
UNIVERSIDAD AUTÓNOMA DE MADRID
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Gaussian Many-Body States:
Tachyonic Quenches and Conformal

Blocks

Memoria de Tesis Doctoral realizada por

Sebastián Montes Valencia
y presentada ante el Departamento de Fı́sica Teórica
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“La realidad –todo lo que somos, todo lo que nos envuelve, nos sostiene y,
simultáneamente, nos devora y alimenta– es más rica y cambiante, más viva, que los

sistemas que pretenden contenerla. A cambio de reducir la rica y casi ofensiva
espontaneidad de la naturaleza a la rigidez de nuestras ideas, la mutilamos de una parte

de sı́, la más fascinante: su naturalidad. El hombre, al enfrentarse con la realidad, la
sojuzga, la mutila y la somete a un orden que no es el de la naturaleza –si es que ésta

posee, acaso, equivalente a lo que llamamos orden– sino el del pensamiento. Y ası́, no es
la realidad lo que realmente conocemos, sino esa parte de la realidad que podemos

reducir a lenguaje y conceptos. Lo que llamamos conocimiento es el saber que tenemos
sobre cualquier cosa para dominarla y sujetarla.”

Octavio Paz, Poesı́a de soledad y poesı́a de comunión.

“Numbers it is. All music when you come to think. Two multiplied by two divided by
half is twice one. Vibrations: chords those are. One plus two plus six is seven. Do

anything you like with figures juggling. Always find out this equal to that, symmetry
under a cemetery wall. [. . . ] Musemathematics. And you think you’re listening to the

ethereal. But suppose you said it like: Martha, seven times nine minus x is thirtyfive
thousand. Fall quite flat. It’s on accound of the sounds it is.”

James Joyce, Ulysses.



Abstract

This thesis is divided into two independent parts:

• Part I is based on Reference [1]. We present a characterization of a bosonic field
theory driven by a free (Gaussian) tachyonic Hamiltonian. This regime is motivated
using a theory describing two coupled bosonic fields. Relevant physical quantities
such as simple correlators, entanglement entropies, and the mutual information of
disconnected subregions are computed. We show that the causal structure resem-
bles a critical (massless) quench. Because of the inherent instability of the driving
Hamiltonian, an exponential growth ends up dominating the dynamics in a very
characteristic way. This is related to the fact that the low-frequency modes do not
equilibrate, but rather become exponentially occupied. Some applications and ex-
tensions to other physical systems are outlined.

• Part II is based in References [2, 3]. We present a characterization of the many-
body lattice wave functions obtained from the conformal blocks (CBs) of the Ising
conformal field theory (CFT). The formalism is interpreted as a matrix product
state using continuous ancillary degrees of freedom. We provide analytic and nu-
merical evidence that the resulting states can be written as BCS states. We give
a complete proof that the translationally invariant 1D configurations have a BCS
form and we find suitable parent Hamiltonians. We find interesting relations to the
Kramers-Wannier (KW) duality and the Temperley-Lieb-Jones algebra. In partic-
ular, we prove that the ground state of the finite-size critical Ising transverse field
(ITF) Hamiltonian can be obtained exactly with this construction. Finally, we study
2D configurations using an operator product expansion (OPE) approximation. We
associate these states to the weak pairing phase of the p+ ip superconductor via the
scaling of the pairing function and the entanglement spectrum.
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Resumen

Esta tesis se divide en dos partes independientes:

• La parte I se basa en la referencia [1]. En ella presentamos una caracterización
de una teorı́a de campos bosónica que evoluciona con un hamiltoniano libre (gaus-
siano) taquiónico. Este régimen se motiva a través de una teorı́a de dos bosones
acoplados. Calculamos cantidades fı́sicas relevantes como los correladores, las en-
tropı́as de entrelazamiento y la información mutua entre regiones desconectadas.
Mostramos que la estructura causal se parece a la de un “quench” crı́tico (sin masa).
Dada la inestabilidad inherente del hamiltoniano que dicta la dinámica, esta ter-
mina dominada por un crecimiento exponencial caracterı́stico en las funciones de
correlación. Esto se puede relacionar con el hecho que los modos de baja frecuen-
cia no equilibran, sino que se van ocupando de forma exponencial. Para terminar,
discutimos algunas aplicaciones y extensiones a otros sistemas fı́sicos.

• La parte II se basa en las referencias [2, 3]. En ella presentamos una caracteri-
zación de las funciones de onda colectivas obtenidas a partir de los bloques con-
formes de la teorı́a de campos conformes del modelo de Ising. Este formalismo
se interpreta como un “matrix product state” con grados de libertad auxiliares de
dimensión infinita. Presentamos evidencia analı́tica y numérica de que los estados
resultantes se pueden reescribir como estados BCS. Damos una prueba completa de
que las configuraciones 1D con invarianza traslacional tienen forma BCS y obtene-
mos los hamiltonianos correspondientes. Encontramos también relaciones intere-
santes con la dualidad Kramers-Wannier y el álgebra de Temperley-Lieb-Jones. En
particular, probamos que el estado fundamental de la cadena de Ising con campo
transverso crı́tico puede obtenerse de forma exacta usando este formalismo. Final-
mente, estudiamos una configuración 2D usando una aproximación derivada de la
expansión del producto de operadores. Logramos asociar estos estados a la fase en
apareamiento débil de los superconductores p+ ip usando el espectro y la entropı́a
de entrelazamiento.
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Introduction

The present thesis is divided into two independent parts:

I. Part I is based on the article:

[1] S. Montes, G. Sierra and J. Rodrı́guez-Laguna, Tachyonic quench in
a free bosonic field theory, Journal of Statistical Mechanics: Theory and
Experiment 2018 (2018) 023102.

Its content is divided into three chapters. The first two correspond to an introduction
and a presentation of the basic technology already introduced in the literature. The
third chapter summarizes our original results.

• Chapter 1 presents a short introduction to the field of quantum quenches. Some
important concepts (equilibration, the eigenstate thermalization hypothesis,
generalized Gibbs ensembles, Lieb-Robinson bounds) are motivated and sum-
marized.

• Chapter 2 presents a survey of results regarding quantum quenches in free
bosonic systems. We use the harmonic chain as the UV regularized Hamil-
tonian to study the many-body physics of these systems. The corresponding
equilibration properties are studied by means of a generalized Gibbs ensem-
ble (GGE). The evolution of physical quantities such as correlators and the
entanglement entropy are studied.

• Chapter 3 presents a characterization of a bosonic field theory driven by a
free (Gaussian) tachyonic Hamiltonian. This regime is motivated by means of
a theory describing two coupled bosonic fields. Relevant physical quantities
such as simple correlators, entanglement entropies, and the mutual informa-
tion of disconnected subregions are computed and discussed. We show that
the causal structure resembles a critical (massless) quench. Because of the in-
herent instability of the driving Hamiltonian, exponential growth end up dom-
inating the dynamics in a very characteristic way. This is related to the fact
that the low-frequency modes do not equilibrate, but rather become exponen-
tially occupied. Some applications and extensions to other physical systems
are outlined.

II. Part II is based on the articles:

[2] S. Montes, J. Rodrı́guez-Laguna, H.-H. Tu and G. Sierra, Many-
body lattice wave functions from conformal blocks, Physical Review B
95 (2017) 085146.
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14 INTRODUCTION

[3] S. Montes, J. Rodrı́guez-Laguna and G. Sierra, BCS wave function,
matrix product states, and the Ising conformal field theory, Physical Re-
view B 96 (2017) 195152.

Once again, this part is divided into three chapters. Our original results are sum-
marized in Chapter 6. However, it should be noted that the general construction
presented in Section 4.5 was originally introduced in Ref. [2].

• Chapter 4 starts with a motivation for the use of conformal blocks (CBs) in 2D
conformal field theory (CFT). The notion of chiral vertex operators (CVOs)
is introduced in order to have a general framework to manipulate CBs. This
technology is exploited to construct many-body lattice wave functions using
CBs. The general construction is illustrated using the Haldane-Shastry spin
chain. We end with a summary of results regarding the use of CBs in fractional
quantum Hall (FQH) systems.

• Chapter 5 summarizes several results regarding the 2D Ising model. The ex-
act solution is obtained via the Ising transverse field (ITF) spin chain. The
Kramers-Wannier (KW) duality and its implications are discussed. We also
present a summary of the main features of the Ising CFT and how to compute
all of its CBs using bosonization.

• Chapter 6 presents a characterization of the many-body lattice wave functions
obtained from the CBs of the Ising CFT, in particular using the spin field op-
erator σ. The formalism is interpreted as a matrix product state (MPS) using
continuous ancillary degrees of freedom. We provide analytic and numeri-
cal evidence that the resulting states can be written as Gaussian states, more
concretely, as BCS states. Remarkably, we give a complete proof that the
translationally invariant 1D configurations have a BCS form and we find suit-
able parent Hamiltonians. In particular, we prove that the ground state of the
finite-size critical ITF Hamiltonian can be obtained exactly from the CBs of
the Ising CFT. Finally, we study 2D configurations using an operator product
expansion (OPE) approximation. We associate these states to the weak pairing
phase of the p+ ip superconductor via the scaling of the pairing function and
the entanglement spectrum.

The title of this thesis highlights a remarkable, though unexpected connection between
these two projects. On one hand. the ground state of a free bosonic system is a Gaussian
many-body state. Given that we assume that the driving Hamiltonian is quadratic, these
systems are always described by Gaussian states. On the other hand, we present evi-
dence that the many-body lattice wave functions constructed using CBs of the Ising spin
field operator σ have a BCS structure. This is a highly non-trivial result, pointing at the
rich, unexplored inner structure of these mathematical objects. Given that BCS states are
Gaussian by construction, both topics become vaguely, but excitingly related.



Part I

Tachyonic Quenches
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CHAPTER 1

Quantum Quenches: a Primer

1.1. Motivation
The development of statistichal mechanics is one of the major achievements of theoretical
physics. After the pioneering work of Boltzmann, Maxwell and Gibbs, it was possible to
deduce general macroscopic laws from the dynamics of microscopic constituents. This
became a powerful framework that sets the stage for most of the modern understanding
of every day phenomena. However, despite some of these astounding successes being al-
ready canonized in modern textbooks, there are several questions in statistical mechanics
that still elude clean, simple answers.

One of the main open problems in this area is the emergence of equilibrium states
(described by statistical ensembles) from time-reversal symmetric microscopic interac-
tions [4]. This relates to some fundamental concepts, such as the validity of the second
law of thermodynamics and the notion of temperature. The first important result in this
direction was obtained by Boltzmann in 1872 (the so-called H-theorem) [5], however it
was far from being the final answer. (See [6] for a short historical review.) Things became
even more nuanced after the development of quantum mechanics: already in 1929, John
von Neumann attempted bridging the gap between unitary dynamics (as prescribed by
Schrödinger’s equation) and stationary ensembles [7].

In order to tackle this question, the study of closed quantum systems out of equilib-
rium has become a central concern in contemporary physics. Even though the main ideas
can be traced back to the origins of quantum theory, this field has experienced a strong
resurgence in the past few decades. This is due to the development of both experimental
and theoretical tools that have delivered new insights into the core foundations of statisti-
cal mechanics. (For comprehensive reviews, see [8, 9, 10, 11, 12].)

First and foremost, new experimental techniques allow for a very precise control of
quantum systems with many degrees of freedom. The most paradigmatic may be the
achievement of Bose-Einstein condensation (BEC) and Fermi degeneracy in cold, dilute
gases [13, 14]. Following these steps, the study of coherent matter waves has become
a well-stablished setting for the study of interacting many-body systems. These experi-
ments require ultracold temperatures (at around 10−8K) and usually feature optical traps
composed of standing electromagnetic waves to constrain the geometry and topology of
the system [15]. Remarkably, these setups can realize artificial systems that are very
closely related to well-known theoretical models [16, 17, 18, 19, 20, 21, 22]. Relevant to
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18 CHAPTER 1. QUANTUM QUENCHES

this thesis, the non-equilibrium dynamics of these systems can also be studied with very
high precision [23, 24, 25, 26, 27, 28, 29].

In parallel, we have also developed a better theoretical understanding of quantum
mechanics. John Bell’s questioning of established facts about the quantum world urged
physicists to take the formalism more seriously [30, 31]. The groundbreaking experi-
ments performed by Aspect in 1982 [32, 33] convinced the community that wave func-
tions were more than a mere mathematical artifact. As a consequence, quantum infor-
mation theory and quantum computation became powerful tools for analyzing both new
and old problems in physics [34, 35, 36]. The most relevant application may be the use
of measures such as the entanglement entropy for understanding the physical features of
many-body systems [37, 38, 39]. This has been used in the context of non-equilibrium
dynamics to determine entanglement growth and the corresponding spreading of correla-
tions [40, 41, 42, 43, 44].

1.2. Quantum Quenches and Equilibration
Among the virtually infinite number of ways of driving a system out of equilibrium, one
of the most popular ones is the so-called (global) quantum quench [45, 46, 47]. In this
protocol, the system is prepared in the ground state |0〉 of an initial HamiltonianH0, which
is then let evolve unitarily according to

|ψ(t)〉 = exp(−itH1) |0〉 , t ≥ 0, (1.1)

where H1 is another Hamiltonian that usually differs from H0 in one or several of its
external parameters (such as magnetic field, pressure, or on-site repulsion). Of course,
one must ensure that [H0, H1] 6= 0. Note that we assume that the system remains isolated
and the global state is always a pure state. During the evolution, energy will be conserved

〈ψ(t) |H1|ψ(t)〉 = 〈ψ(0) |H1|ψ(0)〉 > E
(1)
0 , (1.2)

where E(1)
0 is the ground state energy of H1. This implies that, even though a macroscop-

ically large energy is given to (or taken from) the system at t = 0, it is distributed over
the excitation levels of H1 and the dynamics can still be considered isolated. 1

There are other popular protocols for driving a system out of equilibrium [10]: local
quenches where the system is not uniformly modified, but rather the sudden change is
limited to a bounded region [42, 28]; ramps or sweeps where the Hamiltonian changes in
time according to a given schedule [52, 53, 9]; and geometric quenches where the spatial
configuration of the system is suddenly changed [54, 55]. For the sake of concreteness,
we will focus solely on global quenches.

Our main goal is to study the evolution of expectation values

〈O〉 (t) ≡ 〈ψ(t) |O|ψ(t)〉
〈ψ(t)|ψ(t)〉 , (1.3)

1The word quench (meaning “extinguish”) comes from the Old English acwencan. The use in the
original context has steadily declined over the past few centuries and it is used now mostly in the context of
material sciences, where it denotes rapidly cooling a material. To the best of my knowledge, the expression
“quantum quench” was first introduced in [45] by analogy, in the sense that one of the control parameters is
changed abruptly (though the notion of “quench dynamics” for a quantum system was already discussed in
[48] as a response to the experimental results obtained in [16]), and the first theoretical calculations of what
we may now call quantum quenches were done in the seminal papers by Barouch, McCoy and Dresden
about the XY model in 1970 [49, 50, 51].
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where O is a finite product of local operators. The dynamics of a finite system will have
Poincaré recurrences [56], so strictly speaking it cannot reach equilibrium. However, for
large enough systems and long enough times, local relaxation can be achieved on average.
If we assume that H1 has a spectrum {En}, we have

〈O〉 (t) =
∑

n,m

〈0|Em〉 〈En|0〉 〈Em|O|En〉 e−i(En−Em)t. (1.4)

For very long times, all factors with En − Em 6= 0 will oscillate rapidly and average to
zero, so that, on average,

lim
T→∞

1

T

∫ T

0

dt 〈O〉 (t) =
∑

n,m

〈0|Em〉 〈En|0〉 〈Em|O|En〉 δEn,Em . (1.5)

Note that the typical times for these terms to vanish depend on the spectral gaps of H1. In
particular, gapless systems will require longer relaxation times.

If a subsystem can be described by an equilibrium ensemble, we expect (1.4) to at least
fluctuate around a well-defined value. Accordingly, a local operator is said to equilibrate
on average if its expectation value is arbitrarily close to the equilibrium value (1.5) for
almost all times.

We can summarize all the relevant physics for this problem by considering the states
themselves. If the long-time behavior of the system can be characterized by some sort of
equilibrium, it is tempting to expect that the corresponding density matrix will be close to
one of the statistical ensembles that are prescribed in usual statistical mechanics. Given
that the exact density matrix

ρ = |ψ(t)〉 〈ψ(t)| =
∑

n,m

e−i(En−Em)t 〈0|Em〉 〈En|0〉 |En〉 〈Em| (1.6)

always describes a pure state and that limt→∞ ρ(t) may not exist, it is costumary to define
its infinite time average [10, 11]

ω ≡ lim
T→∞

1

T

∫ T

0

dt ρ(t) =
∑

n,m

δEn,Em 〈0|Em〉 〈En|0〉 |En〉 〈Em| . (1.7)

This is usually called the diagonal ensemble because it loses all the coherences between
different energies and is exactly diagonal if there are no degeneracies in the eigenvalue
spectrum. It can be shown that this state corresponds to the maximum entropy state if all
constants of motion are fixed [57] 2.

A system is said to thermalize if ω can be approximated by a thermal ensemble

ρth =
1

Z
exp(−βH1), (1.8)

where Z = Tr(exp(−βH1)) and β is a Lagrange multiplier fixed by

Tr
(
ρthH1

)
= 〈0 |H1| 0〉 . (1.9)

If the energy is the only conserved quantity with a local density, this will be the ensemble
that maximizes the entropy [57, 11].

2Some authors relate this to the principle of maximum entropy (also known as Jaynes principle): the
probability distribution which best represents the current state of knowledge is the one with largest entropy,
in the context of precisely stated prior data [58, 59].
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1.3. Eigenstate Thermalization Hypothesis and General-
ized Gibbs Ensembles
Thermalization as described in the previous section has been studied extensively [4, 60,
61, 62]. (For a complete review, see [11, 63].) A priori, one would expect that microcani-
cal and canonical (i.e. Gibbs) ensembles should be common enough in realistic models
given the general success of statistical mechanics. This implies that generic initial states
and generic Hamiltonians (with reasonable conditions such as locality) should in principle
produce long-time ensembles close to the thermal one.

On the other hand, Eq. (1.7) shows that the diagonal ensemble retains information
about the initial state in the coefficients 〈0|En〉. This suggests in turn that certain states
may not equilibrate in a generic way if some other physical constraints are present during
the evolution.

The most prominent answer to this dilemma has been formalized by the name of
eigenstate thermalization hypothesis (ETH) [4, 64, 65, 66]. It is usually stated as [66]:

For a “typical” initial state |0〉, the infinite time average (1.5) of a finite prod-
uct of local operators O will correspond to the value predicted by the micro-
canonical ensemble 3 if the following criteria are met:

1. The diagonal matrix elements

Onn ≡ 〈En|O|En〉 (1.10)

change slowly with the state (i.e., smoothly with the energy), with the
difference between neighboring valuesOn+1,n+1−Onn being exponen-
tially small in the system size.

2. The off-diagonal terms

Onm ≡ 〈En|O|Em〉 , n 6= m, (1.11)

are also exponentially small in the system size.

ETH implies thermalization, in the sense that the corresponding diagonal ensemble will
give the same results as the microcanonical ensemble. Numerical simulations and exper-
iments with cold atoms suggest that many interacting systems do thermalize in this way,
in particular classically chaotic systems [67, 27, 68, 69].

Interestingly, integrable systems do not thermalize in the ETH sense [24, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79] . In a nutshell, integrable systems are defined by having as
many (local) integrals of motion {In} as degrees of freedom, such that 4

[In, Im] = 0, n 6= m. (1.12)

3The microcanonical ensemble is the one defined by energy E = 〈0 |H1| 0〉. We must ensure that the
energy variance ∆E is algebraically small in the systems size N , i.e., ∆E ∼ N−1/2E [66]. This is the
case for any macroscopic state that can be prepared in a laboratory, so the assumption is motivated.

4The definition of quantum integrable models has many subtleties. Given that there are an infinite
number of operators that trivially commute with the Hamiltonian H1 (for instance, the projectors to energy
eigenstates |En〉 〈En|), it is important to characterize which constructions are valid. Locality is usually
used to fix this problem. An integral of motion is said to be local if it can be written as a sum of a local
density. However, some models require generalized quasilocal operators [80, 81].
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It is assumed that the Hamiltonian H1 is one of the integrals of motion, or a linear com-
bination of them. Given that all the expectation values 〈In〉 (t) are constant (because
[In, H1] = 0), the equilibrium ensembles must contain more information. It has been
shown that the appropriate description is a so-called generalized Gibbs ensemble (GGE)
[61, 80, 82, 83]

ρGGE =
1

Z
exp

(
−
∑

n

λnIn

)
, (1.13)

where we assume that the set {In} is complete and Z = Tr exp(−∑n λnIn) is the gen-
eralized partition function. Once again, the Lagrange multipliers {λn} are fixed by the
initial condition

Tr
(
ρGGEIn

)
= 〈0 |In| 0〉 . (1.14)

In analogy to the thermal state, this is the ensemble that maximizes the entropy subject to
the constraints of all the conserved integrals of motion [84, 72, 11].

It should be noted that not all integrable systems equilibrate to this ensemble. In
particular, the equilibration of spin chains with certain initial states evolving according to
the anisotropic XXZ Hamiltonian cannot be described by a GGE [85, 86].

1.4. Lieb-Robinson Bounds and Entanglement Growth
After the quench, we expect information (in the form of excitations) to propagate around
the system. Remarkably, there is a well-defined causal structure given by the so-called
Lieb-Robinson bounds [87], producing natural “light-cones” similar to the ones obtained
in relativistic theories. These bounds limit the speed at which excitations can propagate
in a quantum lattice system that is described by a local Hamiltonian. More concretely, if
OA and OB are two local observables with supports in regions A and B, then

‖[OA(t), OB]‖ ≤ c ‖OA‖ ‖OB‖ exp (−(d(A,B)− vLR|t|)) , (1.15)

where ‖O‖ is the operator norm 5, d(A,B) the lattice distance between the regions, c
a positive constant that only depends on the size of the spatial supports, and vLR ≥ 0
the effective group velocity (independent of both operators). It follows that correlation
functions can only grow in a significant manner inside the “light-cone”, while everything
outside is exponentially suppressed [91]. Applying this inequality to the local terms of
the Hamiltonian, we also see that local changes cannot affect the whole system instanta-
neously.

Even though these bounds are almost never tight, they can be used to obtain qualitative
results about the growth of correlations after a quantum quench. In particular, they can
give useful insight about the entanglement dynamics. Assume we divide the whole system
into two disjoint parts, A and B. The reduced density matrix of A is defined as

ρA(t) = TrB (|ψ(t)〉 〈ψ(t)|) , (1.16)

and its entanglemen entropy (or von Neumann entropy) as

SA(t) = −Tr [ρA(t) log (ρA(t))] . (1.17)

5This result can be extended to unbounded operators, as we will see in the study of harmonic chains
[88, 89, 90].
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Figure 1.1: Space-time diagram illustrating how the entanglement between a region A
and the rest of the system grows linearly and then saturates due to oppositely moving
coherent quasiparticles. (Taken from [94].)

It can shown that [91, 44, 11]

SA(t)− SA(t = 0) ≤ C |∂A| t, (1.18)

where |∂A| denotes the size of the boundary of A and C is a constant that depends on
the norm of the Hamiltonian density. In other words, the entanglement entropy satisfies
an area law while it grows at most linearly in time. Lieb-Robinson bounds suggest an
intuitive picture to explain this: if the initial state |0〉 is slighly correlated and there is
a ballistic propagation (i.e., at maximum speed vLR) of quasi-particles, new correlations
will be formed across boundaries at most in a linear fashion [92, 93] (see Figure (1.1)).

This quasiparticle picture assumes that the excitations that are produced at the same
point in space are correlated (i.e., entangled), while those far away are incoherent. Subse-
quently, the entanglement entropy of a subsystem A after a quench is proportional to the
total number of quasiparticles pairs that, after being emitted at the same point, are shared
between that region and its complement. In Ref. [94], they obtain a phenomenological
formula for one-dimensional systems that quantifies this idea

SA(t) = 2t

∫

2|v(λ)|t<`
dλ v(λ)s(λ) + `

∫

2|v(λ)|t>`
dλ s(λ), (1.19)

where ` is the size of region A, λ is the quasi-momentum of the quasiparticles, v(λ) the
corresponding group velocity, and s(λ) is a function that depends on the rate of produc-
tion of quasiparticles with quasi-momentum ±λ and their individual contribution to the
entanglement entropy. Formula (1.19) has been verified analytically and numerically for
several systems [40, 95, 43, 96, 97, 98]. Finding a candidate for s(λ) is not easy in gen-
eral, but as we will see in the case of free bosons, it can be estimated from the equilibration
properties.

Given that |v(λ)| ≤ vLR, we can make some generic estimations about the behavior
of formula (1.19) [99]. If t < `/vLR, the second term vanishes and we expect SA to grow
linearly in time. If t� `/vLR, the second term dominates and we expect the entanglement
entropy to be extensive in the system size SA ∝ `. As we will see in the next chapter, SA
may saturate to a constant or have a mild logarithmic growth in time.



CHAPTER 2

Quantum Quenches for Bosonic Systems

Most of the results found in this chapter are well established in the literature. We will
expand Ref. [1], complementing it with Refs. [93, 100, 101]. We will specialize the con-
clusions and the notation in order to fit the original results presented in the next chapter.

2.1. A Simple Harmonic Oscillator

Before we address the many-body problem, we will consider the dynamics of a quenched
harmonic oscillator (HO). In this context, we want to study the evolution of the ground
state of the initial Hamiltonian

H0 =
p̂2

2
+

1

2
ω2

0 q̂
2, (2.1)

described by the Gaussian state

〈x|0〉 =
(ω0

π

)1/4

exp

(
−ω0

x2

2

)
, (2.2)

under the action of the unitary operator

Ut = exp

[
−it

(
p̂2

2
+

1

2
ω2q̂2

)]
≡ exp (−itH1) . (2.3)

We can summarize the quenching protocol as

H(t) =

{
H0, t < 0,
H1, t ≥ 0,

(2.4)

assuming that the initial state is the ground state of H0. Note that if ω → 0, this corre-
sponds to the dynamics of a single particle released from a quadratic potential.

