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It is now well understood that Ward identities associated with the (extended) BMS algebra are equivalent
to single soft graviton theorems. In this work, we show that if we consider nested Ward identities
constructed out of two BMS charges, a class of double soft factorization theorems can be recovered. By
making connections with earlier works in the literature, we argue that at the subleading order, these double
soft graviton theorems are the so-called consecutive double soft graviton theorems. We also show how
these nested Ward identities can be understood as Ward identities associated with BMS symmetries in
scattering states defined around (non-Fock) vacua parametrized by supertranslations or superrotations.
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I. INTRODUCTION

Since the seminal work by Strominger [1], there has been
a flurry of activity towards understanding the role of a class
of symmetries known as “asymptotic symmetries” in gauge
theories and gravity [2–19]. For theories containing mass-
less particles of spin 1 ≤ s ≤ 2, asymptotic symmetries are
obtained by considering gauge transformations which do
not fall off at infinity. Such large gauge transformations
have nontrivial asymptotic charges and their conservation
laws have nontrivial implications for the S–matrix.
For example, it has now become clear that the “universal”

soft theorems (i.e., those soft theorems whose structure is
completely determined by gauge invariance [20,21]), such as
the leading soft theorems in gauge theories and gravity, as
well as the subleading soft theorem in gravity, are manifes-
tations of Ward identities associated with a class of asymp-
totic symmetries (in four dimensions due to the infrared
divergences in these theories, the cleanest statement can be
made at the tree-level S–matrix.). In the case of gravity,
these symmetries are nothing but an infinite-dimensional

extension of the famous Bondi, Metzner, Sachs (BMS)
group. Next-to-soft gravity radiation was first considered
by Gross and Jackiw [22]. For an wonderful insight on this
fromWilson line operator perspective, we refer the reader to
the recent work by White [23].
However, factorization theorems in gauge theories and in

quantum gravity have a richer structure. In the case of
gravity, in a recent paper by Chakrabarti et al. [24], it was
shown that there exists a hierarchy of factorization theo-
rems when arbitrary but finite number of gravitons are
taken to be soft in a scattering process. Of particular interest
is the so-called “double soft graviton theorem,” which is a
constraint on the scattering amplitude when two of the
gravitons become soft. Such double soft theorems have a
history in pion physics [25]. In the case of pions which are
Goldstone modes of a spontaneously broken global non-
Abelian symmetry, double soft pion limits have an inter-
esting structure. As was shown in [25], if we consider a
scattering amplitude in which two of the pions are taken to
soft limit simultaneously, the scattering amplitude factor-
izes and the double soft theorem contains information
about the structure of the (unbroken) symmetry generators.
Due to the presence of an Adler zero, which ensures that
single soft pion limit vanishes, it is easy to see that there is
no nontrivial factorization theorem if two pions are taken
soft consecutively as opposed to when they are done so at
the same rate.
Double soft graviton theorems are distinct in this regard.

Not only is the simultaneous soft limit nontrivial and highly
intricate, unlike the case of soft pions even the consecutive

*anupam@imsc.res.in
†akundu@imsc.res.in
‡ray.krishnendu@cmi.ac.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 106019 (2018)

2470-0010=2018=97(10)=106019(15) 106019-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.106019&domain=pdf&date_stamp=2018-05-24
https://doi.org/10.1103/PhysRevD.97.106019
https://doi.org/10.1103/PhysRevD.97.106019
https://doi.org/10.1103/PhysRevD.97.106019
https://doi.org/10.1103/PhysRevD.97.106019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


soft limit does not vanish and gives rise to factorization
constraints on the scattering amplitude which are called the
“consecutive double soft theorems.”
In this paper we try to find an interpretation of such

consecutive double soft theorems as a consequence of Ward
identities associated with the generalized BMS algebra.1

The outline of this paper is as follows. In Sec. II, we
recall the equivalence between leading and subleading soft
graviton theorems and Ward identities associated with
asymptotic symmetries [1,12,26,27]. In Sec. III, we explain
the consecutive double soft limit and how it gives rise to a
leading and two subleading consecutive double soft theo-
rems. In Sec. IVA, we propose asymptotic Ward identities,
which, as we show in Appendix A, can be heuristically
derived from Ward identities associated with Noether’s
charges [28]. In Appendix B, we discuss the conceptual
subtleties associated with the domain of soft operators,
which is an obstacle to the full rigorous derivation of one of
the subleading consecutive double soft theorems from
asymptotic symmetries. In Sec. V, we present a formal
derivation of this subleading consecutive double soft theo-
rem from asymptotic symmetries. We conclude with some
remarks, which primarily focus on the key open question
that pertaining to the study of the simultaneous double soft
graviton theorem from the perspective of asymptotic
symmetries.

II. SINGLE SOFT GRAVITON THEOREMS
AND ASYMPTOTIC SYMMETRIES

We begin by reviewing the derivations of the single soft
graviton theorems (both leading and subleading) from
asymptotic symmetries [1,12]. In the process, we also
define the notations that we use later.
According to present understanding, the asymptotic

symmetry group of gravity, acting on the asymptotic phase
space of gravity is the “generalized BMS” group—it is a
semidirect product of supertranslations and DiffðS2Þ. They
can be thought of as a local generalization of translations
and the Lorentz group, respectively. While the original
BMS group [29,30] is a semidirect product of super-
translations and SLð2;CÞ, in the generalized BMS group
the SLð2;CÞ symmetry is further extended to DiffðS2Þ.
Each of the supertranslations and DiffðS2Þ symmetry gives
rise to conserved asymptotic charges, namely, the super-
translation charge (Qf) and superrotation charge (QV),
respectively. These charges are determined completely by

the asymptotic “free data” and are parametrized by an
arbitrary function fðz; z̄Þ and an arbitrary vector field
VAðz; z̄Þ, respectively, both of which are defined on the
conformal sphere at null infinity. By studying the algebra,
one finds that supertranslations and superrotations form a
closed algebra [16].
To define a symmetry of a gravitational scattering problem

at the quantum level, these charges are elevated to a symmetry
of the quantum gravity S–matrix. Corresponding to each
such symmetry one gets aWard identity. In next two sections,
we discuss that how the single soft graviton theorems are
equivalent to Ward identities of generalized BMS charges.

A. Leading single soft graviton theorem and
supertranslation symmetry

The leading supertranslation charge Qf [1], which
physically corresponds to the conservation of energy at
each direction on the conformal sphere at null infinity.2

The supertranslation charge Qf is given by [1]

Qf ¼
Z

dud2zfγzz̄NzzNzzþ2

Z
dud2zf∂uð∂zUz̄þ∂ z̄UzÞ:

ð2:1Þ

Here, Uz ¼ − 1
2
DzCzz, and Nzz ¼ ∂uCzz is the Bondi news

tensor, where Czz is the “free data”. The derivativeDz is the
covariant derivative with respect to the 2-sphere metric.
It is important to note that, the supertranslation charge

Qf is characterized by the arbitrary function fðz; z̄Þ, where
(z, z̄) are coordinates on the conformal sphere at null
infinity. Notice that, the first term in (2.1) is quadratic inCzz
while the second is linear in Czz—these are conventionally
referred as the “hard part” (Qhard

f ) and the “soft part” (Qsoft
f )

of the supertranslation charge, respectively.
In order to establish the equivalence between the super-

translation Ward identity and the leading single soft
graviton theorem, the asymptotic charge (2.1) is conjec-
tured to be a symmetry of the quantum gravity S–matrix
[1]. As a result, one gets the Ward identity for super-
translation as

houtj½Qf;S�jini¼ 0⇔ houtj½Qsoft
f ;S�jini

¼−houtj½Qhard
f ;S�jini; ð2:2Þ

where in writing the above, the classical charges have been
promoted to quantum operators. This quantization is
carried out using the asymptotic quantization of Czz [1],
which expresses them in terms of graviton creation and
annihilation operators.

