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DUALITY IN NONCOMMUTATIVE FIELD THEORIES
A PARENT ACTION APPROACH

SUMMARY

Noncommutative field theories are defined as decoupling limit of the string theory.
Hence, they enable us to study the stringy properties by using the field theory
language. Duality is a powerful tool in physics to investigate the different prop-
erties of a model. S duality is especially important in the noncommutative gauge
theories since it produces results peculiar to the noncommutative case: if one
has a space/space noncommutative theory, then S duality leads to a space/time
noncommutative theory. In such a theory although it is not possible to define
hamiltonian by using the usual quantization procedure because of the noncom-
muting time variable, it is shown that one can define hamiltonian starting from
a parent action. This hamiltonian can be used to define the worldvolume theory
of D3—brane and hence its BPS states can be studied.

Parent action formalism is an appropriate tool for studying dual theories. One can
define the partition functions of dual theories by using the path integral formu-
lation of parent action without any other machinery. Although, on the contrary
of ordinary theory it is not possible to define an explicit transformation between
the partition functions in noncommutative case, it is shown that their partition
functions are equivalent.

On the other hand, parent action formalism can be used to study duality in the
supersymmetric generalization of the noncommutative U(1) gauge theory. For this
aim, supersymmetric generalization of the Seiberg-Witten map must be defined.
Definition of parent action is not unique and this leads to different dual theories.

vi



KOMUTATIF OLMAYAN ALAN TEORILERINDE DUALITE
PARENT EYLEM YAKLASIMI

OZET

Komiitatif olmayan (noncommutative) ayar kuramlar: sicim teorisinin ayrigma
(decoupling) limitini tanimlarlar. Boylece, sicim kuraminin 6zelliklerinin alan ku-
rami diliyle ¢aligilmasina imkan verirler. Dualite bir modelin farkl 6zelliklerinin
anlagilmasi icin giiclii bir aragtir. Komiitatif olmayan ayar kuramlarinda S
dualitenin caligilmasi bu tip teorilere 6zgii yeni sonuclar vermeleri nedeniyle
ayrica onemlidir. Uzay koordinatlar1 arasinda komiitatif olmama 06zelliginin
tanimli bulundugu bir kuramda, S dualite zaman ve uzay koordinatlari arasinda
komiitatiflik bulunmayan bir kurama yol acar. Bu tip bir ayar kuraminda Hamil-
ton fonksiyonun tanimlanabilmesi bilinen kuantizasyon yontemleriyle mimkiin
degilken, bir parent eylemden baglanarak bunun yapilabilecegi gosterilebilir. Bu
yolla D3—zarlarimin yagam hacim (worldvolume) kuramlarinin ve bunlarin BPS
durumlariin ¢aligilmas: miimkiin olmaktadir.

Dual kuramlarin ¢aligilmasi i¢in parent eylem yontemi uygun bir aractir. Bagka
bir araca gerek kalmaksizin parent eylemin path integral formalizminden hareke-
tle dual kuramlarin boliigim fonksiyonlari hesaplanabilmistir. Her ne kadar
komiitatif olmayan durumda dual kuramlarin boliigiim fonksiyonlar1 arasinda
komiitatif durumdakine benzer sekilde agik bir doniistim tanimlanamasa da bun-
larin boliisiim fonksiyonlarinin egdeger olduklar: gosterilmistir.

Komiitatif olmayan U(1) ayar kuraminin siipersimetrik duruma genellegtirilmesi
halinde dualitenin kurulabilmesi amaciyla benzer sekilde parent eylemden
yararlanilabilir. Bunun i¢in Seiberg-Witten gonderiminin siipersimetrik duruma
bir genellestirilmesi tanimlanmalidir. Parent eylemin farkli tanmimlamalarinin
miimkiin olmasina bagh olarak degisik sonuclara ulagilir.

Vil



1 INTRODUCTION

The notion of the space has undergone some radical changes during the improve-
ment of the physical theories. After the development of non-Euclidean geometry
another example of such a great change in thinking the notion of space may be
the noncommutative geometry. Actually until to come to the pioneering paper of
Alain Connes [1, 2] there has already been a great amount of examples for such
spaces both in physics and mathematics. For example Penrose tiling, noncommu-
tative tori, leaf spaces of foliations, Adela class space and the duals of nonabelian
groups.

At the level of topology, this issue is a part of the algebraic topology. A topologi-
cal space may be completely characterized by the algebra of continuous complex-
valued functions defined on it: given the continuity requirement of all functions
on the manifold one may reconstruct the topology. By knowing the associative,
commutative algebra A of the complex-valued functions one could still recon-
struct the manifold M. That is due to Gel'fand — Naimark theorem which makes
possible to construct formally a topological space M for which A is naturally
isomorphic to the space of functions [1, 2]. At this stage it is natural to ask
what happens if one chooses an associative but noncommutative algebra A’ for
example the algebra of N x N complex-valued matrices. Noncommutative spaces
result from this question. The definition of the Gel’fand transform, which is used
to reconstruct a space from an algebra, becomes ambiguous for noncommutative
algebras, and it is not possible to formally reconstruct the space M in this case.
This ambiguity can be resolved by the Morita equivalence. The Morita equivalent
spaces share many common geometrical characteristics, for example they have the
same K —theory and cyclic homology but gauge theories or more precisely vector
bundles defined over them can be very different.