If we use the creation and annihilation operators that diagonalize H0

q̂ =

√
1

2ω0

(a† + a), p̂ = i

√
ω0

2
(a† − a), (2.5)

23



24 CHAPTER 2. QUENCHES FOR BOSONS

we can rewrite the Hamiltonian as

H1 =
ω2

0 + ω2

2ω0

(
a†a+

1

2

)
− ω2

0 − ω2

4ω0

(
(a†)2 + a2

)
. (2.6)

This has the form of a generic quadratic bosonic operator. The unwanted (a†)2 + a2 can
be eliminated by means of a Bogoliubov transformation

(
a

a†

)
= (cosh θ1− sinh θσx)

(
b

b†

)
. (2.7)

Setting

cosh θ =
1

2

ω0 + ω√
ω0ω

, sinh θ =
1

2

ω − ω0√
ω0ω

, (2.8)

we recover the ladder operators that diagonalize H1:

H1 = ω

(
b†b+

1

2

)
. (2.9)

Using this map between modes, we can go back to the variables that act in a simple man-
ner on the initial state |0〉. For instance, the time evolved operators are easily computed

a(t) = UtaU
†
t = cosh(θ)e−iωtb− sinh(θ)eiωtb† (2.10)

=

(
cos(ωt)− i sin(ωt)

ω2
0 + ω2

2ω0ω

)
a− i sin(ωt)

ω2 − ω2
0

2ω0ω
a†.

Using this result, we obtain all relevant expectation values, in particular

〈
q̂2
〉

(t) =
ω2

0 + ω2

4ω0ω2
− ω2

0 − ω2

4ω0ω2
cos(2ωt),

〈
p̂2
〉

(t) =
ω2

0 + ω2

4ω0

+
ω2

0 − ω2

4ω0

cos(2ωt), (2.11)

〈q̂p̂〉 (t) =
ω2

0 − ω2

4ω0ω
sin(2ωt) +

i

2
.

These correlators will be the building blocks we will use to compute all the two-point
functions in the many-body system [100, 101].

Thermal State as Initial State
It is easy to generalize the previous results to the case of an initial state set at temperature
β0

ρ0 =
1

Z(β0, ω0)
exp (−β0H0) , Z(β0, ω0) =

1

2 sinh
(
β0ω0

2

) . (2.12)

Being a simple quadratic theory, most of the calculation follows the same lines, only with
different initial conditions

〈
q̂2
〉
β0

(t = 0) =
1

2ω0

coth

(
β0ω0

2

)
,

〈
p̂2
〉
β0

(t = 0) =
ω0

2
coth

(
β0ω0

2

)
. (2.13)

In this setting, temperature allows for a richer interplay with the control parameters (see
[100]). However, for the sake of concreteness, from now on we will be working solely at
zero temperature (i.e., β0 =∞).
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2.2. Model Hamiltonian: the Harmonic Chain
The mass quench of a free bosonic QFT has been studied extensively [102, 100, 101]. One
of its main features is that each mode will evolve independently after the quench, with a
new frequency determined by the new mass. All the relevant quantities, obtained from the
fundamental two-point correlators, can then be reduced to the quenching of independent
simple harmonic oscillators (HOs).

We will use a standard UV regularized version of the usual free boson QFT: the har-
monic chain. The UV cutoff will be particularly important for the analysis of the scaling
of the entanglement entropy after the quench. Unless stated, we will work with a one-
dimensional configuration. However, all results can be extended to higher dimensions in
a straight-forward way.

Consider a set of N harmonic oscillators described by a set of canonical variables
{p̂r, q̂r} such that

[q̂r, p̂s] = iδrs. (2.14)

We define the Hamiltonian

H(m) =
1

2

N∑

r/a=1

[
p̂2
r +m2q̂2

r + Ω2(q̂r+a − q̂r)2
]
, (2.15)

where a = L/N is the UV regulatization and we assume periodic boundary conditions.
Using the Fourier transform

q̂r =
1√
N

∑

k

eikrq̂k, (2.16)

(similarly for p̂r), where momenta k = 2π
L
n are given by n = 0,±1, · · · ,±N−1

2
, we have

H(m) =
1

2

∑

k

[
p̂†kp̂k + ω2

kq̂
†
kq̂k

]
. (2.17)

The resulting dispersion relation is given by

ω2
k = 4Ω2 sin2

(
ka

2

)
+m2. (2.18)

Operators p̂k and q̂k are not Hermitian, but they satisfy

p̂†k = p̂−k, q̂†k = q̂−k (2.19)

Eq. (2.17) implies that H(m) can be studied as a set of N independent HOs, one for each
momentum mode. The associated frequency will be determined by the corresponding
value of the dispersion relation.

Note that if we want a well-defined continuum limit

aN = L fixed, N →∞, a→ 0, (2.20)

with a relativistic dispersion relation

ω2
k ≈ a2Ω2k2 +m2, (2.21)

the associated speed of light will be c = aΩ.
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Some Basic Results for Higher Dimensions
Hamiltonian (2.15) can be written in arbitrary dimensions:

H(d)(m) =
1

2

∑

r

[
p̂2
r +m2q̂2

r +
d∑

s=1

Ω2(q̂r+as − q̂r)2

]
, (2.22)

where as is a displacement in the d-dimensional (periodical) lattice by one site along the
s-th dimension. It is diagonalized in the same way

H =
1

2

∑

k

[
p̂†kp̂k + ω2

k q̂
†
kq̂k

]
, (2.23)

with dispersion relation

ω2
k = m2 + 4Ω2

d∑

s=1

sin2

(
ksa

2

)
, (2.24)

where k = (k1, · · · , kd) and

ks =
2π

Ls
n, n = 0,±1, · · · ,±Ns − 1

2
. (2.25)

Note that in the continuum limit (2.20), the associated speed of light is still c = aΩ.

2.3. Lieb-Robinson Bound for Harmonic Systems
In order to analyze the timescales of propagation after the quench, we can consider the
corresponding Lieb-Robinson bounds [87]. For quadratic bosonic systems, the maximum
speed of propagation can be obtained from the couplings of the Hamiltonian [88, 89, 90].
We will summarize some results for harmonic systems following [90], focusing only on
the type of Hamiltonians discussed in this thesis for the sake of concreteness.

Consider the generic quadratic Hamiltonian

H =
1

2

∑

i,j

(q̂iXij q̂j + p̂iPij p̂j) , (2.26)

where X,P ∈ RN×N are symmetric matrices. For simplicity, we will assume that Pij =
δij and a nearest-neighbor Hamiltonian

Xij = 0, for d(i, j) > 1, (2.27)

where d(i, j) is the graph-theoretical distance. (Note that we are not assuming that the
lattice has a particular spatial dimension.) If we define q̂n(t) = eitH q̂ne

−itH , we have [90]

i[q̂n(t), q̂m] =
∞∑

s=0

(−1)st2s+1

(2s+ 1)!
(Xs)nm ≡ Cqq

nm(t)1. (2.28)

This identity holds even if H is unbounded from below because it is obtained using com-
mutators of q̂i and p̂i with exp(αH) via the Baker-Hausdorff formula [90].
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Coefficient Cqq
nm(t) can be bounded using the locality condition (2.27), so that

|Cqq
nm(t)| ≤ 1√

‖X‖

∞∑

s=0

τ 2s+2d(i,j)+1

(2s+ 2d(i, j) + 1)!
, (2.29)

where ‖X‖ is the operator norm and τ =
√
‖X‖t. For eτ < 2c, for c ∈ Z+, we have

∞∑

s=c

τ 2s

(2s)!
≤ (eτ/2c)2c

√
2c(1− (eτ/2c)2

. (2.30)

Now, being a finite matrix, ‖X‖ correspond to its largest eigenvalue in absolute value.
We can apply this to Hamiltonian (2.22). In that case, it is easy to diagonalize the corre-
sponding X matrix by a Fourier transform. Assuming 4Ω2 ≥ |m2|, it follows that

‖X‖ = max
k
|ωk| = 4dΩ2 +m2. (2.31)

Using (2.30) and (2.31), we have that the Lieb-Robinson bound for Hamiltonian (2.22) is

vLR = ea
√

4dΩ2 +m2. (2.32)

Commutators of operators that are “space-like” separated with respect to vLR will be ex-
ponentially suppressed. In particular, if 2r > vLRt, we have

‖[q̂r(t), q̂0]‖ ≤ 1

max |ωk|
e−2(r/a) log(2r/vLRt)

√
r/a(1− vLRt

2r
)
, (2.33)

‖[p̂r(t), p̂0]‖ ≤ max |ωk|
e−2(r/a) log(2r/vLRt)

√
r/a(1− vLRt

2r
)
.

Note that all these results hold for m2 7→ −m2. This will be very important when we
consider the tachyonic quench in Chapter 3.

The bound will always be larger than the speed of light c = aΩ as long as Ω � |m|.
In the case of a one-dimensional harmonic chain, we obtain

vLR ≈ 2ec. (2.34)

This is consistent with the associated speed of light in the continuum limit (2.20). As we
discussed in the previous chapter, Lieb-Robinson bounds are not necessarily tight. In this
case, the extra factor of e is due to the fact that this bound is obtained for general lattices
[90]).

2.4. Correlators After a Quantum Quench
In this chapter, we will consider regular mass quenches of Hamiltonian (2.15), i.e., a sud-
den global change in the value of the boson mass so that m0,m ≥ 0. We can summarize
the protocol as

H(t) =

{
H(m0), t < 0,
H(m), t ≥ 0,

(2.35)

starting with the many-body ground state of H(m0). This quench can be implemented in
a straight-forward way. First, note that, for any value of the mass, the Hamiltonian can
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be written as a set of N independent HOs (2.17) labelled by momentum k. In analogy
to a single HO, all quantities after the quench will be determined by the corresponding
frequencies of each mode. Accordingly, we will denote the different dispersion relations
as

ω0k =

√
4Ω2 sin2

(
ka

2

)
+m2

0, ωk =

√
4Ω2 sin2

(
ka

2

)
+m2. (2.36)

For simplicity, we will be working mostly in the so-called deep quench limit [101]. It is
characterized by an extremely massive initial state m0 � m, so that the initial correlation
length vanishes and we have an effective product state. In this limit, all the correlations
formed after the quench are due to the evolution, allowing for a clear analysis.

For our numerical calculations we will set a = Ω = 1, so that c = 1. This choice
will give the correct relativistic scale to the time direction. Note that, in order to describe
a theory that corresponds to a proper discretization of a non-trivial continuous QFT, we
must impose m� Ω.

Being a Gaussian state evolving according to a Gaussian unitary, we expect the system
to remain Gaussian for all times after the quench. That implies that everything will be
determined by the fundamental two-point functions. These correlators can be written as

〈q̂rq̂s〉 (t) =
1

N

∑

k

eik(r−s)C
(qq)
k (t),

〈p̂rp̂s〉 (t) =
1

N

∑

k

eik(r−s)C
(pp)
k (t), (2.37)

〈q̂rp̂s〉 (t) =
1

N

∑

k

eik(r−s)C
(qp)
k (t),

where

C
(qq)
k (t) =

ω2
0k + ω2

k

4ω0kω2
k

− ω2
0k − ω2

k

4ω0kω2
k

cos(2ωkt),

C
(pp)
k (t) =

ω2
0k + ω2

k

4ω0k

+
ω2

0k − ω2
k

4ω0k

cos(2ωkt), (2.38)

C
(qp)
k (t) =

ω2
0k − ω2

k

4ω0kωk
sin(2ωkt) +

i

2
.

These are the corresponding generalizations of the correlators obtained in the previous
section for a quenched HO (2.11).

In the deep quench limit, there are some simplifications. The initial mass scale ω0k ≈
m0 decouples in the correlators and we have

〈q̂rq̂s〉 (t) =
m0

4N

∑

k

eik(r−s)
[

1− cos(2ωkt)

ω2
k

]
,

〈p̂rp̂s〉 (t) =
mo

4N

∑

k

eik(r−s) [1 + cos(2ωkt)] , (2.39)

〈q̂rp̂s〉 (t) =
m0

4N

∑

k

eik(r−s)
[

sin(2ωkt)

ωk

]
+
i

2
δrs.

Note that these correlators are valid for |r − s|, t� 1/m0.
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Figure 2.1: Density plot of the correlator 〈q̂rq̂0〉 (t) after a massive quench using m0 =
a = Ω = 1, m2 = 0.001, and N = 10000.

As we see in Fig. (2.1), the correlators respect the causal “light-cone” imposed by
the Lieb-Robinson bound. This structure is more explicit in the continuum limit, where
causality can be related to usual relativistic invariance. If we set Ω = 1

a
, we have ω2

k →
k2 +m2 as a→ 0 and

〈q̂rq̂s〉 (t)
a

→ m0

4

∫
dk

2π
eik(r−s)

[
1− cos(2ωkt)

k2 +m2

]
. (2.40)

It can be easily shown that this propagator vanishes for r > 2t. This follows from eval-
uating the integral by closing the integration contour in the upper half of the complex k
plane, where ωk →

√
k2 as |k| → ∞.

We expect this type of sharp “light-cones” to be generic after massive quenches. Out-
side the emergent “light-cone”, correlations effectively vanish because of the initial cor-
relation length (which is inversely proportional to the initial mass m0). Some modes will
propagate close to the maximum speed, forming the sharply defined edge at which in-
formation is finally shared. Once two points are causally connected, the correlations can
build up and eventually saturate.

Massless Quenches
If m = 0, the correlator in the continuum limit (2.40) can be computed exactly for all
spatial dimensions. Defining φ(r) = lima→0 q̂r/

√
a, we have [101]

1. d = 1

〈φ(r, t)φ(0, t)〉 =

{
0 if r > 2t,
m0

8
(2t− r) if r ≤ 2t.

(2.41)

2. d = 2

〈φ(r, t)φ(0, t)〉 =

{
0 if r > 2t,
m0

8π
log
[

2t+
√

4t2−r2
r

]
if r < 2t.

(2.42)
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3. d = 3

〈φ(r, t)φ(0, t)〉 =

{
0 if r > 2t,
m0

16πr
if r < 2t.

(2.43)

These correlators enforce strongly the causal structure, so that two points in space a dis-
tance r apart remain strictly uncorrelated after the quench until t = r

2
. Note that for d = 3

the value of the correlator is independent of time for r < 2t.
In the case of d = 1, we must be careful because a massless free bosonic theory is

not physically meaningful [46, 101]. Since its canonical dimension vanishes, we can con-
struct all types of local fields using powers of φ without introducing a scale. Consistent
renormalization requires then that interaction terms are present, so that the truly physi-
cal operators are the vertex operators exp(iqφ(r)). Given that the state is Gaussian, the
corresponding correlators are easily computed

〈
eiqφ(r,t)e−iqφ(s,t)

〉
= exp

[
−q2 (〈φ(0, t)φ(0, t)〉 − 〈φ(r, t)φ(s, t)〉)

]

=





exp
(
− q2m0t

4

)
if r > 2t,

exp
(
− q2m0r

8

)
if r < 2t.

(2.44)

We obtain then an exponentially decaying correlation function outside the causal horizon
and a static solution inside. This is consistent with the results obtained using conformal
field theory (CFT) [45, 46].

2.5. Equilibration After a Massive Bosonic Quench

Generalized Gibbs Ensemble
We can associate as many local conserved charges to Hamiltonian (2.15) as bosonic de-
grees of freedom. They can be written as [103]

In =
1

2

∑

k

cos (nk)
[
p̂†kp̂k + ω2

kq̂
†
kq̂k

]
(2.45)

=
∑

k

ωk cos (nk)

(
b†kbk +

1

2

)
,

where we use the creation and annihilation operators

bk =
1√
2ωk

(ωkq̂k + ip̂k) , b†k =
1√
2ωk

(ωkq̂−k − ip̂−k) . (2.46)

It is trivial to see that [In, Im] = 0 and that H(m) = I0. Locality follows from a simple
Fourier transform

In =
1

2

∑

r

[
p̂rp̂r+n +

(
m2 + 2Ω2

)
q̂rq̂r+n − Ω2 (q̂rq̂r+n+1 + q̂rq̂r+n−1)

]
. (2.47)

The momentum representation can be used to obtain

∑

n

λ̃nIn =
∑

k

(
ωk
∑

n

λ̃n cos (kn)

)(
b†kbk +

1

2

)
≡
∑

k

λk

(
b†kbk +

1

2

)
. (2.48)
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This allows us to define a generalized Gibbs ensembe (GGE) (see (1.13)) using the mode
occupation numbers [46, 93]

ρGGE =
1

Z
exp

(
−
∑

k

λkb
†
kbk

)
, (2.49)

where

Z = Tr

[
exp

(
−
∑

k

λkb
†
kbk

)]
=
∏

k

1

1− e−λk . (2.50)

By computing
〈
b†kbk

〉
GGE

, it is easy to fix the Lagrange multipliers from the initial condi-
tions (see (1.14))

1

eλk − 1
=

1

4

(
ωk
ω0k

+
ω0k

ωk

)
− 1

2
. (2.51)

Note that λk = λ−k, as expected from the parity in Eq. (2.47). Going back to the original
variables, we obtain

〈
q̂†kq̂k

〉
GGE

=
1

2ωk

(〈
b†kbk

〉
GGE

+
〈
b†−kb−k

〉
GGE

)
(2.52)

=
ω2

0k + ω2
k

4ω0kω2
k

,

which implies

〈q̂rq̂s〉GGE =
1

N

∑

k

eik(r−s)ω
2
0k + ω2

k

4ω0kω2
k

. (2.53)

This corresponds to the infinite-time average of correlator (2.37) after the quench

〈q̂rq̂s〉 = lim
T→∞

1

T

∫ T

0

dt 〈q̂rq̂s〉 (t). (2.54)

Similar results hold for the other fundamental two-point functions. It follows then that the
equilibration values of all observables can be computed using the GGE (2.49). In other
words, the long-time behavior of the system after the quench can be effectively described
by a simple statistical ensemble. Even though it does not thermalize, the equilibration is
guaranteed and well-behaved. As we will see in the next chapter, the dynamics after a
tachyonic quench cannot be captured in such simple terms due to the unstabilities of the
driving Hamiltonian.

Effective Temperature
Sotiriadis, Calabrese and Cardy [100] obtained an effective temperature for the equilibra-
tion of each mode by comparing the infinite-time average of 〈q̂r(t1)q̂s(t2)〉 to the Matsub-
ara propagator. It can be written as

βeff(k) =
1

ωk
log

(
(ωk + ω0k)

2

(ω0k − ωk)2

)
. (2.55)

If we assume the deep quench limit ω0k ≈ m0 � ωk, we can find a simplified relation

βeff(k) ≈ 4

m0

(
1 +

ω2
k

3m2
0

)
. (2.56)
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The momentum dependence is consistent with the fact that integrable systems (such as
free bosons) do not equilibrate globally after a quench. As we already showed, this is due
to the presence of a macroscopic number of conserved quantities.

2.6. Evolution of the Entanglement Entropy
Entanglement entropy (EE) is perhaps one of the simplest measures that characterize the
information interdependence between subsystems. Given that after a quantum quench a
system can survey a big portion of the Hilbert space, the evolution of the EE of a fixed
subsystem can be used as a proxy to understand in an unified way the formation of new
correlations.

Observables in Gaussian systems are completely determined by the covariance matrix

Γnm = Re 〈r̂nr̂m〉 , (2.57)

where r̂ = (q̂1, · · · , q̂N , p̂1, · · · , p̂N). In particular, all information about a subsystem A,
composed of sites {i1, · · · , iL}, can be obtained from the 2L× 2L submatrix

ΓAnm = Γinim , ΓAn+L,m = Γin+N,im , etc.. (2.58)

The EE of subsystem A can be computed from the associated symplectic eigenvalues
{σn|n = 1, · · · , L}, where σn ≥ 1/2. These correspond to the positive spectrum of
iΓAΩsym, where Ωsym is the symplectic matrix

Ωsym =

(
0 1L
−1L 0

)
. (2.59)

The EE is given by the formula [104, 105, 106]

SA =
L∑

n=1

(
f

(
σn +

1

2

)
− f

(
σn −

1

2

))
, (2.60)

where f(x) = x log(x). Note that for very large symplectic eigenvalues σn � 1, we have
f(σn + 1

2
)− f(σn − 1

2
) ≈ log(σn) + 1.

We can estimate the asymptotic growth of entanglement by using the values predicted
by the GGE. In the case of the ensemble described by ρGGE, the global entropy is simply

SGGE = −Tr
(
ρGGE log ρGGE) = logZ −

∑

k

λk
∂ logZ

∂λk
. (2.61)

Setting nk =
〈
b†kbk

〉
= 1/(eλk − 1), we have

SGGE =
∑

k

[(nk + 1) log(nk + 1)− nk log(nk)] . (2.62)

If we use the phenomenological formula for the EE evolution after a quench we introduced
in the previous chapter (1.19), we can postulate [99]

2πs(k) = (nk + 1) log(nk + 1)− nk log(nk), (2.63)
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Figure 2.2: Evolution of the EE of a block of size L = 100 after a massive bosonic
quench with m2 = 0.0, 0.001, 0.002 and N = 10000. (We set a = Ω = 1.) Note that for
short times, the growth is approximately linear and roughly independent of m until the
saturation time t ≈ L/2c. Inset: Semilog plot of the EE for a critical quench m2 = 0. As
we see, there is a logarithmic growth instead of a saturation.

so that, in the thermodynamic limit, we can write

SA(t) = 2t

∫

2|v(k)|t<L
dk v(k)s(k) + L

∫

2|v(k)|t>L
dk s(k), (2.64)

where v(k) = dωk/dk is the corresponging group velocity. This phenomenological for-
mula has been compared to the exact numerical results with very good agreement [55].

In Fig. (2.2), we plot the evolution of the EE after a massive quench for a block of
size L = 100 and a system of N = 10000 sites. This is obtained from the evolution
of the symplectic eigenvalues (2.60) computed from the two-point correlators. We set
m0 = 1 and considerm2 = 0.0, 0.001, 0.002. In all cases, we see a linear growth for times
shorter than the saturation time t ≈ L/2c. This is consistent with the ballistic spreading
of quasiparticles we discussed in the previous chapter. If m2 > 0, the EE saturates to
a constant, with possible fluctuations due to the remaining slow modes [95, 107]. If
m2 = 0, there is a remaining logarithmic growth, so that for long times S ∼ log(t)
(see inset). It should be noted that there will be revivals for times trev ∼ N/2c where
S(0) ≈ S(trev). This finite-size phenomenon can be interpreted as a recombination of the
fastest quasiparticles in the system [108, 109].

In the next chapter, we will consider an unstable tachyonic quench for a free bosonic
system. Most of the general formalism we have introduced so far will carry on to that
scenario. We will be able to compare the generic results we have shown so far to the ones
obtained in that exotic protocol.
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CHAPTER 3

Tachyonic Quenches in a Bosonic Field
Theory

3.1. Introduction

Tachyonic systems have an exotic history. They were originally proposed as field theories
describing particles that could have a group velocity larger than the speed of light [110,
111, 112, 113]. If they are free, they are characterized by the dispersion relation

E2 = p2 − µ2, (3.1)

where E is the energy of the particle, p its linear momentum, and µ a real parameter,
usually referred to as tachyonic mass. However, these theories were later understood on
more physical grounds as instabilities that could still preserve Lorentz causality [114] and
be related instead to symmetry breaking or condensation processes [115, 116, 117].

In this chapter, we study a bosonic field theory driven by a free tachyonic Hamilto-
nian. We will obtain this regime from a theory describing two coupled bosonic fields
after a regular quench. We will focus on free (Gaussian) systems [102, 100, 101], so that
everything can be characterized analytically. To the best of our knowledge, this type of
quench has not been studied in the context of many-body quantum physics. Even though
the driving Hamiltonian is unbounded from below, we will argue that the corresponding
unitary evolution is well-defined. In particular, we will characterize the evolution of sim-
ple correlators, the entanglement entropy of a block, and the mutual information between
disconnected subregions. We will show that the causal structure is very similar to the one
obtained after a critical quench [101, 118, 92] (see Chapter 2). For short times, physical
quantities also resemble the evolution of a massless quench. However, the resulting evo-
lution will be dominated by exponential divergences that prevent the system from being
close to a steady state regime. In other words, the system will not equilibrate, even in the
sense of generalized Gibbs ensembles [11, 84, 61] (see Chapter 1). Some applications
and extensions will then be outlined.

35
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3.2. Coupled bosonic QFT

Consider two bosonic fields described by the Lagrangian density

L =
1

2
(∂µΦ1)2 +

1

2
(∂µΦ2)2 − m2

2
(Φ2

1 + Φ2
2)− gΦ1Φ2. (3.2)

We can rewrite this Gaussian theory using another set of bosonic fields Φ± = (Φ1 ±
Φ2)/
√

2 to obtain

L =
1

2
(∂µΦ+)2 +

1

2
(∂µΦ−)2 − 1

2
m2

+Φ2
+ −

1

2
m2
−Φ2
−, (3.3)

where m2
± = m2 ± g. In the new variables, the fields are decoupled and their properties

solely determined by their respective masses.
This seemly trivial manipulation allows us to translate the dynamics from the coupling

of the original fields to the masses of the new ones. In particular, note that quenching the
coupling of Φ1,2 is equivalent to quenching the masses of Φ±. We can exploit this relation
to access regimes that would a priori seem rather artificial.

For instance, consider a global quench where we suddenly change the interaction
g 7→ g′ so that m′2− = m2 − g′ < 0. The resulting Hamiltonian density for Φ−,

H− =
1

2

[
(∂tΦ−)2 + (∇Φ−)2 − |m′−|2Φ2

−
]
, (3.4)

has a negative mass term, i.e., it describes a tachyonic dispersion relation, giving rise
to a Hamiltonian that is not bounded from below. Operators with these characteristics
are usually considered pathological because the associated systems would be intrinsically
unstable. However, as we will argue in more detail in later sections, this quenching pro-
cedure can still yield a well-defined unitary evolution in the Hilbert space of the original
theory. We can then rigorously study the resulting evolution after the quench, even though
the driving Hamiltonian lacks a proper ground state. We will call this quenching protocol
an unstable tachyonic quench, or more simply, a tachyonic quench.

The most popular way tachyonic field theories are handled in the literature is by adding
an extra quartic term λΦ4. This bounds the Hamiltonian from below while providing a
false unstable vaccuum around the quadratic maximum [115]. The most prominent use
of this potential is in the symmetry-breaking mechanism that gives mass to gauge fields
while preserving gauge invariance [84, 119, 120, 121]. Even though we will focus only on
free systems, the addition of this term will be briefly discussed in the context of possible
realizations.

