefore, the difference
was used as a systematic error on the accxeff, but only in the negative direction. The values are

listed below:

e 0-10% Centrality: 16.3%
e 10-20% Centrality: 8.9%
e 20-30% Centrality: 3.8%

e 30-40% Centrality: 0.8%

5.1.6 North/South Matching (Type B)

Because the North and South Arm invariant yields systematically differ by more than the
uncorrelated errors, as will be shown in the next section, we apply a systematic uncertainty to
account for this. We fit the ratio of North/South for peripheral points (30-93% centrality) to a flat

line, which gives 0.774+0.04. So we take 23% to be the typical difference between North and South.
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Since it is not known which result is more correct, we use a flat probability distribution of width

23%, which gives o = 23%/v/12 = 6.6%. The fit line is shown in Figure 5.4.

5.1.7 Number of Binary Collisions (Type B or C)

The uncertainty on (Ngo) for a given centrality bin is estimated by varying the parameters
of the Glauber Monte Carlo simulation described in Section 3.3.1. The resulting uncertainties are
taken to be type B as a function of centrality, but as a function of p or rapidity are type C because
only one value of (N.o) is used for all bins (in a given centrality). The full (NVeo) uncertainties

are listed in Table 3.4.

5.1.8 p+p Reference Data

There is a 7.6% type C systematic on the p+p invariant yields, which must also be applied to
all the Raa quantities. This includes a 7.1% systematic on the inelastic cross section that is sampled
by the p+p BBC minimum bias trigger, a 2.5% systematic on the BBC triggering efficiency for
events containing a J/v¢ (or any hard scattering), and a 1% uncertainty on the sampled luminosity.
This does not include the 4.5% uncertainty on the total p+p inelastic cross section of 42.2 mb,
because that uncertainty also applies to the (N¢o) systematic. However, the p+p invariant yield
goes as 1/0jner, while the (Neopn) roughly scales with oy, so systematic deviations will roughly
cancel.

There is a 7.1% type B systematic on the p+p points from the absolute normalization of the
acceptance. This systematic should cancel when taking the ratio with Au+Au data, as they use
the same technique for calculating accxeff.

It should be noted that when plotting Raa vs. pr or rapidity, the type A and B uncertainties
on the p+p points in the ratio are combined in quadrature with the corresponding Au+Au uncer-
tainties, as would be expected. However, only one pr-integrated p+p point is used when plotting
Raa vs. centrality, and therefore the total error (of all types added in quadrature) on that point is

taken to be an additional type C uncertainty on Raa points. This adds another 7.3% (without the
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acceptance systematic) in quadrature with the type C listed above, for a total type C uncertainty

of 10.6%.
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5.2 Invariant Yields

The J/v signal extraction reported in previous chapters is presented here as invariant per-
event yields, corrected for the acceptance and efficiency of the PHENIX detectors. The formula for
the pr-integrated yields can be written out as:

- 5.8
. dy Ay Neyts Ae ( )
and the formula for the pp-dependent yields is:

Mdpddy M 2mprdprdy  2mprAprAy NeysAe
where N I/ 18 the extracted signal counts, Ngyts is the number of BBC minimum bias-triggered
events that were processed, Ae is the acceptance x efficiency (all described in Chapter 4), Ay and
Apy are the y and pr bin widths, and py is the center of the py bin in question.

The invariant yields calculated from the quantities described and tabulated in previous chap-
ters are shown as functions of centrality in Figure 5.3 in 10% bins and in Figure 5.4 in 5% bins,
and are tabulated in Tables A.23-A.25. The invariant yield as a function of pr in 20% centrality
bins is shown in Figure 5.5 and listed in Tables A.26-A.28.

By virtue of using symmetric colliding species, the forward and backward rapidity invariant
yields may be averaged to produce a more precise result. To take into account the difference in
the uncertainties on the two results, the correct weights must be used when averaging. As detailed
in [73], the proper weights for Gaussian-distributed errors are the inverse square of the uncertainties

that are uncorrelated between the two results:

Warm = 1/Ugrm,uncorr (510)

and the average invariant yields are then calculated as:

wNYN +wSYS
Yipe = ———— 5.11
ave Wy + wg ( )

The statistical and systematic uncertainties are likewise combined using the weight factors,

such that the average uncorrelated error is smaller than that of the separate values (as one would
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Figure 5.3: J/4 invariant yield vs. centrality in 10% bins, for both the South and North Arms, as
well as the Arm-averaged values. The ratio of yields from this dataset to those from 2004 is shown
in the lower panel for comparison.
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expect when averaging two measurements). Uncertainties that are 100% correlated, however, re-
main the same for the averaged quantity. We apply this worst-case scenario to the systematic
uncertainties for which the amount of correlation is unknown. This results in the following two

formulas for calculating the average uncertainties:

(wNUN stat)2 + (wSUS stat)2
= : : 0.12
Ostat \/ (wN +ws)2 ( )
(wyoy uncorr)2 —+ (wSUS uncorr)2 2
= : : 0.13
Osys \/ (wN T ws)g + 0Corr ( )

The resulting arm-averaged invariant yields are shown in 10% centrality bins in Figure 5.3.
The ratio of the Run 7 to Run 4 invariant yields are shown in the lower panel of the Figure, and

it can be seen that the two results are in agreement at the one-sigma level in all but the 60-80%
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Figure 5.4: J/v invariant yield vs. centrality in 5% bins, for both the South and North Arms, as
well as the Arm-averaged values. The ratio of North/South yields is shown in the lower panel for
comparison, along with a fit to the 30-93% most peripheral bins. The fit result is used to formulate
the systematic uncertainty due to North/South disagreement in Section 5.1.6.
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centrality bins. However, the Run 7 yields are systematically somewhat larger than the Run 4
yields if the points are compared as a whole.

The invariant yield in 5% centrality bins is shown in Figure 5.4, and the ratio of the North
Arm to the South Arm yields is shown in the lower panel. It can be seen that the two results disagree
on the order of 20%, and this is accounted for by a systematic uncertainty, as was described in
Section 5.1.6.

Finally, the invariant yield as a function of pr is shown in Figure 5.5 in 20% centrality bins.
In the 0-20% centrality bin, there were two pr bins in the North Arm that did not satisfy our

significance criteria on the signal of:

NJ/#} > \/ Ugtat + Ugys (514)
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Figure 5.5: J/1 invariant yield vs. p; in four centrality bins, for both the South and North Arms,

as well as the Arm-averaged values.
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For these bins, only 90% confidence-level upper limits are reported. Because we cannot simply av-

erage two points in these bins, the likelihood functions are combined numerically and the maximum

and one-sigma central confidence interval are found and used for the averaged invariant yield and

error bar.

Shown in Figure 5.6 are the ratios of the Run 7/Run 4 invariant yields vs. py. As can be

seen in the Figure, most bins agree within one-sigma and all agree within two-sigma.



99

Figure 5.6: Ratio of J/v invariant yield in 2007 to 2004 vs. p; in four centrality bins, for both the
South and North Arms, as well as the Arm-averaged values.
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The nuclear modification factor Raa measures the amount of deviation in heavy ion colli-

sions from the naive scenario of p+p collisions scaled up by the number of binary nucleon-nucleon

collisions (Ngo1) in the centrality bin of interest. It is written as:

Raa =

YAu+Au
<N coll> Yp+p

(5.15)

where Y, represents the Au+Au or p+p invariant yields in the bin of interest and (N.op) is the

average value of N in that centrality bin (see Table 3.4).

The PHENIX Run 5 1/s=200 GeV p+p results [33] are used for these Rya calculations. The
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p+p pr-integrated cross section for the 1.2 < |y| < 2.2 rapidity bin is By, do/dy = 27.61 & 2.81 nb.
To get the invariant yield we simply divide by the total p+p inelastic cross section of 42.2 mb,
giving us By, dN/dy = (6.5427 £ 0.6658) x 10~7. This value is used for all of the pp-integrated
Raa points. For the separate pr bins, the p+p invariant yield for the same bin is used. The full

invariant yields are listed in Table 5.2.

Table 5.2: Run 5 p+p invariant yields as a function of py from [33].

pr (GeV/c) Inv. Yield (x1078) Uncorr. Error (x1078) Corr. Error (x107%)

all 65.427 2.153 6.303

0-1 6.16114 0.21847 0.59242
1-2 2.89100 0.11848 0.28436
2-3 0.78199 0.03188 0.07583
3-4 0.20095 0.01049 0.01943
4-5 0.04550 0.00420 0.00427
5-6 0.00791 0.00170 0.00076
6-7 0.00408 0.00084 0.00045

Raa as a function of centrality is shown in Figure 5.7 in 5% centrality bins, and Figure 5.8
in 10% centrality bins. Both sets of values are listed in Table A.29. It can be seen in the lower
panel of Figure 5.8 that the pp-integrated Raa is very similar to those measured in Run 4 in central
collisions. In peripheral collisions, by comparison of the bottom panel of Figure 5.8, the variation
from Run 4 is mostly due to the Run 7 invariant yield values.

In the most peripheral bin, however there is a significant contribution due to a ~15% smaller
(Neon) value than was used for the Run 4 results. This is believed to be due to changes in how
the BBC trigger efficiency is calculated from the data and changes to the centrality calculation
itself. As opposed to the methods described in Section 3.3.1, in the Run 4 analysis the matching
of the Glauber simulation to the BBC data was done using Poisson statistics instead of a negative
binomial distribution. In addition, the centrality in Run 4 was determined using the so-called “clock
method”, which incorporated both the BBC and the ZDC hits to divide the data into centrality
bins. This method was later shown to be less accurate than using the BBC alone.

Raa as a function of pr is shown in Figure 5.9 in four broad centrality bins, and values
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Figure 5.7: J/1 Raa vs. centrality in 5% bins. Also shown are the PHENIX 2004 Au+Au data.
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are listed in Table A.30. As can be seen, the Run 7 measured Raa pr distributions are in good

agreement with the Run 4 results.
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Figure 5.8: J/1 Raa vs. centrality in 10% bins. Also shown are the PHENIX 2004 Au+Au data.
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Figure 5.9: J/1) Raa vs. pr in four centrality bins. Also shown are the PHENIX 2004 Au+Au
data.
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Chapter 6

Comparison to Theoretical Models and Discussion

6.1 Model Comparisons vs. Centrality

J /v production in high-energy Au+Au collisions stands as a measurement by itself, but it is
most interesting when interpreted in terms of .J/v suppression by a hot partonic medium. In order
to extract meaningful information about the medium we must compare to models that incorporate
the various effects described in Chapter 2.