1There are two known extensions of the BMS group in the
literature. One is the “extended BMS” [2], which is the semidirect
product of supertranslations and the Virasoro group and the other
is the “generalized BMS” [8], which is the semidirect product of
supertranslations and DiffðS2Þ. Each of them give rise to the same
asymptotic charges and hence the same Ward identities for the
quantum gravity S–matrix. Since, these Ward identities are the
starting point of our analysis, this difference is irrelevant.

2The seminal work [1] was based on the case when external
states contain only massless particles. Generalization to the case
where external states can have massive particles was done in [14].
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To evaluate (2.2), one needs to know the action of the
hard and soft charges on the “in” and “out” states. Let’s
begin by discussing the soft charge. Note that, we are
working with Christodoulou-Klainerman (CK) spaces
(which satisfy D2

zCz̄ z̄jIþ� ¼ D2
z̄CzzjIþ�) [1]. This, together

with the crossing symmetry of the scattering amplitude,
allows one to write the soft charge as

Qsoft
f ¼ lim

Ep→0

Ep

2π

Z
d2wD2

wfðw; w̄Þa−ðEp; w; w̄Þ

¼ lim
Ep→0

Ep

2π

Z
d2wD2

w̄fðw; w̄ÞaþðEp; w; w̄Þ: ð2:3Þ

Hence, Qsoft
f jini ¼ 0. Here, Ep is the energy of the soft

graviton and ðw; w̄Þ characterizes its direction on the
conformal sphere.
The hard charge can also be evaluated in a similar

procedure, finally giving the action on “in” and “out”
states as

Qhard
f jini ¼

X
in

Eifðk̂iÞjini

houtjQhard
f ¼

X
out

Eifðk̂iÞhoutj: ð2:4Þ

Here, the sum
P

in and
P

out is over all the hard particles in
the “in” and “out” states, respectively, with energyEi ¼ jk⃗ij
and the unit spatial vector k̂i ¼ k⃗i=Ei characterizing the
direction of ith particle.
Using (2.4), (2.3) and (2.2) then, one obtains a factori-

zation of the form

lim
Ep→0

Ep

2π

Z
d2wD2

w̄fðw; w̄ÞhoutjaþðEp; w; w̄ÞSjini

¼ −
�X

out

Eifðk̂iÞ −
X
in

Eifðk̂iÞ
�
houtjSjini: ð2:5Þ

Structure of the terms in (2.5) encourages one to ask
whether this can be related to Weinberg’s soft graviton
theorem [26]. This reads

lim
Ep→0

EphoutjaþðEp; w; w̄ÞSjini

¼
X
i

ðϵþðw; w̄Þ · kiÞ2
ðp=EpÞ · ki

houtjSjini; ð2:6Þ

where the soft graviton has energy Ep and momentum p. Its
direction is parametrized by (w, w̄) and its polarization is
given by ϵþðw; w̄Þ ¼ 1=

ffiffiffi
2

p ðw̄; 1;−i;−w̄Þ. We adopt the
notation

Ŝð0Þðp; kiÞ≡ 1

Eki

ðϵþðw; w̄Þ · kiÞ2
ðp=EpÞ · ki

; ð2:7Þ

with which, the leading soft factor in the rhs of [26] can be
written as

X
i

ðϵþðw; w̄Þ · kiÞ2
ðp=EpÞ · ki

≡ Sð0Þðp; fkigÞ≡
X
i

Sð0Þðp; kiÞ

≡X
i

Eki Ŝ
ð0Þðp; kiÞ: ð2:8Þ

It is important to notice that the contribution to the soft
factor Sð0Þðp; fkigÞ from the ith hard particle with momem-
tum ki and energy Eki, namely Sð0Þðp; kiÞ, depends on the

energy of the hard particle. But, Ŝð0Þðp; kiÞ does not depend
on Eki ; as written in (2.8), the energy dependence has been
separated out.
Now, consider a hard particle of momentum k para-

metrized by ðE; z; z̄Þ. If one chooses

fðz; z̄Þ ¼ sðz; z̄;w; w̄Þ≡ 1þ ww̄
1þ zz̄

·
w̄ − z̄
w − z

ð2:9Þ

in (2.5), then the rhs of the soft theorem (2.6) and the Ward
identity (2.5) match, since

ðϵþðw; w̄Þ · kÞ2
ðp=EpÞ · k

¼ −Eksðz; z̄;w; w̄Þ: ð2:10Þ

Further, the lhs of the soft theorem (2.6) and the Ward
identity (2.5) match because of the identity,

D2
z̄sðz; z̄;w; w̄Þ ¼ 2πδ2ðw − zÞ: ð2:11Þ

It is also possible to go from the soft theorem (2.6) to the
Ward identity (2.5) by acting ð2πÞ−1 R d2wfðw; w̄ÞD2

w̄ on
both sides of (2.6). In this case, the rhs matches because of
the identity

D2
w̄sðz; z̄;w; w̄Þ ¼ 2πδ2ðw − zÞ: ð2:12Þ

Hence, the equivalence of the soft theorem and Ward
identity is established. It should also be noted that
Weinberg’s soft theorem for the negative helicity graviton
is not an independent soft theorem and can be obtained
through a similar derivation.

B. Subleading single soft graviton theorem and
superrotation symmetry

The subleading single soft graviton theorem follows
from the Ward identity of the superrotation chargeQV [12],
which physically corresponds to the conservation of
angular momentum at each angle in a gravitational scatter-
ing process. This charge is given by:
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QV ¼ 1

4

Z
dud2z

ffiffiffi
γ

p ∂uCABðLVCAB − αCAB þ αu∂uCABÞ

þ 1

2

Z
dud2z

ffiffiffi
γ

p ðCzzD3
zVz þ Cz̄ z̄D3

z̄V
z̄Þ; ð2:13Þ

where α ¼ 1
2
ðDzVz þDz̄Vz̄Þ and VAðz; z̄Þ is an arbitrary

vector field on the conformal sphere at null infinity.
As usual, the covariant derivatives are with respect to the
2–sphere metric. As before, the first term is the “hard part”
Qhard

V and the second is the “soft part” Qsoft
V of the super-

rotation charge.
Proceeding in a manner similar to the case of super-

translation, the Ward identity for superrotations can be
written as

houtj½QV;S�jini ¼ 0 ⇔ houtj½Qsoft
V ;S�jini

¼ −houtj½Qhard
V ;S�jini: ð2:14Þ

Now, using the asymptotic quantization of the “free
data” and crossing symmetry one can write the soft
superrotation charge as

Qsoft
V ¼ 1

4πi
lim
Ep→0

ð1þEp∂Ep
Þ

×
Z

d2w½Vw̄∂3
w̄aþðEp;w;w̄ÞþVw∂3

wa−ðEp;w;w̄Þ�:

ð2:15Þ
Hence, Qsoft

V jini ¼ 0. Note that, unlike the previous case,
due to the absence of a CK–like condition, the action of
Qsoft