Free tachyonic systems can also be studied by themselves in a rigorous manner [110,
111, 112, 113]. One feature of these theories is the restriction of momenta, so that only
|k| ≥ m is allowed. We will not need these constraints in the context of this thesis
because Hamiltonian (3.4) will only be used to define an unitary operator dictating the
non-equilibrium evolution of a well-defined physical system.

In order to simplify the discussion, we will focus our analysis only on Φ−, i.e., on the
field whose mass term changes sign after the quench. It should be understood that this is
done in the context of the coupled bosonic theory (3.2) which provides a sensible physical
realization.
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3.3. Quenching the Frequency of a Simple Harmonic Os-
cillator
As we discussed in Chapter 2, free bosonic theories can be studied as a set of independent
harmonic oscillators (HOs) whose frequency can be determined from the parameters in
the Hamiltonian. After a (global) quench, the evolution of all relevant quantities can then
be reduced to the quenching of each mode. This reduction of the problem still holds in the
context of the tachyonic quench. Once again, we consider the single body problem before
moving on to the many-body case. For a single HO, we want to study the evolution of the
ground state of the initial Hamiltonian

H0 =
p̂2

2
+

1

2
ω2

0x̂
2, (3.5)

described by the Gaussian state

〈x|0〉 =
(ω0

π

)1/4

exp

(
−ω0

x2

2

)
, (3.6)

under the action of the unitary operator obtained from an inverted quadratic potential

Ut = exp

[
−it

(
p̂2

2
− 1

2
ξ2x̂2

)]
≡ exp (−itH1) . (3.7)

We can summarize the protocol as

H(t) =

{
H0, t < 0,
H1, t ≥ 0.

(3.8)

This is the single-body version of the unstable tachyonic quench we want to study in the
many-body context.

Operator H1 in (3.7) is unbounded from below, so it is an ill-defined Hamiltonian.
However, we can make sense of it as an operator acting on the original Hilbert space.
Consider the ladder operators that diagonalize H0

b =

√
ω0

2

(
x̂+

i

ω0

p̂

)
.

In these variables, we have

H1 =
ω2

0 − ξ2

2ω0

(
b†b+

1

2

)
− ω2

0 + ξ2

4ω0

(
(b†)2 + b2

)
.

We see then that H1 is a self-adjoint operator that has a simple and well-defined action on
the states of the original Hilbert space. Given that the associated unitary (3.7) will have a
bounded spectrum, its action is also well-defined for all t 1.

The propagator for this evolution is given by

K(xf , xi; t) =
〈
xf
∣∣e−itH1

∣∣xi
〉

(3.9)

=

√
ξ

2πi sinh(ξt)
exp

[
i
ξ

2

cosh(ξt)(x2
i + x2

f )− 2xixf

sinh(ξt)

]
.

1Note also that for a regular massive Hamiltonian ξ → iω, the unbounded term can be eliminated via a
bosonic Bogoliubov transformation, as we showed in Chapter 2.
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It corresponds to the familiar propagator of the simple HO after the analytic continuation
ω 7→ iω = ξ [122]. This remarkable yet natural result can be derived rigorously via the
same computational techniques used for the HO [123].

We can compute the equal-time correlators using propagator (3.9)

〈
x̂2
〉

(t) =
ω2

0 + ξ2

4ω0ξ2
cosh(2ξt)− ω2

0 − ξ2

4ω0ξ2
,

〈
p̂2
〉

(t) =
ω2

0 + ξ2

4ω0

cosh(2ξt) +
ω2

0 − ξ2

4ω0

, (3.10)

〈x̂p̂〉 (t) =
ω2

0 + ξ2

4ω0ξ
sinh(2ξt) +

i

2
.

Once again, note that these correspond to analytic continuations of the results obtained
from the simple harmonic oscillator (see Chapter 2) [100, 101].

One of the most prominent features of these correlators are that they grow exponen-
tially fast. This means that we cannot associate a long-time stationary behavior to the
dynamics. In other words, the system will not equilibrate after the quench [11]. If we use
the energy levels of the original Hamiltonian as a reference, the expected occupation will
evolve as

〈
N̂
〉

(t) =
〈
b†b
〉

=
(ω2

0 + ξ2)2

4ω2
0ξ

2

cosh(2ξt)− 1

2
. (3.11)

Note that quenching to a free particle (ξ → 0), we obtain a milder growth
〈
N̂
〉
→ ω2

0t
2/2.

This implies that the unstable quench can be characterized both by the exponential diver-
gence of the correlators and the occupation of the original energy levels.

3.4. Tachyonic Quench for the Harmonic Chain
We will use the harmonic chain as the UV regularization of the free boson QFT. Given
that we studied this model in detail in Chapter 2, we will just quote the relevant equations.
First, we have the Hamiltonian

H(m) =
1

2

N∑

r/a=1

[
p̂2
r +m2q̂2

r + Ω2(q̂r+a − q̂r)2
]
, (3.12)

where a = L/N is the UV regulatization and we assume periodic boundary conditions.
Using the Fourier transform

q̂r =
1√
N

∑

k

eikrq̂k, (3.13)

(similarly for p̂r), where momenta k = 2π
L
n are given by n = 0,±1, · · · ,±N−1

2
, we have

H(m) =
1

2

∑

k

[
p̂†kp̂k + ω2

kq̂
†
kq̂k

]
. (3.14)

The resulting dispersion relation is given by

ω2
k = 4Ω2 sin2

(
ka

2

)
+m2, (3.15)
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and the associated speed of light is c = aΩ.
Hamiltonian (3.14) implies that we can associate an independent HO to each mode

k. If we quench the mass of the system to a tachyonic regime m2
0 7→ −m2, it will be

equivalent to changing the frequencies from

ω0k =

√
4Ω2 sin2

(
ka

2

)
+m2

0 (3.16)

to

ωk =

√
4Ω2 sin2

(
ka

2

)
−m2 ≡ iξk. (3.17)

We see that the oscillators will have two possible dynamics:
a) Stable modes: If m ≤ 2Ω| sin(ka/2)|, the final frequency ωk will be real. In that

case the evolution will be like a simple quench from a harmonic Hamiltonian to another.
These modes will behave qualitatively as regular mass quenches like the ones described
in Chapter 2 [100, 101]. In particular, these modes will equilibrate.

b) Unstable modes: If m > 2Ω| sin(ka/2)|, we expect these modes to behave accord-
ing to the unstable quench we did for the simple HO in the previous section. It follows
that they not only do not equilibrate, but also explode exponentially fast. As we will see
in later sections, these modes (the low-frequency ones) will dominate the long-time be-
havior of the whole system. This makes it impossible to define an stationary ensemble
that captures the qualitative physical properties after the quench.

3.5. Causal Structure After a Tachyonic Quench
For simplicity, we will be working mostly in the so-called deep quench limit we intro-
duced in Chapter 2, i.e., m0 � m. In this case, all the correlations formed after the
quench are due to the evolution, allowing for a clear analysis.

The two-point correlators can still be written as

〈q̂rq̂s〉 (t) =
1

N

∑

k

eik(r−s)C
(qq)
k (t),

〈p̂rp̂s〉 (t) =
1

N

∑

k

eik(r−s)C
(pp)
k (t), (3.18)

〈q̂rp̂s〉 (t) =
1

N

∑

k

eik(r−s)C
(qp)
k (t),

where

C
(qq)
k (t) =

ω2
0k + ω2

k

4ω0kω2
k

− ω2
0k − ω2

k

4ω0kω2
k

cos(2ωkt),

C
(pp)
k (t) =

ω2
0k + ω2

k

4ω0k

+
ω2

0k − ω2
k

4ω0k

cos(2ωkt), (3.19)

C
(qp)
k (t) =

ω2
0k − ω2

k

4ω0kωk
sin(2ωkt) +

i

2
.

Note that these functions are even in ωk, so there is no branch cut in the k complex plane
due to the square root in definition (3.17). Also, in the case ω2

k is negative, both possible
imaginary roots will give the same functions, so there is no ambiguity.
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Figure 3.1: Density plot of the correlator 〈q̂rq̂0〉 (t) after a tachyonic quench using a =
Ω = m0 = 1, m2 = 0.001 and N = 10000. Note that the causal structure is strictly
preserved.

Even though tachyonic theories are usually associated to superluminal particles, they
are better undestood as instabilities in causal theories [114, 124, 117, 116, 125]. Propa-
gation is still governed by causal Green functions, in such a way that information cannot
move faster than the speed of light. In the context of the tachyonic quench, we can ex-
plicitly show that the causal structure is preserved during the evolution.

First, consider the UV regulated Hamiltonian (3.12). Being a local lattice system, the
dynamics can be studied using Lieb-Robinson bounds. For quadratic bosonic systems,
we saw in Chapter 2 that the maximum speed of propagation can be obtained from the
couplings of the Hamiltonian. In the case of the tachyonic Hamiltonian H1, we obtain
(see section 2.3 for details)

vLR = eamax |ωk| = ea
√
|4Ω2 −m2| ≈ 2ec. (3.20)

As we see in Fig. (3.1), correlators agree with this causal light-cone. This is consistent
with the associated speed of light c = aΩ.

The structure of the light-cone in the correlators is more explicit in the continuum
limit, where causality is also preserved. If we set Ω = 1

a
, we have

ω2
0k → k2 +m2

0, ω2
k → k2 −m2, (3.21)

as a→ 0 and (in the deep quench limit)

〈q̂rq̂s〉 (t)
a

→ m0

4

∫
dk

2π
eik(r−s)

[
1− cos(2ωkt)

k2 −m2

]
. (3.22)

Note that this propagator will vanish for r > 2t. This follows from evaluating the integral
by taking the principal value around k = ±m and closing the integration contour in the
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Figure 3.2: Evolution of the EE of a block of size (a) L = 10 and (b) L = 100 after
a tachyonic quench with m0 = a = Ω = 1, N = 10000, and m2 = 0.0, · · · , 0.004.
Observe that the EE starts growing in a linear fashion for mt � L. This implies that for
small m the growth will be logarithmically slow until the right scale is reached. Inset:
For short times, the growth is approximately linear and independent of m.

upper half of the complex k plane. (A similar argument is used in [114] to relate the
dynamics of a tachyonic field to instabilities in the theory. See also the end of Section 2.4
for details about the massless case m→ 0.)

3.6. Entanglement and Mutual Information Growth After
the Quench

Given that the evolution is described by a Gaussian unitary operator, the state will al-
ways remain Gaussian. We can then compute all the relevant physical quantities using
the covariance matrix Γ (see Secion 2.6). In particular, we will be able to compute the
entanglement entropy (EE) of a region A by considering the reduced covariance matrix
ΓA.

Now, before we discuss the evolution of the EE after an unstable tachyonic quench,
let us consider the long-time evolution of the correlators. If we take the continuum limit
in Equation (3.18), we have

〈q̂rq̂s〉 (t)
a

→
∫

dk

2π
eik(r−s)C

(qq)
k (t). (3.23)

For large times t� 1/m, we have

C
(qq)
k (t) ≈ m0

4ξ2
k

exp(2ξkt), (3.24)

where we also used the deep quench limit. The integrand in (3.23) will be sharply peaked
around k = 0, so we can do a steepest descent approximation and obtain

log

(〈q̂rq̂s〉 (t)
a

)
→ 2mt+O(log(mt)). (3.25)

Similarly for 〈p̂rp̂s〉 and Re 〈q̂rp̂s〉. This implies that, for every region A, all the ele-
ments in ΓA have the same exponentially divergent factor. This will be present in all the
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Figure 3.3: Contour plot for the evolution of the mutual information of two blocks con-
sisting of 3 contigous sites each separated by a distance r for m0 = a = Ω = 1
and N = 10000 after (a) a massless quench m = 0 and (b) a tachyonic quench with
m2 = 0.004.

associated symplectic eigenvalues {σn|n = 1, · · · , L}, which in turn determine the EE
according to the formula

SA =
L∑

n=1

(
f

(
σn +

1

2

)
− f

(
σn −

1

2

))
, (3.26)

where L is the volume of region A. We expect then that for ct� L, we have

SA ∼ 2mLt+O(log(mt)), (3.27)

where the volumetric factor L comes from the number of symplectic eigenvalues. This
behavior is universal. Note that this result is also valid for higher dimensions because the
leading divergence of the corresponding correlators will also be an exponential (3.25).

In Fig. (3.2) we see the evolution of SA(t) after an unstable tachyonic quench for
blocks of sizes L = 10 and L = 100. We see there is a short transient time t � L/c
during which information propagates ballistically independent of m (see inset). This is
the same type of propagation exhibited in the quench dynamics of conformal field theory
[118, 92]. However, the instability of the driving Hamiltonian takes over and we end up
with a linear growth (3.27). This is qualitatively different to what happens after the regular
massive quenches we considered in Chapter 2. In particular, note that the logarithmic
growth that singles out the massless quench in Fig. (2.2) is much milder than the linear
growth of the tachyonic quench.

We can gain further insight about the growth of correlations by studying the mutual
information between subsystems. For two disjoint regions A and B, it is defined as

IAB = SA + SB − SA∪B. (3.28)

This can be used as a measure of the amount of correlation betweenA andB, even serving
as an upper bound for normalized two-point functions [126].

Figure (3.3) illustrates the evolution of the mutual information after a massless quench
(m2 = 0) and a tachyonic quench for two blocks A = {1, 2, 3} and B = {r+1, r+2, r+
3}. Both display an unbounded growth with a sharp light-cone. However, the massless
quench only grows logarithmically in time, while the tachyonic grows linearly. Figure
(3.4) shows this evolution for fixed distances. Note how the mutual information starts
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Figure 3.4: Evolution of the mutual information of two blocks consisting of 3 contigous
sites each separated by distances r = 30, 60, 90, 120 after a tachyonic quench with m0 =
a = Ω = 1, m2 = 0.004 and N = 10000.

growing after t = r/2c, as imposed by the causal structure (see inset). In the same
fashion as the EE, this implies that the massless modes dominate the dynamics for short
times, but the instability ends up leading the behavior.

The linear growth of the mutual information after a tachyonic quench is remarkable
because it shows that the divergence in the EE is not a simple artifact due to the size of
the local Hilbert space. Also, note that the growth cannot follow from the asymptotic
behavior (3.27) because that volumetric contribution cancels.

3.7. Possible Connections to Physical Systems

Given the instabilities of the setting we have described, it is easy to see that any physi-
cal realization will have severe constraints. However, it is possible to find regimes that
can approximate this type of quenches for certain periods of time. In particular, if we
include higher order terms in the Hamiltonian to constrain the instabilities, we expect that
tachyonic behavior can be seen for timescales that are shorter than the ones that bound
the dynamics.

Consider first an O(3) non-linear σ-model (NLSM) described by the Hamiltonian
[127]

H =

∫
dx

[
g2

(
~̀− θ

4π
∂x~φ

)2

+
1

g2
∂x~φ

2

]
, (3.29)

where ~φ = (φ1, φ2, φ3) is contrained by ~φ2 = 1 and ~̀ = ~φ × ∂t~φ. If we expand around
a classically ordered state φ2

3 ≈ 1, we can approximate the system as two independent
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bosonic fields described by the Lagrangian density

L =
1

g

[
(∂µφ1)2 + (∂µφ2)2

]
. (3.30)

As we saw in Section 3.2, we can obtain a tachyonic sector by adding a coupling of the
form φ1φ2. We can justify this microscopically by using the well-known map that relates
the O(3) NLSM to the antiferromagnetic Heisenberg spin chain [127]

Sa2n = sφa(x) + `a(x), Sa2n+1 = −sφa(x) + `a(x), (3.31)

where San are the spin operators (a = 1, 2, 3), s � 1 is the total (local) spin, and x =
2n+ 1

2
. Setting φ± = (φ1 ± φ2)/

√
2, we have

m2s2
∑

x

(φ2
+ − φ2

−)(x) = m2
∑

n

[
{Sx2n, Sy2n}+ {Sx2n+1, S

y
2n+1} (3.32)

−2Sx2nS
y
2n+1 − 2Sy2nS

x
2n+1

]
.

Note that this interaction term will give rise to a proper unstable Hamiltonian in the limit
s→∞, where we truly have an infinite dimensional local Hilbert space. Yet, the normal-
ization constraint ~φ2 = 1 will eventually bound the dynamics as soon as the approxima-
tion φ2

3 ≈ 1 breaks down.
Consider now a free boson with a quartic interaction

H =
1

2

[
(∂tφ)2 + (∇φ)2 +m2φ2 +

1

4!
λφ4

]
. (3.33)

By considering a self-consistent substitution using the Hartree-Fock approximation [128]

φ4 → −3
〈
φ2
〉2

+ 6
〈
φ2
〉
φ2, (3.34)

we can define an effective mass [101]

m2
eff = m2 +

λ

2

∑

k

〈
φ2
k

〉
. (3.35)

If the mass is tachyonic m2 7→ −m2, heuristically we expect the interaction to stop the
instability after a characteric time tstable given by

∑

k

〈
φ2
k

〉
(tstable) ∼ 2

m2

λ
. (3.36)

As we discussed in previous sections, the correlators after a tachyonic quench develop an
exponential growth. This implies that the interaction term λφ4 must be very small com-
pared to the rest of the characteristic terms in order to approximate a tachyonic evolution.

3.8. Discussion
Tachyonic quenches are an exotic alternative for the study of bosonic field theories out of
equilibrium. As we saw in all of the computed physical quantities, the causal structure
is made manifest in a fashion similar to critical quenches. For short times, the evolution
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of observables may even be indistinguishable. However, tachyonic quenches are unsta-
ble and exponential divergences end up dominating the behavior. In particular, the low-
frequency (unstable) modes c|k| < m are exponentially driven and cannot equilibrate.

Tachyonic (or more generally, unstable) quenches can be used as an intermediate
preparation step for many-body states. If the driving Hamiltonian (3.7) is only used for a
fixed time T , the resulting state will be highly excited in the low frequency modes while
approximately thermal for the high frequency ones. This sets a sharp cut-off around the
tachyonic mass, allowing for a dynamical separation of scales. Remarkably, a similar
mechanism can be found in the statistical physics of fluids and interfaces, in processes
described by the Kuramoto-Sivashinski formula [129].

In order to obtain similar dynamics in other physical systems, the driving Hamiltonian
must have some sort of instability. However, being a pathological feature that is generally
avoided, this unboundedness is usually absent by construction in physical realizations.
For example, extending these constructions to fermions is not straight-forward, at least
using free Hamiltonians. This is due to the symmetries of the energy spectrum, that is
traditionally interpreted as a Dirac sea. Spin systems could be used, but they would need
very large quantum numbers, so that they can be close to the quantum rotor limit. In
this case, the parameters must be chosen so that the characteristic times of the instabil-
ity are shorter than the one imposed by the lower bound of the spectrum of the driving
Hamiltonian.

Realizations may also use a λφ4 potential. However, in order to exploit this resource
at its fullest, the parameters must be chosen so that the quartic term becomes relevant after
the exponential divergence becomes manifest.

Further work is needed to understand other types of unstable quenches. Interacting
terms that produce unbounded Hamiltonians can for example be fine-tuned to obtain other
types of long-time divergences. Characterizing approximate realizations using truncated
local Hilbert spaces may also provide an interesting setting for future experiments using
optical lattices.
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CHAPTER 4

Conformal Blocks as Wave Functions

4.1. Introduction
Developing suitable many-body wave functions has provided remarkable insights into the
physics of collective phenomena. Given the complexity of large quantum systems, this
is a rather ardous task that demands the use of an extense theoretical arsenal. In the
context of strongly-correlated systems, a tool that has yielded several fruitful results in
this direction has been conformal field theory (CFT) [130, 131, 132, 133, 134] .

Perhaps the most notorious application of this formalism to the construction of vari-
ational wave functions is in the fractional quantum hall (FQH) effect, where a two-
dimensional electron gas is subject to a strong magnetic field to form an incompressible
quantum liquid (see [135] for a recent review). Remarkably, these systems display topo-
logically robust features and can support quasiparticles excitations with fractional charge,
known as anyons [136]. The first successful theoretical framework to study these phenom-
ena was the Laughlin wave function [137]. It is used to describe an electron gas when the
filling factor of the lowest Landau level is ν = 1/q. Remarkably, it can be derived from a
correlator of (chiral) vertex operators of a massless free boson CFT. One of the main pre-
dictions from this ansatz is the existence of Abelian fractional statistics for the emergent
quasiparticles. This inspired Moore and Read to develop a general framework to describe
more exotic filling fractions [138]. Their construction relates the statistics of the quasi-
particles to the algebraic properties of certain associated CFT operators. In particular,
Moore and Read proposed a Pfaffian wave function for ν = 5/2. This phase has a topo-
logical degeneracy and the corresponding low-energy quasiparticles exhibit non-Abelian
fractional statistics.

Progress has also been made for lattice systems. Inspired by the so-called matrix prod-
uct states (MPS), it has been proposed that variational wave functions can be constructed
from correlators in a CFT [139]. In this case, (chiral) primary operators φs(zi) replace
the usual finite-dimensional matrices Ai(s) of the original ansatz. The most important ex-
amples have made use of Wess-Zumino-Witten (WZW) CFTs, where the internal SU(2)k
symmetry can be exploited to encode the physical (spin) degrees of freedom. This frame-
work has been successfully applied to systems such as the Haldane-Shastry (HS) spin
chain in 1D [139, 140, 141, 142, 143, 144, 145, 146, 147] and the Kalmeyer-Laughlin
model in 2D [148, 149, 150, 151]. This MPS construction has also inspired sensible
numerical truncation schemes for continuous FQH states [152, 153].
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The aim of this chapter is to describe a general way of constructing many-body lattice
wave functions using chiral correlators, also known as conformal blocks (CBs). As we
will argue in detail, this can be done for a generic rational CFT, regardless of the existence
of an internal symmetry. After a brief motivation of the basic features of the CBs, we
will introduce the general formalism in terms of chiral vertex operators (CVOs). We
will illustrate these ideas revisiting the Haldane-Shastry spin chain. We will end with a
summary of the now classical construction of Moore and Read for FQH systems.

4.2. A Very Brief Primer on 2D Conformal Field Theory
Conformal field theory (CFT) is one of the most conceptually rich tools in theoretical
physics [131, 132, 133, 134]. Its development is cemented on concepts derived from
renormalization group (RG) techniques, where relations between different energy scales
are used to extract relevant physical quantities. CFT has been applied to many domains
in physics, from understanding critical phenomena in statistical mechanics; to explaining
non-perturbative effects in 1D condensed matter systems using the Luttinger liquid for-
malism; to describing high-energy scattering processes in exotic mathematical theories.
As a matter of fact, several of the basic techniques used in CFT (such as vertex opera-
tors and conformal blocks) were originally developed in mathematical physics and string
theory.

Broadly speaking, a CFT describes a fixed point of the RG, where the beta functions
of the theory vanish [132]. As a consequence, the usual Lorentz invariance of correlators
is enlarged to conformal invariance. If we are working with a 2D system, conformal
symmetry can be related to all possible analytic mappings of the complex plane [154]. It
is then convenient to use complex coordinates to describe our spacetime z = x1+ix2, z̄ =
x1 − ix2.

Under a conformal transformation z 7→ w(z), z̄ 7→ w̄(z̄), local operators will change
in a covariant way. Some operators will transform in a particularly simple way

φ′n(w, w̄) =

(
dw

dz

)−hn (dw̄
dz̄

)−h̄n
φn(z, z̄). (4.1)

These are called primary fields. The associated exponents hn are their corresponding con-
formal weights. The action of the conformal group on these operators can be studied by
means of the energy-momentum tensor, both its holomorphic T (z) and antiholomorphic
T̄ (z̄) parts. If these fields are expanded in a Laurent series

T (z) =
∑

n∈Z

z−n−2Ln, Ln =
1

2πi

∮
dz zn+1T (z), (4.2)

T̄ (z̄) =
∑

n∈Z

z̄−n−2L̄n, L̄n =
1

2πi

∮
dz̄ z̄n+1T̄ (z̄),

it can be shown that the coefficients obey the famous Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0,

[Ln, L̄m] = 0, (4.3)

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0,
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where c is the central charge of the theory. The action of these operators on the primary
fields can be used to obtain complete representations (more correctly, Verma modules) of
the conformal group [132]

φ(m)
n (z, z̄) ≡ (L−mφn)(z, z̄), φ(m̄)

n (z, z̄) ≡ (L̄−mφn)(z, z̄). (4.4)

These derived fields are called descendant fields. They satisfy, among other relations,

φ(0)
n (z, z̄) = hnφn(z, z̄), φ(1)

n (z, z̄) = ∂zφn(z, z̄), φ(−m)
n (z, z̄) = 0,m ≥ 1.

(4.5)
In these terms, a CFT is completely determined if one is given the central charge of the
theory, the conformal weights of the primary fields and the operator product expansion
(OPE) coefficients

φn(z, z̄)φm(w, w̄) ∼
∑

p

Cnmp

(z − w)hn+hm−hp(z̄ − w̄)h̄n+h̄m−h̄p
φp(z, z̄). (4.6)

Interestingly, some models have extra internal symmetry that goes beyond the Virasoro
algebra. This is the case of Wess-Zumino-Witten (WZW) models, where an affine Lie
algebra arises as the spectrum-generating algebra [132].

4.3. The Simplest Conformal Blocks
Before we present a general (though somewhat abstract) way of defining and manipu-
lating conformal blocks, let us first consider them in one of their simplest forms: the
decomposition of the 4-point function in a CFT 1. This will provide some basic intuition
for the general case. We will work with 2D CFTs, even though most of these results also
hold mutatis mutandis in higher dimensions.

One of the most powerful results in CFT is that conformal symmetry fully determines
some features of all the relevant correlators in the theory [154, 132]. If we have a set of
primary fields {φn} with conformal weights {hn}, we can show that two-point functions
necessarily have the form 2

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 = C12

δh1,h2δh̄1,h̄2

z2h1
12 z̄

2h̄1
12

, (4.7)

where z12 = z1 − z2 and {Cnm} are normalization constants that can be redefined as
Cnm = δnm by linear independence. Similarly, all three-point functions can be written as

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)〉 = C123
1

zh1+h2−h3
12 zh2+h3−h1

23 zh1+h3−h2
13

(4.8)

× 1

z̄h̄1+h̄2−h̄3
12 z̄h̄2+h̄3−h̄1

23 z̄h̄1+h̄3−h̄2
13

,

1Technically, the simplest conformal blocks are related to the decomposition of the torus partition func-
tion into holomorphic and antiholomorphic parts, via the Virasoro characters [155]. We will deal with the
4-point correlators case because it is more illuminating for our purposes.