Historically the first example of these spaces appear in the field theory context. At
the beginning stage of constructing quantum field theory one of the most difficult

problem was the divergences problem. To overcome this difficulty before develop-



ing a systematic renormalization procedure, it was suggested that replacing the
ordinary spacetime coordinates x* with the hermitean operators z# which satisfy

the commutation relations

(&4, 3] = 0" (1.1)

this would cure the problem [3] !. Here #*” in general can be a constant, a func-
tion of coordinates or a function of both coordinates and momenta. In the first
case theory satisfies a canonic relation and this type of theories emerge from the
quantization of string theories in a background field. In the latter case noncom-
mutativity parameter is in form of 6* = C#”2”. It defines a Lie-algebra and this
type of theories are typical in some quantum gravitational models. For instance, in
the case of CY" = 1/ and C}) = 0 spacetime is called as x—Minkowski spacetime
and is related to a quantum deformation of Poincaré group. The commutation
relations (1.1) defined between the coordinates lead to a spacetime uncertainty

relation which resembles the Heisenberg uncertainty relation

ATHAZY >

| 64 | (1.2)

N | —

As a result of this uncertainty relation the notion of point on the space is no longer
meaningful and a Planck cell is defined instead of the point. By this approach
to define the physical processes at the #—scale one should remove the notion
of the point and should work with the element of the noncommutative algebra
defined above. Hence the ultraviolet divergences in the quantum field theory
can be regularized by putting an ultraviolet cutoff A in the momentum space
integrals. This cutoff in the momentum space is a direct consequence of defining
a fundamental length scale which is given by A~!. Below this length scale all the
events can be neglected.

Another assumption that the structure of the spacetime at small length scale
should be deformed arises from the point of view of the general relativity. The en-
ergy at which gravity and quantum effects become of comparable strength is given
by the Planck energy. At the length scales corresponding to the Planck energy,
the quantum gravitational fluctuations become dominant and cannot be ignored
[4]. As a consequence of this, the spacetime becomes “fuzzy” at the very short dis-

tances and ordinary geometry notions fails to define the spacetime structure [5, 6].

I Actually the original idea is referred to the name of Heisenberg



Thus, one needs to modify the classical geometry notions. These modifications
can be related to the uncertainty relations defined in (1.2). Such a minimal length
scale predictions arise in the different quantum gravity models [7, 8, 9, 10, 11] and
they coincide with the fundamental postulate of the noncommutative geometry
which is nonlocalization property of spacetime.

So far we saw that some intuitive approaches on the problems which we come
across in the different context of physics leads to an unfamiliar geometry defin-
ition. But it is still an unforeseen argument which is forced to the theory from
outside. If we think that nocommutativity defines the nature at small length
scales we should find it somewhere in more fundamental theories. String theory
is a candidate for such a fundamental theory and it is natural to expect that
noncommutativity is included in it. There also exist other physical theories in
which above deformed spacetime structure arise naturally. M-theory is one of
them. The known five perturbative superstring theories can be obtained from
a single 11—dimensional theory which is called M-theory. String theories corre-
spond to the low energy limit of this single theory. Matrix-model is known a
formulation of M-theory and according to this conjecture each momentum sector
of the discrete light cone quantization of M-theory is described by a maximally
supersymmetric Matrix-model (or Supersymmetric Yang-Mills theory) with the
light cone momentum identified with the rank of gauge group. It is believed that
to form a formulation of M-theory, when Matrix model compactified on a circle it
must yield the string theory. Different compactifications of the Matrix model on
different manifolds are possible. A class of toroidal compactifications were con-
structed in early stages of Matrix model development, which relied on a certain
commutative subalgebras of matrices [12, 13]. Connes, Douglas and Schwarz in-
troduced the noncommutative spaces as possible compactification manifolds. By
this noncommutative space compactifications one obtain some different physical
consequences. It can be summarized that it corresponds to adding a constant
3—form background in the 11-dimensional supergravity and a major result is the
Supersymmetric Yang-Mills (SYM) theory of commutative torus compactifica-
tion now becomes a deformed SYM theory [14, 15]. Later it was proved that this
deformed SYM theory and therefore indirectly the noncommutative torus com-

pactifications can be realized as certain D-brane configurations in string theory



[14]. Subsequently, compactifications on more complicated spaces were studied
[16] and various properties of the deformed SYM theory and their relation to
string theory were considered [17, 18, 19].

Duality appears in several different context of physics. Dual theories provide
to construct two different but equivalent description of the same model in the
two different interaction regimes by using in general different fields. The rela-
tion between the fields is in general not known explicitly and in the most of
the cases it contains nonlinear terms. An exception of this situation appears
in the two-dimensional quantum field theory models. The solitons in the Sine-
Gordon theory S(¢) correspond to the fermions of the massive Thirring model
S(), where ¢ ~ 1) [20, 21, 22]. The possibility of writing fermions in terms of
bosons (bosonization) has been a powerful method for obtaining nonperturbative
information. Some of the other important dualities are Hodge duality, electric-
magnetic duality, Montonen-Olive duality and string theory dualities (S,T and U
duality). The importance of the S dual theories is that they enable us to work
of the weak and strong coupling properties of any theory. Thus knowing the ex-
plicit relation between the fields allows perturbative calculations in the variables
of the original theory both in the strong and weak coupling regimes. It should be
noted that hereafter whenever we mention the duality it must be understood as
S-duality unless it is stated explicitly.