Calculations involving the Comover Interaction Model (CIM) use a rate equation which
accounts for J/v break-up due to interactions with a co-moving medium. No assumptions about
whether the medium is partonic or hadronic are made, nor whether the transition is smooth or
abrupt; it is only assumed that some overall average cross section can be used. However, the cross
section extracted from SPS data is assumed to be the same at RHIC. This prediction, based on
SPS measurements, far exceeded the measured suppression at RHIC; however, it did not include
any regeneration effects, and used a break-up cross section of op,,=4.5 mb [74], much larger than
measured in d+Au collisions at RHIC. The prediction for mid-rapidity can be seen in Figure 6.1.

An updated calculation [75] was released after the PHENIX Run 4 data came out, and
replaced the constant break-up cross section with an z-dependent function & (xi)aQQ, where x4 =
0.5 (, / x% —4M?/s + x F) , that accounts for both absorption and energy-momentum conservation.
The regeneration component is normalized to the ratio of open charm production to J/1 production,
with the open charm cross section from p+p data at mid-rapidity and PYTHIA at forward rapidity.

The newer curves are in better agreement with the data at mid and forward rapidities, as shown
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Figure 6.1: PHENIX J/¢ Raa measurements vs. Npar, compared to calculations of the Comover
Interaction Model (CIM) at forward and mid-rapidity. Nuclear absorption is much stronger at
forward rapidity, but the suppression from comover interactions and the enhancement from regen-
eration are both less, leading to similar predictions for both rapidities. Also included is the previous
CIM prediction based on SPS data from [74], which over-predicted the suppression seen at RHIC.
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in Figure 6.1. As can be seen in the Figure, the non-medium effects are much stronger at forward
rapidity, due in part to the assertion that nuclear absorption is negligible at mid-rapidity. On the
other hand, the effects of comover dissociation and regeneration are stronger at mid-rapidity, leading
to predictions which are overall very similar at forward and mid-rapidity, with the forward rapidity
curve slightly under-predicting the suppression seen in the data. In the end, it is questionable how
much information can be extracted using a model that makes almost no assumptions about the
properties of the medium.

Another model is put forward by Zhao and Rapp in [53] and [48] which incorporates both
a QGP phase and a Hadron Gas (HG) phase. They begin by using two scenarios of CNM effects.
In the first scenario, nuclear absorption is calculated in the usual Glauber formalism, shadowing
and anti-shadowing are assumed to roughly cancel, such that the overall shadowing effects are

encapsulated in oy, and Gaussian smearing of the J/1 pr is used to simulate the Cronin effect.
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In scenario 2 the CNM effects are treated as in [75], which leads to larger CNM suppression at
forward rapidity, and Cronin effect is treated the same as scenario 1.

The thermal dissociation is modeled via a Boltzmann transport equation for both QGP and
HG phases. The QGP is assumed to be an isentropically expanding cylindrical fireball. .J/-
medium interactions are assumed to stop at a freeze-out temperature of 120 MeV. The final J/1
pr-distribution is calculated by spatially integrating the final phase-space distribution. The regen-
eration component assumes that the cc is thermally equilibrated with the medium when it coalesces

into a J/v, and so their pr is given by a blastwave equation for the transverse flow velocity:

1 dN R myp cosh yp pr sinh yp
—_ drK I 1
ppoTO(mT/O e 1( T ) O< T ) (6 )

where m?p = m?,/w + pr2, y7r = tanh vy~ !, and the transition to the HG phase occurs at 180 MeV
(beyond which regeneration does not occur). The normalization of this component is performed by
plugging the initial charm densities into a rate equation with both gain and loss terms, and solving
at the freeze-out time.

The resulting curves for both CNM scenarios at forward rapidity are shown in Figure 6.2,
along with the separate dissociation and regeneration components. The larger CNM suppression
in scenario 2 leads to a more suppressed overall Raa, but in general the total difference between
the two scenarios is small. It is noteworthy that the regeneration component is only slightly larger
at mid-rapidity in this model than at forward rapidity. This implies that the c¢ pairs involved in
regeneration are mostly diagonal pairs, i.e. produced together in the original collision. However,
increasing the contribution of off-diagonal pairs would only increase the amount of regeneration,
and lead to worse agreement with the data for central collisions.

A more unusual model is described by Kharzeev et al. in [76], in which they assume that
the nuclear wave functions in very high energy nuclear collisions can be described by the Color
Glass Condensate (CGC). The primary effect in the CGC picture is the saturation of the gluon
fields as ¢ — 0, and calculations are done in a quasi-classical approximation. The key consequences

for J/1 production are the enhancement of the 3-gluon fusion process g + g + g — J/1¢ over the
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Figure 6.2: Predicted Ras at forward rapidity for the model of Zhao and Rapp [53, 48] for two
different scenarios of CNM effects. The results of the current analysis are shown for comparison.
In addition, the contributions of dissociation and regeneration are shown separately.
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2-gluon fusion process g + g — J/¢ + g, and the suppression of J/v production and narrowing of
the rapidity distribution due to saturation of the gluon fields in heavy ion collisions relative to p+p
collisions. It should be noted that this model does not include any hot medium effects.

The calculated Raa is shown in Figure 6.3 for both forward and mid-rapidity, along with
the latest PHENIX data for both. The difference in suppression between the two rapidities is
qualitatively reproduced by this model, and the large amount of suppression in central events as
well. However, it should be noted that the model includes an overall normalization factor that is
determined from fitting the measured rapidity distributions. While it is conceptually interesting
that the model is able to roughly reproduce the data without invoking medium effects, a more real-
istic calculation including medium-induced suppression would be more plausible, although it would
require independent determination of the normalization constant. Furthermore, this calculation is
only valid for central nuclear collisions, so the large enhancement seen at small Ny, should be

ignored as outside the valid range of the model (it is unclear at what point the model becomes
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Figure 6.3: Suppression curves at forward and mid-rapidity as calculated in the CGC framework
involving gluon saturation, but not including hot medium effects [76]. PHENIX data at both
rapidities is shown for comparison.
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Model Comparisons vs. Transverse Momentum

The model of Zhao and Rapp, described in the previous section, was also used to calculate

Raa vs. pr at forward and mid-rapidity. The forward rapidity results are compared to the results

of this analysis in Figure 6.4. It can be seen that in the most central bin, the model underpredicts

the amount of suppression for pr <4 GeV/c. However, the model agrees qualitatively well with

the data in the other three centrality bins. In the most peripheral bin, the level of modification is

roughly reproduced, although the pr shape is harder to get a handle on from the data.

Another model of interest is described by Kopeliovich, et al. in [77]. They calculate initial-

state effects due to attenuation of the c¢ dipole propagating through both nuclei, leading-twist gluon

shadowing, and higher-twist shadowing of charm quarks. They also include Cronin broadening of

the pr-distribution in two different forms: the first uses a simple shift of (p%) — (p%) + 6 in the
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Figure 6.4: Predicted Raa at forward rapidity for the model of Zhao and Rapp [53, 48]. The results
of the current analysis are shown for comparison. In addition, the contributions of dissociation and
regeneration are shown separately.
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pr-distribution parametrization that matches p+p relatively well:
—6
do P2
P 6 <pT>

Unfortunately, this leads to Raa that steadily increases with pr, which is most likely unrealistic.
The second Cronin model is a simple Gaussian smearing of the pr-distribution, which leads to
Raa that rises initially but trends downward 26 GeV /c. Within the pr-range of the current data,
however, the two cases give similar results, as can be seen in Figure 6.5. The final effect that is
included is medium-induced suppression, which is formulated in terms of a transport coefficient,

Go, that represents the broadening of the c¢ dipole in the medium per unit length traversed. They
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Figure 6.5: Predicted Raa at mid-rapidity for b = 0 Au+Au collisions in the model of Kopeliovich
et al. [77]. The results of the current analysis are shown for comparison, although the rapidity and
centrality selections are not identical.
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find that values of g, ~ 0.3-0.5 GeV?/fm agree with the data.

The calculations that result in the curves of Figure 6.5 are done at b=0, and should really
only be compared to the most central events, but we have plotted the curves over both 0-20% and
20-40% centralities and it can be seen that there is better, though still imperfect, agreement for
the 20-40% bin. However, the curves are also not calculated at forward rapidity, which would lower
them by an additional factor (based on the difference between forward and mid-rapidity data).

It should be noted that almost all of the pr-dependence of this model comes from the Cronin
effect. This can be seen in Figure 6.6, where the various contributions to Cu+Cu Raa are plotted
separately. Because this model is so dependent on the shape of the Cronin effect, much more precise
measurements of the J/v¢ pr-distributions at >3 GeV/c in heavy ion collisions are needed before
the medium-induced effects can be separated.

Finally, as mentioned in Section 2.4.6, in the “Hot Wind Model” of Liu, Rajagopal, and
Wiedemann [51], it was found that the screening length goes as 1/,/7, resulting in increased sup-
pression at high-pr. This effect was modeled by T. Gunji et al. [52] using (3+1)-dimensional ideal
relativistic hydrodynamics to model the medium’s space-time evolution. They then assume that

the charmonia bound states disappear immediately if their melting temperature is reached, and
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Figure 6.6: Raa vs. pr in Cu+Cu and Au+Au collisions as calculated with Cronin method 1 (left)
and Cronin method 2 (right) in [77]. The divergence between the two calculations can be seen at
pr > 5 GeV/c. In the left figure, the dotted curve includes only the medium-induced effects, the
dashed curve adds the shadowing and absorption, while the final curve adds the Cronin effect.
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use the Hot Wind model to modify the melting temperatures based on the velocity of the particle.

This results in J/¢ Raa where the suppression increases above some pr where the effective melting

temperature has been reduced to the medium temperature. This trend is at odds with the data,

as can be seen in Figure 6.7. It should be noted that because of the immediate suppression at a

certain temperature, the entire pp-shape of the curve is due to the Hot Wind effect.
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Figure 6.7: Raa vs. pr as calculated using the Hot Wind model in central (left) and semi-peripheral
(right) centralities.
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Chapter 7

Summary and Outlook

In this work a full analysis of J/v — pu*u~ has been presented using the PHENIX Run 7
Snn=200 GeV/u Au+Au data. The results are compatible with the previous Run 4 PHENIX
results, and are able to rule out simple J/1) suppression models, but are unable to discern between
current models that make use of multiple charmonium states or both suppression and regeneration.
A future (very) high-statistics measurement may be able to distinguish between these models, but
the systematic uncertainties will have to be reduced as well. More likely, a combination of Raa with
different observables and kinematic bins not currently feasible will be used to distinguish between
models, as well as additional data at higher energies from the LHC.