2There are some exotic CFTs where this is not the case. For instance, theories known as log CFTs exhibit
extra logarithmic corrections in the correlators of some of the operators [156]. This is usually understood
as a singular limit of “usual” CFTs.
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where {Cnml} is a set of constants that must be determined from the theory using the OPE
coefficients (4.6). (We must also impose that the sum of the conformal spins sn = hn− h̄n
cancels in order to preserve rotation invariance.) Note that in both cases, the holomorphic
and the antiholomorphic parts of the correlator factorize neatly.

Alas, global conformal invariance alone does not fix more complicated correlators. If
we define the anharmonic ratio

η =
z12z34

z13z24

, (4.9)

conformal symmetry dictates that the most general form of a 4-point function is

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)φ4(z4, z̄4)〉 = f(η, η̄)
∏

n<m

zh/3−hn−hmnm z̄h̄/3−h̄n−h̄mnm , (4.10)

where h = h1 + · · · + h4 and f(η, η̄) is an arbitrary function. In order to obtain more
information, let us perform a conformal transformation such that z1 =∞, z2 = 1, z3 = x,
and z4 = 0. This implies η = x and we can write correlator (4.10) as a matrix element
betweem two asymptotic states (in the operator-state correspondence [154])

lim
z1,z̄1→∞

z2h1
1 z̄2h̄1

1 〈φ1(z1, z̄1)φ2(1, 1)φ3(x, x̄)φ4(0, 0)〉 (4.11)

≡
〈
h1, h̄1|φ2(1, 1)φ3(x, x̄)|h4, h̄4

〉
≡ G21

34(x, x̄),

where the order of the super- and subindices in G21
34 is relevant.

We can further decompose this expression if we use the operator product expansion
(OPE) for primary fields. From the 3-point function expansion, we have

φ3(x, x̄)φ4(0, 0) ∼
∑

p

C34p x
hp−h3−h4 x̄h̄p−h̄3−h̄4φp(0, 0). (4.12)

We can complete this expansion by considering all the descendant fields for every φp. We
can label them as

φ(kk̄)
p ≡ L−k1 · · ·L−knL̄−k̄1 · · · L̄−k̄mφp, (4.13)

where Ln, L̄m are the generators of the Virasoro algebra and (kk̄) stands for the (ordered)
collection of indices (k1, · · · , kn; k̄1, · · · , k̄m). Using this notation, the full OPE becomes

φ3(x, x̄)φ4(0, 0) =
∑

p,(kk̄)

C
(kk̄)
34p x

hp−h3−h4+
∑
j kl x̄h̄p−h̄3−h̄4+

∑
j k̄l φ(kk̄)

p (0, 0). (4.14)

Since the correlations of descendant operators are built on the correlations of primary
fields, one can show using conformal transformations that [132]

C
(kk̄)
34p = C34pβ

p(k)
34 β̄

p(k̄)
34 , (4.15)

where βp(k)
34 (resp. β̄p(k̄)

34 ) can be computed mechanically and depend only on the conformal
weights h3, h4, hp (resp. h̄3, h̄4, h̄p) and the central charge c.

Going back to the 4-point functions, we can use all these definitions to rewrite (4.11)
as [154]

G21
34(x, x̄) =

∑

p

C34pC12pF21
34 (p|x)F̄21

34 (p|x̄), (4.16)

where

F21
34 (p|x) = xhp−h3−h4

∑

(k)

β
p(k)
34 x

∑
j kj
〈h1|φ2(1)L−k1 · · ·L−kn|hp〉

〈h1|φ2(1)|hp〉
. (4.17)
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Figure 4.1: Graphical representation of the CB for a 4-point function. If we interpret this
as a partial wave decomposition, p would stand for an intermediate state formed during
the scattering of fields i, j into m, `. (Taken from [157].)

(Similarly for F̄21
34 (p|x̄).) The functions (4.17) are called conformal blocks (CBs). Some

remarks:

1. Note that every term in the sum (4.16) is factorized into a holomorphic and an-
tiholomorphic part, in a fashion similar to the 2-point and 3-point functions. In
particular, F21

34 (p|x) contains all the holomorphic information.

2. Each CB is associated to a possible intermediate fusion channel (see Fig. (4.1)).
This can be interpreted as the partial waves found in perturbative scattering theory,
where some incoming states interact and produce asymptotic final states [154, 131,
132]. In this picture, p would stand for an intermediate state formed during the
scattering. These intermediate channels serve as a resolution of the identity decom-
posing the original correlator. This analogy will remain useful when we consider
the CBs corresponding to N -point functions.

3. As we see, CBs can be computed in principle using only the conformal weights and
central charge of the theory. In practice, this can be quite complicated to obtain for
all fields at all orders for an arbitrary CFT.

4. In the previous computation, we performed the OPE between φ3 and φ4. We could
have instead fused first φ2 and φ3. The consistency between these two ways of doing
the expansion is an important constraint on the CBs, usually known as crossing
symmetry [154].

Let us remark that most of our discussion depends on the particulars of 2D CFT, where
symmetry can be powerful enough to constraint the theory to the point of it being exactly
solvable. However, this formalism can be extended to higher dimensions, where studying
conformal blocks can be related to the conformal bootstrap program [158, 159].
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4.4. Chiral Vertex Operators and Conformal Blocks
Now that we have some basic intutition about how CBs appear naturally in the holomor-
phic decomposition of correlators and how this relates to intermediate fusion channels,
we can formalize the procedure using an algebraic construction. This will in turn help us
understand how to obtain physical wave functions from these mathematical objects.

We start by consider a chiral algebra A, the simplest examples being the Virasoro
algebra (4.3) and the Kac-Moody algebras [132] 3. This algebra will contain only holo-
morphic fields. We must also define the analogous purely antiholomorphic algebra Ā that
commutes with A. This decomposition is usually related to the left-handed and right-
handed eigenmode expansion of the fields in 2D QFT.

Within this formalism, the Hilbert space of a rational conformal field theory (RCFT)
can be written as a finite direct sum [155]

HCFT =
N⊕

i=0

Hi ⊗ H̄i, (4.18)

whereHi (resp. H̄i) is an irreducible highest-weight representation ofA (resp. Ā). Using
the one-to-one mapping between operators and states, we can associate each representa-
tion to a primary field of the RCFT. By definition, the representation H0 contains the
identity operator and, therefore, the stress energy tensor T (z) and all the operators of A.

The representationHi is infinite dimensional, but it can be split into the direct sum of
finite-dimensional subspaces with a fixed value of the Virasoro operator L0. Let us call
H(0)
i the subspace with the lowest value of L0, denoted hi. For minimal RCFTs, H(0)

i

will be a one-dimensional subspace generated by the highest-weight vector L0 |φi〉 =
hi |φi〉. In the case of SU(2)k WZW models, there are k + 1 primary fields, labeled
j = 0, 1

2
, · · · , k

2
, such thatH(0)

j = C2j+1 [132].
Different representations can be related by their fusion properties. This is summa-

rized by the fusion coefficients N i
jk, which count the multiplicity of φi in the operator

product expansion (OPE) of φj, φk, so that φj × φk =
∑

iN
i
jkφi. In order to simplify our

discussion, we will always assume N i
jk = 0, 1.

We can now define chiral vertex operators (CVOs). First, consider three representa-
tions i, j, k such that the fusion coefficient N i

jk does not vanish. A CVO is given by a
linear map [155] (

i

j k

)

z,β

: H(0)
k → H

(0)
i , (4.19)

where β ∈ H(0)
j and z ∈ C. This can be pictured as a vertex operator with two incoming

particles with labels j, k and an outgoing particle with label i (Fig. (4.2))4. We can also
define it by the relation

〈α|
(
i

j k

)

z,β

|γ〉 = t(α⊗ β ⊗ γ)z−hj−hk+hi , (4.20)

where α ∈ H∗(0)
i , γ ∈ H(0)

k , and t : H∗(0)
i ⊗H(0)

j ⊗H(0)
k → C is an invariant tensor (H∗(0)

i

is the dual ofH(0)
i ). Note that we can extend these constructions to the other subspaces of

3Rigorous definitions of chiral algebras can be quite technical and beyond the reach of this introduction
(see [160, 161] for a mathematical treatment).

4More precisely, we can picture it as an incoming particle k colliding with a particle j located at position
z and producing an outgoing particle i.
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Figure 4.2: Graphical representation of a vertex operator. As defined in the text, β ∈ H(0)
j .

each representation by acting with the Virasoro algebra and computing the corresponding
contour integrals.

In this formalism, a conformal block (CB) is a chiral correlator that encodes an al-
lowed fusion channel for a given set of primary fields. If we start with N primaries {jn},
a CB can be written as [131, 155]

Fk(β1, · · · , βN ; z1, · · · , zN) = 〈0|
(

0

j1 k1

)

z1,β1

(
k1

j2 k2

)

z2,β2

· · ·
(
kN−1

jN 0

)

zN ,βN

|0〉 ,

(4.21)

where k = (k1, · · · , kN−1) labels the internal channels and |z1| ≥ · · · ≥ |zN |. Note that
k1 = j̄1 and kN−1 = jN . The number of conformal blocks of this type depends on the
possible allowed fusion channels of the jn fields. We will often summarize the notation
and write the CB as

Fk(β1, · · · , βN ; z1, · · · , zN) =

〈
N∏

n=1

φ
(βn)
jn

(zn)

〉

k

. (4.22)

As expected, these functions allow for a decomposition of N -point correlators into the
sum of terms that factorize the holomorphic and antiholomorphic contributions

〈
φj1,j̄1(z1, z1) · · ·φjN ,j̄N (zN , zN)

〉
=
∑

k

dkFk({z̄n})Fk({zn}), (4.23)

where dk are constants independent of {zn} that can be computed from the fusion matrix
[162]. This construction generalizes the calculation we did in the previous section for
4-point functions. Once again, we see that the CBs are labeled by the intermediate fusion
channels that get summed over when we compute the full correlator. 5

Note that the basis in which we express the CBs depends on the order of the CVOs in
equation (4.21). We can in principle change the order and fuse the operators in a different
way. This procedure must be done with care because of the possible branch cuts of the
complex functions. These mathematical subtleties can be encapsulated in the braiding
matrices [155, 131], which summarize the monodromy properties of the CBs. We will
discuss these objects in more detail in the next chapters, in the context of the Ising CFT.

The algebraic construction we presented can be interpreted in geometrical terms using
Riemann surfaces with punctures [155, 131]. Every puncture carries a label corresponding
to a representationHi. Complicated Riemann surfaces can be obtained by “sewing” three
holed spheres and summing over the intermediate states passing through the holes. In this
context, the three holed spheres can be associated to the CVOs we defined before. The
CBs in turn correspond to basis elements for a vector space associated to the resulting
surface. We will not use this geometrical approach in this thesis.

5We could generalize the construction even further by considering the notion of vertex (operator) alge-
bras [163]. However, this formalism will not be necessary in this thesis.
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4.5. Lattice Wave Functions from Conformal Blocks

Many-body lattice systems are notoriously hard to study in the thermodynamic limit. One
of the main reasons is that the dimension of the Hilbert space grows exponentially with the
number of sites. In the past decades, it has been fruitful to think beyond the Hamiltonian
paradigm and propose instead novel trial wave functions that are simpler to compute.
There is an extensive bibliography using this approach. For our purposes, we will focus
on one of the methods, the so-called matrix product states (MPS) (see [164] for a practical
review).

Consider a lattice spin system such that the local Hilbert space isHn = Cd. A generic
wave function can be written as

|ψ〉 =
∑

{sn}

ψs1···sN |s1 · · · sN〉 , (4.24)

where sn = 1, · · · , d. Simple counting shows that we need O(dN) parameters to charac-
terize this state. A MPS representation can be written as

ψs1···sN = 〈0L|A1[s1] · · ·AN [sN ] |0R〉 , (4.25)

where {An[s] |n = 1, · · · , N, s = 1, · · · , d} is a set of matrices and 〈0L| , |0R〉 are suit-
able reference vectors. If the matrices are all D ×D, then the number of parameters we
need to characterize |ψ〉 is O(NdD2). This type of representation is always available for
any wave function [165]. However, assuming that D grows at most polynomially with N ,
we see that this parametrization implies a remarkable reduction in the complexity of the
problem.

MPS representations have become very useful to study many-body systems in a non-
perturbative way. Even though they can be traced back to the solution of the AKLT
model [166] and the ansatz underlying the density matrix renormalization group (DMRG)
algorithm [167, 168], it was with the development of quantum information processing
that they became a fundamental tool applied to different areas of many-body physics
[169, 170].

Definition (4.25) shares some structural similarities with the general definition of a CB
(4.21). This was used to propose infinite MPS [139], where matrices An[s] are replaced
by chiral operators φn(zn) in a CFT. Extra internal symmetries, such as the one found in
SU(2)k WZW models, can be exploited to find suitable spin representations to model the
lattice spins. One may wonder if a CFT with no internal symmetries (as, for instance,
the minimal models originally introduced in [154]) can be used to generate useful lattice
wave functions. In that case, the only available degrees of freedom are the labels of the
different fusion channels. As we will see in detail, these intermediate internal channels
can still provide enough structure for this construction to make sense.

We will now present a generalization of the infinite MPS construction using all the
features of the CBs [2]. For concreteness, consider a self-conjugate chiral field φ, i.e., it
satisfies φ × φ = 1 + · · · , with 1 being the identity field (equivalently, self-conjugation
implies N1

φφ = 1). If we define the incidence matrix
(
Λ(φ)

)i
j

= N i
φ j , the number of

different CBs obtained from N φ fields is [131]

dφ,N =
([

Λ(φ)
]N)0

0
, (4.26)
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Figure 4.3: Graph representing a conformal block in the multiperipheral basis.

where 0 stands for the identity 1 component. We will use k to label the intermediate
fusion channels. This is the canonical basis, usually called multiperipheral basis [162]
(see Fig. (4.3)) 6. We will distinguish two cases:

1. Abelian: if dφ,N = 1, there is only one CB. It defines a map

F : H(0)
φ ⊗ · · · ⊗ H

(0)
φ → C, (4.27)

that allows us to postulate, for a fixed set of coordinates {zi}, the wave function

|ψ〉 =
∑

{si}

F(z1, · · · , zN ; s1, · · · , sN) |s1, · · · , sN〉 , (4.28)

where {|s〉 : s = 1, · · · , dim(H(0)
φ )} is an orthonormal basis forH(0)

φ .

2. Non-Abelian: if dφ,N > 1, the different CBs must be labelled by the internal fusion
channels. This defines a family of maps

Fk : H(0)
φ ⊗ · · · ⊗ H

(0)
φ → C, (4.29)

that suggests the wave function

|ψ〉 =
∑

{si},k

Fk(z1, · · · , zN ; s1, · · · , sN) |k〉 ⊗ |s1, · · · , sN〉 , (4.30)

where |ψ〉 ∈ Wφ,N ⊗
(
H(0)
φ

)⊗N
, and Wφ,N contains all the auxiliary degrees of

freedom (note that dim(Wφ,N) = dφ,N ).

Consider now the special case when dim(H(0)
φ ) = 1 for a non-Abelian theory. Wave

function (4.30) can represent a many-body lattice system if the auxiliary Hilbert space
Wφ,N can account for all the local physical degrees of freedom. It should be noted that
there are different sensible bases for this auxiliary space. As we discussed, these different
representations are usually related to the order in which we fuse the primary fields. This
implies that there are several lattice wave functions that can be obtained from the same
CBs in the non-Abelian case. The most natural option is the multiperipheral basis. How-
ever, there are other bases that can be chosen for physical reasons. We will discuss this in
more detail in Chapter 6.

6This way of characterizing different states by the fusion of successive fields is closely related to the
string Hilbert spaces used in restricted solid on solid (RSOS) or face models [171].
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One consistency condition we need to check is that the normalization of the state has
no monodromy issues with respect to the auxiliary coordinates {zi}. This can be stated in
terms of the full correlator

〈ψ|ψ〉 = 〈φ(z1, z1) · · ·φ(zn, zN)〉 =
∑

k

dkFkFk. (4.31)

In the multiperipheral basis, this implies the necessary condition 〈k|k′〉 = dkδk,k′ .
We will illustrate this general construction with two examples. First, the Haldane-

Shastry spin chain from the point of view of the SU(2)1 WZW model. This case has
already been studied extensively [139, 140, 141, 142, 143, 144, 145, 146, 147]. We will
provide a brief summary for the sake of clarity and analogy. For the non-Abelian case,
we will use the Ising CFT. Being non-Abelian and lacking internal symmetry, it provides
a good testing ground for encoding physical degrees of freedom using only the internal
fusion channels. This will be done extensively in Chapter 6.

4.6. Abelian Case Study: the Haldane-Shastry Chain

The chiral algebra of the SU(2)k WZW model is the Kac-Moody algebra defined by the
conserved chiral currents Ja(z), where a stands for the index labeling the generators of
the SU(2) algebra [132]. It contains a representation of the Virasoro algebra that can be
obtained from the stress-energy tensor T (z) via the relation

T (z) =
1

2(k + 2)

∑

a

(JaJa)(z) (4.32)

using the Sugawara construction [132]. For this family of models, the conformal symme-
try is enriched, allowing for heighest-weight representations with more structure.

Consider SU(2)1. This theory has two primary operators, φ0 and φ1/2, satisfying the
fusion rules

φ1/2 × φ1/2 = φ0, φ1/2 × φ0 = φ1/2, φ0 × φ0 = φ0. (4.33)

The primary field φ0 corresponds to the identity operator and φ1/2 has a spin-1
2

represen-
tation, so thatH(0)

1/2 = C2. From the fusion rules, we obtain the set of CVOs

φ
(s)
1/2,odd(z) =

(
0

1
2

1
2

)

z,s

, φ
(s)
1/2,even(z) =

( 1
2

1
2

0

)

z,s

, (4.34)

where we use the third component of the spin s = ±1 to label the internal degree of
freedom. The CB of N φ1/2 fields will alternate both even and odd CVOs (see Fig. (4.4)).
This implies that there will only be a single internal fusion channel. Note also that, given
the fusion rules, we will only obtain non-trivial results if N is an even number.

The value of the CB can be easily computed if we represent the CVOs as vertex
operators in a free bosonic theory [139, 140, 143]

φ
(s)
1/2, odd(z) = ei

π
2

(s−1) : exp

(
i
s√
2
ϕ(z)

)
:, φ

(s)
1/2, even(z) =: exp

(
i
s√
2
ϕ(z)

)
:,

(4.35)
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Figure 4.4: Graphical representation of the CB for N φ1/2 fields.

where ϕ(z) is a free boson such that 〈ϕ(z1)ϕ(z2)〉 = − log(z1 − z2). From the N -point
correlator, we obtain

F(z1, · · · , zN ; s1, · · · , sN) = ρ1/2

∏

i>j

(zi − zj)sisj/2 ,
∑

i

si = 0, (4.36)

where ρ1/2 = exp
(
iπ
2

∑
i odd(si − 1)

)
is a phase that can be interpreted as a Marshall sign

factor7. The wave function obtained from these CBs corresponds to the Haldane-Shastry
(HS) state for the choice zn = exp( i2π

N
n):

ψs1···sN ∝ ρ1/2

∏

n>m

[
sin

(
π(n−m)

N

)]snsm/2
. (4.37)

The constraints imposed by the current algebra can be exploited to obtain parent
Hamiltonians. The general construction relies heavily on the fusion properties of the
different representations of the primary fields [140]. For wave function (4.37), the parent
Hamiltonian can be related to the HS Hamiltonian [139]

HHS = −
∑

i 6=j

zizj
(zi − zj)2

(~σi · ~σj − 1) . (4.38)

This is an integrable system that is closely connected to the Heisenberg spin chain [172,
173, 174].

Note that the local symmetry derived from the SU(2) algebra allowed for a rather
straightforward relation between the primary fields and the physical degrees of freedom
of the lattice system. This will not be available in general, as we mentioned before, in
particular in non-Abelian theories. In Chapter 6, we will see how to deal with this issue
for the Ising CFT.

4.7. Wave Functions for Fractional Quantum Hall Physics
The experimental discovery of the fractional quantum Hall (FQH) effect in 1982 by Daniel
Tsui and Horst Störmer [175] had profound implications in the understanding of many-
body physics. Certain ideas such as how to define a phase of matter or the importance of a
local order parameter derived from symmetry arguments had to be revised, leading to new
insights that still dictate research directions [176, 135]. The history and phenomenology
of this phenomenon is quite extensive, so we will focus here on the most prominent wave

7This ensures the wave function is in a singlet state.
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functions that have been proposed for its study. Following the now classical work by
Moore and Read [138], these states can be interpreted as CBs obtained from RCFTs.
In this context, the complex coordinates stand for the physical positions of the different
particles in the condensate. The different internal fusion channels correspond to globally
distinct topological sectors.

In a short paper published less than a year after the original FQH experimental results,
Laughlin proposed a variational wave function 8 as an ansatz for the filling fraction ν =
1/m. It can be written as [137]

Ψm(z1, · · · , zN) =
∏

a<b

(za − zb)m × exp

(
−
∑

a

|za|2
4

)
. (4.39)

If we think of it as a joint probability distribution for all the electrons with a Gibbs form
|Ψm|2 = exp (−βU(z1, · · · , zN)), it can be interpreted as a plasma of particles interacting
via Coulomb repulsion in a uniform neutralizing background charge (we must set β = m)

U(z1, · · · , zN) = −2
∑

a<b

log |za − zb|+
1

2m

∑

a

|za|2. (4.40)

We can also obtain a similar wave function in the presence of quasiholes. In that case,
the Laughlin wave function at filling fraction ν = 1/m with two quasiholes at positions
η1, η2 is given by

Ψm(η1, η2; z1, · · · , zN) =|η1 − η2|1/m
N∏

a=1

(η1 − za)(η2 − za)×
∏

a<b

(za − zb)m (4.41)

× exp

(
−
∑

a

|za|2
4
− |η1|2 + |η2|2

4m

)
.

The connection between Chern-Simmons theories and the topological features of the FQH
effect led to interpret these wave functions as holomorphic conformal blocks [176, 135].
In order to show this, we use a free boson CFT such that the basic two-point function is
given by 〈ϕ(z)ϕ(w)〉 = − log(z − w). We define the vertex operators

V (z) =: ei
√
mϕ(z) :, H(η) =: e

i 1√
m
ϕ(η)

:, Obg = exp

(
−iρ√m

∫
d2z ϕ(z)

)
,

(4.42)
where Obg provides a neutralizing background charge, ρ is the constant fermion density,
and : · · · : stands for normal ordering. These vertex operators describe primary fields, so
computing their correlators corresponds to finding the associated CBs. It is easy to show
that

Ψm(η1, η2; z1, · · · zN) = 〈0 |H(η1)H(η2)V (z1) · · ·V (zN)Obg| 0〉 . (4.43)

Moore and Read extended this contruction to propose several fractional quantum Hall
states with interesting properties [138]. In particular, they proposed a Pfaffian wave func-
tions for a system of electrons

ΨMR(z1, · · · , zN) = Pf
(

1

za − zb

)∏

a<b

(za − zb)m × exp

(
−
∑

a

|za|2
4

)
, (4.44)

8Strictly speaking, the Laughlin wave function is not variational because it has no free parameters [176].
Even the filling fraction is completely determined by the total angular momentum.
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where the Pfaffian is defined by (we assume N = 2M electrons)

Pf(Q) =
√

det(Q) =
1

2MM !

∑

σ∈S2M

sgn(σ)
M∏

j=1

(Q)σ(2j−1),σ(2j), (4.45)

and S2M is the permutation group for 2M elements.
In the case of ν = 1/2, this wave function can be obtained from the CBs of a CFT

composed by an Ising sector and a free boson sector. Electrons are described by the vertex
operators

ψe(z) = ψ(z) : ei
√

2ϕ(z) :, (4.46)

where ψ(z) is a (chiral) Majorana fermion, and quasiholes described by

ψqh(η) = σ(η) : e
i 1
2
√
2
ϕ(η)

:, (4.47)

where σ(z) is a spin field operator. The presence of quasiholes will produce topological
degeneracies that can be codified using the different fusion channels. We will study the
Ising CFT in more detail in Section 5.4.
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CHAPTER 5

Some Aspects of the Ising Model

5.1. Classical 2D Ising Model
Albeit being one of the simplest models in statistical mechanics, the 2D classical Ising
model displays a very rich phenomenology. Since its inception, different mathematical
tools have been used to probe its properties, leading in turn to profound physical insights
[134]. Its exact solution (obtained by Onsager in 1944 [177]) still serves as a non-trivial
testing ground for new ideas in many-body physics.

The general Ising model can be defined on any lattice. However, we will deal here
with the 2D regular square lattice. Its Hamiltonian can be written as

H = −J
∑

<nm>

σnσm, (5.1)

where σn = ±1 are classical spins and < · · · > represents a sum over nearest neighbors.
The partition function becomes

Z(K) =
∑

{σn}

exp

(
K
∑

<nm>

σnσm

)
, (5.2)

where K = J/T .
For a long time, it was believed that this model at finite temperature could only de-

scribe a trivial paramagnetic (i.e. disordered) phase. This followed from Ising’s 1924 so-
lution of the 1D classical model [178]1. This idea was finally rebutted over a decade later

1Ernst Ising is sort of a tragic hero (see [179, 180]). His name has been tied to a model he did not devise
(it was proposed by his supervisor Wilhelm Lenz) and that he could not solve in a non-trivial form. Even the
modern Hamiltonian representation is due to Pauli’s contribution to the Solvay conference in 1932. Ising
left research in physics shortly after finishing his PhD, convinced that his work had no physical importance.
Being Jewish, his life became increasingly difficult during that time. After working as a teacher (his real
passion) in several parts of Germany, he eventually had to flee his native country. He spent some time in
Luxembourg working odd jobs, until he emigrated with his family to the United States in 1947 (a few years
after Onsager’s solution). As his son Thomas tells it: “In April 1947, we finally arrived in New York on
the freighter ’Lipscomb Lykes’. That spring my father went to a physics convention in Boston to get a job.
There he was asked for the first time if he was the ’Ising’ of the Ising Model.” He eventually became a
Physics Professor at Bradley University in Peoria, Illinois. He worked there until his retirement. He never
published a second paper.

63
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when Peierls proved that the Ising model in two or higher dimenions develops a non-zero
spontaneous magnetization at a low but finite temperature [181]. In 1941, Kramers and
Wannier extended this reasoning and managed to find the critical temperature at which
the transition happens [182]. Their construction was based on a duality relation between
the high-tempetarure and low-temperature partition functions.