Electric-magnetic duality exchanges the electric degrees of freedom of theory with
the magnetic degrees of freedom. It also exchanges the electric charge quanta with
the magnetic charge quanta. Electric charge quanta at the same time related to
coupling constant of theory. Such a transformation, if it can be constructed, will
map the strongly coupled electric degrees of freedom of theory to weakly coupled
magnetic degrees of freedom of it. Hence different phases of the gauge theories can
be investigated. This is especially important in the non-Abelian gauge theories,
for example in QCD. Superconductivity is explained by condensation of elec-
tric charges in which magnetic fields confine, i.e, when two magnetic monopoles
(for example ends of a long magnet) inserted in it potential between monopoles
become linear. The dual picture of this event explains the quark confinement
problem: if magnetic monopoles condense instead of electric charges, then mag-

netic currents are superconducting while electric charges are confined. Recently



Seiberg and Witten showed that breaking of N = 2 supersymmetric Yang-Mills
theory down to N = 1 gives a semi-realistic theory of electric confinement by
using a kind of electric-magnetic duality [24].

The plan of the thesis as follows: In chapter-2 we give a brief summary of the
noncommutativity. Here we also give the cornerstones of the Seiberg-Witten map.
This map defines a field redefinition of the noncommutative gauge field and gauge
parameter in terms of the commutative ones such that both of theories con-
structed from that gauge fields and gauge parameters define the same physics in
terms of different fields. We discuss in what conditions such an equivalence can
be constructed and what are the relations between the fields.

In chapter-3 we present hamiltonian formulations of noncommutative U(1) gauge
theory and its dual. Dual theory has a time/space noncommutativity whereas
the original theory has noncommutativity among the spatial coordinates [82]. In
quantum mechanics time is the evolution parameter of the system. Contrary to
the coordinate and momentum variables of the particle, time is not an operator
and therefore it is not obvious what one means by the noncommutativity of
time. Moreover, in such a case it is not apparent how quantization procedure can
be defined. Nevertheless, examples which produce such a time/space noncom-
mutativity arise in different cases and in string theory context it is unavoidable
in a manner. For instance, the noncommutativity between the space coordinates
occurs when a D-brane considered in a constant background B field which has
nonvanishing components along the space directions. When background field
has nonzero By, components, in other words when D-brane is put in an electric
background field such a time/space noncommutativity emerges [61]. Actually
an uncertainty relation between time and space can be derived from string
uncertainty principles even when no electric background is present [27]. All of
that leads to a better understanding of the notion of time in string theory. We
will propose an alternative way to construct the hamiltonian of the space/time
noncommutative theory [28]. The parent action will be the starting point of our
approach. Bypassing the usual quantization procedure we were enable to obtain
the hamiltonian. We show that although the time coordinate is noncommuting
with the spatial coordinates it works effectively as if commuting. Under the

light of these results we worked the BPS states of the noncommutative D3 —brane.



In this chapter we will also discuss how electric-magnetic duality transformation
is defined for Lagrange and Hamilton densities of noncommutative U(1) gauge
theory [46].

Chapter-4 contains the partition function analysis of the dual theories. Here we
will focus on the construction of the partition functions starting from the parent
action which yields respective partition function of both dual and original theory
with respect to phase space integrations. First of all we develop formalism for
ordinary U(1) gauge theory. Later it is going to be extended to the noncommu-
tative case. The results of ordinary case are compatible with the previous one
which is obtained by a canonical transformation [62]. It is shown that the parti-
tion function of noncommutative U(1) gauge theory and its dual are equivalent
46].

Generalization of the Seiberg-Witten map to the supersymmetric theory can be
formulated in some different ways. One of them is to generalize the definition of
the map by using the superfields [94]. In another one generalization is defined
by using the solution of ordinary Seiberg-Witten map [95]. Duality for ordinary
supersymmetric U(1) is defined in terms of superfields [24]. For noncommutative
supersymmetric theory duality is investigated via parent action method by using
the component fields in [87]. Parent action construction is not unique. Therefore
it makes possible to define different parent actions. Chapter-5 is devoted to this
discussion. We will give two different parent action constructions of the duality.
Although they yield the same dual theories in the ordinary case they differ for
supersymmetric noncommutative theory in some ways. Somehow dual symmetry
breaks and dual theories do not possess the ordinary properties. This point will
be discussed and clarified. Another parent action will be proposed in order to
reconstruct the symmetry and some related problems are considered.

The last chapter include the results and conclusions.



2 NONCOMMUTATIVITY IN PHYSICS

Beside the other fields of physics, general relativity provides powerful evidences
that spacetime coordinates at small length scales can not be thought classically
no longer in the sense that the usual notion of point is meaningless. Relativity
defines the gravitation as geometry of spacetime and at the very short distances
the notion of point of ordinary geometry is effected by the quantum fluctuations
and hence is lost its meaning. This process deform the spacetime structure at
this scale and points of space become “fuzzy”. At the most fundamental level let
us consider to localize a particle to a space region of Planck size Ap ~ 10733cm.

This requires an amount of energy equivalent to Planck mass mp ~ 101Gev/c?.

Gmeg
2c2

Black hole radius is given by R = where meg = C% If we consider particle’s
energy is localized in a space region of size a then the energy density E = hc/a

is well defined for big a. At the limit R = a

|Gh _
a=\l— =10 Bem (2.1)

we obtain the Planck length. This implies that there exist an effective minimum
length scale which form a physical bound to quantization of space. The physical
events below this limit cannot be determined. One can avoid this paradox by

introducing the spacetime uncertainty relation
D A AR >N} (2.2)

Such an uncertainty relation which we familiar from quantum mechanics is a
natural consequence of the commutation relation (1.2) between the coordinates.
Thus we conclude from this simple example that quantization of general relativity
may bring the spacetime noncommutativity.