One effect that could be very useful in gauging the medium temperature is sequential charmo-
nium dissociation, i.e. dissociation of the y. and ¢’ and the resulting suppression of the feed-down
J/¢s. The lower dissociation temperatures of the excited states could at least allow a bracketing
of the medium temperature. In order to quantify this effect, separate measurements of . and 1)/
Raa in Au+Au collisions will be needed. Once the modification of the y. and v’ is known, the
effect on J/1) Raa can be calculated using the feed-down fractions. This can also be combine with
bottomonia sequential dissociation to more precisely bracket the medium temperature, as shown
in the cartoon diagram of Figure 7.1.

Regeneration of J/s is also an intriguing effect that needs to be mapped out better. It needs
to be understood whether regeneration is dominated by diagonal pairs or off-diagonal pairs, which

should scale with Ngyam and tharm respectively. One of driving motivations of regeneration cal-
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Figure 7.1: Cartoon of sequential dissociation of charmonia and bottomonia.
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culations is the greater J/1 suppression seen at forward rapidities at RHIC, but this was expected
from the narrowing of the rapidity distribution due to combining off-diagonal pairs. If most regen-
eration is from diagonal pairs, another explanation must be found for the rapidity difference, such
as stronger shadowing at forward rapidity or gluon saturation effects. More precise experimental
measurements of the rapidity and pr distributions could help clarify the picture. The LHC Pb+Pb
program will also help in understanding the different contributions, as the charm-quark density
is expected to be about an order of magnitude larger than in RHIC Au+Au collisions. Extreme
calculations even predict less suppression of Raa compared to the RHIC values, due to the increase
in charm-quark density [78].

There is also some debate about the interpretation of the survival of J/v spectral functions
up to 27, in lattice QCD. This is important for medium-evolution calculations which must input a
particular melting point for the J/¢ and other charmonium states. In some cases this is treated as
meaning the J/1 bound state survives well above the transition temperature, while other recent
interpretations point out that the binding energy can be negligible even while the spectral peak still
exists. This needs to be settled for full medium calculations to become more precise. In addition,
it is essential for the interpretation of the sequential charmonium dissociation in terms of medium

temperature.
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In 2008 PHENIX recorded much higher-statistics d+Au data than had been previously an-
alyzed. The J/1 results are being finalized at the time of this writing, and should be published
shortly. These results should allow a much better constraint on the cold nuclear matter effects,
which in turn will assist in extracting J/1/medium information from Au+Au collisions by reducing
one of the current sources of theoretical uncertainty.

In addition, PHENIX is currently installing a silicon-based vertex detector, and is in the
pre-planning stages for major detector upgrades during the next decade. There are also planned
luminosity upgrades for the accelerator itself, and discussion of adding an electron beam for e + A
collisions.

Moreover, a quarter of the way around the world the LHC is starting up at CERN, and will
eventually collide Pb+Pb at |/syy=5.5 TeV/u. The medium temperatures and energy densities
produced will be much higher than those at RHIC, allowing exploration of an additional region of
the QCD phase-space diagram.

While we now have in hand the measurements first proposed by Matsui and Satz [34], our
physical picture has become a complex admixture of different effects, making conclusive interpre-
tation difficult at present. However, the theoretical and experimental advances described above
should allow the eventual disentangling of the competing effects on .J/1 production in high-energy

heavy ion collisions.
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Appendix A

Tables

Al Signal Tables

Table A.1: J/v signal in 10% centrality bins combining both like-sign and mixed background-
subtracted results, with their statistical and systematic uncertainties. Also included are the 90%
confidence limits using only the mixed background histograms. For those bins where N/, <

o + 02,5, the text is in red, and only the confidence limit will be used.

10% Centrality bins
South Arm North Arm
Cent | signal stat sys  90% conf | signal  stat sys  90% conf

0-10% | 1612.9 261.2 280.8 2576.4 220.9 240.6 206.3 1582.3
10-20% | 1939.0 216.7 156.0 3035.8 668.3 172.0 149.6 1543.2
20-30% | 1754.1 176.6 101.7  2599.8 985.8 129.5 58.3 1592.3
30-40% | 1424.3 113.2 67.7 1831.6 940.4 91.5 45.1 1505.2
40-50% | 1019.1 82.0  39.9 1335.7 870.5 63.1 42.2 11324
50-60% | 675.9 47.7 18.8 785.2 630.4 434 173 762.3
60-70% | 392.4  32.2 11.3 441.0 309.9 264 10.2 384.3
70-80% | 215.0  20.8 4.1 251.7 191.6 17.9 3.3 216.6
80-93% 97.6 12.7 1.8 127.4 125.2 13.6 3.0 150.3
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Table A.2: J/v signal in 5% centrality bins combining both like-sign and mixed background-
subtracted results, with their statistical and systematic uncertainties. Also included are the 90%
confidence limits using only the mixed background histograms. For those bins where Nj,;, <

\/ 0%t + 02,5, the text is in red, and only the confidence limit will be used.

5% Centrality bins

South Arm North Arm

Cent | signal stat sys  90% conf | signal  stat sys  90% conf
0-5% 864.4 192.5 148.5 1389.6 252.4 173.5 161.6 918.6
5-10% | 743.5 174.9 139.5 1311.1 20.2  313.1 34.1 793.0
10-15% | 946.8 165.3 97.1 1518.8 280.5 138.7 90.9 722.5
15-20% | 971.4 141.0 47.8 1616.3 402.7 120.0 73.1 916.9
20-25% | 849.4 133.9 75.8 13914 430.2 984  35.7 823.0
25-30% | 879.8 104.2 41.7 1282.3 569.6 84.1 44.3 837.2
30-35% | 770.3 90.4 41.6 1024.6 469.5 67.0 428 788.1
35-40% | 647.0 68.4  41.7 859.1 484.4 60.3  23.3 764.9
40-45% | 630.8 62.0 27.2 791.3 482.1 496  25.0 671.4
45-50% | 398.1 51.6  19.9 579.3 385.6  40.2 12.5 493.5
50-55% | 344.2  36.7 9.8 441.5 2974 320 142 419.2
55-60% | 333.0 31.2 10.0 366.3 334.9  26.2 7.1 364.6
60-65% | 231.2 24.1 5.9 265.8 170.6  21.7 5.1 228.1
65-70% | 161.3  20.0 6.1 190.0 131.3 16.0 1.5 170.0
70-75% | 118.4 15.8 2.0 147.7 113.4 138 2.2 129.0
75-80% | 95.6 12.7 1.9 114.2 74.1 11.2 2.8 97.4
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Table A.3: J/1) signal in 20% centrality and 1 GeV/c pr bins combining both like-sign and mixed
background-subtracted results, with their statistical and systematic uncertainties. Also included
are the 90% confidence limits using only the mixed background histograms. For those bins where

Ny < /0% + 02, the text is in red, and only the confidence limit will be used.

South Arm North Arm
Cent  pr | signal stat sys  90% conf | signal  stat sys  90% conf
0-20% 0-1 | 1031.5 156.6 159.6 1848.0 377.7 137.8 106.5 1187.6
0-20% 1-2 | 1315.2 184.8 164.9  2149.5 398.0 211.8 119.7 1219.3
0-20% 2-3| 663.5 128.3 74.3 1244.7 128.0 1259 64.7 607.4
0-20% 3-4 | 202.1 732 31.1 408.3 33.4 132.7 29.2 160.2
0-20% 4-5| 202.4 473 34.3 219.8 1434 54.8 75.2 157.4
0-20% 5-6 | 18.4 274 18.4 59.2 36.2  46.1 67.1 80.1
20-40% 0-1 | 714.7 97.0 64.8 1373.2 528.8 85.6 359 978.6
20-40% 1-2 | 1192.4 108.3 50.7 1785.0 673.8 93.1 514 1210.9
20-40% 2-3 | T11.7 747 25.3 982.3 434.1 629 184 603.3
20-40% 3-4 | 262.1 405 13.3 344.4 182.3 36.8 16.7 292.7
20-40% 4-5 | 86.2 21.0 6.3 83.0 102.5 275 109 100.1
20-40% 5-6 | 50.0 15.7 2.6 52.3 60.6 17.9 4.7 55.3
40-60% 0-1 | 492.8 44.9 17.0 647.8 450.1 42,7 16.0 579.3
40-60% 1-2 | 639.6 524 25.9 939.9 566.1 46.3 214 760.7
40-60% 2-3 | 300.9 34.1 9.1 361.4 288.3 31.0 119 376.0
40-60% 3-4 | 127.6  21.8 3.7 164.5 124.7  16.0 2.8 150.3
40-60% 4-5 | 60.4 11.4 1.2 65.7 55.8 9.5 0.5 69.6
40-60% 5-6 | 17.6 5.5 0.2 13.7 17.6 5.4 0.2 19.1
60-93% 0-1 | 251.1 21.5 4.7 301.6 232.9  20.7 3.2 275.6
60-93% 1-2 | 2446 226 10.1 297.3 243.4  21.0 4.6 287.7
60-93% 2-3 | 117.5 15.2 2.3 146.8 90.2 13.2 2.8 117.6
60-93% 3-4| 36.3 8.9 1.0 53.1 41.3 8.6 1.2 59.2
60-93% 4-5| 21.8 5.4 0.1 22.5 21.0 4.9 0.1 21.1
60-93% 5-6 | 10.9 3.4 0.0 12.2 9.0 3.1 0.0 10.3
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Table A.4: J /1 signal RMS variation due to varying a particular parameter, listed in 10% and 5%
centrality bins.