V on the “out” state gives gravitons of both helicities.
Also, the action of the hard superrotation charge gives

houtjQhard
V ¼ i

X
out

JhiVi
houtj

Qhard
V jini ¼ i

X
in

J−hiVi
jini: ð2:16Þ

Again, the sum
P

in and
P

out is over all the hard particles
in the “in” and “out” states, respectively, with the ith

particle having energy Ei ¼ jk⃗ij and direction characterized
by the vector k̂i ¼ k⃗i=Ei. A detailed expression of JhiVi

can
be found in [12].
As a result, one can write the Ward identity for super-

rotations (2.14) as

−
1

4π
lim
Ep→0

ð1þEp∂Ep
Þ
Z

d2w½Vw̄∂3
w̄houtjaþðEp;w;w̄ÞSjini

þVw∂3
whoutja−ðEp;w;w̄ÞSjini�

¼
�X

out

JhiVi
−
X
in

J−hiVi

�
houtjSjini: ð2:17Þ

Now, the Cachazo-Strominger (CS) subleading soft
theorem reads [27]

lim
Ep→0

ð1þ Ep∂Ep
ÞhoutjaþðEp; w; w̄ÞSjini

¼
X
i

ϵþðw; w̄Þ · ki
p · ki

ϵþμ ðw; w̄ÞpνJ
μν
i houtjSjini; ð2:18Þ

where, Jμνi is the angular momentum operator acting on the
ith hard particle. For further use, we adopt the notation

Sð1Þðp; kiÞ ¼
ϵþðw; w̄Þ · ki

p · ki
ϵþμ ðw; w̄ÞpνJ

μν
i : ð2:19Þ

Using this, the subleading soft factor in the rhs of (2.18) can
be written as

X
i

ϵþðw; w̄Þ · ki
p · ki

ϵþμ ðw; w̄ÞpνJ
μν
i

¼
X
i

Sð1Þðp; kiÞ ¼ Sð1Þðp; fkigÞ: ð2:20Þ

Now, in the Ward identity (2.17), if one chooses the vector
field VA as

VA ¼ Kþ
ðw;w̄Þ ≡

ðz̄ − w̄Þ2
ðz − wÞ ∂ z̄; ð2:21Þ

the rhs of the soft theorem (2.18) and the Ward Idenity
(2.17) match since

ϵþðw; w̄Þ · ki
p · ki

ϵþμ ðw; w̄ÞpνJ
μν
i ¼ JiKþ

ðw;w̄Þ
: ð2:22Þ

The lhs of the soft theorem (2.18) and the Ward identity
(2.17) also match due to the identity:

∂3
z̄
ðz̄ − w̄Þ2
ðz − wÞ ¼ 4πδ2ðw − zÞ: ð2:23Þ

To go from the CS soft theorem(2.18) to the super-
rotation Ward identity (2.17) one acts the operator
−ð4πÞ−1 R d2wVw̄∂3

w̄ on both sides of (2.18). Then, using
the linearity of JV in vector field V,

−ð4πÞ−1
Z

d2wVw̄∂3
w̄J

i
Kþ

ðw;w̄Þ
¼ −ð4πÞ−1JW; ð2:24Þ

and the identity,

∂3
w̄
ðz̄ − w̄Þ2
ðz − wÞ ¼ −4πδ2ðw − zÞ; ð2:25Þ

one recovers Ward identity (2.17) with the vector field
Vw̄∂w̄. The vector field W in above expression is given by

W ¼
Z

Vw̄∂3
w̄K

þ
ðw;w̄Þ: ð2:26Þ

Here, unlike theWard identity for the leading case (2.5), it
is important to note that theWard identity for the subleading
case (2.17), contains both negative and positive helicity soft
graviton amplitudes. To get a clear factorization, one of the
components of vector field VA is chosen to be zero,
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depending upon which soft graviton helicity we want in the
soft theorem.

III. CONSECUTIVE DOUBLE SOFT
GRAVITON THEOREMS (CDST)

Having reviewed the relationship between asymptotic
symmetries and the single soft theorem, the next natural
question is to ask if such a relationship holds between the
generalized BMS algebra and double soft graviton theo-
rems. These theorems (and its generalization to the multiple
soft graviton case) have been studied previously using
various methods including BCFW recursions [31], CHY
amplitudes [32–35] and Feynman diagram techniques [24].
In a recent work [36], the authors have studied the symmetry
foundations of the double soft theorems of certain classes of
theories like the dilaton, DBI, and special Galileon.
As has been analyzed in the literature, there are two kinds

of double soft graviton theorems depending upon the relative
energy scale of the soft gravitons. The simultaneous soft limit
is the onewhere soft limit is taken on both the gravitons at the
same rate. It was shown in [24], that simultaneous soft limit
yields a universal factorization theorem. However, as we
argue inAppendixA, from the perspective ofWard identities,
it is the consecutive soft limits which arise rather naturally.
Consecutive double soft graviton theorems (CDST) elucidate
the factorization property of scattering amplitudes when the
soft limit is taken on one of the gravitons at a faster rate than
the other [31]. We now review this factorization property
when such soft limits are taken and show that they give rise to
three CDSTs. The first one, we refer to as the leading CDST
which is the casewhere the leading soft limit is taken on both
the soft gravitons. The remaining two theorems refer to the
case where the leading soft limit is taken with respect to one
of the gravitons and the subleading soft limit is taken with
respect to the other.
We begin with a (nþ 2) particle scattering amplitude

denoted by Anþ2ðq; p; fkmgÞ where p,q are the momenta
of the two gravitons which will be taken to be soft and fkmg
is the set of momenta of the n hard particles. Consider the
consecutive limit where the soft limit is first taken on
graviton with momentum q, keeping all the other particles
momenta unchanged and then a soft limit is taken on the
graviton with momentum p.

Using the single soft factorization, the scattering ampli-
tude Anþ2ðq; p; fkmgÞ can be written as

Anþ2ðq;p;fkmgÞ

¼
�X

i

Eki

Eq
Ŝð0Þðq;kiÞþ

Ep

Eq
Ŝð0Þðq;pÞ

þ
X
i

Sð1Þðq;kiÞþSð1Þðq;pÞ
�
Anþ1ðp;fkmgÞþOðEqÞ;

ð3:1Þ

where Anþ1ðp; fkmgÞ is the nþ 1 particle scattering
amplitude. It is important to recall the notations used here,
which we explained in Sec. II [(2.8) and (2.19)]. As
mentioned, Sð1Þðq; kiÞ is the contribution to the subleading
soft factor with soft momentum q with ki being the ith hard
particle. Similarly Ŝð0Þðq; kiÞ denotes the contribution to the
subleading soft factor with soft momentum q with ki being
the ith hard particle, with energy dependences with respect
to both the soft and hard particles separated out. Ŝð0Þðq;pÞ
and Sð1Þðq;pÞ denote similar contributions to the soft factor
where the graviton with momentum p is treated as hard
with respect to the graviton with momentum q.
Now, the amplitude Anþ1ðp; fkmgÞ further factorizes as

Anþ1ðp; fkmgÞ ¼
�X

i

Eki

Ep
Ŝð0Þðp; kiÞ þ

X
i

Sð1Þðp; kiÞ
�

×AnðfkmgÞ þOðEpÞ ð3:2Þ

Note that, according to our notation, Sð1Þðp; kiÞ is the
contribution to the subleading soft factor with soft momen-
tum p and ki is the ith hard particle. Again, Ŝð0Þðp; kiÞ
denotes the contribution to the subleading soft factor with
soft momentum p and ki the ith hard particle, with energy
dependences with respect to both the soft and the hard
particles separated out.
Substituting (3.2) in (3.1), we get the factorization of the

(nþ 2) particle amplitude containing two soft gravitons in
terms of the amplitude of the n hard particles (up to
subleading order in energy of the individual soft particles),

Anþ2ðq; p; fkmgÞ ¼
�

1

EpEq

X
i;j

EkiEkj Ŝ
ð0Þðq; kiÞŜð0Þðp; kjÞ þ

X
i;j

Eki

Eq
Ŝð0Þðq; kiÞSð1Þðp; kjÞ þ

X
i

Eki

Eq
Ŝð0Þðq;pÞŜð0Þðp; kiÞ

þ
X
i;j

Sð1Þðq; kiÞ
Ekj

Ep
Ŝð0Þðp; kjÞ þ Sð1Þðq;pÞ

X
i

Eki

Ep
Ŝð0Þðp; kiÞ

�
AnðfkmgÞ þOðEpÞ þOðEqÞ: ð3:3Þ

This expansion contains three types of terms. The first type
scales as 1=ðEpEqÞ (and hence gives rise to a pole in both
the soft graviton energies), giving the leading contribution

to the factorization. The second and the third type of terms
scale as E0

q=Ep and E0
p=Eq, respectively, both contributing

to the subleading order of the factorization.
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The leading order contribution, described above, is
�

1

EpEq

X
i;j

EkiEkj Ŝ
ð0Þðq; kiÞŜð0Þðp; kjÞ

�
AnðfkmgÞ: ð3:4Þ

This gives the leading CDST as

lim
Ep→0

Ep lim
Eq→0

EqAnþ2ðq; p; fkmgÞ

¼ ½Sð0Þðq; fkigÞSð0Þðp; fkjgÞ�AnðfkmgÞ: ð3:5Þ

As is evident, the leading double soft factor is just the
product of the individual leading soft factors. One obtains
this same theorem in the case of the simultaneous double
soft limit as well [24,31,33,34]. In Sec. IV B, we show that
this soft theorem matches with the result derived from the
Ward identity of two supertranslation charges (4.10).
Let us now consider the subleading soft limit. At this

order of factorization we have four terms:

�X
i;j

Eki

Eq
Ŝð0Þðq;kiÞSð1Þðp;kjÞþ

X
i

Eki

Eq
Ŝð0Þðq;pÞŜð0Þðp;kiÞ

þ
X
i

Sð1Þðq;kiÞ
X
j

Ekj

Ep
Ŝð0Þðp;kjÞ

þSð1Þðq;pÞ
X
i

Eki

Ep
Ŝð0Þðp;kiÞ

�
AnðfkmgÞ: ð3:6Þ

Notice that the first two terms in (3.6) scale with soft
graviton energies as E0

p=Eq and the second two terms scale
as E0

q=Ep.
From the first two terms of (3.6), one gets a subleading

CDST.

lim
Ep→0

ð1þEp∂Ep
Þ lim
Eq→0

EqAnþ2ðq;p;fkmgÞ

¼ ½Sð0Þðq;fkigÞSð1Þðp;fkjgÞþN ðq;p;fkigÞ�AnðfkmgÞ:
ð3:7Þ

Here, the first term is the product of single soft factors
(2.8), (2.20), appearing in the leading and subleading single
soft theorems, respectively. The second term in the r.h.s of
(3.7) contains a single sum over the set of hard particles as
opposed to the first term which is the product of single soft
factors and contains two sums over the set of hard particles.
Such terms are usually referred to as “contact terms” in the
literature. One can evaluate this contact term as

N ðq;p; fkigÞ ¼ Ŝð0Þðq;pÞSð0Þðp; fkigÞ

¼
X
i

ðϵq · p̃Þ2
q̃ · p̃

·
ðϵp · kiÞ2
p̃ · ki

; ð3:8Þ

where p̃¼p=Ep¼ð1;p̂Þ and similarly, q̃ ¼ q=Eq ¼ ð1; q̂Þ.
ϵp and ϵq refer to the polarizations of soft gravitons with

momentum p and q, respectively. This is the well-known
consecutive double soft graviton theorem [31].

A. A different consecutive limit

We now take a different limit in Eq. (3.6) and show how
it leads to a distinct factorization theorem. From the last two
terms in (3.6) one gets

lim
Ep→0

Ep lim
Eq→0

ð1þEq∂Eq
ÞAnþ2ðq;p;fkmgÞ

¼
�X

i

Sð1Þðq;kiÞ
X
j

Ekj Ŝ
ð0Þðp;kjÞ

þ lim
Ep→0

EpSð1Þðq;pÞ
X
i

Eki

Ep
Ŝð0Þðp;kiÞ

�
AnðfkmgÞ: ð3:9Þ

Now, Sð1Þðq; kiÞ contains the angular momentum operator
of the ith hard particle, and thus acts on Ekj Ŝ

ð0Þðp; kjÞ, as
well as the n particle amplitude AnðfkmgÞ. However,
Sð1Þðq;pÞ does not depend on the set of hard particles
labeled by momentum fkmg. Hence, Sð1Þðq;pÞ acts only on
the soft factor, and one can finally write the subleading
CDST as

lim
Ep→0

Ep lim
Eq→0

ð1þ Eq∂Eq
ÞAnþ2ðq; p; fkmgÞ

¼ ½Sð0Þðp; fkigÞSð1Þðq; fkjgÞ þM1ðq;p; fkigÞ
þM2ðq;p; fkigÞ�AnðfkmgÞ: ð3:10Þ

Similar to the other subleading CDST (3.7), the first term in
the rhs of (3.10) is product of single soft factors. However,
the important difference is that the role of the soft gravitons
with momentum p and q is interchanged in the first term of
(3.10) and the first term of (3.7). Here,M1ðq;p; fkigÞ and
M2ðq;p; fkigÞ are contact terms which can be expressed
as follows:

M1ðq;p; fkigÞ ¼
X
i

Sð1Þðq; kiÞðEki Ŝ
ð0Þðp; kiÞÞ

¼
X
i

Sð1Þðq; kiÞðSð0Þðp; kiÞÞ

¼
X
i

�
−
ðϵq · kiÞ2ðϵp · kiÞ2ðp̃ · qÞ

ðq · kiÞðp̃ · kiÞ2

þ ðϵq · kiÞðϵq · p̃Þðϵp · kiÞ2
ðp̃ · kiÞ2

þ 2
ðϵq · kiÞ2ðϵp · kiÞðϵp · qÞ

ðp̃ · kiÞðq · kiÞ

− 2
ðϵq · kiÞðϵp · ϵqÞðϵp · kiÞ

ðp̃ · kiÞ
�

ð3:11Þ

and
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M2ðq;p;fkigÞ¼
X
i

lim
Ep→0

EpSð1Þðq;pÞ
�
Eki

Ep
Ŝð0Þðp;kiÞ

�

¼
X
i

�ðϵq · p̃Þðϵq ·kiÞðϵp ·kiÞ2
ðp̃ ·kiÞ2

−
ðϵq · p̃Þ2ðϵp ·kiÞ2ðq ·kiÞ

ðp̃ ·kiÞ2ðp̃:qÞ

−2
ðϵq · p̃Þðϵq ·kiÞðϵp ·qÞðϵp ·kiÞ

ðp̃:qÞðp̃:kiÞ

þ2
ðϵq · p̃Þðϵq ·ϵpÞðϵp ·kiÞðq:kiÞ

ðp̃:qÞðp̃:kiÞ
�
: ð3:12Þ

Again, p̃ ¼ p=Ep ¼ ð1; p̂Þ and ϵp and ϵq refer to the
polarization of soft gravitons with momentum p and q,
respectively.
In [31], the authors have considered similar consecutive

limits for the double soft graviton and gluon amplitudes.
There, they have imposed a gauge condition ϵp · q ¼ 0 and
ϵq · p ¼ 0. However, our analysis proceeded without
imposing any particular gauge condition. With the specific
gauge condition used in [31], a few of the terms like
Ŝð0Þðq;pÞ and Sð1Þðq;pÞ drop out from the CDST result that
we have obtained at the subleading level and we recover
their result. This serves as a consistency check for our
calculation.
One can also verify the consistency of both the con-

secutive limits with the general result which was given in
[24]. That is, both the CDST (3.7) and (3.10) are special
cases of the double soft limit in [24]. The CDST (3.7) can
be recovered by imposing the condition Ep ≫ Eq on the
result of [24] and taking the leading limit in Eq and
subleading limit in Ep. Similarly, the CDST (3.10) can
be obtained by imposing the same Ep ≫ Eq condition, but
taking the leading limit in Ep and subleading limit in Eq.
In the subsequent sections, we will argue that these soft

theorems are equivalent to Ward identities of asymptotic
symmetries when the scattering states are defined with
respect to supertranslated or superrotated vacua.