String theory is one of the most promising candidate to being a theory of every-
thing. In this context it also provides a consistent picture of quantum theory
of gravitation. It is sensible to expect the emergence of above results in string
picture. Strings have an intrinsic length [, and using them as probes in investiga-

tion of spacetime will not give the information under this intrinsic length. String
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scattering amplitudes at ultra-high energies lead to string modified Heisenberg
uncertainty relations

h, 61
> Z(— 42 ,
Az > 2( , + IZAp) (2.3)

At the point particle limit, i.e. when [, — 0, this relation reduce to the standard
phase space relation. Minimizing the equation (2.3) with respect to Ap will give
a lower bound Az > Az,,;, on the measurability of distances in the spacetime

which is, as can be guessed, the length of the string
AL pin = s (2.4)

It is possible to realize such length scales using as probes not strings themselves
but rather certain nonperturbative open string degrees of freedom known as D-
branes. In fact using these objects allow one probe even shorter, sub-Planckian
distance scales in string theory and they enable microscopic derivations of fairly
generalized uncertainty relations which include those described above as a subset.
They are therefore the natural degrees of freedom which capture phenomena
related to quantum gravitational fluctuations of the spacetime and hence will be

important in investigation of the spacetime noncommutativity.

2.1 Landau Problem

Landau problem [29] in a sense provides a prototype example of the noncommu-
tativity in string framework which we are going to deal with in the next section.
There exist phenomenological resemblance between two cases at least at first
sight. Landau problem deals with the dynamics of the particles which are con-
strained to move in a two-dimensional plane with an external magnetic field B
perpendicular to the plane. A cyclotronic motion in plane results from the in-
teraction of magnetic field with particles due to the particles constrained in the
plane. In certain limits the configuration space in which physical observables of
the system take place shows interesting properties. Noncommutativity of space
coordinates is one of them.

Noncommutativity in string framework comes from the quantization of open
strings which are attached to a Dp-brane in presence of a background field B,,. A
Dp-brane is defined with p spatial dimensions and string end points can move on

the brane worldvolume freely in absence of a background field. This background
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Kalb-Ramond field form string analogue of the magnetic field in the Landau
problem and couples to a string charge which corresponds to the electrical charge
in the Landau problem. There is also a Maxwell (U(1)) gauge field lives on the
D-brane and couples to the string end points. Quantization of this configuration
leads to noncommutativity which will be considered in detail later. In this chapter
we will review the former case. For a detailed discussion of these issues see [26].

Position of particles will be considered in the zy—plane
ri:(xmyz'), i=1,2,-~- ’N (25)

and the gauge which produces the external constant magnetic field B is chosen

as

A(r;) = (0, Bxy) (2.6)
Lagrangian of the system is
Al 9 €.
L= ;Smiri + 1A () = V(1) (2.7)
where m; is the particles mass and V' is the electron self-energy. To quantize the

system define canonical momentum

oL e
= =m,l; + —-A 2.
P, o, m;t; + . (2.8)
Canonical hamiltonian is
Yo
H.= Gi—L=Y —m2+V(r; 2.9
% Piq ;:1 o T (ri) (2.9)

here m; = m,r; shows noncanonical kinematical momentum which is related to
canonical momentum by m; = p; — ¢A. Canonical commutation relations can be

defined as

[, Tj] =0
pi,p;] = 0

It should be noted that while the canonical momentum is not gauge invariant the

kinematical momentum preserves the gauge invariance so kinematical momenta m



must be considered as physical objects. They satisfy an intriguing commutation
relation
eB .

[r¢, 7] = the (2.11)

Thus the physical momenta are defined in a noncommutative space in presence of
a background field. In the absence of interactions the hamiltonian can be written

in terms of creation and annihilation operators

E= Z
i=1

+1),  n; =012, (2.12)

where
eB

m;c

we = (2.13)

shows the classical cyclotronic frequency of the electron and these energy eigen-
values are known as the Landau levels. The gap between Landau levels is the
constant

1

A= hw, (2.14)

Now we consider strong field limit, B > m,. In that case Lagrangian (2.7) reduce

to

L = Z(%W —V(ry) (2.15)

i=1
which is of the form pg— H (p, ¢). One can identify the canonical pairs as (%mi, Yi)
and they enjoy

(29, 28] = i6,;0 (2.16)

(R J
where the noncommutativity parameter is given by

he
g — — b 2.1
B (2.17)

with €% the antisymmetric tensor. The letters a, b = 1,2 denotes the plane coordi-
nates. Physically at the strong field limit, i.e. B — oo or equivalently m — 0, the
gap between Landau levels diverges and the lowest level decouples from others.
This forces the system to lie in the lowest level. At the same time this process
degenerate the phase space into a kind of configuration space. This can be seen
from constrained system analysis. The strong field limit turns the hamiltonian

into a topological one

H = V() (2.18)



There is not any propagating degrees of freedom and kinematical momenta be-
come a constraint of the system: 7m; = 0. Because of the commutation relation
(2.11) these are second class. This requires that normal Poisson brackets must be
replaced with Dirac brackets. The result is noncommutation of coordinates.

In the following chapter we will interested in how noncommutativity arise in

string states with D-branes.

2.2 Noncommutativity in String Theory

A Dp—brane is an extended object with p spatial dimensions defined by the
property that strings can end on them. The letter D stands for Dirichlet con-
dition. In the presence of a D-brane, the endpoints of open strings must lie on
the brane. Among the quantum states of open strings attached to a D-brane we
found photon states with polarizations and momentum along the D-brane direc-
tions. Thus one can deduce that a Maxwell field lives on the worldvolume of a
D-brane. The existence of this Maxwell field was in fact necessary to preserve the
gauge invariance of the term that couples the Kalb-Ramond field to the string in
the presence of a D-brane. We also know that the endpoints of open strings carry
Maxwell charge. Since any D-brane has a Maxwell field, it is physically reasonable
to expect that background electromagnetic fields can exist: there may be electric
or magnetic fields that permeate the D-brane. Hence the string endpoints couple
to the Maxwell potential A,, in the same way as a charged particle does. In the
case of N coincident Dp-brane a U(N) gauge field lives on the worldvolume of
the brane and this defines a U(N) Yang-Mills theory.