South Arm North Arm

Cent  pr | DGausFrac FitRange BgndNorm | DGausFrac FitRange BgndNorm
0-10%  all 3.8% 4.2% 14.1% 6.0% 29.9% 63.7%
10-20% all 2.7% 2.0% 5.3% 2.7% 19.1% 12.8%
20-30% all 2.6% 4.7% 2.7% 2.8% 4.3% 5.7%
30-40% all 3.8% 3.2% 3.1% 2.3% 7.6% 1.9%
40-50%  all 3.4% 1.0% 0.9% 2.3% 5.8% 1.3%
50-60%  all 0.9% 1.1% 2.3% 1.7% 1.0% 1.0%
60-70% all 0.2% 0.9% 0.7% 1.0% 0.7% 0.5%
70-80%  all 0.5% 0.8% 0.3% 0.8% 0.7% 0.2%
80-93% all 0.3% 2.1% 0.0% 0.9% 1.5% 0.1%

0-5%  all 3.4% 4.4% 15.1% 5.1% 29.9% 42.8%
5-10%  all 4.1% 5.1% 12.5% 10.5% 62.0% 94.0%
10-15% all 3.0% 3.9% 6.3% 3.6% 16.5% 27.4%
15-20%  all 3.0% 1.3% 4.4% 2.0% 19.1% 14.5%
20-25%  all 2.5% 6.7% 6.3% 3.0% 3.8% 6.9%
25-30% all 1.8% 3.6% 1.7% 6.6% 5.9% 1.7%
30-35% all 3.1% 3.4% 0.7% 2.7"% 7.8% 4.9%
35-40%  all 2.4% 2.9% 2.3% 2.0% 6.6% 1.3%
40-45%  all 2.4% 1.4% 0.5% 1.9% 71% 1.5%
45-50%  all 2.0% 1.6% 2.5% 5.1% 2.1% 0.3%
50-55%  all 1.6% 2.6% 1.0% 1.7% 5.9% 0.9%
55-60%  all 0.4% 1.1% 1.2% 0.9% 0.2% 1.3%
60-65% all 0.4% 0.3% 0.3% 1.4% 2.1% 4.1%
65-70% all 0.5% 0.3% 0.5% 0.9% 0.6% 0.2%
70-75%  all 1.0% 0.8% 0.3% 0.9% 0.6% 0.5%
75-80%  all 0.2% 1.5% 0.3% 1.3% 4.2% 0.1%
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Table A.5: J/1 signal RMS variation due to varying a particular parameter, listed in 20% centrality
and 1 GeV/c py bins.

South Arm North Arm
Cent  pr | DGausFrac FitRange BgndNorm | DGauskFrac FitRange BgndNorm
0-20%  0-1 2.5% 8.0% 2.4% 1.6% 10.7% 20.2%
0-20% 1-2 2.9% 1.6% 5.5% 4.6% 12.8% 6.9%
0-20% 2-3 3.4% 8.8% 1.8% 2.8% 40.5% 1.0%
0-20% 3-4 5.0% 15.0% 3.8% 3.8% 27.9% 35.0%
20-40% 0-1 2.5% 9.1% 6.3% 2.5% 3.3% 2.7%
20-40% 1-2 5.3% 3.7% 1.5% 2.5% 10.6% 2.0%
20-40% 2-3 2.5% 2.0% 1.8% 2.3% 1.0% 0.0%
20-40% 3-4 2.9% 5.7% 3.5% 1.8% 8.7% 0.5%
40-60% 0-1 1.7% 2.2% 1.7% 2.7% 3.2% 1.4%
40-60% 1-2 2.1% 2.9% 1.2% 1.7% 2.9% 0.4%
40-60% 2-3 1.8% 1.8% 0.4% 1.8% 2.0% 0.3%
40-60% 3-4 1.9% 0.4% 0.8% 1.6% 1.4% 1.3%
60-93% 0-1 1.4% 0.7% 0.5% 0.7% 1.4% 0.3%
60-93% 1-2 1.7% 3.4% 0.1% 1.1% 0.9% 0.2%
60-93% 2-3 1.5% 0.4% 0.1% 3.8% 1.5% 0.7%
60-93% 3-4 0.1% 0.1% 0.6% 1.0% 0.6% 0.1%
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Table A.6: J /1 signal/background over [2.6,3.6] and (subtracted counts)/background over [1.8,2.0],

in 10% and 5% centrality bins.

South Arm North Arm

Cent ppr | 1.8-2.0 2.6-3.6 | 1.8-2.0 2.6-3.6
0-10% all | -0.000 0.031 | 0.001  0.004
10-20% all | 0.004  0.072 | -0.000 0.022
20-30% all | 0.000 0.117 | -0.000 0.073
30-40% all | -0.010 0.208 | -0.004 0.164
40-50% all | 0.025 0.386 | 0.009  0.376
50-60% all | -0.017 0.757 | 0.074  0.811
60-70% all | -0.053 1.649 | 0.135 1.521
70-80% all | 0.115 4.340 | -0.294 3.344
80-93% all | 1.192 10.904 | -0.373  9.362

0-5% all | 0.007 0.029 | 0.006 0.007
5-10% all | -0.009 0.035 | -0.006  0.001
10-15% all | 0.001  0.061 | -0.003 0.015
15-20% all | 0.008  0.087 | 0.004 0.033
20-25% all | -0.007 0.099 | 0.000  0.057
25-30% all | 0.010 0.142 | -0.001 0.101
30-35% all | 0.007 0.181 | -0.012 0.132
35-40% all | -0.037 0.250 | 0.007  0.221
40-45% all | 0.004 0.371 | 0.024  0.331
45-50% all | 0.062  0.416 | -0.015  0.445
50-55% all | 0.009 0.599 | 0.072  0.651
55-60% all | -0.065 1.072 | 0.076 1.104
60-65% all | -0.090 1.396 | 0.090 1.279
65-70% all | 0.026  2.166 | 0.232 1.972
70-75% all | 0.151 3.557 | -0.428  2.888
75-80% all | 0.035  5.945 | 0.037  4.243
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Table A.7: J /v signal/background over [2.6,3.6] and (subtracted counts)/background over [1.8,2.0],
in 20% centrality and 1 GeV/c pr bins.

South Arm North Arm

Cent pr | 1.8-2.0 2.6-3.6 | 1.8-2.0 2.6-3.6
0-20% 0-1 | 0.005 0.041 | 0.000 0.018
0-20% 1-2 | 0.000 0.042 | -0.001 0.012
0-20% 2-3 | -0.016 0.063 | 0.009 0.013
0-20% 3-4 | -0.003 0.057 | -0.027  0.008
0-20% 4-5| 0.171  0.172 | 0.042 0.033
0-20% 5-6 | 0.190  0.041 | -0.036  0.009
20-40% 0-1 | 0.004  0.100 | -0.010 0.088
20-40% 1-2 | -0.016  0.135 | -0.003  0.090
20-40% 2-3 | -0.005 0.205 | 0.014 0.144
20-40% 3-4 | 0.002 0.285 | 0.080 0.176
20-40% 4-5| 0.082  0.205 | -0.044 0.219
20-40% 5-6 | 0.371  0.395 | -0.289  0.152
40-60% 0-1 | 0.027  0.380 | -0.006  0.402
40-60% 1-2 | -0.021  0.431 | 0.050 0.457
40-60% 2-3 | 0.065 0.536 | 0.062 0.624
40-60% 3-4 | 0.069  0.830 | 0.096 0.775
40-60% 4-5 | 0.158 1.113 | -0.655 1.036
40-60% 5-6 | 0.254  0.531 | 0.606  0.648
60-93% 0-1| 0.063 2.459 | 0.017  2.257
60-93% 1-2 | -0.104 1.949 | 0.008  2.268
60-93% 2-3 | 0.100 2.482 0.012 2.080
60-93% 3-4 | 0.136  2.410 | 0.397  2.952
60-93% 4-5| 0.549  3.654 | 1.191  4.464
60-93% 5-6 | 5.646  3.933 | 4.256  5.015

Table A.8: J/v signal summed across the 10% centrality bins or 1 GeV/c pr bins, within a given

20% centrality bin.

Arm  Centrality | cent-summed stat error | pp-summed stat error
South 0-20% 3730.0 292.8 3724.6 244.6
South  20-40% 3367.6 170.2 3239.3 146.1
South  40-60% 1758.7 86.2 1672.3 73.3
South  60-93% 715.5 36.6 686.2 34.4
North 0-20% 849.8 247.1 1189.8 222.0
North  20-40% 2053.7 131.6 2102.5 125.4
North  40-60% 1535.3 66.8 1527.6 65.8
North  60-93% 637.5 324 640.8 32.5
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Table A.9: Subtracted counts in the J/1) mass region [2.6,3.6] for the ++ and —— pair distributions
in the South Arm in 10% and 5% centrality bins. Also included are the x?/ndf and ndf for a fit to
a flat line over the mass range [0.6, 6.0].

+-+ Pairs —— Pairs

Cent pr Arm counts x%/ndf ndf counts x%/ndf ndf
0-10% all South | 217.8 +£187.6 0.9 53 | -84.4 +£140.5 1.1 53
10-20% all South | 226.7 £147.0 1.3 53 | 194.1 +£109.6 0.9 53
20-30% all South | 145.4 +106.9 0.7 53 221.1 £80.2 1.3 53
30-40% all South | 25.7 £72.5 2.3 53 161.8 +54.5 1.0 53
40-50% all South | 23.6 +45.0 1.0 53 72.2 +34.4 1.5 53
50-60% all South | 10.5 £25.4 1.2 53 13.7 £19.4 0.7 53
60-70% all South | 3.1 £13.3 1.2 52 -3.0 £9.6 0.7 51
70-80% all South 9.7 £6.5 0.8 47 1.8 +4.7 0.7 44
80-93% all South 0.8 £2.5 0.9 37 0.2 £2.3 0.6 34
0-5% all  South | 220.3 +£139.9 1.1 53 | -147.2 £104.1 1.2 53
5-10% all South | -2.3 £125.0 0.9 53 62.2 +94.3 0.9 53
10-15% all South | 47.8 +110.9 1.2 53 70.6 £82.7 0.8 53
15-20% all South | 178.9 +96.6 1.2 53 123.5 £72.0 0.9 53
20-25% all  South | 72.3 £82.0 0.8 53 | 119.3 £61.3 1.0 53
25-30% all South | 73.1 £68.5 0.6 53 101.8 £51.7 1.2 53
30-35% all South | -12.4 £56.1 1.9 53 90.3 +42.4 1.0 53
35-40% all South | 38.1 £45.9 1.5 53 71.5 +£34.2 1.1 53
40-45% all South | 32.8 +36.0 14 53 29.3 £26.9 1.2 53
45-50% all South -9.2 £27.0 1.0 53 42.9 +21.4 1.1 53
50-55% all South 9.0 +20.6 1.0 53 18.0 +15.9 0.6 53
55-60% all South 1.6 +14.8 1.1 53 -4.2 £11.0 0.6 52
60-65% all South 0.0 +11.0 1.3 52 -85 74 0.9 49
65-70% all  South 3.1+£75 0.6 49 5.5 +6.1 0.6 49
70-75% all  South 9.3 £5.7 1.0 44 1.8 +4.0 1.0 39
75-80% all  South 04 £3.1 0.4 41 0.0 £2.5 0.7 39
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Table A.10: Subtracted counts in the J/1 mass region [2.6,3.6] for the ++ and —— pair distribu-
tions in the South Arm in 20% centrality and 1 GeV/c py bins. Also included are the y?/ndf and
ndf for a fit to a flat line over the mass range [0.6, 6.0].