IV. CDST AND ASYMPTOTIC SYMMETRIES

A. Introduction

Having reviewed the relationship between Ward iden-
tities associated with the asymptotic symmetries and single
soft graviton theorems, we now ask if there are Ward
identities in the theory which are equivalent to the double
soft graviton theorems at the leading and subleading order.
In particular, we look for Ward identities that will lead us to
the consecutive double soft theorems (CDST). Let us
consider the family of Ward identities whose general
structure is

houtj½Q1; ½Q2;S��jini ¼ 0; ð4:1Þ

where both Q1 and Q2 are either both supertranslation
charges or Q1 is a supertranslation charge and Q2 is a
superrotation charge.3

Following [28], we present a derivation of this proposed
Ward identity in Appendix A. In the following sections, we
show that such a proposal leads to the consecutive double
soft theorems discussed in Sec. III. Depending on the
choice of charges one gets the leading as well as the
subleading consecutive double soft theorems.

B. Leading CDST and asymptotic symmetries

1. Ward identity from asymptotic symmetries

Following the discussion in Sec. IVA, we explore the
factorization arising from two supertranslation charges, Qf
and Qg characterized by arbitrary functions fðz; z̄Þ and
gðz; z̄Þ, on the conformal sphere. We start with

houtj½Qf; ½Qg;S��jini ¼ 0: ð4:2Þ
Proceeding in a manner similar to the single soft case in
Sec. II, we can write Qf and Qg as sum of hard and soft
charges as

Qf ¼ Qhard
f þQsoft

f ; Qg ¼ Qhard
g þQsoft

g : ð4:3Þ
Thus, the Ward identity (4.2) becomes

houtj½Qhard
f ; ½Qhard

g ;S��jiniþhoutj½Qhard
f ; ½Qsoft

g ;S��jini
þhoutj½Qsoft

f ; ½Qhard
g ;S��jiniþhoutj½Qsoft

f ; ½Qsoft
g ;S��jini¼0:

ð4:4Þ

Now using the Ward identity of supertranslation, namely
½Qsoft

g ; S� ¼ −½Qhard
g ; S�, the first and the second terms

cancel each other. One may be tempted to cancel the third
and fourth terms, on similar lines. However, we contend
that this isn’t quite correct as the action of Qsoft

f maps
ordinary the Fock vaccuum to a supertranslated vaccuum
state parametrized by f. As a result, we are really looking at
the following Ward identity,

hout; fj½Qg; S�jini ¼ 0; ð4:5Þ
where jout; fi is a finite energy state defined with respect to
the supertranslated vacuum. The “in” state is defined with
respect to standard Fock Vacuum because of our prescrip-
tion Qsoft

f jini ¼ 0. We can rewrite the above identity as

houtj½Qsoft
f ; ½Qsoft

g ;S��jini¼−houtj½Qsoft
f ; ½Qhard

g ;S��jini:
ð4:6Þ

3The alternate case where Q1 is superrotation charge and Q2 is
supertranslation charge is riddled with conceptual subtleties
which remain unresolved—we return to this in Appendix B.
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Now using the Jacobi identity amongQsoft
f ,Qhard

g and S, the
commutation relation ½Qsoft

f ; Qhard
g � ¼ 0, and the single soft

Ward identity, we can finally write

houtj½Qsoft
f ; ½Qsoft

g ;S��jini ¼ houtj½Qhard
g ; ½Qhard

f ;S��jini:
ð4:7Þ

Using the (known) action of charges on external states in
(4.7) we finally arrive at the Ward identity:

lim
Ep→0

Ep

2π
lim
Eq→0

Eq

2π

Z
d2w1d2w2D2

w̄1
fðw1; w̄1ÞD2

w̄2
gðw2; w̄2Þ

× houtjaþðEp; w1; w̄1ÞaþðEq; w2; w̄2ÞSjini

¼
�X

out

fðk̂iÞEi −
X
in

fðk̂iÞEi

�

×

�X
out

gðk̂jÞEj −
X
in

gðk̂jÞEj

�
houtjSjini: ð4:8Þ

The factorization above is just the product of two factors of
the type obtained from the Ward identity for supertrans-
lation (2.5). It is natural therefore to expect that the soft
theorem we obtain from (4.8) will also be the product of
two leading single soft factors. In the next section, we show
that this is indeed true.

2. From Ward identity to soft theorem

From the factorization obtained in (4.8) from the Ward
identity with two supertranslation charges, we try to
understand what soft theorem follows from it. Motivated
from the single soft case, we make the choices for arbitrary
function f and g on the conformal sphere as

fðw1; w̄1Þ ¼ sðw1; w̄1;wp; w̄pÞ;
gðw2; w̄2Þ ¼ sðw2; w̄2;wq; w̄qÞ; ð4:9Þ

where the definition of the functions sðw1; w̄1;wp; w̄pÞ and
sðw2; w̄2;wq; w̄qÞ can be read from (2.9). Substituting these
choices in (4.8), we finally get

lim
Ep→0

Ep lim
Eq→0

EqhoutjaþðEp; wp; w̄pÞaþðEq; wq; w̄qÞSjini

¼ ½Sð0Þðq; fkigÞSð0Þðp; fkjgÞ�houtjSjini: ð4:10Þ

This is the same as the leading double soft theorem (3.5) for
the case of two positive helicity soft gravitons with
momenta p and q, localized at ðwp; w̄pÞ and ðwq; w̄qÞ,
respectively, on the conformal sphere. Although we have
chosen both the soft graviton helicities to be positive in the
above, one can do a similar analysis for both the helicities
being negative or one positive and one negative, and a

similar result holds. This provides the equivalence of the
leading CDST and the Ward identity (4.2).
We have thus shown that the leading order double soft

graviton theorem is equivalent to the supertranslation Ward
identity when this identity is evaluated in a Hilbert space
built out of a supertranslated vacuum that containing a
single soft graviton.

C. Subleading CDST and asymptotic symmetries

1. Ward identity from asymptotic symmetries

As motivated in Sec. IVA and derived in Appendix A,
we now analyze with the Ward identity corresponding to
one supertranslation charge (characterized by arbitrary
function f) and one superrotation charge (characterized
by vector field VA):

houtj½Qf; ½QV;S��jini ¼ 0: ð4:11Þ

We begin by writing the charges as the sum of hard and soft
charges:

houtj½Qhard
f ; ½Qhard

V ;S��jiniþhoutj½Qhard
f ; ½Qsoft

V ;S��jini
þhoutj½Qsoft

f ; ½Qhard
V ;S��jiniþhoutj½Qsoft

f ; ½Qsoft
V ;S��jini¼0:

ð4:12Þ

Now, using the Ward identity for superrotation, namely
½Qsoft

V ;S� ¼ −½Qhard
V ;S�, the first and the second term of

(4.12) cancel each other. Again, one may be tempted to
cancel the third and the fourth term of (4.12) instead, using
the same superrotation Ward identity. However, if we do
not cancel them, we are led to

houtjQsoft
f ½QV; S�jini ¼ 0

hout; fj½QV; S�jini ¼ 0: ð4:13Þ

Thus, not cancelling the third and forth terms in (4.12) is
tantamount to considering superrotation Ward identity in
scattering states which are excitations around supertrans-
lated vacuua. As we show below, it is precisely the Ward
identity hout; fj½QV;S�jini ¼ 0 that leads to a specific
double soft graviton theorem.
Hence the above identity (4.12) reduces to

houtj½Qsoft
f ; ½Qsoft

V ;S��jini
¼−houtj½Qsoft

f ; ½Qhard
V ;S��jini

¼−houtjQsoft
f Qhard

V SjiniþhoutjQsoft
f SQhard

V jini: ð4:14Þ

Using the known action of the soft and hard charges, first
term in the rhs of (4.14) can be written as
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houtjQsoft
f Qhard