Now consider an open string with its ends on a D-brane such that there exist a
constant non-zero, static and uniform background field B, in the bulk. Action of
this configuration is given by the coupling of the string to this background field
in addition to the standard open string action.

1
S =

drad

/ o100 X 0 X" g% + € B, 0, X" 0, X "] (2.19)
)

where a, b denote string world sheet coordinates and g% string world sheet metric
whereas 7 shows the spacetime metric. Since B, is a constant the second part

of action can be written as a surface integral. To get the equations of motion we

11



apply the standard variational principle to the action

68 = — / Ao {1,900, X I X } + / dr{—nw0 X" 0, X" + B, 0 X" 0. X" }|5=5
b 0%

(2.20)

Invariance of the action under the variation leads to the equations of motion and

the boundary conditions

(02 — 93X+ =0, (2.21)

and

O X" — B,,0. X" =0, o=0,7 (2.22)

Thus one can see that inclusion of a static background field to the action does not
change the equations of motion but does the boundary conditions. This boundary
conditions are neither Neumann nor Drichlet but a linear combination of them.
The string positions X* can be expanded into the mode expansion by taking care
of the boundary conditions as follows

—inT
e

X =ay +p't + B"p,o+ Z (iak cosno + Bfa;, sinno) (2.23)

n
n#0

One can check that this really satisfies the boundary conditions (2.22)

0, X" = Btp” + Z e~ " (—ia"sinno + Ba’ cosno) (2.24)
n#0
and
0, XM =ph+ Z e~ (a" cosno — iB"a” sinno) (2.25)
n#0

The momentum terms and the cosine terms cancel each other, leaving the sine
terms. Since the boundary condition equations only hold at 0 = 0 and 0 = 7
these terms vanish and equations are satisfied.

Canonical momenta are

P 05 1

_ - X, — B0, X" 2.2
W(79) = S xn(r o))~ 2mar O~ Bu0aXT) (2.26)

More precisely

2ra) PH = Mﬁp’/ + Z e_mTMﬁCLZ cos no (2'27)
n#0
with
M: =5t — BB, (2.28)
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which is symmetric. To find the commutation relations of the expansion coef-

ficients of X* we impose the natural commutation relations on the conjugate

pairs

[ X*(1,0), P"(1,0")] = in""d(0c — o)

and also

[P*(1,0), P"(1,0")] =0

From (2.29) using (2.23) and (2.27)

e—inT -
[xg + p!'T + BipPo + Z n (iay, cosno + Bjay),
n#0
MEp™ + 37 e Mia, cos né] = 2mian 5o — o)

n#0
one can find that

[zh + p'T + gB;,‘pp,p”] = 2ia/(M~1)m

and

[_(efim'a;ri o eim'a,u )’ (efimfazl + eimrau )] — 40/(M71>,u1/

should be satisfied. Since (2.32) should hold for any value of 7
P, 0" =0
and
[zh, p"] = 2ia/ (M)
From the equation (2.33) by the same way

[ak,a”, | —[a",,,a’)] = 4na/ S, (M1

Now using [P*, P¥| = 0 will give

@t a*,,] + [0 a] = 0

—m —nJ) 'm

Thus we obtain

[a",a”] = 2na/ 8, _pm (M1

nr'm
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(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)



and also

[p", ap] = [, a7] = 0 (2.39)

m

Now let’s examine [X*, X¥] commutation relations
[(XH(o,7), X" (o', 7)] = [wg, x0] + [xg,p"7 + Blp“o'| + [p'7 + Bhplo, vl +  (2.40)

1
20/ Z —{—=(MH" cosno cosno’ 4+ i(BM ™" sinne cosno’
n
n#0
+i(M ™' B)" cosno sinno’ 4+ (BM ™' B)* sin no sinno’}

Utilizing the properties that (M™'B)* is antisymmetric and BM™' = M™!'B

in the above equation one can obtain

[X(0,7), X*(o", 7)] = [l 4] + 2i/ (M By {0+ o'+ 3 % sinn(o + o))

n#0

(2.41)

The function (on the right hand side in the curly brackets) has the values

1 0 c=0"=0
a+0/+2—sinn(0—|—a’): 2m c=0=m (2.42)
n£0 n T otherwise
and hence
[z, xf] o=0 =0
[(XH*(o,7), X (o', 7)] = { [25, 28] + dmiad/( MT'B)" oc=0¢" =7 (2.43)
o

[zh, 28] + 2mia/ (M~ B)"  otherwise
There is no information on the zfj commutation but even if it is chosen as 0
we have noncommutativity somewhere. One can conclude that noncommutativ-
ity arise in quantization of open strings attached to a D-brane in presence of a
background field. This arbitrariness in the 2 commutation has been tried to fix

by some different approaches. In the [41] a time averaged symplectic form was

proposed and found that it satisfies
[zh, 2f] = —2mia/ (M1 B)* (2.44)

Plugging this result into the (2.43) leads to

=21/ (MTIB)" o =0"=0
(X*(o,7), X" (0!, 7)] = 2mid/(MIB"W o=0'=n (2.45)
0 otherwise