++ Pairs —— Pairs

Cent pr Arm counts x?/ndf ndf counts x%/ndf ndf
0-20% 0-1 South | 286.2 £140.5 1.4 53 | 35.4 +107.2 0.8 53
0-20% 1-2 South | 107.0 £153.1 1.1 53 | 52.1 £113.6 0.9 53
0-20% 2-3 South | 98.4 +94.7 1.4 53 | 47.7 £68.7 1.0 53
0-20% 3-4 South | 29.4 £51.8 0.8 53 -6.3 £37.4 1.1 53
0-20% 4-5 South | 11.5 £29.3 1.0 53 | -11.7 +£22.1 0.9 53
0-20% 5-6 South 7.0 £19.9 1.0 53 15.2 +£15.4 1.3 53
20-40% 0-1 South | 236.6 +78.1 1.6 53 | 122.0 +£59.0 1.2 52
20-40% 1-2 South | 23.9 £83.2 1.2 53 | 247.7 £62.9 1.7 53
20-40% 2-3 South | -7.8 £50.7 1.1 53 8.7 £36.3 0.9 53
20-40% 3-4 South | -18.5 +26.4 1.1 53 | 19.3 +20.1 0.9 53
20-40% 4-5 South -1.8 £14.7 1.6 53 | -18.7 +10.1 1.6 53
20-40% 5-6 South -7.3 £8.0 1.0 53 8.2 +£7.3 0.8 52
40-60% 0-1 South | 11.4 £+30.8 0.9 52 | 24.3 +£23.9 0.8 51
40-60% 1-2  South | -11.0 £33.0 0.8 53 | 47.1 £25.4 0.8 53
40-60% 2-3 South | 30.8 £21.2 0.9 53 0.4 £15.1 1.2 53
40-60% 3-4 South 10.4 +£11.2 1.0 53 12.8 +8.8 0.8 52
40-60% 4-5 South 0.5 +£5.9 0.7 53 1.1 £4.6 0.8 52
40-60% 5-6 South 2.5 +3.5 0.3 52 -2.6 £2.8 0.5 50
60-93% 0-1 South 1.6 8.7 0.8 45 -6.9 +6.1 1.1 42
60-93% 1-2 South 5.0 £9.4 0.7 47 -2.0 £7.0 0.5 48
60-93% 2-3 South 0.7 £6.1 1.2 48 5.2 +4.7 0.6 44
60-93% 3-4 South 5.8 +4.2 1.0 44 0.9 +£2.5 0.3 43
60-93% 4-5 South 1.1 +2.3 0.2 44 2.9 £2.0 0.3 33
60-93% 5-6 South -0.9 +1.1 0.2 32 -0.5 0.2 0.1 18
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Table A.11: Subtracted counts in the J/1) mass region [2.6,3.6] for the ++ and —— pair distribu-
tions in the North Arm in 10% and 5% centrality bins. Also included are the x?/ndf and ndf for a
fit to a flat line over the mass range [0.6, 6.0].

++ Pairs —— Pairs

Cent ppr Arm counts x%/ndf ndf counts x%/ndf ndf
0-10% all North | 74.7 £190.6 0.9 53 | -39.6 +£156.4 1.1 93
10-20% all North | 28.8 +138.8 1.1 53 69.2 +111.0 1.2 53
20-30% all North 89.7 +98.3 1.4 93 48.7 £76.4 1.6 53
30-40% all North 67.7 £66.0 1.3 53 109.5 +50.8 1.0 53
40-50% all North | 46.5 +40.9 1.0 53 33.4 +31.6 0.8 53
50-60% all North | -15.8 £23.1 0.9 93 -12.8 174 1.1 53

60-70% all North 13.3 £12.9 0.8 53 0.9 £9.3 0.8 53
70-80% all North -7.0 £5.7 0.8 49 -3.5 £4.5 0.7 48
80-93% all North 2.5 £3.7 0.9 36 1.9 £2.6 0.7 37

0-5% all North | -105.2 +144.1 0.8 53 | -111.4 £1194 1.1 53
5-10% all North | 180.0 +124.7 1.3 53 71.8 £101.1 1.3 53

10-15% all North | -38.4 £105.3 0.9 53 -3.1 £84.9 1.1 53
15-20% all North | 66.2 +90.4 14 53 72.4 £71.5 1.0 53
20-25% all North | 40.4 +754 0.7 53 113.8 £59.5 1.4 93
25-30% all North | 48.9 £63.1 1.6 53 -65.3 £47.8 1.2 53
30-35% all North 2.7 £51.1 1.0 53 82.4 £39.9 0.9 93
35-40% all North | 65.1 +41.7 1.1 53 27.2 £31.5 1.1 53
40-45% all North | 42.3 £32.5 0.9 53 12.6 £25.0 0.9 53
45-50% all  North 4.4 £24.7 1.1 53 20.9 £19.4 0.9 53
50-55% all North | -12.0 +18.5 0.8 53 6.4 £14.4 1.1 53
55-60% all North -3.9 £13.9 1.0 53 -19.2 £9.7 1.4 53
60-65% all North 12.5 +£10.6 0.8 53 4.3 £7.9 1.1 52
65-70% all North 0.8 £7.2 0.5 49 -3.5 £5.0 0.7 o1
70-75% all  North -5.7 £4.5 0.7 46 -2.7 £3.6 0.7 48

75-80% all North -1.3 £3.5 0.9 43 -0.8 £2.6 0.5 39
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Table A.12: Subtracted counts in the J/1 mass region [2.6,3.6] for the ++ and —— pair distribu-
tions in the North Arm in 20% centrality and 1 GeV/c pr bins. Also included are the x?/ndf and
ndf for a fit to a flat line over the mass range [0.6, 6.0].

++ Pairs —— Pairs

Cent pr Arm counts x%/ndf ndf counts x%/ndf ndf
0-20% 0-1 North | 103.2 £127.5 0.8 53 | -10.1 +102.8 1.4 53
0-20% 1-2 North | 51.0 £143.3 1.0 53 | -7.2 £115.1 1.1 93
0-20% 2-3 North | 72.5 £97.8 1.4 53 | 72.6 £79.0 0.8 53
0-20% 3-4 North | -11.5 +62.4 1.0 93 -7.1 +£52.3 1.2 93
0-20% 4-5 North | -55.3 £42.5 0.8 53 | -48.5 +35.4 0.9 53
0-20% 5-6 North | -13.1 £32.3 0.7 93 24.6 +£27.9 1.0 93
20-40% 0-1 North | 89.7 +68.8 1.3 93 77.7 £53.9 1.1 93
20-40% 1-2 North | 108.7 £74.7 1.2 53 63.0 £57.7 1.4 53
20-40% 2-3 North | 10.1 £47.5 1.1 93 40.1 +£35.7 0.8 53
20-40% 3-4 North 2.7 £27.5 1.1 53 8.9 £20.7 1.0 53
20-40% 4-5 North | -14.2 £16.5 0.9 93 -4.1 £13.1 1.0 93
20-40% 5-6 North -8.1 +11.8 1.2 53 -1.7 £9.2 14 53
40-60% 0-1 North | 16.0 +28.2 0.8 52 21.8 +£22.4 0.9 50
40-60% 1-2 North | 46.4 +30.4 0.7 93 3.6 £22.8 0.5 53
40-60% 2-3 North | -12.0 +18.0 1.0 53 -4.1 +13.3 0.6 53
40-60% 3-4 North | -13.1 £9.8 1.0 93 -0.5 £7.8 1.3 53
40-60% 4-5 North 1.4 £5.6 1.1 53 2.5 +4.8 0.7 53
40-60% 5-6 North 0.7 £3.4 0.5 ol -6.5 +1.6 0.5 52
60-93% 0-1 North 7.5 +£8.9 0.5 45 9.5 £7.1 0.7 40
60-93% 1-2 North 3.4 +£9.3 0.9 45 -5.2 +6.6 0.8 49
60-93% 2-3 North -2.8 +5.2 0.8 47 -5.0 3.5 1.1 44
60-93% 3-4 North 0.3 £34 0.7 45 1.6 £2.5 0.4 42
60-93% 4-5 North 2.8 £2.3 0.2 43 -0.2 £1.0 0.1 35
60-93% 5-6 North -1.3 0.3 0.2 29 -0.7 £0.2 0.1 26
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Table A.13: J/v signal in 10% and 5% centrality bins with statistical and systematic uncertainties
added in quadrature, for both mixed and like-sign background subtraction. For those bins where

Ny < /0% + 02,5, the text is in red, and only the confidence limit will be used.

South Arm North Arm

Mixed Likesign Mixed Likesign

Cent  pr | signal err  signal  err signal  err  signal err
0-10% all | 1571.6 301.0 1654.1 469.5 | 226.5 266.7 2154 367.3
10-20% all | 2161.9 214.5 1716.1 320.1 | 623.3 187.5 713.4 268.3
20-30% all | 1853.6 167.2 1654.6 240.8 | 1037.3 120.0 934.4 164.3
30-40% all | 1514.0 111.5 1334.5 152.3 | 1016.5 99.3 864.4 109.5
40-50% all | 1079.6 81.9 958.6 100.4 | 895.6 79.9 8454 75.9
50-60% all | 679.1 479 6728 54.8 | 639.7 41.2 621.2 52.3
60-70% all | 399.4 284 3853 40.1 | 319.0 27.8 300.7 29.3
70-80% all | 217.5 20.6 2126 21.8 | 191.3 17.5 191.8 19.0
80-93% all | 98.6 12.6 96.6 13.1 | 127.2  13.2 1231 148
0-5% all | 789.6 188.1 939.3 300.0 | 215.7 187.3 289.0 287.8
5-10% all | 768.4 1753 718.7 273.2 | 34.6 5129 57 117.0
10-15% all | 1050.6 160.6 843.1 223.3 | 248.9 140.0 312.1 192.5
15-20% all | 1119.7 120.4 823.0 177.4 | 398.5 119.2 406.9 162.1
20-25% all | 922.6 129.3 776.2 179.7 | 477.3 854 383.0 124.0
25-30% all | 928.7 90.2 830.8 134.3 | 580.9 85.1 5584 107.1
30-35% all | 805.3 90.4 7352 109.3 | 501.8 71.8 437.1 87.6
35-40% all | 713.1  66.1 580.9 95.0 | 527.2 57.0 441.6 73.1
40-45% all | 653.3 59.9 6084 755 | 496.7 54.5 467.5 58.8
45-50% all | 429.2 48.6 367.1 62.0 | 391.6 388 379.7 45.8
50-55% all | 354.2  34.1 3342 419 | 325.1 33.0 269.8 37.1
55-60% all | 327.9 32.6 3381 33.5 | 319.0 24.0 350.7 30.4
60-65% all | 231.1 20.8 231.2 28.8 | 182.1 224 159.1 223
65-70% all | 165.9 182 156.6 23.8 | 132.9 152 129.6 17.0
70-75% all | 121.6 154 1152 16.3 | 113.3 13.3 113.5 14.6
75-80% all | 94.9 12.2 96.3 13.6 76.0 114 723 118
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J/1 signal in 20% centrality and 1 GeV/c pr bins with statistical and systematic

uncertainties added in quadrature, for both mixed and like-sign background subtraction. For those
bins where N/, < 4 [02,.: + 02,5, the text is in red, and only the confidence limit will be used.