If the system is defined on a N ×N lattice, we can write the partition function as

Z(K) = (coshK)2N
∑

{σn}

∏

<nm>

[1 + σnσm tanhK] . (5.3)

In the high-temperature regime (small K), we can expand the sum in powers of tanhK.
It is a standard exercise to show that the only nonvanishing terms correspond to configura-
tions where the spins form closed chains of neighbors [134]. These can be characterized
as all the polygon lines on the original lattice, so that

Zhigh(K) = 2N(coshK)2N
∑

polygons

(tanhK)length. (5.4)

The low-temperature regime can be studied using a different expansion. In this case, the
spins tend to align themselves with their neighbors, forming regions that share the same
spin direction. These “islands” can be separated using lines on the dual lattice. We can
then use similar geometrical terms as before, in this case polygons on the dual lattice
[134]. We obtain

Zlow(K) = 2e2NK
∑

polygons on dual lattice

e−2K(length). (5.5)

These expansions suggest the identification of two different temperatures K,K ′ related
by the equation

e−2K′ = tanhK =⇒ sinh(2K) sinh(2K ′) = 1. (5.6)

which satisfy
Z(K)

(sinh(2K))N/2
=

Z(K ′)

(sinh(2K ′))N/2
. (5.7)

Note that whenever K is large, K ′ is small, and viceversa. This implies a physical rela-
tion between the high- and low-temperature physics of the model. Kramers and Wannier
presented a similar argument (this is its modern form) to suggest that the self-dual point
should correspond to the critical point. They obtained

Kc =
1

2
log(1 +

√
2) ≈ 0.4407, (5.8)

which was verified by Onsager’s exact solution.
This result is known as Kramer-Wannier (KW) duality2. This feature has been used

extensively in the literature. One prominent application is that it can be used to define
disorder operators µn to study the high-temperature limit [132]. They are related to the
spin operators σn via a non-local operation that can be interpreted as a topological de-
fect [184, 183]. It has also been extended to more complicated geometries and to other
statistical models [185, 186, 187]. We will come back to this duality in the next sections.

2It has been pointed out in the literature that this is not a symmetry in the traditional sense [183]. This
is due to the fact that its implementation cannot be represented in general as an unitary operator.
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5.2. Ising Transverse Field Spin Chain
While it is possible to study the classical 2D Ising model working directly with the parti-
tion function (5.2), it is convenient to find other formulations where an exact solution is
readily available. This idea was already at the heart of Onsager’s original solution. Most
of the modern literature use as a reference the Ising transverse field (ITF) spin chain (first
introduced in 1964 in the seminal paper by Schultz, Mattis and Lieb [188])

H(h) = −
N∑

n=1

σxnσ
x
n+1 − h

N∑

n=1

σzn, (5.9)

where σxn, σ
z
n are Pauli matrices acting on the local Hilbert space Hn = C2. (We will

assume periodic boundary conditions.) This quantum Hamiltonian can be obtained from
the transfer matrix of the classical 2D model in the strong anisotropic limit [134, 189].
The external field h can be related to the temperature of the original statistical ensemble
(|h| < 1 is the symmetry-breaking ferromagnetic phase and |h| > 1 the paramagnetic
phase).

The exact solution of (5.9) is well-known [190, 189, 134]. The complete spectrum
can be obtained by mapping the spin variables to spinless fermions using a Jordan-Wigner
(JW) transformation

σzn = 1− 2c†ncn, σxn =
n−1∏

m=1

(1− 2c†mcm)(c†m + cm), (5.10)

so that {c†n, cm} = δnm. Using these variables, we obtain

H(h) = −h
N∑

n=1

(1− 2c†ncn)−
N−1∑

n=1

(c†n − cn)(c†n+1 + cn+1) +Q(c†N − cN)(c1 + c†1),

(5.11)

where we defined the parity operator

Q =
N∏

n=1

(1− 2c†ncn) = (−1)
∑N
n=1 c

†
ncn . (5.12)

It is easy to show that [H(h), Q] = 0. This implies that we can decompose the total
Hilbert space into two sectors H = H0 ⊕ H1, where H0 (resp. H1) contains all states
with even (resp. odd) fermionic parity, i.e., such that 〈Q〉 = 1 (resp. 〈Q〉 = −1). We
will focus on sector H0 unless we state so otherwise. In that case, periodic boundary
conditions in the spin variables translates into antiperiodic boundary conditions for the
fermions. Hamiltonian (5.11) is a translationally invariant Hamiltonian, so we can Fourier
transform the modes

c†n =
1√
N

∑

k

eiknc†k, (5.13)

where we take3

k =
π

N
(2m−N + 1), m = 1, · · · , N. (5.14)

3In order to obtain antiperiodic boundary conditions on the fermions, we are assuming that N is even.
In case it is odd, we must shift the momenta.
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It follows that

H(h) = 2
∑

k>0

[
εk

(
c†kck + c†−kc−k

)
+ iδk

(
c†kc
†
−k + ckc−k

)]
, (5.15)

up to an additive constant, where

εk = h− cos k, δk = sin k. (5.16)

If we use a (fermionic) Bogoliubov transformation
(
dk
d†−k

)
=

(
cos

(
θk
2

)
1− i sin

(
θk
2

)
σx
)(

ck
c†−k

)
, (5.17)

we can write the Hamiltonian as

H(h) = 2
∑

k>0

∆k

(
d†kdk + d†−kd−k − 1

)
+ const., (5.18)

where we define the dispersion relation

∆k =
√
ε2k + δ2

k =

√
(h− 1)2 + h sin2

(
k

2

)
(5.19)

and we impose

cos

(
θk
2

)
=

√
∆k + εk

2∆k

, sin

(
θk
2

)
= −sgn(δk)

√
∆k − εk

2∆k

. (5.20)

Note that for small momenta, the dispersion relation (5.19) will have a relativistic form
with a mass m2 ∝ (h − 1)2. This implies that the critical point hc = 1 can be related
to a massless theory. We will come back to this point in more detail when we take the
continuum limit of the theory close to the critical point.

The normalized ground state in the original fermionic variables can be found by in-
verting the Bogoliubov tranformation

|gs(h)〉 =
∏

k>0

[
cos

(
θk
2

)
+ i sin

(
θk
2

)
c†kc
†
−k

]
|0〉c (5.21)

=
∏

k>0

cos

(
θk
2

)
exp

[∑

k>0

i tan

(
θk
2

)
c†kc
†
−k

]
|0〉c ,

where |0〉c is the state defined by cn |0〉c = 0, ∀n. The ground state (5.21) has the form of
a Bardeen-Cooper-Schriefer (BCS) state. We can construct the rest of the energy eigen-
states by acting on |gs(h)〉 with the creation operators that diagonalize the Hamiltonian.
In order to remain in the even sector H0, we must use an even number of these creation
operators.

A Primer on BCS States
Now that we know that the ground state of the ITF spin chain (5.21) can be written as
a BCS state, let us consider them in their general form. Given a collection of (spinless)
fermionic modes {cn}Nn=1 on a lattice, we can define the BCS many-body wave function

|ψBCS〉 =
∏

n<m

(
unm + vnmc

†
nc
†
m

)
|0〉c , (5.22)
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where |0〉c is the state annihilated by all the operators cn, and unm, vnm are complex
numbers that satisfy the normalization condition |unm|2 + |vnm|2 = 1. Furthermore, we
impose unm = umn and vnm = −vmn. This state can be written as

|ψBCS〉 = CN exp

(∑

n<m

gnmc
†
nc
†
m

)
|0〉c , (5.23)

where gnm = vnm/unm is the pairing function (or more generally pairing matrix) and
CN =

∏
n<m unm is a normalization constant. Note that gnm is a (generally complex)

antisymmetric tensor gnm = −gmn.
We can interpret this wave function as a grand canonical state of pairs created by the

operator P =
∑

n<m gnmc
†
nc
†
m. From the fermionic anticommutation relations, it can be

shown that the wave function amplitude for 2M fermions occupying sites r(1) < · · · <
r(2M) is given by

Ψ(r(1), · · · , r(2M)) = CNPf(M), (5.24)

where M is the 2M × 2M antisymmetric matrix

(M)ij = gr(i),r(j), (5.25)

and we make use of the Pfaffian

Pf(Q) =
√

det(Q) =
1

2MM !

∑

σ∈S2M

sgn(σ)
M∏

j=1

(Q)σ(2j−1),σ(2j), (5.26)

where S2M is the permutation group for 2M elements.
BCS wave functions are Gaussian states that arise naturally from mean-field solutions

of Hamiltonians describing superconductivity [189, 191]. In that context, both uij and vij
can be written in terms of single-particle energies εk and the pairing interaction potential
Vk,k′ . Being spinless fermions, we say that these states correspond to p-wave supercon-
ductivity, due to the fact that the wave functions for the spatial degrees of freedom are
antisymmetric.

5.3. KW Duality for the Ising Transverse Field Spin Chain
Being a limit of the classical statistical system, we expect Hamiltonian (5.9) to inherit
most of its important symmetries. The Z2 symmetry associated to the classical global spin
flip σn 7→ −σn gets translated into σxn 7→ −σxn in the spin chain and as parity preservation
in the fermionic variables. The Kramers-Wannier duality also has consequences for the
quantum model.

In the spirit of the original relation between high- and low-temperature variables, let us
redefine the Hamiltonian using domain walls as the basic variables [192]. In the transverse
eigenbasis σxn |±〉n = ± |±〉n, having a domain wall corresponds to adjacent sites having
different eigenvalues

〈
σxnσ

x
n+1

〉
= −1. We define

µxn+1/2 = σxnσ
x
n+1 (5.27)

as a natural operator to determine a change of domain. Just as the classical Hamiltonian
quantifies the number of domain walls,

∑
n µn+1/2 does the same for the spin chain. On
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the other hand, flipping a local spin in the transverse basis σzn |±〉n = |∓〉n can create or
destroy a local domain. If we define

µzn+1/2 =
n∏

m=1

σzm, (5.28)

we can write a term that “penalizes” domain walls as

µzn−1/2µ
z
n+1/2 = σzn. (5.29)

Using this mapping, we can rewrite the ITF Hamiltonian as

H(h) = −
N∑

n=1

µxn+1/2 − h
N∑

n=2

µzn−1/2µ
z
n+1/2 − hQµzN+1/2µ

z
1+1/2. (5.30)

Ignoring for a moment the subtleties regarding the boundary term (see [192] for a more
detailed explanation), note that the structure of the Hamiltonian is very similar to the one
we had in the original variables. We can then propose a mapping

σzn 7→ µxn+1/2, σxn 7→ µzn+1/2, h 7→ 1

h
, (5.31)

(up to an irrelevant scaling constant) that maps the “high-temperature” (|h| > 1) phase to
the “low-temperature” (|h| < 1) phase and viceversa [192]. Note that the self-dual point
h = 1 indeed corresponds to the critical point.

In order to see the action of this mapping on the fermionic variables, it is illuminating
to write the operators in terms of Majorana fermions

a2n−1 = cn + c†n, a2n =
cn − c†n

i
. (5.32)

Using them, Hamiltonian (5.9) becomes 4

H(h) = i
∑

n

a2na2n+1 + ih
∑

n

a2n−1a2n. (5.33)

We propose that the action of the KW transformation on the Majorana fermions is given
simply by

ar 7→ ar+1. (5.34)

This produces H(h) 7→ hH( 1
h
) as expected 5. As we see, the KW duality can be inter-

preted naturally as a different way of grouping the Majorana modes into fermionic degrees
of freedom: (2n− 1, 2n) 7→ (2n, 2n + 1). We will find an analogous relation in the next
chapter when we consider the braiding properties of the Ising conformal blocks.

4If this Hamiltonian is defined with open boundary conditions, it corresponds to Kitaev’s Majorana
wire [193]. The symmetry-breaking ferromagnetic phase of the Ising model |h| < 1 gets translated into
unpaired Majorana modes at each boundary. They can be used to define a topologically protected (non-
local) fermionic mode that can be used in quantum computation.

5One must be careful with the term a2N . This is closely related to cumbersome boundary term that
appears in the spin variables. Assuming we are in the even partity sector 〈Q〉 = 1, the fermions will have
antiperiodic boundary conditions, so a2N 7→ −a1.
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5.4. Majorana Fermions and the (Chiral) Ising CFT
From the dispersion relation (5.19), we expect the low-energy excitations to be around
k = 0. In that limit, we have

∆2
k ≈ (h− 1)2 + h

( |k|
2

)2

. (5.35)

We can use this fact to find an effective field theory to describe the thermodynamic limit
of Hamiltonian (5.9) by doing a gradient expansion. If we define the complex coordinates
z = x+ it, we can show that the associated action can be written as [134, 189]

S =
1

2π

∫
d2z
(
ψ∂̄ψ + ψ̄∂ψ̄ + imψ̄ψ

)
, (5.36)

where ∂ = ∂z = 1
2
(∂x − i∂t), ∂̄ = ∂z̄ = 1

2
(∂x + i∂t). This action corresponds to a free

Majorana fermion [132]. As expected from the dispersion relation, the corresponding
dynamics is relativistic. The mass term is proportional to the distance to the critical point
m = (1− h). Note that doing a KW tranformation, a small mass implies

h = 1−m 7→ 1

h
=

1

1−m ≈ 1 +m, (5.37)

so that the mass term effectively changes sign.
The classical equations of motion are

∂̄ψ =
im

2
ψ̄, ∂ψ̄ = −im

2
ψ. (5.38)

This implies that in the massless limit m = 0, the field ψ (resp. ψ̄) is purely holomorphic
(resp. antiholomorphic). Moreover, the theory becomes conformally invariant and can be
studied as a CFT [132].

In the conformal limit, the corresponding propagators are easy to compute:

〈ψ(z)ψ(w)〉 =
1

z − w,
〈
ψ̄(z̄)ψ̄(w̄)

〉
=

1

z̄ − w̄ . (5.39)

The holomorphic part of the energy-momentum tensor is then

T (z) = −2πTzz = −1

2
: ψ∂ψ : (z), (5.40)

where we defined the normal-ordered product

: ψ∂ψ : (z) ≡ lim
w→z

(ψ(z)∂ψ(w)− 〈ψ(z)∂ψ(w)〉) . (5.41)

We can use Wick’s theorem to compute the relevant OPEs [132]

T (z)ψ(w) ∼ ψ(w)

2(z − w)2
+
∂ψ(w)

z − w , T (z)T (w) ∼ 1

4(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w .

(5.42)
From these equations, we deduce that the theory has central charge c = 1

2
and the confor-

mal weights of ψ (resp. ψ̄) are h = 1
2
, h̄ = 0 (resp. h = 0, h̄ = 1

2
).
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Remarkably, we can associate the conformal limit of the Ising model to the simplest
example in the family of minimal CFTs. These models have the advantage of having a
finite number of irreducible representations of the Virasoro algebra [132]. Their properties
can be obtained by imposing consistency conditions on the decoupling of null vectors, i.e.,
linear combinations of descendant states that vanish as a consequence of unitarity. These
constraints can be characterized via the Kac determinant. Relevant to our discussion,
some of the resulting theories are associated to the critical point of statistical models with
a discrete group symmetry (see [132, 134] for a detailed exposition).

In a nutshell, minimal models can be classified by a pair of coprime integers (i.e., they
do not contain common divisors) p, q such that p > q ≥ 2. The associated central charge
is given by

cpq = 1− 6
(p− q)2

pq
. (5.43)

The conformal weights of the Virasoro representations φrs can be expressed as

hrs =
(rp− sq)2 − (p− q)2

4pq
, 1 ≤ r ≤ q − 1, 1 ≤ s ≤ p− 1, (5.44)

and they obey the relations

hrs = hq−r,p−s = hr+q,s+p. (5.45)

The Ising model can be obtained from (p, q) = (4, 3). In that case, c = 1
2
. The primary

fields correspond to (we will focus here on the holomorphic sector)

1↔ φ1,1 (h1,1 = 0) , ψ ↔ φ2,1

(
h2,1 =

1

2

)
, σ ↔ φ1,2

(
h1,2 =

1

16

)
. (5.46)

Field ψ corresponds to the Majorana fermion we obtained from the low-energy limit of
the ITF Hamiltonian. Field σ is related to the original spin variables defined on the lattice.
They obey the (non-trivial) fusion rules

σ × σ = 1 + ψ, ψ × ψ = 1, σ × ψ = σ, (5.47)

which can be summarized in the fusion cofficients N1
σσ = Nψ

σσ = Nσ
σ1 = Nσ

σψ = 1.

5.5. Conformal Blocks of the Ising CFT
We would like to compute all the relevant conformal blocks (CBs) for the Ising CFT.
One possible route is similar to the one presented for 4-point functions in Chapter 4. By
considering the possible fusion channels, one reduces the problem to a set of second-
order partial differential equations. These constraints are derived from the decoupling
conditions imposed on the null vectors of the theory [194, 134]. Clearly, this method has
the advantage of being completely general and appliable to any minimal CFT. However,
going beyond 4-point functions is already quite challenging. We will use instead the
fact that two copies of the Ising CFT can be described by a free bosonic theory. This
particular “bosonization” was first exploited in 1977 by Zuber and Itzykson in the context
of the classical statistical model [195].

If φ(z) is a holomorphic bosonic field, two copies of the Majorana fermions ψ1, ψ2

can be represented as [132]

ψ1(z) + iψ2(z) = eiφ(z). (5.48)
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Figure 5.1: A conformal block using only σ field operators grouped in reference pairs
(σ(z2k−1), σ(z2k)). The equivalance between the two representations is obtained from the
relation mk = pk−1 + pk(mod 2).

Note that everything in this relation is already in purely holomorphic terms. Writing the
chiral spin operator σ(z) is a little more complicated. In this case, we must first consider
two copies of the full non-chiral field [194]

σ1(z, z̄)σ2(z, z̄) =
√

2 cos

(
φ(z)− φ̄(z̄)

2

)
, (5.49)

where we also make use of the antiholomorphic bosonic field φ̄(z̄). Since the two copies
do not interact with each other, their joint correlator provide the square of the correlation
functions of the original Ising model. This can be used to obtain full correlators such as

〈σ(z, z̄)σ(w, w̄)〉2 = 2

〈
cos

(
φ(z)− φ̄(z̄)

2

)
cos

(
φ(w)− φ̄(w̄)

2

)〉
=

1

|z − w|1/2 .
(5.50)

In a similar fashion, the non-chiral disorder operator µ can be expressed as

µ1(z, z̄)µ2(z, z̄) =
√

2 sin

(
φ(z)− φ̄(z̄)

2

)
. (5.51)

These two representations can be used to find their chiral counterparts [196, 197]. The
key is to consider both the braiding properties of the fields and their fusion rules.

More concretely, consider 2N σ fields located at position z1, · · · , z2N (radially or-
dered). If we group them in reference pairs (σ(z2k−1), σ(z2k)), each one will define a
local fusion channel σ2k−1 × σ2k → 1 + ψ. The different global channels can then be la-
beled using the vector m = (m1, · · · ,mN), with mn = 0 (resp. mn = 1) representing an
identity operator 1 (resp. a fermion ψ) in the n-th local fusion channel. As we discussed
in Section 4.3, we can label all the CBs using the intermediate fusion channels. Luckily,
the canonical multiperipheral basis can be easily related to the representation in terms of
vector m (see Fig. (5.1)).

Given that the identity 1 and the fermions ψ1, ψ2 can be represented easily in the
holomorphic sector of the bosonic theory, it is natural that fused pairs of σ fields produce
suitable holomorphic relations. Indeed, it can be argued that [197]

Fm(z1, · · · , z2N)2 ≡ 〈σ(z1) · · ·σ(z2N)〉2m (5.52)

∝
〈

N∏

j=1

[
exp

(
i
φ(z2j−1)− φ(z2j)

2

)
+ (−1)mj exp

(
−iφ(z2j−1)− φ(z2j)

2

)]〉
.
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1 3 5 7 9 11 13

2 4 6 8 10 12 14

q = 0 1 0 1 1 0

Figure 5.2: Graph representing one of the possible pairs of macrogroups for 14 σ fields,
corresponding to `q = (1, 3, 6, 8, 9, 12, 14) and `′q = (2, 4, 5, 7, 10, 11, 13).

As a consistency check, consider the 4-point correlator. Fermionic parity enforces that
the fusion channels for both reference pairs are equal, so that m1 = m2 = m. We have

Fm(z1, · · · , z4)2 ∝
〈
eiφ(z1)/2e−iφ(z2)/2eiφ(z3)/2eiφ(z4)/2

〉
(5.53)

+
〈
e−iφ(z1)/2eiφ(z2)/2e−iφ(z3)/2eiφ(z4)/2

〉

+ (−1)m
〈
eiφ(z1)/2e−iφ(z1)/2e−iφ(z3)/2eiφ(z4)/2

〉

+ (−1)m
〈
e−iφ(z1)/2eiφ(z2)/2eiφ(z3)/2e−iφ(z4)/2

〉

=2

(
z13z24

z12z34z14z23

)1/4

+ (−1)m2

(
z14z23

z12z13z24z34

)1/4

.

Defining the cross-ratio x = z12z34
z14z32

, we can write after some algebra

Fm(z1, · · · , z4) ∝ 1

z
1/8
12 z

1/8
34

√
(1− x)1/4 + (−1)m(1− x)−1/4, (5.54)

which indeed corresponds to the well-known result [132].
Using the holomorphic representation (5.52) and the multiperipheral basis, all the CBs

can be written in a more manageble form [198]. Before stating the general formulas, let
us introduce some extra notation. First, we will need certain bipartitions of the σ fields
that associate different elements of the same reference pair to different groups. We call
these macrogroups `q, `′q and they are generated from an integer q = 0, · · · , 2N−1 − 1
according to [199, 198, 3]

`q(k) = 2k − 1

2
(1 + sk), `′q(k) = 2k − 1

2
(1− sk), (5.55)

where qk are the binary digits of q = (q1, q2, . . . , qN−1),

sk =
k−1∏

i=1

(1− 2qi) , (5.56)

and s1 = 1 by definition. We can represent these bipartitions by combinatorial graphs
(see Fig.5.2). Using this notation, we define

z`q =
∏

k<m

z`q(k),`q(m), (5.57)
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where zab = za − zb. We will also need the combinatorial sign given by

εpq ≡ (−1)
∑
k pkqk =

N−1∏

k=1

(1− 2pkqk) (5.58)

=
N−1∏

k=1

(1 + pk(sksk+1 − 1)) ≡ ε̃ps,

expressed in terms of the binary expansion of both q and the multiperipheral label p =
0, · · · , 2N−1 − 1. All these definitions allow us to write the CBs of 2N σ fields (5.52) as
[198]

Fp(z1, · · · , z2N) =
1

2
N−1

2

2N∏

a<b

z
−1/8
ab




2N−1−1∑

q=0

εpq
√
z`qz`′q




1/2

. (5.59)

Note that in the binary expansion of the multiperipheral label p, pn = 0 (resp. pn = 1)
represent an internal fusion channel carrying an identity operator 1 (resp. a fermion ψ)
(see Fig. (5.1)). Also, note that the sum inside the square root is the only part that depends
on p via the combinatorial sign εpq.

It is important to remark that we are assuming radial ordering

|z1| ≥ |z2| ≥ · · · ≥ |z2N |. (5.60)

Moreover, if |zn| = |zm| and n < m, we will assume that the angular parts in the polar
decomposition are ordered with respect to the principal value of the logarithm. In other
words, if zn = exp(an + ibn), whenever an = am, we will assume

−π < bn < bm ≤ π (5.61)

if n < m.
The ordering of the coordinates will be important because it ensures that we consis-

tently choose the same branches of the (complex) square root. In order to see this, let us
define

Bq =
N∏

n<m

[(
1− z`q(m)

z`q(n)

)(
1−

z`′q(m)

z`′q(n)

)] 1
2

. (5.62)

Using this notation, we note that we can write the p-dependent part of (5.59) using only
the main branch of the square root

Fp ∝




2N−1−1∑

q=0

εpq
Bq

B0




1/2

. (5.63)

Note that we can obtain CBs for coordinates which are not radially ordered by analytic
continuation of these expressions. This is done consistently by means of the Ising braid
matrices [131, 162].

We can also incorporate fermions. The fusion rule ψ × ψ → 1 implies that 2M
Majorana fermions have a single fusion channel. We can compute that CB using Wick’s
theorem

〈ψ(w1) · · ·ψ(w2M)〉 = Pf
(

1

wn − wm

)
, (5.64)
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where Pf is the Pfaffian (5.26). If we also include 2N σ fields, we will have in general
2N−1 different fusion channels. The CB corresponding to 2M fermions and two σ fields
was found by Moore and Read [138]. In that context, it was interpreted as a trial wave
function for a pair of excitations in a quantum Hall system at filling fraction ν = 1/2.
Nayak and Wilczek extended this result to four σ fields and noted that the resulting de-
generacy can implement a non-Abelian representation of the braid group [199]. From
these results, Ardonne and Sierra found a general expression for 2M fermions and 2N σ
fields [198]

F (2N,2M)
p (z1, · · · , z2N ;w1, · · · , w2M) =

1

2
N−1

2
+M

2N∏

a<b

z
−1/8
ab




2N−1−1∑

q=0

εpq
√
z`qz`′q



−1/2

×




2N−1−1∑

q=0

εpq
√
z`qz`′q Pf

(
h`q,`′q(wn, wm)

wn − wm

)
 ,

(5.65)

where

h`,`′(wn, wm) =

[
N∏

a=1

(wn − z`(a))(wm − z`′(a))

(wn − z`′(a))(wm − z`(a))

]
+ (n↔ m). (5.66)

We will use expressions (5.59) and (5.65) in Chapter 6 to construct lattice wavefunc-
tions. In the spirit of Section 4.4, we will associate the corresponding physical degrees
of freedom to the local fusion channels of the σ fields. Remarkably, we will show that
the resulting states for certain coordinate configurations can be related to the low-energy
states of the ITF Hamiltonian (5.9) at criticality (h = 1). We will also study 2D spin
systems and show that their topological properties are consistent with the weak-pairing
phase of a p+ ip superconductor.



CHAPTER 6

Ising Conformal Blocks as Spin Wave
Functions

6.1. Introduction

Even though superconductivity was discovered experimentally in 1911 by Kamerlingh
Onnes [200], a sufficiently predictive microscopic theory was not available until the work
of Bardeen, Cooper and Schriefer, published in 1957 [201] (known today as BCS theory).
One of the fundamental features of this construction is the realization of the ground state
of the system as a grand canonical state of fermionic pairs. Following these steps, several
other many-body systems have benefited from these insights and extended the result to
other non-trivial Gaussian states.