This shows that open string coordinates are noncommuting at the where they are
attached to the brane and hence worldvolume of D-brane also becomes noncom-
mutative. In [42] this result arise from Dirac quantization of the string coordinates

which treat the boundary conditions as constraints of system .
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2.3 Gauge Theories on the Noncommutative Spaces

In this section the main interest will be the gauge theories on the noncommutative
spaces. As it is noted before, open strings attached to D-branes contain in their
spectrum a massless vector field. One can find the amplitude of the corresponding
vertex operators. In the field theory limit, i.e., in the limit of string tension pa-
rameter o/ — 0, these amplitudes coincide with those of an ordinary U(1) gauge
field theory. If, however, a constant B, field with nonzero components only in
the space directions parallel to the D-brane is switched on the amplitudes have
changed. They are not the amplitudes of an ordinary gauge field theory, rather
they correspond to the amplitudes of a noncommutative field theory, in which
the noncommutativity parameter is precisely related to the value of the B field.
The significance of noncommutative gauge theories can be classified mainly in
the two approaches. First since these type of gauge theories are originated from
string theory and D-brane worldvolume theories, the results obtained from them
can be used to shed light upon the new properties of the string and D-brane
theories. Secondly, by going in the reverse direction of the first, some properties
of string theories can be understood in the field theory language and noncom-
mutative gauge theories provide a natural framework to this aim. It should be
stressed that although the noncommutative gauge theories are the effective the-
ories of the dynamics of the strings there exist an equivalent description in the
commutative world in terms of the ordinary fields. But in some cases the non-
commutative description provide more powerful and suitable technical tools: for
example T'—duality [30, 31, 32, 33|, instantons [34] and soliton solutions [35, 36].
Some other aspects are easier in the context of commutative description; in par-
ticular, in 3 + 1 dimensions, electric-magnetic duality rotations.

Noncommutative theories enjoy an interesting property under the translations
of the gauge fields along the noncommuting directions. Such a translation is
equivalent to a gauge transformation [37]. A similar thing just appears in the
general relativity where local transformations associated to general coordinate
transformations. But when passed to the commutative side by Seiberg-Witten
map this equivalence is lost. Instead of that another aspect that can be thought

related to gravity emerges. Noncommutative field theories can be interpreted as
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ordinary theories immersed in a gravitational background generated by the gauge
field. The 6 dependent terms can be interpreted as a gravitational background
which depends on the gauge field [38].

Another important property of these type theories is that they carry some stringy
properties into the field theory side. One of them is the nonlocal nature of string
theory. As a result of this nonlocality, noncommutative gauge theories share an
intriguing property which is called UV/I R mixing.? In short it can be explained
that if any Feynman diagram requires an ultraviolet cutoff A regularizing the
graph, this naturally leads to an effective infrared cutoff Ay = ﬁ. In the renor-
malization procedure two types of the diagram occur: planar and nonplanar di-
agrams. Nonplanar diagrams are UV finite. This is the beneficial effect of the
UV/IR mixing and arise from the expected effect of the noncommutativity para-
meter in the high momentum region. However this advantage is compensated by
an increasing singularity pattern in the IR sector®. This feature is actually due to
the lack of the decoupling of the low energy effective field theories from the high
energy dynamics. Physically this means that the quanta in noncommutative field
theory include extended rigid objects whose length grows with its center of mass
momentum. These quanta are responsible for many of the stringy effects that
noncommutative field theories exhibit. The dipoles interact by joining at their
ends and this gives a simple picture of the nonlocal nature of the interactions in
noncommutative quantum field theory.

Noncommutativity can be realized mainly in two different ways. In the operator
formalism coordinates and the fields which are functions of these coordinates are
considered as operators (infinite size matrices). Coordinate operators satisfy the
commutation relation (1.1). This approach based on the Weyl quantization idea
[40]. Secondly noncommutativity of coordinates is realized by replacing the ordi-
nary product of fields with a star product. There is an equivalence called Weyl
transformation between these two formalisms. To show the equivalence we con-

sider the Weyl quantization procedure. Weyl introduced an elegant prescription

2 Actually all of the noncommutative field theories share the same property. For example an
explanation for the issue in scalar theory see [39]

3Tt turns out that, one of the beginning motivation of the noncommutativity seems to be
half achieved.As far as ultraviolet divergences are concerned, it works but in case of the infrared
divergences, the problem keeps on surviving
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for associating a quantum operator to a classical function of the phase space vari-
ables. One can define a noncommutative space by replacing the local coordinates
2% of R? by Hermitian operators #¢ obeying the commutation relation (1.1). The
2% then generate a noncommutative algebra of operators. Weyl quantization pro-
vides a one-to-one correspondence between the algebra of fields on R% and this
ring of operators, and it may be thought of as an analogue of the operator-state
correspondence of local quantum field theory. Given the function f(x) one can

define its Fourier transformation? as

fa) = / dpe f(p) (2.46)

Weyl operators f () are defined by relating them to ordinary function f(z) of

ordinary variables
f@) = [ da f)B o) (2.47)
where

Az) = / dk ek gike (2.48)

is a hermitian operator A(z)! = A(z) and describes a mixed basis for opera-
tors and fields on spacetime. Definition of Weyl operator is invertible with the
definition

f(z) = Tr(f(2).Ax)) (2.49)
The associated function obtained from a quantum operator is known as Wigner
distribution function. Hence one can form a one-to-one correspondence between

the Wigner function and Weyl operator. Here the operator trace Tr is equivalent

to integration over the noncommuting coordinates z*

Trf(i) = / dz f(z) (2.50)