South Arm North Arm
Mixed Likesign Mixed Likesign

Cent  pr | signal  err signal  err | signal err signal err
0-20%  0-1 | 1154.3 171.7 908.7 278.0 | 454.6 129.1 300.7 219.6
0-20% 1-2 | 1368.0 176.0 1262.4 327.3 | 387.1 157.9 408.9 330.1
0-20% 2-3 | 764.6 128.4 562.3 168.6 | 189.8 120.9 66.1  165.2
0-20% 34| 207.2 69.2 1971 90.1 | 47.2  68.9 19.5 204.5
0-20% 4-5 | 207.8 44.6 1969 72.7 | 949 69.9 191.9 116.7
0-20% 5-6 | 22.6 22.1 14.2 442 | 16.0 559  56.4 107.6
20-40% 0-1 | 842.7 114.7 586.8 121.3 | 610.6 79.6 447.0 106.0
20-40% 1-2 | 12944 111.5 1090.3 129.8 | 721.8 95.5 625.9 118.6
20-40% 2-3 | 715.2 69.1 708.1 88.8 | 456.8 54.2 4113 77.1
20-40% 3-4 | 281.9 364 2422 49.6 | 187.2 37.1 1774 439
20-40% 4-5| 62.1 153 1103 28.7 | 935 242 1115 349
20-40% 5-6 | 43.0 12.8 57.0 19.1 | 32.6 12.6 88.5 245
40-60% 0-1 | 509.2  43.7 476.4 524 | 465.0 43.3 435.1 48.0
40-60% 1-2 | 657.6 539 621.7 63.2 | 587.7 482 5445 544
40-60% 2-3 | 307.1 31.2 294.6 394 | 291.6 31.6 285.1 35.0
40-60% 3-4 | 1357 21.3 1194 23.0 | 121.6 12,5 127.7 20.0
40-60% 4-5 | 53.0 10.3 67.8 12.6 | 50.7 9.1 60.9 9.9
40-60% 5-6 9.7 4.5 25.5 6.6 11.1 4.5 24.0 6.4
60-93% 0-1 | 252.8 21.0 249.3 229 | 237.2 20.1 2286 21.8
60-93% 1-2 | 245.3 23.2 2439 26.3 | 2484 20.7 2384 224
60-93% 2-3 | 120.7 149 1143 159 | 89.8 13.1 90.5 138
60-93% 3-4| 38.8 7.8 33.9 10.2 | 42.0 8.5 40.5 8.9
60-93% 4-5| 20.6 5.1 22.9 5.6 16.3 4.4 25.8 5.5
60-93% 5-6 8.0 3.0 13.8 3.8 7.0 2.9 11.0 3.3
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Table A.15: J/v signal in 10% and 5% centrality bins with statistical and systematic uncertainties
added in quadrature, for both mixed background and like-sign subtraction. Collisions vertex cuts
are applied such that the signal for those events closer to that arm are used (-30 cm < z < 0 cm

for South, 0 cm < z < 30 em for North). For those bins where N/, < \/0%,, + 02,5, the text is
in red.

South Arm (z < 0) North Arm (z > 0)
Mixed Likesign Mixed Likesign

Cent  pr | signal err signal err |signal err signal err
0-10% all | 731.7 143.7 7244 226.0 | 589 224.7 529 1725
10-20% all | 1111.0 123.7 934.0 174.2 | 368.4 106.4 394.4 148.3
20-30% all | 857.4 100.2 607.2 126.9 | 388.6 71.6 3729 96.0
30-40% all | 730.2 754 652.6 101.4 | 397.3 63.6 316.2 68.1
40-50% all | 512.0 45.0 481.5 56.7 | 359.7 36.6 360.1 48.3
50-60% all | 304.2 34.2 305.0 33.9 | 293.2 254 3058 314
60-70% all | 2124 183 220.0 22.1 | 134.0 16.0 1256 19.0
70-80% all | 111.2 14.5 108.4 142 | 872 11.5 81.1 124
80-93% all | 45.9 8.8 45.4 8.8 54.3 8.5 49.8 8.9
0-5% all | 325.8 1084 417.0 162.7 | 37.1 170.1 106.0 364.8
5-10% all | 414.6  94.8 2859 137.1 | 252 1457 0.0 74.8
10-15% all | 586.4 94.6 437.3 124.7 | 175.2 76.8 207.3 103.2
15-20% all | 530.3  78.3 460.0 98.2 | 1974 68.7 199.0 86.4
20-25% all | 470.7 70.0 270.5 91.2 | 201.9 50.0 170.0 67.3
25-30% all | 396.4 644 3244 81.9 | 190.5 42.0 203.2 60.5
30-35% all | 405.5 51.9 371.2 71.8 | 143.8 45.8 124.5 62.2
35-40% all | 327.4  40.7 291.0 49.8 | 2446 39.4 189.2 394
40-45% all | 287.0 374 276.5 40.8 | 214.4 25.5 234.8 33.7
45-50% all | 227.0 36.5 2104 379 | 1439 30.8 133.8 27.7
50-55% all | 156.3 284 162.7 25.5 | 149.0 19.8 130.7 22.2
55-60% all | 146.5 18.2 142.1 22.2 | 150.8 16.2 165.3 18.8
60-65% all | 127.1 144 1335 16.2 | 79.7 134 747 15.2
65-70% all | 75.8 126 771 13.7 | 53.7 9.5 51.0  10.7
70-75% all | 55.6 10.3  50.9 10.8 | 534 8.8 48.2  10.3
75-80% all | 55.5 8.7 57.8 9.1 34.3 8.1 30.8 7.9
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Table A.16: J/v signal in 20% centrality and 1 GeV/c pr bins with statistical and systematic
uncertainties added in quadrature, for both mixed background and like-sign subtraction. Collisions
vertex cuts are applied such that the signal for those events closer to that arm are used (-30 cm

< 2 < 0 cm for South, 0 ecm < 2z < 30 cm for North). For those bins where N;/, < NG 0255
the text is in red.

South Arm (z < 0) North Arm (z > 0)
Mixed Likesign Mixed Likesign

Cent  pr | signal err signal err | signal err signal @ err
0-20% 0-1 | 601.1 90.3 449.8 157.0 | 130.6 69.8 99.0 260.7
0-20% 1-2 | 565.7 103.4 517.8 161.8 | 269.3 924 216.8 143.6
0-20% 2-3 | 422.9 722 386.0 924 | 1576 69.0 119.5 86.3
0-20% 3-4| 1182 399 91.1 534 0.7 983 14 68.6
0-20% 4-5 | 111.5 251 103.1 353 | 187 39.1 589 580
0-20% 56 | 12.2 12.7 -2.1 177 | 39.8 328 831 49.2
20-40% 0-1 | 403.3 58.6 2341 73.6 | 183.1 46.1 1183 60.2
20-40% 1-2 | 658.9 64.5 539.1 81.3 | 259.4 57.6 1979 76.8
20-40% 2-3 | 298.9 41.3 283.6 52.7 | 180.9 31.1 202.2 43.5
20-40% 3-4 | 122.7 22.8 834 304 | 1023 242 89.7 30.8
20-40% 4-5| 409 11.0 458 159 | 495 158 73.5  20.5
20-40% 56 | 8.3 5.4 12.0 7.1 274 121 603 174
40-60% 0-1 | 240.9 25.6 246.8 29.6 | 181.6 24.8 176.6 28.1
40-60% 1-2 | 282.8 31.5 2655 36.4 | 250.6 29.7 2549 32.6
40-60% 2-3 | 1563.6 21.3 1474 245 | 116.6 183 1185 20.0
40-60% 3-4| 70.1 129 68.0 152 | 648 7.2 684 134
40-60% 4-5| 25.9 6.4 41.4 7.8 264 6.8 518 8.5
40-60% 5-6 | 2.8 2.6 19.7 5.0 6.3 3.3 224 5.1
60-93% 0-1 | 143.0 14.7 1446 153 | 107.5 129 1074 13.8
60-93% 1-2 | 104.7 14.6 99.4 16.5 | 92.3 128 70.2 14.1
60-93% 2-3| 762 11.1 784 119 | 509 9.3 475 9.0
60-93% 3-4 | 225 5.2 19.0 7.4 16,5 52 15.1 5.4
60-93% 4-5 | 7.4 2.9 11.0 3.5 6.5 2.6 6.6 2.8
60-93% 5-6 | 6.0 nan 6.0 2.5 6.0 mnan 6.0 nan
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A.2 Accx Eff Tables

Table A.17: AcceptancexEfficiency correction factors for run-to-run variations for six reference
runs.