As we discussed in Section 5.2, current understanding of the 2D classical Ising model
is closely related to BCS theory. More concretely, the ground state of the associated one-
dimensional quantum spin chain can also be constructed from a condensate of fermionic
pairs [190, 189, 134]. This is a remarkable result if we consider that both models have
very different descriptions and applications.

BCS theory has remained an important starting point for the analysis of more ex-
otic phenomena. For instance, in the past few decades two-dimensional superconductors
have become testbeds for novel topological features, some of them closely related to the
fractional quantum Hall (FQH) effect. Read and Green [191, 202, 203] established a con-
nection between the weak pairing regime of the p+ ip superconductor and the topological
phase defined by the Moore-Read Pfaffian state [138]. The robustness of these phases to
local perturbations have turned them into strong candidate schemes for quantum comput-
ing [136].

In this chapter, we provide a characterization of many-body lattice wave functions
obtained from the chiral conformal blocks (CBs) of the Ising CFT [2, 3]. We show both
analytical and numerical evidence that these states can be understood as BCS states. We
use this fact to characterize a general family of 1D spin systems and contruct their parent
Hamiltonians. They are shown to be closely related to the Ising transverse field (ITF) spin
chain. Some connections to Temperley-Lieb-Jones (TLJ) algebras will be discussed. This
construction provides an analytical proof that the ground state of the finite critical ITF
spin chain can be obtained exactly from the CBs of its infinite infrared limit, i,e., from
the Ising CFT. We also study 1D excitations by means of wave functions obtained from

75
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Figure 6.1: Graphical representation of the bilocal vertex operator V b
ac(z1, z2).

CBs with different asymptotic boundary conditions. Finally, we provide a brief study of
the 2D states obtained from the CBs in the OPE regime. We use both the entanglement
spectrum [204] and the scaling of the entanglement entropy to relate these states to the
weak pairing phase of the p+ ip superconductor.

6.2. Lattice States from the Ising Vertex Operators
We will be interested mainly in wave functions constructed from CBs containing only 2N
spin operators

F (2N)
p (z1, · · · , z2N) = 〈σ(z1) · · ·σ(z2N)〉p . (6.1)

Given the fusion rules, a pair of σ fields can be seen as a single degree of freedom (see
Section 5.5 and Fig. (5.1)). This allows us to write the fusion channels in terms of local
binary variables.

The reference pairs (σ(z2n−1), σ(z2n)) define local fusion channels σ2n−1 × σ2n →
1 + ψ. The different CBs can then be labeled using the vector m = (m1, · · · ,mN), with
mn = 0 (resp. mn = 1) representing an identity operator 1 (resp. a fermion ψ) in the
n-th local fusion channel. We will use p to represent the CBs in the multiperipheral basis
and m in the local, pairwise fusion basis.

The local fusion produces bilocal chiral vertex operators

V b
ac(z2n−1, z2n) : Hc → Ha, a, b, c = 1, ψ, (6.2)

where b = mn corresponds to the fusion channel of reference pair [σ(z2n−1), σ(z2n)], Ha

are the Virasoro representations associated to the corresponding primary fields, and we
require the conservation of fermionic parity at each vertex (see Fig.(6.1)). We can use
these operators to express explicitly the inner structure of each CB.

Let us now consider the 2N -dimensional Hilbert space H obtained from N spinless
fermionic modes {cn}Nn=1 and define the 2× 2 operator matrix

A(n)(z2n−1, z2n) =

(
V 1
11 c†nV

ψ
1ψ

c†nV
ψ
ψ1 V 1

ψψ

)
. (6.3)

This yields the map

A(n)(z2n−1, z2n) :

(
H1 ⊗He

Hψ ⊗Ho

)
→
(
H1 ⊗He

Hψ ⊗Ho

)
, (6.4)
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whereHe (resp. Ho) is the Fock space with even (resp. odd) number of fermions

He =
{
|0〉c , c†i1c

†
i2
|0〉c , · · ·

}
, Ho =

{
c†i1 |0〉c , c

†
i1
c†i2c

†
i3
|0〉c , · · ·

}
, (6.5)

so that H = He ⊕ Ho. The product of N matrices of type A gives the 2 × 2 operator
matrix

Φ(N)(z1 · · · , z2N) = A(1)(z1, z2) · · ·A(N)(z2N−1, z2N)

=

(
Φ

(N)
ee Φ

(N)
eo

Φ
(N)
oe Φ

(N)
oo

)
. (6.6)

Using this notation, we have that the operator Φ
(N)
ee acting on H1 ⊗ He defines the (un-

normalized) state
|Ψee〉 =

〈
0
∣∣Φ(N)

ee

∣∣ 0
〉
|0〉c ∈ He, (6.7)

where 〈0| · · · |0〉 corresponds to the expectation value in the vacuum of the CFT. Note that
|Ψee〉 is a many-body fermionic state that can be mapped to a lattice spin wave function
via a Jordan-Wigner (JW) transformation (5.10).

As noted in Section 4.5, this construction is very similar to matrix product states
(MPS) obtained from CFT [139, 140, 141, 142, 143, 144, 145, 146, 147]. In both cases,
the ancillary degrees of freedom are described by a quantum field theory and the resulting
many-body wave function describes a lattice system. As a matter of fact, note that the
wave function amplitudes |Ψee〉 corresponds to CBs, i.e., to chiral correlators

Ψ(ee)
m = 〈m|Ψee〉 (6.8)

=
〈
0
∣∣V m1

1m1
(z1, z2) · · ·V mN

mN1
(z2N−1, z2N)

∣∣ 0
〉

= Fm(z1, · · · , z2n),

where |m〉 = |m1 · · ·mN〉. The present formulation highlights both the inner (i.e., entan-
glement) structure of these states and its relation to the physical degrees of freedom.

We can also contruct other states by adding fermions to the asymptotic states of the
CFT (within the operator-state correspondence [132]), in particular

|Ψoo〉 =
〈
ψ
∣∣Φ(N)

oo

∣∣ψ
〉
|0〉c ∈ He, (6.9)

where |ψ〉 ∈ Hψ. As we will see in a later section, these wave functions can be natural
ansätze for low-energy excited eigenstates.

6.3. First-Order Analysis: OPE Approximation
The construction we have discussed so far is quite general. In order to get a more intuitive
picture of these states, we can consider a first-order approximation using the operator
product expansion (OPE). This scheme will allow us to get a glimpse of the structure of
state |Ψee〉 using simplified operators.

The full expression of the OPE of two σ fields is given by [132]

σ(z1)σ(z2) =
1

z
1/8
12

(∑

α∈V1

zhα12 C
α
σσα

(
z1 + z2

2

)
+
∑

β∈Vψ

z
hβ
12C

β
σσβ

(
z1 + z2

2

))
, (6.10)

where z12 = z1 − z2, α (resp. β) are the fields with conformal weights hα (resp. hβ)
that generate the Virasoro representation H1 (resp. Hψ) by acting on the vacuum, and
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Cα
σσ, C

β
σσ are constants fixed by 3-point functions. (Note that we are using a symmetrized

version of the OPE, instead of pinning the resulting operators on z2.) If we only keep the
lowest orders in the expansion, we get the familiar expression

σ(z1)σ(z2) ∼ 1

z
1/8
12

(
1 +

(z12

2

)1/2

ψ

(
z1 + z2

2

))
, (6.11)

where we used the fact that Cψ
σσ = 1/

√
2.

Assume now that we have N pairs of σ fields, parametrized by

z2n−1 = wn −
1

2
δn, z2n = wn +

1

2
δn. (6.12)

Using this notation and the OPE, we can write the approximate expression for (6.3)

A(n) ∼ 1

δ
1/8
n

[
12 +

(√
δn
2
c†nψ(wn)

)
σx

]
, (6.13)

where σx =

(
0 1
1 0

)
is one of the Pauli matrices. Note that this approximation implies

V 1
11 = V 1

ψψ ∼
1

δ
1/8
n

1, V ψ
1ψ = V ψ

ψ1 ∼
1√
2
δ3/8
n ψ(wn). (6.14)

Given that (c†n)2 = 0, we have

A(n) ∝ exp

(√
δn
2
c†nψ(wn)σx

)
, (6.15)

so that (6.6) becomes

Φ(N) ∝ exp

[
N∑

n=1

(√
δn
2
c†nψ(wn)

)
σx

]
. (6.16)

Now, using the fact that the vacuum of the Ising CFT is a free Gaussian state for the
Majorana fermions [132], we employ the familiar identity

〈exp(A)〉Gaussian = exp

(
1

2

〈
A2
〉

Gaussian

)
(6.17)

(assuming 〈A〉Gaussian = 0) to obtain

〈
0
∣∣Φ(N)

ee

∣∣ 0
〉
∝ exp

[∑

n<m

√
δnδm
2
〈ψ(wn)ψ(wm)〉 c†nc†m

]

= exp

[∑

n<m

√
δnδm

2 (wn − wm)
c†nc
†
m

]
. (6.18)

Compare this to Eq. (5.23). We conclude then that |Ψee〉 is a BCS state defined by the
(real-space) pairing function

g(OPE)
nm =

√
δnδm

2(wn − wm)
. (6.19)
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Note that this result holds for arbitrary complex coordinates and only depends on the va-
lidity of the OPE approximation. One may wonder if this expansion is really needed to
guarantee the BCS structure of the lattice wave function. As we will show in a later sec-
tion, numerical calculations suggests that this result extends beyond the OPE expansion,
albeit with a different pairing function. We will also discuss some aspects regarding a full
analytical proof of this fact.

If |zn| = 1, it is also convenient to use the conformal transformation that maps the
plane to the cylinder

z 7→ exp(iθ). (6.20)

In this setting, we parametrize the coordinates as

θ2n−1 = φn −
1

2
εn, θ2n = φn +

1

2
εn, (6.21)

so that the OPE can be written as

σ(θ2n−1)σ(θ2n) ∼
(

1

2 sin
(
εn
2

)
)1/8 (

1 + sin1/2
(εn

2

)
ψ(φn)

)
. (6.22)

Given that on the cylinder we have

〈ψ(φ1)ψ(φ2)〉cyl =
1

2 sin
(
φ1−φ2

2

) , (6.23)

a similar analysis yields a BCS state with the pairing function

g(OPE, cyl)
nm =

√
sin
(
εn
2

)
sin
(
εm
2

)

2 sin
(
φn−φm

2

) . (6.24)

This representation is particularly useful for lattice configurations which are periodic,
such as cylinders. Note again that this analysis holds for arbitrary configurations, allowing
for complex θn.

6.4. 1D Wave Functions
We focus now on a one-dimensional configuration. For this purpose, we choose the 2N
coordinates to be given by zk = exp(iθk), where (see Fig. (6.2))

θk =
2π

2N

(
k + (−1)kδ −N

)
, (6.25)

and δ ∈ (−1
2
, 1

2
) is a fixed parameter. Using this parametrization and the exact expression

for the CBs (5.59), we can rewrite the wavefunction amplitudes (6.8) as

Ψ(ee)
p (δ) =

1

Ñ0




2N−1−1∑

q=0

εpqAq(δ)




1/2

, (6.26)

where

Aq =
N∏

n>m

[
sin

θ`q(n) − θ`q(m)

2
sin

θ`′q(n) − θ`′q(m)

2

] 1
2

, (6.27)
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Figure 6.2: Coordinate configuration on the complex plane for a 1D system with 12 spins.
Note that the reference pairs are uniformly distributed, so the wave function is translation-
ally invariant for all values of ε = δ + 1

2
.

and Ñ0 is a normalization constant

Ñ2
0 =

NN/2

2(N−1)(N−2)/2
. (6.28)

Equation (6.27) follows from the well-known identity

zn − zm = 2i exp

(
i
θn + θm

2

)
sin

(
θn − θm

2

)
. (6.29)

We can massage these expressions to obtain more suitable equations. We will leave all
the details for the next two subsections and quote the main results.

First, we can also write (6.27) in terms of the auxiliary spins (5.56)

A({sk}) =
N∏

j>i

sin

[
π

N

(
j − i+

1 + 2δ

4
(sj − si)

)]
. (6.30)

Note that for all values of δ, the resulting wave function describes a translationally invari-
ant spin chain with periodic boundary conditions. This is a consequence of the fact that
we are describing physical degrees of freedom on the lattice by means of pairs of σ fields.
The centers-of-mass of the pairs are uniformly distributed on the circle, while their size is
constant for fixed δ

θ2k − θ2k−1 =
2π

N
(
1

2
+ δ) ≡ 2π

N
ε, (6.31)

θ2k + θ2k−1

2
=

2π

N

(
k − 2N + 1

2

)
.
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In this representation, there is an exponentially large number of numerical operations
that need to be performed to obtain each wave function amplitude. Luckily, we can obtain
a determinant form for these particular configurations that simplifies the calculations.
Once again, we make use of the pair-wise fusion basis m = (m1, · · · ,mN). It can be
shown that the normalized wave function amplitudes can be written as

Ψ(ee)
m (δ) =

(
det(Fm ∗ V )

det(V )

)1/2

, (6.32)

where Fm ∗ V is the element-wise matrix product (also known as the Hadamard product
of matrices)

(Fm ∗ V )rt = (Fm)rt(V )rt, (6.33)

obtained from matrices

(V )rt = exp

(
i
2π

N
r(t− 1)

)
(6.34)

and

(Fm)rt =





cos
[
π

4N
(1 + 2δ) (2t−N − 1)

]
, mr = 0,

i sin
[
π

4N
(1 + 2δ) (2t−N − 1)

]
, mr = 1.

(6.35)

Determinant expression (6.32) can also allow us to write |Ψee(δ)〉 as a BCS state. If
we define the lattice momenta as

k =
π

N
(2m−N − 1), m = 1, · · · , N (6.36)

we can write the normalized state as

|Ψee(δ)〉 = CN(δ) exp

(∑

n<m

g̃nm(δ)c†nc
†
m

)
|0〉c , (6.37)

where

CN(δ) =
∏

k

√
cos

[
(1 + 2δ)

4
k

]
, (6.38)

and g̃nm = gn−m with

gr = (−1)r
2

N

∑

k>0

tan

[
(1 + 2δ)

4
k

]
sin (kr) . (6.39)

Note that this result is exact and does not depend on any approximation. We also highlight
that this is further evidence that |Ψee〉 as defined in (6.7) has a BCS structure beyond the
OPE regime.

Determinant Form for the 1D Wave Function
We can rewrite the wave function amplitudes as (recall that s1 = 1 by definition)

Ψ(ee)
p (δ) =

1

Ñ0


 ∑

{s1=1,s2=±1,··· ,sN=±1}

ε̃psA({sk})




1/2

(6.40)
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where ε̃ps was defined in Eq. (5.58) and

A({sk}) =

( N∏

j>i

sin

[
π

N

(
j − i+

1 + 2δ

4
(sj − si)

)]
(6.41)

sin

[
π

N

(
j − i− 1 + 2δ

4
(sj − si)

)])1/2

.

Using the fact that (see Appendix A.1)

N∏

j>i

sin
[ π
N

(
j − i+

α

4
(sj − si)

)]
=

N∏

j>i

sin
[ π
N

(
j − i− α

4
(sj − si)

)]
, (6.42)

for arbitrary real α, we can eliminate the square root in A({sk}) and lift the restriction on
s1 noting that

∑

{s1=1,··· }

ε̃psA({sk}) =
1

2

∑

{s1=±1,··· }

ε̃psA({sk}). (6.43)

Putting all the pieces together, we have

Ψ(ee)
p (δ) =

1

N0


∑

{sk}

ε̃psA({sk})




1/2

, (6.44)

where now

A({sk}) =
N∏

j>i

sin

[
π

N

(
j − i+

1 + 2δ

4
(sj − si)

)]
(6.45)

and

N2
0 = 2Ñ2

0 = 2N
(

N

2N−1

)N/2
. (6.46)

Using the identities

∑

σ∈SN

sgn(σ)
N∏

n=1

ασ(n)−1
n =

N∏

n>m

(αn − αm) (6.47)

and

sin

(
θn − θm

2

)
= exp

(
−iθn + θm

2

)(
zn − zm

2i

)
, (6.48)

we have

A({sk}) =
N∏

j>i

[
exp

(
−iθj + θi

2

)(
zj − zi

2i

)]

= CN
∑

σ∈SN

sgn(σ)

(
N∏

j=1

aj,σ(j)

)(
N∏

j=1

bj,σ(j)

)
, (6.49)

where

(V )r,t = ar,t = exp

(
i
2π

N
r(t− 1)

)
(6.50)
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defines a Vandermonde matrix,

br,t = exp
(
i
π

4N
sr(1 + 2δ)(2t−N − 1)

)
(6.51)

contains all the dependence on {sk}, and

CN = (2i)−N(N−1)/2e−i
π
2

(N2−1). (6.52)

Coming back to Ψ
(ee)
p , we can now sum over the auxiliary spins {sk}

∑

{sk}

ε̃psA({sk}) = CN
∑

σ∈SN

sgn(σ)
N∏

j=1

aj,σ(j)


∑

{sk}

ε̃ps

N∏

j=1

bj,σ(j)


 .

We can perform the sum

∑

{sk}

ε̃ps

N∏

j=1

bj,σ(j) = 2N
N∏

j=1

fj,σ(j). (6.53)

where

fr,t(δ) =





cos
[
π

4N
(1 + 2δ) (2t−N − 1)

]
, mr = 0,

i sin
[
π

4N
(1 + 2δ) (2t−N − 1)

]
, mr = 1,

(6.54)

and we make use again of the pair-wise basis m = (m1, · · · ,mN). In other words, we
have a cosine whenever the r-th reference pair fuses to the identity and sine when it fuses
to a Majorana fermion. We can now clean everything up. Note first that

N2
0 = 2N

N∏

j>i

sin
( π

2N
(j − i)

)

= 2NCN
∑

σ∈SN

sgn(σ)

(
N∏

j=1

aj,σ(j)

)
(6.55)

= 2NCN det(V ),

where V is the Vandermonde matrix defined by ar,t. If we define the matrix Fm by the
elements fr,t, we have

Ψ(ee)
m (δ) =

(
det(Fm ∗ V )

det(V )

)1/2

, (6.56)

where Fm ∗ V is the Hadamard product

(Fm ∗ V )r,t = ar,tfr,t . (6.57)

BCS State for 1D Wave Functions
In order to show that the wave function amplitudes (6.32) correspond to a BCS state, we
need to write them as Pfaffians obtained from a given pairing function. We will accom-
plish this by using the multilinearity of the determinant.
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First, consider the matrix

(U)r,t =
1√
N

exp

(
i
2π

N
r

(
t− 1

2

))
. (6.58)

It is easy to show that U is a unitary matrix. Also, by multilineality of the determinant,
we can relate this matrix to the Vandermonde matrix V (6.50)

(
Ψ(ee)

m

)2
(δ) =

det(Fm ∗ V )

det(V )
=

det(Fm ∗ U)

det(U)
. (6.59)

Now, note that we can use once again the multilinearity of the determinant to write

det(Fm ∗ U) = CN(δ)2 det(Hm ∗ U), (6.60)

where

CN(δ)2 =
N∏

m=1

cos
[ π

4N
(1 + 2δ) (2m−N − 1)

]
, (6.61)

and Hm is defined by matrix elements

(Hm)r,t(δ) =

{
1, mr = 0,
i tan

[
π

4N
(1 + 2δ) (2t−N − 1)

]
, mr = 1.

(6.62)

We can further simplify this expression. If we define Mm =
(
(Hm ∗ U)U †

)
and

gr(δ) = (−1)r
i

N

N∑

m=1

tan

[
π(1 + 2δ)

4N
(2m−N − 1)

]
ei

2π
N
mr

= (−1)r
2

N

∑

k>0

tan

(
(1 + 2δ)

k

4

)
sin (kr) , (6.63)

(using momenta k as defined in (6.36)), it is easy to see that

(Mm)r,t =

{
δr,t, mr = 0,
gr−t, mr = 1.

(6.64)

Note that gr is an anti-symmetric function. Taking into account that
∑
mn = 2R is an

even number, assume that the 1’s are located at positions r(1) < · · · < r(2R). In order to
compute the determinant of Mm, note that

det(Mm) = det(Gm) (6.65)

where (Gm)ij = gr(i)−r(j) is the 2R × 2R anti-symmetric matrix obtained from Mm

by keeping only the rows and columns corresponding to r(1), · · · , r(2R). Being anti-
symmetric, note also that

det(Gm) = Pf2(Gm). (6.66)

Summing up, we have

(
Ψ(ee)

m

)2
(δ) = CN(δ)2 det(Hm ∗ U)

det(U)

= CN(δ)2 det (Mm) (6.67)

= (CN(δ) Pf(Gm))2 .

Given that this result holds for all m, we conclude that |Ψee(δ)〉 =
∑

m Ψee
m |m〉 corre-

sponds to a BCS state defined by pairing function (6.63).



CHAPTER 6. ISING CONFORMAL BLOCKS AS WAVE FUNCTIONS 85

6.5. Fixed Point Ground States of the ITF Model from CBs
We will now show that the three RG fixed points of the ITF spin chain, namely (1) ferro-
magnetic (h → 0), (2) paramagnetic (h → ∞), and (3) critical (h = 1) can be obtained
exactly from |Ψee(δ)〉. This is a highly non-trivial result, in particular for the critical
case, suggesting a deep connection between finite lattice systems and CBs obtained in the
infrared thermodynamic limit.

Consider first δ → −1/2. From the OPE, we know that the identity will be more
dominant than the fermion in each reference pair. Since in this limit z2k−1 = z2k, we have
that

z`qz`′q = z2
`q = z2

`0
. (6.68)

so

Ψ(ee)
p

(
δ → −1

2

)
= δp,0, (6.69)

i.e., a trivial product state
∣∣Ψee(δ → −1

2
)
〉

= |0〉.
Now, take δ → 1/2. In this limit, z2k = z2k+1. Given that for q 6= 0 there will be at

least one difference that vanishes (for instance, if q1 = 1, then z`′q = 0 because it contains
the factor z2 − z3), we have

z`qz`′q = δq,0 z`0z`′0 . (6.70)

This implies that all the configurations have equal weight. In the pair-wise fusion basis,
this is a ferromagnetic state projected onto the even parity sector, more precisely

∣∣∣∣Ψee

(
δ → 1

2

)〉
=

1√
2

(
|+〉⊗N + |−〉⊗N

)
, (6.71)

where σx |±〉 = ± |±〉.
These two limiting cases correspond to the (even parity) trivial phases of the Ising

transverse field (ITF) spin chain

H(h) = −
N∑

n=1

σxnσ
x
n+1 − h

N∑

n=1

σzn, (6.72)

i.e., h→∞ and h = 0, respectively.
Remarkably, we can also obtain the ground state for the critical value h = 1. In order

to show this, let us first especialize the exact solution we obtained for the ITF spin chain
in Section 5.2 to the case h = 1. The normalized ground state has a BCS structure

|gs〉 =
∏

k>0

[
cos

(
θk
2

)
+ i sin

(
θk
2

)
c†kc
†
−k

]
|0〉c (6.73)

=
∏

k>0

cos

(
θk
2

)
exp

[∑

k>0

i tan

(
θk
2

)
c†kc
†
−k

]
|0〉c ,

where the Bogoliubov angles become

cos

(
θk
2

)
=

√
1 + sin

∣∣k
2

∣∣
2

, sin

(
θk
2

)
= −sgn(k)

√
1− sin

∣∣k
2

∣∣
2

. (6.74)
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This implies that the normalization constant is

∏

k>0

cos

(
θk
2

)
=
∏

k>0

√
1 + sin

(
k
2

)

2
(6.75)

=
N∏

m=1

√
cos
[ π

4N
(2m−N − 1)

]
.

We can also compute the real-space pairing function by doing a Fourier transform of
gk = i tan

(
θk
2

)

gr =
2

N

∑

k>0

1− sin
(
k
2

)

cos
(
k
2

) sin (kr) (6.76)

= (−1)r
2

N

∑

k>0

tan

(
k

4

)
sin (kr) , r ∈ Z,

where the second expression is obtained from the first one by replacing k 7→ π − k.
Now, coming back to the wave functions obtained from the Ising CBs, note that

these expressions correspond to the normalization constant (6.38) and the pairing function
(6.39) obtained in the previous section when δ = 0, so that

|gs(h = 1)〉 = |Ψee(δ = 0)〉 . (6.77)

This is a remarkable result given that the expression for the CBs (5.59) was obtained
using the Ising CFT. It is non-trivial that it would agree with the ground state of a finite-
size lattice system. We can understand this result in a more profound way by considering
the algebraic properties inherited by the wave function from the operators in the CFT.
In particular, we will consider the Kramers-Wannier duality obtained from braiding the
operators and the associated Hamiltonian derived from the Temperley-Lieb-Jones algebra.

6.6. Braiding and Kramers-Wannier Duality

The braiding of fields will in general mix different CBs, Fk =
∑

k′ Bk,k′Fk′ , where Bk,k′

is a representation of the braiding operation [162, 131]. Geometrically, we expect that
cyclic permutation of primary fields located on the unit circle according to (6.25) will
yield useful algebraic properties.

If we take σ(z2N) and braid it with all the other 2N − 1 fields, so that it becomes
the first operator, we obtain the same CB up to a relabeling zk → zk+1 (identifying
2N + 1 ≡ 1), so that

Fp(δ) =
∑

p′

Upp′Fp′(−δ), (6.78)

where U is the operator obtained from the braiding. Note that there are no radial ordering
issues because all the operators are on the unit circle.

This process can be decomposed into pair-wise permutations. Call ωi the operator that
interchanges σ(zi) and σ(zi+1). The set {ωi|i = 1, · · · , 2N − 1} will satisfy the braid
group relations

ωiωi+1ωi = ωi+1ωiωi+1, ωiωj = ωjωi, |i− j| ≥ 2. (6.79)
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Figure 6.3: Braiding operators for F2N . We define B = eiπ/8√
2

(12×2 + iσx) and use the
convention σi = σ(zi).