V Sjini

¼ 1

2π
lim
Ep→0

Z
d2w1D2

w̄1
fEphoutjaþðEpx̂ÞQhard

V Sjini

¼ i
2π

lim
Ep→0

Z
d2w1D2

w̄1
fEp

�X
out

JhiV þJþV

�

×houtjaþðEpx̂ÞSjini; ð4:15Þ

where x̂ denotes the direction of the soft graviton para-
metrized by ðw1; w̄1Þ on the conformal sphere. JþV represents
the action of Qhard

V on the soft graviton with energy Ep.
Similarly, the second term in (4.14) can be evaluated to

houtjQsoft
f SQhard

V jini

¼ i
2π

lim
Ep→0

Z
d2w1D2

w̄1
f

�X
in

J−hiV

�
EphoutjaþðEpx̂ÞSjini:

ð4:16Þ

Hence, the Ward identity (4.14) simplifies to

houtjQsoft
f Qsoft

V Sjini

¼−
i
2π

lim
Ep→0

Z
d2w1D2

w̄1
f

�X
out

JhiV −
X
in

J−hiV

�

× ½EphoutjaþðEpx̂ÞSjini�

−
i
2π

lim
Ep→0

Z
d2w1D2

w̄1
fEpðJþV Þ½houtjaþðEpx̂ÞSjini�;

ð4:17Þ

Note that, the lhs of (4.17) can be written as4

lim
Ep→0

1

2π
Ep lim

Eq→0

1

4πi
ð1þ Eq∂Eq

Þ

×
Z

d2w1d2w2D2
w̄1
f∂3

w̄2
Vw̄2houtjaþðEpx̂ÞaþðEqŷÞSjini:

ð4:18Þ

It is important to note that the soft limits taken in the above
equation do not follow any particular order in the energies
of the soft gravitons. However, as we show in the next
section, the right-hand side of the Ward identity is equiv-
alent to the right-hand side of one of the CDSTs.

2. From Ward identity to soft theorem

Having derived the Ward identity (4.17), we now ask
whether it can be interpreted as a soft theorem. Motivated
by the single soft graviton case, we make the following
choices for function f and vector field V:

fðw1; w̄1Þ ¼ sðw1; w̄1;wp; w̄pÞ
Vw̄2 ¼ Kþ

ðwq;w̄qÞ; ð4:19Þ

where sðw1; w̄1;wp; w̄pÞ and Kþ
ðwq;w̄qÞ follow the definitions

in Sec. II. Using this, (4.18) becomes

lim
Ep→0

Ep lim
Eq→0

ð1þ Eq∂Eq
ÞhoutjaþðEpx̂ÞaþðEqŷÞSjini;

ð4:20Þ
where the unit vectors x̂ and ŷ denote the coordinates
ðwp; w̄pÞ and ðwq; w̄qÞ on the conformal sphere.
Further, for the rhs of (4.17), we have

lim
Ep→0

X
i

Sð1Þðq; kiÞ½EphoutjaþðEpx̂ÞSjini�

þ lim
Ep→0

EpSð1Þðq;pÞ½houtjaþðEpx̂ÞSjini�: ð4:21Þ

In the above expression, notice that in both the subleading
factors Sð1Þðq; kiÞ and Sð1Þðq;pÞ, the soft graviton with
momentum q is localized at ŷ on the conformal sphere.
However, the first one contains an angular momentum
operator acting on the ith hard particle and the latter
contains an angular momentum operator acting on the soft
graviton with momentum p.
Now, using the leading single soft theorem, the first term

in (4.21) can be written as

X
i

Sð1Þðq; kiÞ
�X

j

Ekj Ŝ
ð0Þðp; kjÞhoutjSjini

�
: ð4:22Þ

For the second term in (4.21), we use the expansion of
the (nþ 1) particle amplitude (3.2) and we get a factori-
zation of the form

houtjaþðEpx̂ÞSjini ¼
�X

i

Eki

Ep
Ŝð0Þðp; kiÞ þ

X
i

Sð1Þðp; kiÞ
�

× houtjSjini þOðEpÞ: ð4:23Þ

The second term of (4.23) is at a higher order in soft
graviton energy, and so does not contribute to (4.21). Thus,
(4.21) finally becomes

X
i

Sð1Þðq; kiÞ
�X

j

Ekj Ŝ
ð0Þðp; kjÞhoutjSjini

�

þ lim
Ep→0

EpSð1Þðq;pÞ
�X

j

Ekj

Ep
Ŝð0Þðp; kjÞ

�
houtjSjini:

ð4:24Þ
Lastly, since Sð1Þðq; kiÞ is a linear differential operator

and Sð1Þðq;pÞ acts only on the soft coordinates, we can
further simplify (4.24) as4More precise definition of lhs is given in Appendix B.
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�X
i;j

Eki Ŝ
ð0Þðp;kiÞSð1Þðq;kjÞþ

X
i

Sð1Þðq;kiÞðEki Ŝ
ð0Þðp;kiÞÞ

þ lim
Ep→0

EpSð1Þðq;pÞ
�X

j

Ekj

Ep
Ŝð0Þðp;kjÞ

��
houtjSjini:

ð4:25Þ

Finally, putting this all together, we get a subleading
double soft theorem:

lim
Ep→0

Ep lim
Eq→0

ð1þ Eq∂Eq
ÞAnþ2ðq; p; fkmgÞ

¼ ½Sð0Þðp; fkigÞSð1Þðq; fkjgÞ þM1ðq;p; fkigÞ
þM2ðq;p; fkigÞ�AnðfkmgÞ; ð4:26Þ

where M1ðq;p; fkigÞ and M2ðq;p; fkigÞ are the same
contact terms obtained in subleading CDST (3.10), whose
expressions can be read off from (3.11), (3.12), respec-
tively. This is the same subleading consecutive double soft
theorem (3.10), that we studied in the Sec. III. Note,
however, that in (4.18), there is no particular ordering in the
limits of the soft graviton energy obtained from the
successive action of the soft charges. Hence, the lhs of
the double soft theorem (4.26) contains independent limits
as opposed to (3.10), where the limits have definite
ordering. Although we believe this point needs to be better
understood, what we have shown here is that the Ward
identity of superrotation charges in a supertranslated
vacuum leads to a particular CDST. It is also important
to emphasize that there is a definite time ordering in
½Qf; ½QV;S�� ¼ 0. This is clear from the derivation of
the Ward identity houtj½Qf; ½QV;S��jini ¼ 0, which is
presented in Appendix A.