A x € Run-to-Run Correction Factors
Pr Y 230956 | 231429 | 231920 | 232005 | 232460 | 240100
all  [-2.2,-1.2] 1.01 0.99 1.00 1.00 0.99 0.99
[0,1] [-2.2,-1.2] 1.00 0.99 0.99 0.99 0.98 0.99
[1,2] [-2.2,-1.2] 1.01 1.00 1.00 1.00 0.99 0.99
[2,3] [-2.2,-1.2] 0.99 0.99 0.99 0.99 0.98 0.99
[3,4] [-2.2,-1.2] 1.04 1.00 1.00 0.99 0.98 1.04
[4,5] [-2.2,-1.2] 1.00 0.95 1.00 0.99 0.97 0.94
all [1.2,2.2] 0.98 0.98 0.99 0.99 1.03 1.00
[0, 1] [1.2,2.2] 0.98 0.98 0.99 0.99 1.03 1.00
[1,2] [1.2,2.2] 0.98 0.97 0.99 0.99 1.03 1.00
(2, 3] [1.2,2.2] 0.99 0.98 1.00 1.00 1.04 1.00
(3, 4] [1.2,2.2] 0.98 0.97 0.98 0.98 1.01 1.00
[4,5] [1.2,2.2] 0.96 1.00 0.96 0.96 1.03 1.05
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A.3 Invariant Yield Tables

Table A.23: South Arm J/t invariant yields vs. centrality

10% Centrality bins

Cent. | N7/¥ Ae NMB B dN/dy x 108 4 stat. =+ type A +typeB — typeB

[0,10] | 1612.9 0.029 3.94e+08 14072.17 2286.93  2450.11 2510.66 1020.83

[10,20] | 1939.0 0.037 3.94e+08 13389.32 1510.24  1077.03 1764.70 1301.59
[20,30] | 1754.1 0.043 3.93e+08 10428.31 1064.40  604.52 906.74 815.56
[30,40] | 1424.3 0.047 3.93e+08 7710.90 622.85 366.26 618.37 615.29
[40,50] | 1019.1 0.051 3.93e+08 5119.13 418.47 200.19 403.70 403.70
[50,60] | 675.9 0.052 3.93e+08 3306.48 238.45 92.06 235.00 235.00
[60,70] | 392.4 0.053 3.93e+08 1864.92 155.43 53.81 133.86 133.86
[70,80] | 215.0 0.054 3.93e+08 1014.03 99.34 19.23 72.32 72.32

[80,93] | 97.6  0.055 5.12e+08 349.47 45.66 6.48 24.91 24.91

5% Centrality bins

Cent. | N7/¥ Ae NMEB B dN/dy x 108 £ stat. =+ type A + typeB — type B

[0, 5] 864.4 0.029 1.97e+08 15371.52 3436.61  2640.23 2838.98 1334.91
[5,10] | 743.5 0.031 1.97e+08 12104.85 2856.47  2270.88 1398.00 890.93
[ ]| 946.8 0.035 1.97e+08 13681.18 2400.74  1403.64 1401.42 1301.42
[ ]| 971.4 0.039 1.97e408 12585.43 1840.05  619.46 1428.74 1425.19
[ ]| 849.4 0.042 1.97e+08 10336.84 1639.19  922.99 896.28 896.28
[ ]| 879.8 0.044 1.97e+08 10086.01 1206.14  477.68 786.07 786.07
[ ]| 770.3 0.046 1.97¢+08 8514.01 1009.79  459.67 644.73 644.73
[ ]| 647.0 0.048 1.97e+08 6867.63 734.94 442.64 633.94 633.94
[ ]| 630.8 0.049 1.97e+08 6518.36 649.99 281.31 481.95 481.95
[45,50] | 398.1 0.052 1.97e+08 3892.45 508.45 194.36 327.33 327.33
[ ]| 344.2 0.052 1.97e+08 3392.70 366.37 96.97 247.54 247.54
[ ]| 333.0 0.052 1.97e+08 3234.39 308.12 96.83 231.50 231.50
[ ]| 231.2 0.053 1.97e408 2209.04 233.38 52.59 156.89 156.89
[ ]| 161.3 0.054 1.97e+08 1524.70 190.75 57.35 111.18 111.18
[ ]| 1184 0.054 1.96e+08 1116.84 149.96 18.98 81.22 81.22

[ ]| 95.6 0.054 1.97e+08 901.24 121.15 17.76 64.12 64.12

[ ]| 976 0.054 5.12e+08 353.14 46.25 6.55 25.17 25.17




142

Table A.24: North Arm J/1 invariant yields vs. centrality

10% Centrality bins

N7V Ae NMB | BdN/dy x 10° 4+ stat. +type A -+ typeB — type B

220.9 0.013 3.81e+08 4294.80 4678.24  4010.26 756.23 286.01
668.3 0.025 3.81e+408 6956.20 1793.08  1556.85 813.04 527.02
985.8 0.037 3.81e+408 6991.63 920.69 413.72 567.03 500.93
940.4 0.048 3.81e+408 5185.44 505.63 248.57 417.05 414.98
870.5 0.055 3.81e+08 4179.17 304.51 202.74 280.42 280.42
630.4 0.060 3.81e+4-08 2768.48 191.67 75.84 181.46 181.46
309.9 0.062 3.81e+08 1315.95 112.43 43.30 88.42 88.42
191.6 0.063  3.8e+08 799.43 75.03 13.91 51.97 51.97
125.2  0.065 4.96e+08 389.30 42.52 9.42 25.57 25.57

5% Centrality bins

N7¥ Ae NMEB B dN/dy x 10 +stat. =+ type A + type B — type B

2524 0.013 1.91e+08 10301.74 7084.95  6597.12 2003.80 1093.41

20.2  0.018 1.9e+08 590.98 9172.52  999.64 252.73 247.19
280.5 0.024 1.9e+4-08 6055.44 2996.37  1961.92 602.59 956.92
402.7 0.031 1.91e+08 6902.62 2058.55  1252.33 453.96 450.59
430.2 0.036 1.9e+08 6209.74 1425.73  515.58 563.35 563.35
569.6 0.041 1.9e+408 7273.66 1081.14  565.70 480.00 480.00
469.5 0.046 1.9e+08 5384.11 770.10 491.31 410.33 410.33
484.4 0.049 1.9e+08 5149.95 642.36 247.63 425.52 425.52
482.1 0.053  1.9e+08 4757.46 490.80 246.87 320.24 320.24
385.6 0.056 1.9e+08 3606.09 377.17 117.26 236.99 236.59
2974 0.059 1.9e+408 2640.16 284.61 125.77 222.54 222.54
3349 0.060 1.9e+08 2910.50 229.00 61.97 205.19 205.19
170.6  0.061  1.9e+408 1467.85 187.16 43.83 111.19 111.19
131.3 0.063  1.9e+08 1100.82 134.84 12.90 71.98 71.98
113.4 0.063 1.9e+408 949.85 115.55 18.50 61.74 61.74
74.1  0.063 1.9e+08 616.65 93.46 23.48 41.03 41.03

125.2  0.064 4.96e+08 392.50 42.93 9.50 25.78 25.78
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Table A.25: Arm-averaged J/1 Invariant Yields vs. Centrality

10% Centrality bins

Cent. | B dN/dy x 10° 4 stat. =+ type A +type B — type B

0, 10] 11739.01 2068.35 956.96 2157.43 996.59
10, 20] 10731.88 1155.12 643.11 1458.19 1101.82
20, 30] 8297.02 699.62 256.57 747.57 677.83
30, 40] 6064.42 394.54 162.06 506.57 504.24
40, 50] 4527.31 246.54 127.65 372.39 372.39
50, 60] 2971.89 149.46 47.17 222.35 222.35
60, 70] 1496.07 91.14 29.09 112.96 112.96
70, 80] 875.07 59.89 9.01 65.69 65.69

80, 93] 370.42 31.12 4.96 27.79 27.79

5% Centrality bins

Cent. | B dN/dy x 10° 4 stat. =+ type A +type B — typeB

[0, 5] 14496.97 3095.29  1138.02 2745.16 1397.18
10] 10496.74 2771.39 139.62 1318.77 930.80
] 10681.86 1873.58  771.65 1158.31 1084.86
] 10192.18 1373.35 527.41 1202.36 1199.59
] 7780.16 1081.26  319.40 700.05 700.05
] 8524.07 805.06 314.18 696.31 696.31
] 6575.96 612.57 304.22 522.04 522.04
] 5797.40 486.75 154.29 552.05 552.05
] 5387.77 391.70 158.50 417.77 417.77
45, 50] 3707.18 302.93 75.87 324.05 324.05
] 2930.49 224.80 77.25 224.53 224.53
] 3026.70 183.80 39.74 228.17 228.17
] 1738.57 146.22 27.82 130.05 130.05
] 1232.68 110.23 8.89 94.50 94.50
] 1011.93 91.53 11.62 77.31 77.31
| 720.91 74.01 14.88 54.00 54.00
]

373.91 31.47 5.01 28.05 28.05
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Table A.26: South Arm (—2.2 < y < —1.2) J/4 Invariant Yields vs. py in four bins of centrality.

Cent. Dr R Ae NMB Inv Yield x10? stat. type A +B -B
[0,20] [0,1] | 1031.5 0.038 7.87e+08 11118.76 1696.16 1720.87 1148.43 1148.43
[0,20] [1,2] | 1315.2 0.034 7.87e408 5213.09 734.71  653.51  419.69  419.69
[0,20] [2,3] | 663.5 0.031 7.87e408 1732.63 336.44  194.08  202.72  202.72
[0,20]  [3,4] | 202.1 0.036 7.87e+08 325.50 117.98 50.02 25.53 25.53
[0,20]  [4,5] | 202.4 0.046 7.87¢408 198.08 46.79 33.54 15.58 15.58
[20,40] [0,1] | 714.7 0.050 7.87e+08 5805.29 790.72  526.70  748.60  748.60
[20,40] [1,2] | 11924 0.047 7.87e+08 3442.53 314.72  146.24  315.25  315.25
[20,40] [2,3] | 711.7 0.042 7.87e+08 1363.61 144.57  48.52 105.20  105.20
[20,40] [3,4] | 262.1 0.050 7.87e+08 302.85 46.98 15.33 26.85 26.85
[20,40] [4,5] | 86.2  0.057 7.87e+08 68.56 16.80 5.05 12.25 12.25
[40,60] [0,1] | 492.8 0.057 7.87e+08 3467.31 318.62  119.63  275.50  275.50
[40,60] [1,2] | 639.6 0.053 7.87e+08 1613.35 133.35 65.42 127.10  127.10
[40,60] [2,3] | 300.9 0.049 7.87e+08 498.64 56.98 15.12 38.91 38.91
[40,60] [3,4] | 127.6 0.056 7.87e+08 130.56 22.42 3.78 11.15 11.15
[40,60] [4,5] | 60.4 0.066 7.87e+08 40.99 7.82 0.79 4.29 4.29
[60,100] [0,1] | 251.1 0.061 1.3e+09 1001.35 86.08 18.83 77.31 77.31
[60,100] [1,2] | 244.6 0.056 1.3e+09 354.99 32.89 14.65 27.37 27.37
[60,100] [2,3] | 117.5 0.052 1.3e+09 111.67 14.53 2.14 8.79 8.79
[60,100] [3,4] | 36.3 0.059 1.3e+09 21.54 5.30 0.62 1.86 1.86
[60,100] [4,5] | 21.8 0.065 1.3e+09 9.09 2.26 0.05 0.75 0.75
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Table A.27: North Arm (1.2 < y < 2.2) J/4 Invariant Yields vs. pr in four bins of centrality.