It can be shown that [162]

ω1 · · ·ω2
2N−1 · · ·ω1 = exp (−4iπhσ) (6.80)

where hσ = 1
16

is the scaling dimension of σ and the sign of the phase depends on the
direction of the exchange. This allows us to define the unitary operator

U = e2iπhσω1 · · ·ω2N−1 = e−2iπhσω†1 · · ·ω†2N−1, (6.81)

which is independent of the convention for the pair-wise exchange.
We can obtain a representation of these operators from the fusion matrix F and the

braid operator R [131, 136] (see Fig. (6.3)). The action of this operation can be better
understood using the pair-wise fusion basis. In that case, the operatorU corresponds to the
Kramers-Wannier transformation restricted to the even parity sector (〈Q〉 = 〈∏n σ

z
n〉 =

1) (see Section 5.3)

UσznU
† = σxnσ

x
n+1, UσxnU

† = σz1 · · ·σzn. (6.82)

This duality is known to be non-invertible in the odd parity sector [183]. Note also that
iterating this process, i.e. braiding the whole last reference pair, corresponds to a one-site
translation in the pair-wise fusion basis.

Relation (6.78) implies that |Ψee(δ = 0)〉will be self-dual. As we discussed in Section
5.3, this is also the case for the (even parity) ground state of the critical (ITF) Hamiltonian
as a consequence of the self-duality of the critical Ising model. We see then that KW
duality motivates that these two states are the same.

6.7. The Temperley-Lieb-Jones Algebra
As we mentioned before, minimal models lack internal symmetries. This makes it hard
for us to construct a parent Hamiltonian for wave functions obtained from CBs. However,
we can associate an integrable model to a given minimal RCFT using the properties of
the CBs. This is due to the fact that the constraints imposed by the braiding and fusion of
operators can be related to the Yang-Baxter algebra [131].
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We first need some general definitions. A Temperley-Lieb-Jones (TLJ) algebra is an
unital, complex algebra closely related to the braid group. It is generated by operators
{ei|i = 1, · · · ,M} satisfying

e†i = ei, eiei±1ei = ei, (6.83)

e2
i =

√
βei, eiej = ejei, for |i− j| ≥ 2,

where β is a free parameter which for the Ising model takes the value βIsing = 2. Let
{|p〉 = |p1, . . . , pN−1〉} be the basis of the Hilbert space of the model. The action of the
TLJ operators on this basis is given by [131]

e2n−1 |p〉 =
√

2 δpn−1,pn |· · · pn · · ·〉 , n = 1, · · · , N, (6.84)

e2n |p〉 =
1√
2

(|· · · pn−1, pn · · ·〉+ |· · · pn−1, 1− pn · · ·〉) , n = 1, · · · , N − 1,

e2N |p〉 =
1√
2

(|p〉+ |p′〉) ,

where p′ = (1 − p1, 1 − p2, · · · , 1 − pN−1). The last element, e2N , is an extension of
the TLJ algebra to periodic systems [205]. The TLJ operators can also be expressed in
the spin basis {|m〉 = |m1, . . . ,mN〉}, where mk = pk + pk−1(mod(2)) (recall Fig. 5.1).
They become

√
2e2n−1 − 1 = σzn, (6.85)
√

2e2n − 1 = σxnσ
x
n+1,

where n = 1, · · · , N and we impose periodic boundary conditions σxN+1 = σx1 . One can
verify that the operator U that implements the KW duality satisfies

en+1 = UenU
†, n = 1, · · · 2N. (6.86)

Using equations (6.85), it is clear that the critical ITF Hamiltonian corresponds to the
Temperley-Lieb Hamiltonian

HTL = −
2N∑

i=1

(√
2 ei − 1

)
. (6.87)

We expect then that the many-body state constructed from the CBs of the Ising model
(6.26) will be closely related to the spin chain Hamiltonian (6.87). Since this Hamiltonian
is translationally invariant, one is lead to the 1D configuration zn = e2πin/(2N). This also
guarantees that the state is self-dual under a KW transformation. In other words, we are
led to try |Ψee(δ = 0)〉 as a trial wave function for the critical ITF Hamiltonian.

It is important to highlight that this argument does not constitute a rigorous proof of
the result we presented in Section 6.5, although it serves as further motivation. For com-
parison, in the case of the Haldane-Shastry wave function, the associated parent Hamil-
tonian was derived using the algebraic constraints imposed by the null vectors of the
Kac-Moody algebra SU(2)1. We expect that this type of construction could be extended
to minimal CFTs by considering other algebraic relations.
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6.8. Parent Hamiltonians for 1D
Going back to the 1D states (6.26), we have checked numerically that for δ 6= 0 we can
find parent Hamiltonians that can also be mapped to a quadratic fermionic form. We
consider the following family of Hamiltonian terms

Z = −
∑

n

σzn,

Xr = −
∑

n

σxnσ
z
n+1 · · ·σzn+r−1σ

x
n+r, (6.88)

Yr = −
∑

n

σynσ
z
n+1 · · ·σzn+r−1σ

y
n+r,

with r = 1, · · · , N/2. (Note that X1 is the usual Ising term.) Given that |Ψee(δ)〉 is
translationally invariant and describes a system with periodic boundary conditions, we
impose the same constraints on the Hamiltonian terms.

This particular choice for the family of Hamiltonian terms corresponds to those that
will yield quadratic forms in fermionic variables. If we use the Jordan-Wigner transfor-
mation

σzn = 1− 2c†ncn,

σxn =
n−1∏

m=1

(1− 2c†mcm)(c†m + cm), (6.89)

σyn = i
n−1∏

m=1

(1− 2c†mcm)(c†m − cm),

we obtain

Z 7→ −
∑

n

(1− 2c†ncn),

Xr 7→ −
∑

n

(c†n − cn)(c†n+r + cn+r), (6.90)

Yr 7→
∑

n

(c†n + cn)(c†n+r − cn+r).

We know that the variational wavefunctions obtained from the CBs of the Ising model
behave nicely under a Kramers-Wannier (KW) duality transformation. In particular, we
have that

|Ψee(δ)〉 7→ |Ψee(−δ)〉 . (6.91)

Something similar can be said about the Hamiltonian terms we are considering.
The action of the KW transformation can be summarized in the map

σzn 7→ σxnσ
x
n+1, σxn 7→ σz1 · · ·σzn. (6.92)

From these relations, it is easy to compute the action of the KW transformation (for the
even-parity sector of the Hilbert space 〈Q〉 = 〈∏n σ

z
n〉 = 1)

Z 7→ X1, X1 7→ Z, (6.93)
Xr 7→ −Yr−1, (r = 2, · · ·N/2), Yr 7→ −Xr+1, (r = 1, · · · , N/2).
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Figure 6.4: Variational coefficients of the parent Hamiltonians of the form (6.96) for
|Ψee(δ)〉 for N = 20 spins. They are normalized so that a1 = 1.

Note that the KW dual of a Hamiltonian that can be written as a quadratic form in
fermionic variables is once again of the same type.

We can try to take advantage of the KW duality. For our numerical fits, we used the
Hamiltonian family

H̃0 = 1, H̃1 = X1 + Z, H̃2 = X1 − Z, (6.94)

H̃r = Xr−1 + Yr−2, (r = 3, · · ·N/2 + 1).

We need H̃0 to be equal to the identity for the variational algorithm (see Appendix A.2).
Notice also that H̃1 corresponds to the critical ITF Hamiltonian. Using these definitions,
the whole family is closed under a KW transformation

H̃0 7→ H̃0, H̃1 7→ H̃1, (6.95)

H̃r 7→ −H̃r, (r = 2, · · · , N/2 + 1).

We checked numerically that the wavefunction |Ψee(δ)〉 obtained from the Ising CBs
with |δ| < 1/2 is the exact ground state of a Hamiltonian of the form (see Fig. (6.4))

H = −
N/2+1∑

r=1

arH̃r. (6.96)

The duality implies that a1(δ) = a1(−δ), so we will set a1 = 1. (Remember this is the
coefficient associated to the critical ITF Hamiltonian term.) Note also that

ar(−δ) = −ar(δ), (r = 2, · · · , N/2 + 1). (6.97)

In Fig. (6.4), we plot the variational coefficients obtained for different values of δ and
N = 20 spins. We see that the Hamiltonian is dominated by H̃1, namely, the ITF critical
Hamiltonian. The other significant contribution comes from H̃2, in particular for |δ| ≈
1/2, so that the ground state approximates the trivial Ising fixed points in these limits.
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Figure 6.5: Errors of (a) the variational energy and (b) the overlap. Both plots use the
value of δ that optimizes the overlap with the ground state ofH(h). The insets correspond
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serves as reference for a quadratic scaling). (c) Relation between the variational parameter
δ and the value of the external field h that optimizes the overlap. (The dotted purple line
is a reference straight line.) Note that the behavior is virtually independent of the system
size. .

Forcing the ITF Hamiltonian
For |δ| ≈ 0, all the Hamiltonian terms that change sign under a KW transformation are
very small compared to H̃1. Given that the whole Hamiltonian family {H̃r} respect the
basic Ising symmetries, this implies that |Ψee(δ)〉 approximates small massive perturba-
tions away from criticality. If we drop the Hamiltonian terms for r > 2, we see that in
this vicinity the corresponding transverse field will be given by

h =
1− a2

1 + a2

≈ 1− 2a2 +O(a2
2). (6.98)

It is tempting to relate the varional parameter δ to the external magnetic field h in the usual
ITF Hamiltonian (6.72). In order to study this, we computed for different system sizes
the value of h that maximizes the overlap between |Ψee(δ)〉 and the ground state |gs(h)〉 .
(We limit our analysis to 0 ≤ δ ≤ 1

2
. Negative values of δ have a similar behavior due to

the KW duality.)
First, we note that the optimal value of h behaves in an almost linear fashion as a

function of δ, independent of the system size (Fig. (6.5)). However, there is a qualitative
difference in the computed error for the overlap 1 − 〈gs(h)|Ψee(δ)〉 and the expectation
value of the Hamiltonian

Error =
|Eexact(h)− 〈Ψee(δ)|H(h)|Ψee(δ)〉 |

|Eexact(h)| . (6.99)
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Within numerical machine precision, the optimized variational wavefunction (6.26) corre-
sponds to the exact ground state only for h = 0 and hc = 1, while errors are considerable
for other values of h. We also see that the scaling of the errors close to hc = 1 is quadratic.
This implies that the variational minimum is located smoothly at δ = 0.

Some Algebraic Properties of the Hamiltonian Family

It is illuminating to write the operators of the Hamiltonian family in terms of Majorana
fermions

a2n−1 = cn + c†n, a2n =
cn − c†n

i
. (6.100)

Note that, for the even parity sector 〈Q〉 = 〈∏n σ
z
n〉 = 1, we have antiperiodic boundary

conditions for the fermions cN+m = −cm after a Jordan-Wigner transformation. An-
tiperiodic boundary conditions on the fermions imply a2N+r = −ar. In these variables,
we have

Z = i
∑

n

a2n−1a2n,

Xr = i
∑

n

a2na2(n+r)−1, (6.101)

Yr = −i
∑

n

a2n−1a2(n+r).

Now, let us consider the variational Hamiltonian family defined in (6.94). Using the
Majorana variables, we obtain

H̃1 = i
∑

n

anan+1, (6.102)

H̃r = i
∑

n

(−1)nanan+2(r−1)−1,

with r = 2, · · · , N/2 + 1. As discussed in Section 5.3, the action of the KW transforma-
tion on the Majorana fermions is simply

ar 7→ ar+1, (6.103)

which acts as expected on the Hamiltonian family. Note that this action mimics the inter-
pretation of the KW transformation for the CBs as braiding of sigma fields (see Section
6.6).

The Hamiltonian family we have used is very similar to the conserved quantities of
the Ising model, seen as an integrable model [206]. Those can be obtained from

Ep = (−1)p
i

2p

∑

n

anan+p. (6.104)

Note that H̃1 = −2E1 and that [Ep, Eq] = 0. It has been shown that formal manipulations
of {Ep} can yield lattice representations of the Virasoro algebra [206, 207].
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6.9. Excited States
We can extend the previous discussion to other states obtained from operator matrix (6.6).
Let us first consider state |Ψoo〉, defined in (6.9). In this case, the asymptotic states of the
CFT are fermions

Ψ(oo)
p ∝ 〈ψ|σ(z1) · · ·σ(z2N)|ψ〉p . (6.105)

Assuming radial ordering, we can obtain the CBs for this state by adding two fermions at
z = 0,∞. Starting from the exact expression (5.65) and taking the appropriate limit, the
corresponding amplitudes for the associated wave function are given by

Ψ(oo)
p =

1

Ñ2




2N−1−1∑

q=0

εpqAq



−1/2 


2N−1−1∑

q=0

εpqAq



√√√√

N∏

k=1

z`q(k)

z`′q(k)

+

√√√√
N∏

k=1

z`′q(k)

z`q(k)




 .

(6.106)

If we use the homogeneous 1D configuration (6.25), we can rewrite these amplitudes as

Ψ(oo)
p =

1

N2


∑

{sk}

ε̃psA({sk})



−1/2

∑

{sk}

ε̃psA({sk}) cos

[
π

2N
(1 + 2δ)

N∑

k=1

sk

]
 ,

(6.107)

They can also be written in terms of determinants. Define the matrix

(Jm(q))r,t = exp

(
i
2π

N
r(t− 1)

)
(Fm(q))r,t , (6.108)

where

(Fm(q))r,t =





cos
[
π

4N
(1 + 2δ) (2t−N − 1 + q)

]
, mr = 0,

i sin
[
π

4N
(1 + 2δ) (2t−N − 1 + q)

]
, mr = 1.

(6.109)

We can easily show that

Ψ(oo)
m ∝ 1

(det(Jm(0))1/2
[det(Jm(2) + det(Jm(−2)] . (6.110)

Given that this wave function can be written in terms of real amplitudes (up to a possible
overall phase that does not depend on p), it is easy to compute the overlap with |Ψee〉

〈Ψee(δ)|Ψoo(δ)〉 =
∑

p

Ψ(ee)
p Ψ(oo)

p ∝ cos
(π

2
(1 + 2δ)

)
= − sin (πδ) . (6.111)

This implies that the two states will be orthogonal if and only if δ = 0. (Recall that we
are assuming |δ| < 1/2.) This is exactly the case for which |Ψee〉 describes the ground
state of the critical ITF spin chain.

We have checked numerically the action of this Hamiltonian on |Ψoo(δ = 0)〉 for sizes
up to N = 20 spins using a Lanczos algorithm. We found that it corresponds within
machine precision to the first excited state of the even-parity sector of the critical ITF
Hamiltonian.
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These results reflect the relation between the finite-size spectrum of the Ising spin
chain and the operator content of the corresponding CFT [208, 190, 209]. It is known
that the classification of the low-energy states of the even-parity sector of the critical ITF
Hamiltonian with periodic boundary conditions corresponds to the Virasoro towers of
operators 1 and ε1

H
(0)
0 ↔ (0, 0) +

(
1

2
,
1

2

)
. (6.112)

The rest of the Virasoro towers correspond to other excited states within the same sector
of the Hamiltonian. Starting from |Ψee(δ = 0)〉 and |Ψoo(δ = 0)〉, we can in principle
construct most of this spectrum by acting on them with the corresponding representation
of the Virasoro algebra. Luckily, these operators can be obtained on the lattice using the
local Hamiltonian density, which in turn is related to the TLJ algebra [206, 207].

It is tempting to extend this construction to the odd-parity sector of the ITF Hamil-
tonian. Finite-size scaling using periodic boundary conditions relate the spectrum of this
sector to the Virasoro tower of σ [190]

H
(0)
1 ↔

(
1

16
,

1

16

)
. (6.113)

We tried to obtain the ground state of this sector from the Ising CBs postulating two
natural candidates:

a) using a single fermion on the asymptotic states, either at z = 0,∞, so that the CFT
degrees of freedom are traced out by 〈0| · · · |ψ〉 or 〈ψ| · · · |0〉;

b) using a pair of σ fields on the asymptotic states 〈σ| · · · |σ〉, both forming a refence
pair.

In both scenarios, the amplitudes obtained using configuration (6.25) for δ = 0 contained
complex amplitudes that cannot be factored to an overall phase. This implies that these
states cannot be used naively to describe ground states of real Hamiltonians. Moreover,
using σ for both asymptotic states can yield wave functions that are not translationally
invariant even if the degrees of freedom are arranged uniformly on the circle. This sug-
gests that there is a richer structure underlying the general framework that needs to be
understood in further work.

6.10. 2D Wave Functions
So far, we have used coordinate configurations for the σ fields that are constrained to the
unit circle. We will now study 2D configurations on the complex plane. Unfortunately,
we cannot use the same procedure we described in Section 6.4 to write the amplitudes as a
determinant. In principle, this would limit the system sizes we can consider numerically.
However, we can get around this impasse by considering the OPE approximation we
discussed in Section 6.3.

We will relate |Ψee〉 for a 2D configuration to the weak pairing phase of the effective
mean-field Hamiltonian that describes p+ ip superconductivity [191]

H =
∑

k

[
ξkc
†
kck +

1

2
(∆∗kc−kck + h.c.)

]
, (6.114)

1H
(b)
a stands for Hamiltonian (6.72) with h = 1 in the a = 0, 1 parity sector with boundary conditions

σx
N+n = (−1)bσx

n.
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where
ξk =

1

2m
k2 − µ, ∆k = ∆̂(kx − iky), (6.115)

µ is the chemical potential, and ∆̂ is a constant defining the gap function. The (normal-
ized) ground state of this theory is obtained by usual BCS methods and can be written
as

|gs〉 =
∏

k

′ (
(uk + vkc

†
kc
†
−k

)
|0〉 , (6.116)

where the prime on the product indicates that each pair (k,−k) appears only once, and
uk, vk are the Bogoliubov functions obtained from the Bogoliubov-de Gennes (BdG)
equations

Ekuk = ξkuk −∆∗kvk, Ekvk = −ξkvk −∆kuk. (6.117)

This reduces to

Ek =
√
ξ2
k + |∆k|2, (6.118)

|uk|2 =
1

2

(
1 +

ξk
Ek

)
, |vk|2 =

1

2

(
1− ξk

Ek

)
.

The ground state can then be rewritten as

|gs〉 =

(∏

k

|uk|2
)

exp

(
1

2

∑

k

gkc
†
kc
†
−k

)
|0〉 , (6.119)

where
gk =

vk
uk

= −Ek − ξk
∆∗k

. (6.120)

(Note there is no restriction on k, except maybe for k = 0.) Using the fermionic statistics,
the amplitudes of the ground state can be written as Pfaffians (5.26) using the real-space
pairing function

g(r) =
1

N2

∑

k

eik·rgk. (6.121)

If µ > 0, the system will be in the so-called weak pairing phase [191, 202, 203]. For
small momenta, we have ξk < 0 and

gk ∼ −
2µ

∆̂(kx + iky)
. (6.122)

The leading behavoir of the real-space pairing function is given by (see next subsection
for details)

g(r) ∼ −
(

2a2µ

2πi∆̂

)
1

x+ iy
, (6.123)

where a is the lattice spacing. Note that this analysis is done on the torus, assuming a
very large system size. However, the leading singular term gives the qualitative infrared
behavior that determines the phase of the system.

Pairing function (6.123) is similar to the one obtained from |Ψee〉 using an OPE ap-
proximation (6.19). This suggests that |Ψee〉 can be related to the weak pairing phase of
(6.114) as long as the OPE regime yields a good approximation of the CBs. The set of
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Figure 6.6: 2D configuration corresponding to 48 σ fields arranged on a cylinder with
Nx = 6 and Ny = 4. We represent it on the plane according to the exponential map
z 7→ exp(iθ). For clarity, we label the 24 physical spins, each one obtained from a pair of
σ fields. Using coordinates (6.124), spins with equal yn are located at the same radius.

distances between the σ fields in each reference pair can then be related to the chemical
potential of the p+ip superconductor. We expect then that |Ψee〉 can describe the topolog-
ical weak pairing phase of (6.114), which has been associated to the Moore-Read Pfaffian
state in the fractional quantum Hall effect [191, 202, 203].

Based on the previous analysis, we focus now on 2D spin systems on finite cylinders.
The lattice will contain Ny spins along the longitudinal direction and Nx spins along the
periodic one (see Fig. (6.6)). We use the identification zn = exp(iθn) according to the
cylinder coordinates (6.21). We parametrize them as

φn =
2π

Nx

(xn − iRyn) (6.124)

where n = 1, · · · , NxNy labels the spin sites, xn ∈ {1, · · · , Nx} and yn ∈ {1, · · · , Ny}
are positive integers that define the lattice on the cylinder, and R is the anisotropy factor
(we will use R = 1 for a regular square lattice). We also set

εn =
2π

Nx

ε. (6.125)

We can use complex values for ε, but the radial ordering leads to subtleties when we
extrapolate to the exact regime. We will focus then on real values, noting that the OPE
regime corresponds to 0 < ε� 1.

Using this notation, the OPE pairing function becomes

gnm =
sin
(

π
Nx
ε
)

2 sin
(

π
Nx

(xn − xm − iR(yn − ym))
) . (6.126)

Note that, for large values of Nx, we can approximate this expression by a power law, so
the leading singular term is similar to (6.123).
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Figure 6.7: Expected occupation per site for different values of ε. The layer correspond
to the longitudinal y-direction in the cylinder.
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Figure 6.8: (a) Entanglement (single-body) spectrum for different values of ε. (b) Scaling
of the entanglement entropy as a function of the circumference of the cylinder for different
values of ε.

In order to characterize these wave functions, we study the entanglement spectrum
[204] and the entanglement entropy obtained from the reduced density matrix ρcyl of half
a cylinder. Being a BCS state, we know that ρcyl can be written as [210, 211]

ρcyl =
1

Z
exp

(∑

m

εmb
†
mbm

)
, (6.127)

where {bm} are fermionic modes and Z the normalization constant. In Appendix A.3, we
describe a general algorithm to obtain both the spectrum {εm} and the fermionic modes
from the pairing function gnm.

We compute the expected occupation per site for different values of ε (see Fig. (6.7)).
We see that the boundaries do not affect the physics deep inside the bulk for large enough
Ny. Given that in the limit ε→ 0+ the state corresponds to a trivial vacuum, the occupa-
tion is small in the OPE regime.
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The periodicity in the x-direction is preserved in ρcyl, so that we can associate a mo-
mentum k to each mode. We can then write the single-body spectrum as a dispersion
relation. In Fig. (6.8)(a), we see the single-body spectrum for different values of ε. It
corresponds to a chiral free fermion. For values close to ε → 0, there is a gap in the dis-
persion that closes at around ε ∼ 0.1. This behavior is in agreement with the entanglement
spectrum of p+ ip superconductors in the weak pairing phase [212].

From the entanglement spectrum, we computed the scaling of the entanglement en-
tropy for different values of ε by changing the cincumference of the cylinder (see Fig.
(6.8)(b)). In all cases, the scaling follows an area law S(Nx) ∼ cNx, with non-universal
slopes. According to the scaling, there is no topological correction in the entanglement
entropy. Once again, this is in agreement with the behavior of p + ip superconductors
[212, 213].

Fourier Transform of 2D Pairing Function

If µ > 0, we have ξk > 0 for small momenta and

gk ∼ −
2µ

∆̂(kx + iky)
. (6.128)

Let us try to fix the constants in the Fourier transform, at least in an asymptotic way.
Taking L = aN to be the length of the systems (so that the total number of sites is
N ×N ), we can define

kx =
2π(n− 1

2
)

aN
, ky =

2π(m− 1
2
)

aN
, (6.129)

where n,m = −N/2,−N/2 + 1 · · · , N/2. Using this, we have

1

N2

∑

kx,ky

exp [i (kxx+ kyy)]

kx + iky
→ a2

(2π)2

∫ π/a

−π/a
dkx

∫ π/a

−π/a
dky

exp [i (kxx+ kyy)]

kx + iky
. (6.130)

Here we need to be careful. We will both take the limit a → 0+ and keep it explicitly in
the prefactor. (This can be fixed by changing the normalization of the Fourier transform.)
Note that for y > 0

∫ ∞

−∞

dky
2πi

exp [i (kxx+ kyy)]

ky − ikx
= Θ(kx) exp [ikx (x+ iy)] , (6.131)

where Θ(k) is the Heaviside function. Using this, we have

g(r)→ − 2a2µ

2πi∆̂

1

x+ iy
. (6.132)

For a fixed number of fermions, this corresponds to the Moore-Read state for the FQHE.
In this phase, the ground state of the p + ip conductor is then a grand-canonical state of
fermions with this pairing.
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6.11. BCS Structure Beyond OPE: General Observations
We have seen that the OPE expansion of the CBs yields many-body wave functions with
a BCS structure, and that this remains true in the exact case for translationally invariant
1D configurations. One may wonder if this result still holds true for the exact CBs using
an arbitrary configuration (assuming, of course, radial ordering). In order to check this,
let us consider N = 4 spins described by |Ψee〉. This provides the smallest system size in
which a BCS wave function is non-trivial and it allows us to understand the problem in
more detail.

First, consider a general BCS wave function for N = 4. If we write it in full detail,
we have

|ΨBCS〉 ∝
(

1 +
∑

n<m

gnmc
†
nc
†
m + g1234c

†
1c
†
2c
†
3c
†
4

)
|0〉c , (6.133)

where we define for convenience

g1234 = g12g34 − g13g24 + g14g23. (6.134)

Note that this definition relates explicitly to Wick theorem for fermions. If |Ψee〉 does
indeed describe a BCS state, we expect its amplitudes to fulfill this constraint.

In order to check this, let us write the operator matrix (6.3) as (we omit the coordinates
for simplicity)

A(n) =

(
V00 c†nV01

c†nV10 V11

)
. (6.135)

Using this notation, it is easy to see that condition (6.134) will be fulfilled for |Ψee〉 if and
only if (see Fig. (6.9))

〈V00V00V00V00〉 〈V01V10V01V10〉 =

〈V01V10V00V00〉 〈V00V00V01V10〉 (6.136)
− 〈V01V11V10V00〉 〈V00V01V11V10〉
+ 〈V01V11V11V10〉 〈V00V01V10V00〉 .

We may call this condition a generalized Wick theorem. Note first that this equation is
trivially satisfied if all Vij are numbers. Also, if we use the OPE approximation (6.14),
the equation reduces to the usual Wick theorem for free fermions. If we write equation
(6.136) using the exact amplitudes in the pair-wise fusion basis, we get

F0000F1111 = F1100F0011 −F1010F0101 + F1001F0110. (6.137)

We have checked numerically the condition for random configurations using the exact
CBs and they do indeed describe BCS wave functions. Unfortunately, we cannot provide
a general proof even for such a small system size. One possible route is to expand the
vertex operators using the full OPE expansion (6.10). In that case, condition (6.136)
can be recast into a perturbative expression. Some subtleties regarding this approach are
discussed in Appendix A.4.