From (2.47) one can write the Weyl symbol as

f(2) = / dp e £ (p) (2.51)

Multiplying these operator fields produce

~ o~

f(@)g(z) (fog)(@) (2.52)
= / dpe " f(p) / dk e g(k)

4we suppressed the factor (27)’s
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Two exponential do not commute, so using Baker-Campbell-Hausdorff formula

€A €B _ €A+B+%[A,B]+-~ (253)

and the commutation relation of Hermitian coordinate operators (1.1) will give

For= [ dptt 07 el 600 (2.54)

We would like to relate the operator fields to the ordinary fields, so using the

inverse Fourier transformation one can manipulate

A~

N —1 T ipx i i T Hpv
fg = /dpdkdxdy eI PHRIE ipe piky exp[§8u(9“ M f(x)g(y)  (2.55)
R ) 1
= [age [ s e esploreran @)

in the last line a variable exchange and some integrations have been performed.

We end up with

—_— ’i

Tog — exp[5050™ 011 ()g(9)lemy = (f % 9) (2.56)
the multiplication of operator fields is equivalent to the multiplication of ordinary
fields with an unusual multiplication rule.

We shall use the star product formalism through the work.

) )
— S
fxg(r) eXp(Qawﬁ oy

This represantation is also known as the Weyl-Moyal product. The star product

)f(2)g(Y)lz=y (2.57)

is an associative but noncommuting product rule between fields.

fx(gxh)=(fxg)xh (2.58)

Under the definition (2.57) it can be seen that the ordinary coordinate compo-
nents satisfy the relation

[x#, "], = 0" (2.59)

where commutator is defined as

[A,B, =A+B—BxA (2.60)
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As can be seen that the multiplication rule (2.57) is a deformation of the ordinary
product and at the limit 6 — 0 it gives the ordinary case. At the same time under

the integral sign it satisfies
[z i@ g = [dvg@) s f@) = [dosiag@) 2oy
/d:cf*g*h - /dx(f*g)h:/dxf(g*h)

Gauge theories on noncommutative spaces are defined deformations of the ordi-
nary gauge theories by replacing the ordinary multiplication rule with the Moyal
product. Assume that there exist a noncommutative connection flu with curva-

ture

~ ~

E.,=0,A, —0,A, —i[A,, A). (2.62)

Gauge transformations act on this noncommutative vector gauge field as
A, —UxA, U +iU%0,U, (2.63)
where U is any gauge group. It satisfies the star unitary relation
UxU*'=1 (2.64)

Then it is easy to check that

A

Eu —UxFyxU™? (2.65)

and this ensures the gauge invariance of the action

S = —Z;—Z d*z Tr(F*™E,,) (2.66)
where trace is defined on the gauge indices. It should be noted that even in the
U(1) case we have a nontrivial deformation of ordinary case which can be seen
from (2.63) that it looks like a non-Abelian theory in a sense. One would like to
find the equations of motion and calculate physically interesting quantities. How-
ever, local quantities in noncommutative gauge theories are not gauge invariant.
Nonlocal expressions can be gauge invariant but we deal with local quantities in
the ordinary gauge theories. Hence it is not possible to compare the results ob-

tained from both sides. There is a way of to get over this difficulty: Seiberg-Witten

map.
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2.4 Seiberg-Witten Map

Here we present an outline of Seiberg-Witten map [75] which stimulated a great
amount of work on the noncommutative gauge theories [76, 77, 78, 79, 80, 81].
As it is stated before the effective physics on the D-branes in presence of a back-
ground field can be described both by a commutative gauge theory and by a
noncommutative one. Seiberg-Witten proved that these two different descriptions
arise from the same two dimensional field theory with different regularizations.
Pauli-Villars regularization leads to an effective action which depends on back-
ground field B and F' only in the combination F' + B. This effective lagrangian
L(F + B) has an ordinary gauge symmetry given by A — A+ A and B — B—dA
for any one-form A. On the other hand point splitting regularization® yield a
noncommutative theory £(F) which has noncommutative gauge symmetry and a
different B—dependence. Since the physics does not depend on the regularization,
theories obtained with different regularizations can be related to each other by
coupling constant redefinition. Worldsheet lagrangians have spacetime field de-
pendent coupling constants, therefore relating these two descriptions requires a
field redefinition. Seiberg-Witten map achieves this task by mapping the standard
Yang-Mills theory gauge invariance to the gauge invariance of noncommutative
Yang-Mills theory. In the o/ — 0 limit, the effective action for slowly varying

fields is given by the Dirac-Born-Infeld lagrangian

1
Lppi(F+ B) = ——/det(g + 27/ (B + F)) (2.67)

gs(2m)P(e)

when the effective action is expressed in terms of noncommutative gauge field

ﬁDBI(F> =

1 -
1/ det(G + 2ra/F 2.68
Gy(2m)p(ar)™> \/ ( ) 209

where G is the effective open string coupling and g, is that of closed string.