Cent. pr | N/Y Ae NMB Inv Yield x10° stat. type A +B -B
[0,20] [0,1] | 377.7 0.024 7.62e+08 6670.63 2436.34 1880.57 918.45 918.45
[0,20] [1,2] | 398.0 0.021 7.62e+08 2618.91 1394.20 787.68 191.98 191.98
[0,20] [2,3] | 128.0 0.019 7.62e+08 548.28 539.50  277.06 157.95 157.95
[0,20]  [3,4] | 334 0.022 7.62e+08 89.84 357.37 7854 2253 2253
[0,20]  [4,5] | 143.4 0.025 7.62e+08 262.85 100.89  137.81  54.65  54.65
[20,40] [0,1] | 528.8 0.048 7.62e+08 4573.86 741.26  310.45 523.50 523.50
[20,40] [1,2] | 673.8 0.042 7.62e+08 2215.17 306.42  168.82 182.87 182.87
[20,40] [2,3] | 434.1 0.039 7.62e+08 924.29 134.35 39.19 71.83  71.83
[20,40] [3,4] | 182.3 0.044 7.62e+08 245.19 49.48 22.46 17.96  17.96
[20,40] [4,5] | 102.5 0.055 7.62e+08 87.16 23.42 9.23 7.64 7.64
[40,60] [0,1] | 450.1 0.063 7.62e+08 2989.21 284.49  106.34 221.51 221.51
[40,60] [1,2] | 566.1 0.056 7.62e+08 1400.42 114.89 53.06  104.89 104.89
[40,60] [2,3] | 288.3 0.052 7.62e+08 465.28 50.22 19.25 33.45 3345
[40,60] [3,4] | 124.7 0.060 7.62e+08 124.86 16.03 2.85 9.11 9.11
[40,60] [4,5] | 55.8 0.070 7.62e+08 36.98 6.31 0.36 3.29 3.29
[60,100] [0,1] | 232.9 0.070 1.26e+09 840.32 74.83 11.52 60.83  60.83
[60,100] [1,2] | 243.4 0.062 1.26e+09 330.64 28.66 6.27 23.99  23.99
[60,100] [2,3] | 90.2 0.057 1.26e+09 79.74 11.65 2.51 5.71 5.71
[60,100] [3,4] | 41.3 0.066 1.26e+09 22.61 4.74 0.66 1.64 1.64
[60,100] [4,5] | 21.0 0.078 1.26e+09 7.55 1.77 0.02 1.12 1.12
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Table A.28: Arm-averaged (1.2 < |y| < 2.2) J/9 Invariant Yields vs. py in four bins of centrality.

pr | N7¥ Ae Inv Yield x10°  stat. type A 4B -B
[0,1] 9361.16 1406.89 743.08 1013.00 1013.00
[1,2] 4457.86 660.30 229.31 398.24  398.24
2, 3] 1372.29 285.89  84.30  170.52  170.52
[3,4] 299.24 112.14 875 2747 2747
(4, 5] 204.89 4319 1449  18.18 18.18
[0,1] 5075.71 544.71 183.93 665.31  665.31
[1,2] 2775.11 219.95 91.81  263.85  263.85
2, 3] 1110.54 98.72 2257  89.84  89.84
[3,4] 275.75 34.07  10.56 2548  25.48
(4, 5] 74.72 13.65 3.06 13.51 13.51
[0,1] 3191.88 212.38  61.26  264.43  264.43
[1,2] 1486.76 87.12  31.54 12217  122.17
2, 3] 480.10 37.68  10.70  39.12  39.12
[3,4] 126.84 13.04 1.86 11.26  11.26
(4, 5] 38.55 4.91 0.22 4.14 4.14
[0,1] 905.29 56.56 6.87 73.03  73.03
[1,2] 340.35 21.65 3.77 27.43  27.43
2, 3] 91.88 9.09 1.56 7.55 7.55
[3,4] 22.13 3.53 0.36 1.98 1.98
(4, 5] 8.13 1.39 0.01 0.70 0.70
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A4 Raa Tables

Table A.29: Arm-averaged J/1 Raa vs. Centrality. Statistical errors are folded into Type A
uncertainties.

10% Centrality bins
Cent. | Ran L type A + typeB — type B

[0,10] | 0.19  0.04 0.02 0.04
[10,20] | 0.27  0.03 0.04 0.04
[20,30] | 0.34  0.03 0.04 0.04
[30,40] | 0.41  0.03 0.05 0.05
[40,50] | 0.56  0.03 0.08 0.08
[50,60] | 0.71  0.04 0.12 0.12
[60,70] | 0.77  0.05 0.15 0.15
[70,80] | 1.07  0.07 0.25 0.25
[80,93] | 1.35 0.1 0.26 0.26

5% Centrality Bins
Cent. | Raa *type A +typeB — type B

1.35 0.11 0.26 0.26

[0,5] | 021  0.05 0.03 0.04
[5,10] | 0.19  0.05 0.02 0.03
[10,15] | 0.24  0.05 0.03 0.03
[15,20] | 0.29  0.04 0.04 0.04
[20,25] | 0.28  0.04 0.04 0.04
[25,30] | 0.39  0.04 0.05 0.05
30,35 | 0.39  0.04 0.05 0.05
[35,40] | 0.46  0.04 0.07 0.07
[40,45] | 0.56  0.03 0.08 0.08
[45,50] | 0.71  0.04 0.12 0.12
[50,55] | 0.77  0.05 0.15 0.15
[55,60] | 1.07  0.07 0.25 0.25
(60, 65]
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Table A.30: Arm-averaged J/1) Raa vs. pr in four bins of centrality. Statistical errors are folded
into Type A uncertainties.

pr bins
Cent. pr | Ran +typeA +B —-B
0,20 [0,1] | 0.19 003  0.02 0.02
0,200 [1,2]| 020  0.03  0.02 0.02
0,200 [2,3] | 022 005 003 0.03
0,200 [3,4]| 019 007  0.02 0.02
0,20 [4,5] | 0.57 014  0.06 0.06
[20,40] [0,1] | 027  0.03 _ 0.04 0.04
20,40] [1,2] | 0.32  0.03  0.04 0.04
20,40 [2,3] | 047  0.05  0.05 0.05
20,40] [3,4] | 046  0.06  0.05 0.05
20,40] [4,5]| 055 011  0.10 0.10
[40,60] [0,1] | 055  0.04  0.06 0.06
[40,60] [1,2] | 0.55  0.04  0.06 0.06
[40,60] [2,3] | 065  0.06  0.07 0.07
[40,60] [3,4] | 0.67  0.08  0.07 0.07
[40,60] [4,5] | 0.90 0.14 0.11 0.11
[60,93] [0,1] | 1.02  0.07 _ 0.10 0.10
60,93 [1,2]| 081  0.06  0.08 0.08
[60,93] [2,3] | 0.81 0.09 0.08 0.08
60,93 [3,4]| 076  0.13  0.08 0.08
[60,93] [4,5] | 1.23 0.24 0.13 0.13
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Figure B.1: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.2: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.3: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.4: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.5: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.6: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.

‘ South Arm, Centrality: 0-5%, p _: all | ‘ South Arm, Centrality: 0-5%, p _: all |
400 — X2 =45.0, ndf = 49 r — X2 =90.5, ndf = 49
E e 400 | e
S00E- X2, =330, ndf =35 r X2, =76.1, ndf =35
200 C
E — X =738,ndf=70 200 — x? =170.8,ndf=70
E Ap Ap
1005+ C
E Of—-----"
e R AT B r
-100 =~ -200—
200~ C
E -400 —
300 C
-400 = -600—
B00ET e Ll e P R N RN B N B
0 8 0 8
Mass (GeV/c?) Mass (GeV/c?)
(a) mixed (b) like-sign
North Arm, Centrality: 0-5%, p _: all | North Arm, Centrality: 0-5%, p _: all |
300 600
E —— X2 =75.7,ndf = 49 r —— X2 =113.8,ndf =49
200 LD C Ao
E X2, =49.9, ndf =35 400 — X2, =680, ndf =35
100 ° = °
E 2 = = C 2 = =
oFs )(Ap 103.3, ndf 70" 200? _XM: 176.1, ndf = 70
o e e :
-100[~ ot
200 C
E 200{—
-300— C
-400 -400—
500~ sl
B ) P R N IR B VRN IR
0 1 2 3 4 5 6 7 8 0 2 3 4 5 6 7 8
Mass (GeVic?) Mass (GeVic?)
(¢) mixed (d) like-sign
South Arm, Centrality: 5-10%, p . all | South Arm, Centrality: 5-10%, p . all |

Xi‘p =49.1, ndf = 49 Xf‘,, = 08.6, ndf = 49

X;p =29.2, ndf = 35 X;p =63.6, ndf = 35

— Xi‘p =62.0, ndf = 70

— x;p =138.3, ndf =70

-100{—
-200{—
BOOLT il e L vl v b b e
8 8
Mass (GeV/c?) Mass (GeV/c?)
(e) mixed (f) like-sign
North Arm, Centrality: 5-10%, p _: all | North Arm, Centrality: 5-10%, p _: all |
400 5001
C — X2, =527, ndf = 49 E —— X2, =976, ndf = 49
C ? 400~ ?
300~ X2, =36.2, ndf =35 E X2, =567, ndf = 35
C ! 300 !
200 — X2, =67.4,ndf=70 E — X2, =139.0,ndf = 70
C 200
100/~ 100;
oot E
C t -100F
-100 E
E 200
200 E
B v e L B00Fr e e L ]
T 2 3 4 5 6 7 8 T 2 3 4 5 6 7 8
Mass (GeV/c?) Mass (GeVic?)

(g) mixed (h) like-sign



156

Figure B.7: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.8: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.9: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.10: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits

are over the mass ranges [2.2,6.0], [1.
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Figure B.11: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.12: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.13: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.14: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.15: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.16: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.17: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.18: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.19: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.20: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.21: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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22: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits

are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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Figure B.23: Dimuon spectra after mixed (left) and like-sign (right) background subtraction. Fits
are over the mass ranges [2.2,6.0], [1.8,7.0], and [0.5,8.0] both with and without low-mass Gaussians.
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