V. RELATING THE STANDARD CDST
TO A WARD IDENTITY

As we saw above, the Ward identity ½Qf; ½QV;S�� ¼ 0,
gave rise to a double soft theorem whose rhs matched with
the consecutive soft theorem, where we considered the
subleading limit of the graviton which was taken soft first.
This is in contrast to the more standard consecutive soft
limit where we consider the leading soft limit of the
graviton which is taken soft first and subleading soft limit
of the graviton which is taken soft second. We will argue
how this CDST could potentially arise out of the Ward
identity

houtj½QV; ½Qf;S��jini ¼ 0: ð5:1Þ

Expressing the charges in (5.1) as the sum of hard and soft
charges, we get

houtj½Qhard
V ;

�
Qhard

f ;S��jiniþhoutj½Qsoft
V ; ½Qhard

f ;S��jini

þhoutj½Qhard
V ; ½Qsoft

f ;S��jiniþhoutj½Qsoft
V ; ½Qsoft

f ;S��jini¼ 0:

ð5:2Þ

Using the Ward identity for supertranslation, namely
½Qsoft

f ;S� ¼ −½Qhard
f ;S�, the first and the third terms cancel

each other. Once again, this leads us to the following
supertranslation Ward identity evaluated in states defined
with respect to “superrotated vacuum”

houtjQsoft
V ½Qf;S�jini ¼ 0

hout; Vj½Qf;S�jini ¼ 0: ð5:3Þ
where by jout; Vi we mean a finite energy scattering state
defined with respect to a vacuum which contains a
subleading soft graviton mode.5 However, as we explain
in Appendix B, unlike the action ofQsoft

f , the action ofQsoft
V

is not well understood thus far.6 Consequently, the pro-
posed Ward identity remains rather formal at this point. We
will still proceed further and show that this proposed Ward
identity, if well defined is equivalent to the standard CDST.
We can rewrite the Ward identity as

houtjQsoft
V Qsoft

f Sjini
¼ −houtj½Qsoft

V ; ½Qhard
f ;S��jini

¼ houtjQsoft
V SQhard

f −Qhard
f Qsoft

V Sjini
þ houtj½Qhard

f ; Qsoft
V �Sjini: ð5:4Þ

We evaluate the two terms in the rhs of (5.4) one by one.
The first term can be written as

houtjQsoft
V SQhard

f −Qhard
f Qsoft

V Sjini
¼−houtj½Qhard

f ;Qsoft
V S�jini¼−houtj½Qhard

f ; ½Qsoft
V ;S��jini

¼ houtj½Qhard
f ; ½Qhard

V ;S��jini: ð5:5Þ
Then, using the action of Qhard

f and Qhard
V on the external

states, we can write the rhs of (5.5) as

houtj½Qhard
f ; ½Qhard

V ;S��jini

¼ i

�X
out

fðk̂iÞEi −
X
in

fðk̂iÞEi

�

×

�X
out

JhiVi
−
X
in

J−hiVi

�
houtjSjini: ð5:6Þ

To evaluate the second term in (5.4), note that for a single
particle state jki,

5It was shown in [16] howQsoft
V maps the vacuum to a different

vacuum.
6We are indebted to Prahar Mitra for emphasizing this point.
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hkj½Qhard
f ; Qsoft

V � ¼ −
1

4πi
lim
Ep→0

ð1þ Ep∂Ep
Þ
Z

d2w2∂3
w̄2
Vw̄2Epfðw2; w̄2ÞhkjaþðEp; w2; w̄2Þ

¼ −
1

4πi
lim
Ep→0

Z
d2w2∂3

w̄2
Vw̄2Epfðw2; w̄2ÞhkjaþðEp; w2; w̄2Þ: ð5:7Þ

Where, in going from the first line to the second, we have used the fact that aþðEp; w2; w̄2Þ ∼ 1
Ep
.7 Therefore,

−
1

4πi
lim
Ep→0

Ep∂Ep

Z
d2w2∂3

w̄2
Vw̄2Epfðw2; w̄2ÞhkjaþðEp; w2; w̄2Þ ¼ 0: ð5:8Þ

Using the above expression (5.7), we can evaluate the second term of (5.4) as

houtj½Qhard
f ; Qsoft

V �Sjini ¼ −
1

4πi
lim
Ep→0

Z
d2w2∂3

w̄2
Vw̄2Ep × fðw2; w̄2ÞhoutjaþðEp; w2; w̄2ÞSjini: ð5:9Þ

Lastly, using the single soft graviton theorem (with energy Ep), (5.9) simplifies to

houtj½Qhard
f ; Qsoft

V �Sjini ¼ −
1

4πi

X
i

Z
d2w2∂3

w̄2
Vw̄2fðw2; w̄2ÞEki Ŝ

ð0Þðp; kiÞhoutjSjini: ð5:10Þ

Finally, substituting (5.6) and (5.10) in (5.4), we arrive at the Ward identity:

houtjQsoft
V Qsoft

f Sjini ¼ i

�X
out

fðk̂iÞEi −
X
in

fðk̂iÞEi

��X
out

JhiVi
−
X
in

J−hiVi

�
houtjSjini

−
1

4πi

X
hard

Z
d2w2∂3

w̄2
Vw̄2fðw2; w̄2ÞEkiS

ð0Þðw2; w̄2; kiÞhoutjSjini; ð5:11Þ

where the lhs can be expressed as

1

4πi
lim
Ep→0

ð1þ Ep∂Ep
Þ 1

2π
lim
Eq→0

Eq

Z
d2w1d2w2D2

w̄1
fðw1; w̄1Þ∂3

w̄2
Vw̄2 × houtjaþðEq; w1; w̄1ÞaþðEp; w2; w̄2ÞSjini: ð5:12Þ

In order to proceed from the Ward identity (5.11) to a soft theorem, we make the following choices for f and V:

fðw1; w̄1Þ ¼ sðw1; w̄1;wq; w̄qÞ; Vw̄2 ¼ Kþ
ðwp;w̄pÞ: ð5:13Þ

Substituting these in (5.11), we formally get the subleading CDST for positive helicity gravitons as

lim
Ep→0

ð1þ Ep∂Ep
Þ lim
Eq→0

EqhoutjaþðEqŷÞaþðEpx̂ÞSjini ¼ ½Sð0Þðq; fkigÞSð1Þðp; fkjgÞ þ Ŝð0Þðq;pÞSð0Þðp; fkigÞ�houtjSjini:

ð5:14Þ

Again, x̂ and ŷ denote the points ðwp; w̄pÞ, ðwq; w̄qÞ on the
conformal sphere. This is the same consecutive double soft
theorem (3.7) discussed in Sec. III.
However, as discussed in Appendix B, there are some

important subtleties in the definition of soft operators,
especially the soft superrotation chargeQsoft

V . Due to this, in
the evaluation of the Ward identity houtj½QV; ½Qf;S��jini ¼
0, the steps which involve the operation of chargeQsoft

V first

on the “out” state before the other charge are not math-
ematically rigorous. However, we present this calculation
here, in the hope that this might give some hint to the
structure of a more mathematically sound proof of this soft
theorem as well as a more rigorous understanding of the
operation of the soft superrotation charge.

VI. DISCUSSION AND CONCLUSION

It has now been well established in the literature that the
supertranslation soft chargeQsoft

f shifts the Fock Vacuum to
a vacuum parametrized by a soft graviton. If we consider

7This can be seen by writing the mode functions of the News
tensor (Nω

zz), in terms of graviton annihilation operators as in [1].
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Ward identities associated with superrotation charges QV in
this supertranslated vacuum, we are led to one of the two
consecutive subleading double soft graviton theorems. In
fact, as was argued in [16], the space of vacua of (perturba-
tive)QuantumGravity are parametrized by leading aswell as
subleading soft gravitons. Althoughwe do not have a precise
definition of a vacuumwhich is labelled by a subleading soft
graviton, assuming such a definition exists, we can ask what
the Ward identity of the supertranslation charge is in such a
state. The answer appears to be related to the other consecu-
tive double soft theorem at the subleading level.
Many questions remain open. A precise formulation of

theseWard identities will require a careful definition ofQsoft
V

which is lacking thus far. It is also not entirely clear why
Ward identity associated with QV “in” states perturbed
around the supertranslated vacuum leads to a specific CDST.
It will also be interesting to extend the analysis to the

case where the finite energy scattering states are massive.
This will require a detailed understanding of the BMS
algebra at time–like infinity. Finally, the problem of relating
the subleading simultaneous double soft theorem to Ward
identities associated with asymptotic symmetries remain
completely open. Based on our analysis above, we expect
that this will require a detailed analysis of the moduli space
of the vacuua (parametrized by leading and subleading soft
gravitons) which is complicated by the non-Abelian nature
of the BMS symmetries.
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APPENDIX A: WARD IDENTITIES FROM THE
AVERY-SCHWAB METHOD

In this appendix, we derive the asymptotic Ward identity
houtj½Qf; ½QV;S��jini ¼ 0, based on a method that was
proposed in [28]. The basic idea is to use Noether’s second
theorem and path integral techniques to derive Ward
identities for asymptotic symmetries.
As shown in [28], given a asymptotic symmetry or large

gauge transformation with a gauge parameter λ, at the level
of correlation functions one obtains the following Ward
identity.