6.12. Moving Beyond the Ising CFT
As we discussed in Section 4.5, CBs can be used to construct lattice wave function using
both the intermediate fusion channels and the available representations of the symmetry
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Figure 6.9: Graphical representation of equation (6.136).

groups. In this chapter, we have illustrated this formalism using only the fusion channels
provided by the σ fields of the Ising model. It is natural to try to extend this contruction
to other minimal models. In general, we would still lack an internal symmetry group to
codify the physical degrees of freedom of the lattice system, so we would need to rely
solely on the fusion algebra.

Unfortunately, exact expressions for CBs containing an arbitrary number of fields are
not available in the literature for other CFTs. Some particular cases can in principle be
computed using bosonization methods, as well as coset constructions using WZW models
[132]. Even though we cannot provide detailed results, we can still especulate about the
nature of the resulting wave functions using the fusion rules of the primary operators. We
will do this exercise for the tricritical Ising model and the 3-state Potts model.

Consider first the tricritical Ising model. Using the standard parametrization of the
minimal models (see Section 5.4), this corresponds to (p, q) = (5, 4) and c5,4 = 7

10
. It

contains 6 primary fields, two of which can be interpreted as spin operators:

σ ↔ φ2,2

(
h2,2 =

3

8

)
, σ′ ↔ φ2,1

(
h2,1 =

7

16

)
. (6.138)

There is a fermionic field 2

ψ′′ ↔ φ3,1

(
h3,1 =

3

2

)
(6.139)

2The tricritical Ising model is one of the few physically relevant supersymmetric models [214]. Once
this extra symmetry is present, it can shown that field ψ′′ can be related to the supersymmetric partner of
the energy-momentum tensor T .
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that closes a subalgebra with σ′

σ′ × σ′ = 1 + ψ′′, ψ′′ × ψ′′ = 1, ψ′′ × σ′ = σ′. (6.140)

This resembles the algebra we had in the Ising CFT, although with different conformal
weights. We expect then that the CBs associated with σ′ will also characterize a spin
chain, but probably in a different phase. Finding a parent Hamiltonian in this case would
not be canonical, given that there are several microscopic models that give rise to this
fixed point [215].

The fusion rules for the other spin field σ involve all the primaries of the theory. In
particular, there are 4 different fusion channels when two σ fields are fused. This suggests
that the total Hilbert space of the corresponding lattice system is not a simple tensor
product of spin-1

2
spaces. Given the fusion rules, it seems that it would be more natural to

work with string Hilbert spaces [171] and possibly a face Hamiltonian.
The 3-state Potts model can be characterized by some of the operators contained in

the minimal model corresponding to (p, q) = (6, 5) and c6,5 = 4
5
. The representation

theory of this model is subtle, so the partition function has to be constructed grouping
the different operators according to certain criteria dictated by modular invariance [132].
This leads to an extension of the model that contains six operators

1 (h1 = 0) , ε

(
hε =

2

5

)
, σ1, σ2

(
hσ =

1

15

)
, Z1, Z2

(
hZ =

2

3

)
.

(6.141)
The fusion rules of the spin operators show that they are not self-conjugate fields

σ1 × σ1 = σ2 + Z2, σ2 × σ2 = σ1 + Z1, σ1 × σ2 = 1 + ε. (6.142)

This can in principle be fixed by alternating both σ fields in the CBs. We also note that
the Z fields implement a Z3 symmetry

Z1 × Z1 = Z2, Z2 × Z2 = Z1, Z1 × Z2 = 1. (6.143)

We can use this fact to construct a spin-1 wave function using correlators built from these
fields

|Ψ3〉 =
∑

{sn}

〈Zs1 · · ·ZsN 〉 |s1 · · · sN〉 (6.144)

where sn = 0, 1, 2 and we define Z0 = 1. These correlators can in principle be obtained
using a coset construction starting from the SU(3)k WZW model [132]. Note that we
would not be encoding the physical degrees of freedom in the fusion algebra, but rather
in the choice of operators (in a fashion similar to Abelian theories such as the Haldane-
Shastry model we discussed in Section 4.6). Another possible route would be to use
parafermions to implement the Z3 symmetry we expect in a Potts model realization [216,
217, 218].

6.13. Conclusions and Discussion
We have presented a characterization of many-body states for lattice systems constructed
from the CBs of the chiral Ising CFT. The basic feature of the construction is the use of
pairs of σ fields to describe single localized spins. Writing these CBs using local vertex
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operators enables us to relate this formalism to usual matrix product states. This rewriting
makes explicit the relation between the ancillary CFT degrees of freedom and the lattice
fermionic modes. The states we obtain inherit some algebraic properties from the CFT,
such as the well-known KW duality and a representation of the TLJ algebra.

We have provided evidence that states constructed from CBs using only σ fields can
be written as BCS states. A partial proof of this fact can be obtained whenever an OPE
approximation is valid. In this case, an explicit BCS form can be obtained using the local
vertex operator formalism. In the case of translationally invariant 1D configurations, we
can go beyond the approximation and write a full non-perturbative proof. This also allows
us to obtain a whole family of quasi-local parent Hamiltonians that can be written as
quadratic fermionic forms. They are closely related to the critical ITF Hamiltonian.

We presented a proof that the ground state of the critical ITF spin chain can be ob-
tained exactly from the Ising CBs. This is a remarkable result that connects the physics
described by quantum field theories in the infrared limit to the physics of small, lattice
models. Given that information is lost during the RG flow, it is non-trivial that we can re-
cover exact features of the microscopic model. We hope that this result can be extended to
other CFTs, in particular to the minimal models related to known spin systems. Given that
the first excited state of the even-parity sector of this Hamiltonian can also be obtained
using CBs with fermions in the asymptotic CFT states, we expect that the connection
should extend to part of the full energy spectrum.

We used an approximation based on the OPE expansion to understand the inner struc-
ture of the CBs. This allowed us to study large 2D spin configurations. By placing the
degrees of freedom on finite cylinders, we have related the states obtained from the CBs
in the OPE regime to the weak pairing phase of the p+ ip superconductor. This has been
done via the entanglement spectrum obtained from the reduced density matrix of half of
the cylinder.

Further work is needed to deepen the connection between CBs and the ground states
of finite systems. In the case of the Ising CFT, this would mean a general proof that
|Ψee〉 describes a BCS wave function regardless of the coordinate configuration. A deeper
understanding of the formalism may produce other physically relevant states, such as
the ground state of the 1D odd parity sector of the ITF Hamiltonian, or vortices in 2D
superconductors. In addition, generalizations to other rational CFTs, such as the tricritical
Ising model, the 3-state Potts model or the Zn model [130, 131, 132], are worth studying.
Due to the algebraic constraints, we expect those constructions to be related to anyon
chains [219, 220], statistical face models [171] or parafermions [216, 221].
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Appendices

A.1. A Useful Relation
We want to prove

N∏

j>i

sin
[ π
N

(
j − i+

α

4
(sj − si)

)]
=

N∏

j>i

sin
[ π
N

(
j − i− α

4
(sj − si)

)]
. (A.1)

Consider the complex function

f(z) =
N∏

j>i

sin
[ π
N

(j − i) +
z

2
(sj − si)

]
, (A.2)

where si = ±1, for all i = 1, · · · , N . Given that sj − si = 0,±2, note that f(z + 2π) =
f(z). Also, being the product of analytic functions, f(z) is also analytic on the whole
complex plane.

We would like to prove that f(z) is an even function. This holds trivially if sj = 1 for
all j = 1, · · · , N . For the general case, let us define the sets

A± = {j | sj = ±1}, (A.3)

so that A+ ∪ A− = {1, · · · , N}. Using this notation, we can write the ratio

f(z)

f(−z)
=
∏

j∈A+



∏

i∈A−
i<j

sin
(
π
N

(N + i− j)− z
)

sin
(
π
N

(j − i)− z
)

∏

i∈A−
i>j

sin
(
π
N

(i− j)− z
)

sin
(
π
N

(N + j − i)− z
)


 . (A.4)

Let us now define the (non-symmetric) functions

dR(i, j) =

{
i− j i ≥ j,
N + i− j i < j,

(A.5)

dL(i, j) =

{
N + j − i i > j,
j − i i ≤ j.

(A.6)

105
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These functions can be interpreted geometrically. Assume the integers {1, · · · , N} are
evenly distributed on a circle in a clockwise ascending order. Then, dR(i, j) (respectively
dL(i, j)) is the distance from j to i going only in the clockwise (respectively, anticlock-
wise) direction. (Note that dR(i, j) = dL(j, i).)

We can then write (A.4) as

f(z)

f(−z)
=
∏

j∈A+

∏

i∈A−

sin
(
π
N
dR(i, j)− z

)

sin
(
π
N
dL(i, j)− z

) . (A.7)

In this formulation, f(z) will be an even function if the lists of integers

R = (dR(i, j) | i ∈ A−, j ∈ A+),

L = (dL(i, j) | i ∈ A−, j ∈ A+) (A.8)

contain the same elements with the same multiplicities. In other words, we must prove
that the set of all the distances from every element of A+ to every element in A− counting
clockwise is the same as the list counting anticlockwise.

In order to prove this statement, note that if dR(i, j) = r, then dL(i, j) = N − r.
This implies that R and L will be equal if we can pair the elements within the same list
as (r,N − r). (If N is even, this statement is true except if r = N/2. In that case, the
element is trivially in both lists and does not need pairing.) We will then focus on pairing
the elements in list R.

Consider the matrix defined by

[D(P,Q)]i,j = dR(pi, qj), (A.9)

where P = {pi} and Q = {qi} are two subsets of {1, · · · , N}. We will say D(P,Q) is
a balanced matrix if there are the same number of matrix elements that take the value r
(with r 6= 0) and N − r. (Once again, if N is even, we also need r 6= N/2.)

It is easy to see thatD(A+, A+∪A−) is a balanced matrix because we can always pair
dR(i, j) with dR(i, N − j). Likewise, D(A+, A+) is also balanced because dR(i, j) pairs
with dR(j, i). We have then that D(A+, A−) is a submatrix of D(A+, A+ ∪A−) than can
be obtained by removing a balanced submatrix. This implies thatD(A+, A−) is balanced.

Using this result, we see that for every i ∈ A+, j ∈ A− such that dR(i, j) = r, there
exist i′ ∈ A+, j′ ∈ A− such that dR(i′, j′) = N − r, or equivalently, dL(i′, j′) = r. So
both R and L are equal and

f(z) = f(−z), (A.10)

which is what we wanted to prove.

A.2. Finding a Parent Hamiltonian
Consider a family of Hamiltonian terms

Hα =
∑

i1,··· ,ik

h
(α)
i1,··· ,ik (A.11)

which can be either local or non-local. For convenience, we set H0 = 1. Given a wave-
function |Ψ〉, we would like to find a linear superposition of these operators that will have
|Ψ〉 as an eigenstate. In other words, we want to find coefficients Jα such that

(∑

α

JαHα

)
|Ψ〉 = 0. (A.12)
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In order to solve this, consider the matrix

(M)αβ = 〈Ψ |HαHβ|Ψ〉 . (A.13)

It is easy to see that condition (A.12) will be satisfied for a certain set of coefficients
{Jα} if and only if M has a non-trivial kernel. (Note that M is positive-definite.) The
coefficients of the vectors that span this kernel will satisfy condition (A.12).

A.3. Bogoliubov Transformation from a BCS Pairing Ma-
trix

Let us consider a fermionic system with on-site creation operators c†i , i ∈ {1, · · · , N} and
annihilation operators ci. We will adopt the following notation:

{Cl}2N
l=1 = {c1, · · · , cN , c†1, · · · , c†N}. (A.14)

Thus, creation and annihilation operators are bundled together. Let us consider a different
set of creation and annihilation operators,

{Bl}2N
l=1 = {b1, · · · , bN , b†1, · · · , b†N} (A.15)

with Bl =
∑

pMlpCp. The linear transformation will be a Bogoliubov transformation if
the b† and b are bona-fide creation and annihilation operators, with the expected anticom-
mutation and adjoint relations. The first condition is that M is unitary. If that is the case,
the Bogolibov matrix M can be naturally split:

(
b
b†

)
=

(
D E
E∗ D∗

)(
c
c†

)
, (A.16)

where D and E are N × N complex matrices, D∗ and E∗are their complex conjugates
(not Hermitian adjoints!) and they must fulfill

DD† + EE† = 1, DET + EDT = 0 (A.17)

so that matrixM will be unitary. Notice thatA† is the Hermitian adjoint, andAT is merely
the transpose.

In our case, the BCS state is defined via the pairing function gij , which is anti-
symmetric, gij = −gji,

|Ψ〉 = exp

(∑

ij

gijc
†
ic
†
j

)
|0〉c ≡ exp(P ) |0〉c (A.18)

where the last relation defines the pairing operator P . This state is the vacuum of a certain
Bogoliubov set of operators, {Bl}2N

l=1 = {b†1, · · · , b†N , b1 · · · , bN}, which means that

bk |Ψ〉 = 0, k ∈ {1, · · · , N}. (A.19)

Let us impose that condition in order to find the Bogoliubov transformation M . By
definition,

bk =
∑

i

Dkici + Ekic
†
i , (A.20)
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so our condition becomes

0 = bk exp(P ) |0〉 = (exp(P )bk + [bk, exp(P )]) |0〉 . (A.21)

Remember that bk can be expanded as a linear combination of ci and c†i . Using

[ci, f({cj, c†j})] =
∂f

∂c†i
, (A.22)

we find that

[ci, exp(P )] = exp(P )

(∑

j

gijc
†
j

)
. (A.23)

Of course, c†i commutes with exp(P ). Thus, the annihilation condition becomes

exp(P )

{∑

i

Dkici +
∑

ij

Dkigijc
†
j +
∑

i

Ekic
†
i

}
|0〉 = 0. (A.24)

which implies the following relation between D, E and g:
∑

i

Dkigij + Ekj = 0. (A.25)

Thus, in order to find the Bogoliubov transformation given the pairing matrix g, we have
to solve the following matrix equations:

Dg + E = 0,

DD† + EE† = 1, (A.26)

DET + EDT = 0,

From the first equation we get E = −Dg, which when inserted into the third equation
yields D(gT + g)D = 0. But this relation is trivial due to the antisymmetry of g. Then,
the only non-trivial equation becomes

D
(
1 + gg†

)
D† = 1. (A.27)

This equation can be easily solved in the eigenbasis of 1 + gg†, which is self-adjoint and
positive-definite.

A.4. Towards a Generalized Wick Theorem

The OPE of two σ fields is given by (6.10). One can easily identify the fields α(z) as the
ones appearing in the fusion channel of the CVOs V00 and Vχχ, while the fields β(z) are
the ones appearing in the CVOs V0χ and Vχ0. This implies that (6.136) holds provided the
fields α(zi) and β(zi) satisfy the relation

〈α1α2α3α4〉 〈β1β2β3β4〉 = 〈β1β2α3α4〉 〈α1α2β3β4〉 (A.28)
− 〈β1α2β3α4〉 〈α1β2α3β4〉
+ 〈β1α2α3β4〉 〈α1β2β3α4〉 ,
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where αi = α(zi) and βi = β(zi). This equation coincides with the standard Wick
theorem if α(z) = 1 and β(z) = χ(z). Let us provide other examples.

Suppose α1 = T (z1) with T (z) the stress tensor [132], α2 = α3 = α4 = 1 and
βi = χ(zi). Using this, (A.28) becomes

〈T1〉 〈χ1χ2χ3χ4〉 = 〈χ1χ2〉 〈T1χ3χ4〉 − 〈χ1χ3〉 〈T1χ2χ4〉+ 〈χ1χ4〉 〈T1χ2χ3〉 . (A.29)

The left hand side of the equation vanishes because on the plane 〈T (z)〉 = 0. To find
〈Tχχ〉, we use Ward identities [154] to conclude

〈T (z1)χ(z2)χ(z3)〉 =
z23

2z2
12z

2
13

. (A.30)

Plugging these equations into (A.28) yields

1

z12

z34

2z2
13z

2
14

− 1

z13

z24

2z2
12z

2
14

+
1

z14

z23

2z2
12z

2
13

=
z12z34 − z13z24 + z14z23

2(z12z13z14)2
= 0, (A.31)

so that the condition is satisfied.
As a more elaborate example, choose αi = 1, β1 = L−nχ(z1) with L−n the mode

operator of the stress tensor that belongs to the representation of the Virasoro algebra
[132], and βi(z) = χ(zi) (i = 2, 3, 4). Equation (A.28) becomes

〈(L−nχ1)χ2χ3χ4〉 = 〈(L−nχ1)χ2〉 〈χ3χ4〉 − 〈(L−nχ1)χ3〉 〈χ2χ4〉 (A.32)
+ 〈(L−nχ1)χ4〉 〈χ2χ3〉 ,

where
L−nχ1(z1) =

∮

z1

dζ (ζ − z1)−n+1 T (ζ)χ(z1), n ≥ 1 (A.33)

(We have suppressed the denominator 2πi in the integral.) Equation (A.28) can be written
as

Ωn ≡
∮

z1

dζ (ζ − z1)−n+1 f(ζ, {zi}) = 0, (A.34)

with

f(ζ, {zi}) = 〈T (ξ)χ1χ2χ3χ4〉 − 〈T (ξ)χ1χ2〉 〈χ3χ4〉 (A.35)
+ 〈T (ξ)χ1χ3〉 〈χ2χ4〉 − 〈T (ξ)χ1χ4〉 〈χ2χ3〉 .

We now use the familiar identity for general fields φi with conformal weights hi [132]
〈
T (ζ)

∏

i

φi(zi)

〉
=

[∑

i

(
hi

(ζ − zi)2
+

1

ζ − zi
∂

∂zi

)]〈∏

i

φi(zi)

〉
, (A.36)

to find

f(ζ, {zi}) =

(
ζ − z1

(ζ − z2)(ζ − z3)(ζ − z4)

)2
z23z24z34

2z12z13z14

. (A.37)

Hence, equation (A.34) becomes

Ωn =

∮

z1

dζ (ζ − z1)−n+1

(
ζ − z1

(ζ − z2)(ζ − z3)(ζ − z4)

)2

=

∮

z1

dζ
(ζ − z1)−n+3

[(ζ − z2)(ζ − z3)(ζ − z4)]2
= 0. (n ≥ 1) (A.38)
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This equation holds for n = 1, 2, 3 but for n = 4 one has

Ω4 =

∮

z1

dζ
(ζ − z1)−1

[(ζ − z2)(ζ − z3)(ζ − z4)]2
=

1

(z12z13z14)2
(A.39)

It seems that Ωn 6= 0 for n ≥ 4. Hence in these cases (A.28) does not hold.
The characters of the Verma modules V1 and Vχ are given by

χ0(q) = TrV1q
L0−c/24 (A.40)

= q−
1
48

(
1 + q2 + q3 + 2q4 + 2q5 + 3q6 + . . .

)
,

χ1(q) = TrVχq
L0−c/24 (A.41)

= q−
1
48
− 1

2

(
1 + q + q2 + q3 + 2q4 + 2q5 + . . .

)
.

Notice that at level n = 4 there are two states in the Majorana sector. As a matter of fact,
the descendants we had considered above correspond to the derivatives of the field χ(z),

(L−nχ)(0) =
n+ 1

2
χ−n− 1

2
(A.42)

The conclusion is that equation (6.136) reduces to equation (A.28) only if the fields α and
β that appear in the OPE (6.10) are unique at a given level. Otherwise one has to consider
all the fields appearing at the same level.



Summary and Conclusions

The first part of this thesis studied the consequences of a tachyonic quench in a free
bosonic system. This type of quenching protocol had not been done considered in the
literature to the best of our knowledge. It provides an exotic regime where the driving
Hamiltonian is inherently unstable, so the long-time dynamics cannot equilibrate to a
known statistical ensemble, such as the generalized Gibbs ensembles proposed for inte-
grable systems.

Our analysis was based on the harmonic chain, a model that can be solved exactly
via standard techniques. We characterized all the relevant correlators of the theory and
showed that the resulting causal structure is very similar to one obtained after critical
quenches. We also showed that the instabilities lead to a linear growth of the entanglement
entropy for all subregions of the chain. We considered the mutual information between
disjoint regions to show that the growing correlations come from a collective phenomenon
that can be understood from the exponential occupation of the low-frequency modes.
This produces strong, non-local correlations once the instabilities start dominating the
dynamics.

Part of the motivation for this work came from the realization that coupled bosonic
theories can produce tachyonic sectors. We expect that the ideas described here can be
implemented in physical systems where an effective tachyonic regime is available, even
if it is only valid during a limited period of time. This can be done using either fine-
tuned microscopic interactions in semiclassical spin systems or using moderate quartic
interactions that constraint the long-time instabilities.

The second part of this thesis presented a general construction for obtaining many-
body wave functions from the conformal blocks (CBs) of rational conformal field theories
(CFTs). We argued that the physical degrees of freedom can be encoded both in repre-
sentations obtained from the local symmetry groups and the intermediate fusion channels
obtained from the primary fields of the theory.

We illustrated how to use these internal fusion channels by studying the CBs ob-
tained from the spin field operator σ in the Ising CFT. The resulting states describe spin-1

2

systems that inherit some of the properties of the original theory, such as the Kramers-
Wannier duality. We presented analytical and numerical evidence that these wave func-
tions correspond to BCS states. In particular, 1D configurations give rise to states related
to the Ising transverse field (ITF) Hamiltonian and 2D configurations to p+ ip supercon-
ductors in the weak-pairing phase.

The most remarkable result that we present in this part is an analytical proof that the
ground state of the critical ITF spin chain can be obtained exactly from the CBs of the
Ising CFT. This suggests that there is a deep connection between the physics described by
certain quantum field theories in the infrarred limit and the physics of small, integrable
lattice models. Even though the CFT is describing a fixed point that has little information
about the microscopic physics, we were able to obtain a complete description of the cor-
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responding finite spin chain. We expect that this result can be extended to other CFTs, in
particular those related to known statistical models such as the tricritical Ising model and
the 3-state Potts model.



Resumen y Conclusiones

La primera parte de esta tesis estudia las consecuencias de un “quench” taquiónico en
un sistema bosónico libre. Este tipo de protocolo no se habı́a estudiado antes en la li-
teratura y proporciona un régimen exótico donde el hamiltoniano que dicta la dinámica
es inherentemente inestable, de forma tal que el sistema no equilibra después de tiempos
suficientemente largos. En particular, no llega a un ensamble estadı́stico estable, como
los ensambles de Gibbs generalizados propuestos para sistemas integrables genéricos.

Nuestro análisis se basa en la cadena armónica, un modelo que puede estudiarse de
forma exacta a partir de técnicas estándar. Caracterizamos todos los correladores rele-
vantes para la teorı́a y mostramos que la estructura causal es muy parecida a la obtenida
después de “quenches” crı́ticos (sin masa). Mostramos también que las inestabilidades
llevan a un crecimiento lineal en la entropı́a de entrelazamiento para todas las subregiones
del sistema. Consideramos también la información mutua entre regiones disconexas para
mostrar que el crecimiento de las correlaciones viene de un fenómeno colectivo que
puede interpretarse a partir de la ocupación exponencial de los modos de baja frecuen-
cia. Esto implica fuertes correlaciones causales pero no locales que surgen después de
que la dinámica esté dictada por las inestabilidades.

Parte de la motivación para este trabajo viene de los sectores taquiónicos que pueden
obtenerse a partir de teorı́as libres de bosones acoplados. Esperamos que las ideas descri-
tas aquı́ puedan implementarse en otros sistemas fı́sicos que tengan regı́menes taquiónicos
efectivos, incluso si estos solo están disponibles durante un periodo de tiempo limitado.
En particular, este comportamiento se puede obtener usando interacciones microscópicas
ajustadas en sistemas de espines semiclásicos o usando interacciones cuárticas débiles
para restringir las inestabilidades después de tiempos suficientemente largos.

La segunda parte de esta tesis presenta una construcción general para obtener fun-
ciones de onda colectivas a partir de los bloques conformes (BC) de las teorı́as de campos
conformes (TCC) racionales. Argumentamos que los grados de libertad se pueden cifrar
tanto en las representaciones obtenidas a partir de los grupos de simetrı́a locales como en
las canales de fusión intermedios obtenidos a partir de los campos primarios de la teorı́a.

Ilustramos el uso de los canales de fusión estudiando los BC obtenidos a partir del
operador de campo de espı́n σ en la TCC del modelo de Ising. Los estados resultantes
describen sistemas de espı́n 1

2
que heredan algunas de las propiedades de la teorı́a origi-

nal, como la dualidad de Kramers-Wannier. Presentamos evidencia analitica y numérica
de que estas funciones de onda corresponden a estados BCS. En particular, las configura-
ciones 1D dan paso a estados relacionados con la cadena de Ising con campo transverso
(ICT) y las configuraciones 2D a los superconductores p + ip en la fase de apareamiento
débil.

El resultado más notable que presentamos es una prueba analı́tica de que el estado fun-
damental de la cadena ICT crı́tica puede obtenerse de forma exacta a partir de los BC del
modelo de Ising. Esto sugiere una conexión profunda entre la fı́sica descrita por las teorı́as
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de campos en el lı́mite infrarrojo y la fı́sica de los sistemas integrables en el retı́culo con
pocos grados de libertad. A pesar de que la TCC está describiendo un punto fijo del grupo
de renormalización y tiene poca información sobre la fı́sica microscópica, fuimos capaces
de obtener una descripción completa de la cadena de espines correspondiente. Esperamos
que este resultado se pueda extender a otras TCC, en particular aquellas relacionadas a
modelos estadı́sticos conocidos como el modelo de Ising tricrı́tico y el modelos de Potts
de tres estados.
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[164] R. Orús, A practical introduction to tensor networks: Matrix product states and
projected entangled pair states, Annals of Physics 349 (2014) 117–158.

[165] G. Vidal, Efficient Classical Simulation of Slightly Entangled Quantum
Computations, Physical Review Letters 91 (2003) 147902.

[166] I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, Rigorous results on valence-bond
ground states in antiferromagnets, Physical Review Letters 59 (1987) 799–802.

[167] S. R. White, Density matrix formulation for quantum renormalization groups,
Physical Review Letters 69 (1992) 2863–2866.
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[202] M. Ibañez, J. Links, G. Sierra and S.-Y. Zhao, Exactly solvable pairing model for
superconductors with px + ipy-wave symmetry, Physical Review B 79 (2009)
180501.



128 BIBLIOGRAPHY
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