− ih0jδλTðΦðx1Þ…ΦðxnÞÞj0i
¼ h0jTððQIþ½λ� −QI− ½λ�ÞΦðx1Þ…ΦðxnÞÞj0i ðA1Þ

Here we use a generic label Φ to label the quantum field
associated with scattering particles. QI�½λ� are the asymp-
totic charges associated with large gauge transformations λ
at future and past null infinity, respectively.
Before deriving the identity associated with the insertion

of two charge operators, we first revisit the supertranslation
Ward identity houtj½Qf;S�jini ¼ 0. Let Φ be any massless
field that interacts with gravity and δλ ¼ δf be the generator
of supertranslation on the fields.
We begin by noting that through LSZ reduction we have

the following8

Ym
i¼1

p2
i

Z
d4xie−ipi·xi

Yn
j¼mþ1

p2
j

Z
d4xjeipj·xjh0jδfTðΦðx1Þ…ΦðxnÞÞj0i¼−ihp1;…;pmjQhardþ

f S−SQhard−
f jpmþ1;…;pni

ðA2Þ

We can schematically represent this step as,

h0jδλTðΦðx1Þ…ΦðxnÞÞj0i →½LSZ�hp1;…; pmj½Qhard
f ;S�jpmþ1;…; pni ðA3Þ

where we have used the fact that

8These arguments are formal because they are tied to the fact that the usual Dyson S–matrix with massless particles is only formally
defined. However, as we are only analyzing symmetries of the tree–level S–matrix, we will not worry about the issue of infra–red
divergence.
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δfΦðpÞ ¼ −i½Qf;ΦðpÞ� ðA4Þ

On the other hand, once again via LSZ and the fact that

Qhard
f j0i ¼ 0

Qsoft
f j0i ¼ 0

h0jQsoft
f ≠ 0 ðA5Þ

we see that

h0jTððQIþ½λ� −QI− ½λ�ÞΦðx1Þ…ΦðxnÞÞj0i
→
½LSZ�

hp1;…; pmj½Qsoft
f ;S�jpmþ1;…; pni ðA6Þ

Substituting Eqs. (A3) and (A6) in Eq. (A1), we recover
the supertranslation Ward identity,

houtj½Qf;S�jini ¼ 0 ðA7Þ

We note that an identical derivation for Ward identity
associated with large Uð1Þ gauge transformations was
already given in [37].
We will now derive the Ward identities ½Qf; ½QV;S�� ¼ 0

using this method. That is, we begin with the Ward identity
where the superrotation δV is applied after the super-
translation δf. The starting point for the derivation is
(45) in [28], which in the present context can be written as

− h0jTððQIþ½f� −QI− ½f�ÞðQIþ½V�

−QI−

�
V�ÞΦðx1Þ…ΦðxnÞÞj0i

¼ h0jδfδVTðΦðx1Þ…ΦðxnÞÞj0i ðA8Þ

With our prescription that the soft charges annihilate the
“in” vacuum, the lhs of (A8) reduces to

− h0jTððQIþ½f�−QI− ½f�ÞðQIþ½V�
−QI− ½V�ÞΦðx1Þ…ΦðxnÞÞj0i
¼−h0jQsoft

Iþ ½f�ðQsoft
Iþ ½V�þQhard

Iþ ½V�ÞTðΦðx1Þ…ΦðxnÞÞj0i
ðA9Þ

On the other hand, using (A4), it is easy to see that the rhs
of (A8) is given by

h0jδfδVTðΦðx1Þ…ΦðxnÞÞj0i
¼−h0j

X
i;j

TðΦðx1Þ…½Qf;ΦðxiÞ�

…½QV;ΦðxjÞ�…ΦðxnÞÞj0i
→
½LSZ�

−houtj½Qhard
f ;½Qhard

V ;S��jini ðA10Þ

Thus the path integral identity and the LSZ formula lead
to [equating the rhs of (A9) with rhs of (A10)],

houtjQsoft
f Qsoft

V Sjini
¼ −houtjQsoft

f Qhard
V Sjini þ houtj½Qhard

f ; ½Qhard
V ;S��jini

ðA11Þ

A straightforward manipulation shows that above equa-
tion is equivalent to

houtj½Qf; ½QV;S��jini ¼ 0 ðA12Þ

This is one of the Ward identities used in the main text of
the paper. The remaining identities can be derived similarly.

APPENDIX B: SUBTLETIES ASSOCIATED WITH
THE DOMAIN OF SOFT OPERATORS

We will now comment on the assumption that was
implicitly used in previous section, and which has been
used frequently in relating single soft theorems to BMS
Ward identities.9

From the expressions of the supertranslation and super-
rotation soft charges, we can see that these are singular
limits of single graviton annihilation operators,

Qsoft
f ∼ lim

E→0
EaþðE;w; w̄Þ

Qsoft
V ∼ lim

E→0
ð1þ E∂EÞaþðE; w; w̄Þ: ðB1Þ

For simplicity we have just considered the expression of
the soft charges for positive helicity graviton creation
operators only. In the case of Ward identities associated
with the single soft theorems, it has been implicitly
assumed that the supertranslation soft charge can be
defined as (apart from the extra factors),

houtjlim
E→0

EaþðE;w; w̄ÞSjini ¼ lim
E→0

EhoutjaþðE;w; w̄ÞSjini:
ðB2Þ

A similar assumption is also made for the superrotation soft
charge Qsoft

V .
However, this does not take into account the fact that the

supertranslation soft charge shifts the vacuum. This
subtlety is now well understood for supertranslations. It
was shown in [40–43] that the action of the supertranslation
soft charge maps a standard Fock vaccuum to a super-
translated state which can be thought of as being labelled by

9The authors would like to thank Abhay Ashtekar and Miguel
Campiglia for explaining this subtlety to us in detail in the context
of supertranslations, and Prahar Mitra for patiently explaining to
us why this subtlety cannot be avoided when we look at Ward
identities associated with double soft theorems [38,39].
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a single soft graviton. With this is in mind the precise
definition of houtjQsoft

f Qsoft
V Sjini would be

houtjQsoft
f Qsoft

V Sjini∶

≈
Z

d2wD3
w̄V

w̄hout; fjlim
E→0

ð1þ E∂EÞaþðE;w; w̄ÞSjini;

ðB3Þ

where hout; fj is the “out” state defined over the shifted
vaccuum parametrized by f, generated by the action of
supertranslation charge (Qsoft

f ) on the Fock vaccuum.
In going from (4.17) to (4.18) we have made the same

assumption for defining Qsoft
V on the shifted vacuum as has

been made in the literature for defining it on the Fock
vacuum, namely,

hout; fjlim
E→0

ð1þ E∂EÞaþðE;w; w̄Þ
≔ lim

E→0
ð1þ E∂EÞhout; fjaþðE;w; w̄Þ: ðB4Þ

However, for reasons which can be traced back to the
classical theory, it is still not clear what the precise
definition of Qsoft

V is. That is, just as a rigorous definition
of Qsoft

f being defined as an operator which maps the
ordinary Fock vacuum to a supertranslated state [41,42], no
corresponding definition is available for Qsoft

V as yet.
Consequently, operator insertions like houtjQsoft

V Qsoft
f Sjini

are not mathematically well defined, and we do not know
how to make sense of them.
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