Comparing the Lppr(F = 0) and ﬁDBI(ﬁ = 0) will give

1/2
detG )) (2.60)

Gs=gs
g <det(g+27ra’B

Now one can define such a field redefinition of noncommutative gauge field A and

gauge parameter A in terms of ordinary ones A, A that under this definition the

Sdifferent operators are taken at different points
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effective actions come from two different regularizations are related as
Lppr = Lppr + total derivative + O(0F) (2.70)

The difference in total derivative arises from the fact that the action is derived in
string theory by using the equations of motions which are not sensitive to such
total derivatives. The O(JF') term is possible because these two lagrangians are
derived in string theory in the approximation of slowly varying fields,i.e neglecting
the OF terms. But at this point one should be careful that this transformation is
not simply a field redefinition of the gauge fields A= A(A, 0A,0%A, -+ ;0) and a
simultaneous reparametrization of the gauge parameter A= 5\()\, ON, 0%\, - :0).
Since such a redefinition causes an isomorphy relation between the gauge groups
of ordinary and noncommutative theories, this is not the case happen here. To
realize this, it is enough to look at the rank one theory. The ordinary gauge group,
which acts by

0A, = O, (2.71)

is abelian, while the noncommutative gauge invariance, which acts by
0A, = N +iAx Ay — 1A, x A (2.72)

is nonabelian. So no redefinition of the gauge parameter can map the ordinary
gauge parameter to noncommutative one while intertwining the gauge symmetry.
Seiberg-Witten map constructs a relation between the gauge equivalence classes

of ordinary and noncommutative gauge theories instead of gauge groups. In short

~

A(A) + 0 A(A) = A(A + 6,A) (2.73)

with infinitesimal A and A. This can be achieved by taking the noncommuting
gauge parameter a function of both ordinary gauge parameter and gauge field
while the noncommutative gauge field is a function of ordinary gauge field, i.e.,
A(A) = A+A'(A) and A(\, A) = A+N(\, A) where prime denotes the components
of orders of # . Gauge transformation for an ordinary Yang-Mills theory is given

by

A, = OA+i[N A, (2.74)
Fo = 0,A,— 0,4, —i[A,, A,

WFu, = i\ Ful
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For noncommutative theory gauge transformations is given by the same formulas

except that multiplication rule exchanged with a Moyal star product. Thus

05 A, = G AN+iAx A, —iA, x ), (2.75)

>

wo = 8MAV—8VAH—Z'AH*AV+¢AV*AM,
&\FW = ij\*ﬁ’w—iﬁ’w*;\.

Expanding the equation (2.73) with respect to the orders of # and using the
definition of star product (2.57) one can obtain the noncommuting fields in terms

of the ordinary ones

1
AM(A) = AM o ZHVP{AW apAu + Fpu} + 0(92)

1
ANA) = A+ Zeﬂ”{am, A} +0O(0?) (2.76)
From the definition (2.62) it follows that

Eu=Fu +607(F,Fp — Ad,Fu) + O(6°) (2.77)
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3 HAMILTONIAN OF DUAL NCU(1) AS A CONSTRAINT SYS-
TEM

Seiberg-Witten’s work displays that the noncommutative and ordinary gauge
theory description of D—branes in a constant background B—field are equivalent
perturbatively in the noncommutativity parameter. It is natural to ask whether
this equivalence is valid nonperturbatively. Some evidence has been found in the
context of noncommutative D3—brane Blon and dyon solutions [44]. Noncommu-
tative D3—brane Blon configuration is attained when open string metric satisfies
Guny = diag(—1,1,--- 1) where M, N = 0,1,---,9. This geometry is accom-
plished allowing a background B-field on D3-brane worldvolume, producing a
noncommutativity parameter §°! # 0 and 0% = 0% = 0% = 0, where i, j = 1,2, 3.
At the lowest order in the string slope parameter o/ and for slowly varying fields
( OF ~ 0 ) noncommutative D3—brane is described in terms of noncommutative
U(1) gauge theory. Although it is possible to obtain an energy density which is
derived from the invariance of the theory under translations, hamiltonian descrip-
tion of the theory is obscure because of the noncommuting time variable.

When time is noncommuting with the spatial coordinates the usual hamiltonian
method is not applicable. Some different approaches are possible. One of them
is to introduce a spurious time like variable [45]. In this case the energy is the
same as the one derived from Lagrangian path integral formalism of the original
theory. Another approach [28] is based on the fact that the theories with non-
commuting time variable are S duals of the ones with commuting time variable
[61]. Similarly, in [82] noncommutative U(1) gauge theory with the noncommu-
tativity parameter 0% # 0,0% = 0 is established as the dual theory of the one
whose noncommutativity parameter satisfies 0% = 0, 6% # 0. Dual theory can be
obtained via a parent action [43] which is defined from the original theory by a
Legendre transformation. Constrained system analysis [63] of the shifted action
will lead to the hamiltonian formulation of both dual and initial theories without

referring their Lagrangian. This bypass procedure seems interesting and useful.
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3.1 Duality in Ordinary U(1) Gauge Theory

First of all let us recall some basic facts. The symmetry of the vacuum Maxwell

equations

0,F" =0 (3.1)
9, F*™ = (3.2)

under exchange of the fields E and B is a well known property. Exchange of fields
is defined by Hodge star operation in terms of field strength

1
F, — "F, = 55#,,ng’” (3.3)

If one would like to extend this symmetry into the case of charges and currents

are present, it is necessary that magnetic charges and currents are included as

well.
o, = —j# (3.4)
o, F" = —k (3.5)
— —
where j* = {p, j} is electric four current and k* = {o, k } is its magnetic

analogue. Now symmetry is valid under the transformation of currents among

themselves beside the Hodge star operation.

F—*F | *F— —F, (3.6)

gt =k kNt — =g (3.7)

This dualization procedure triggered the study of magnetic monopoles and has
important consequences. In nature although electric charges can be observed any
magnetic monopole has not been detected yet. In fact, this violation can be seen
from a different point of view. When we investigate duality in quantum world, we
should define a quantization which is based on the canonic variables.In terms of
this canonical variable F),, is given by F},, = 0,4, — 0, A,,. This definition requires
Bianchi identity (3.2) vanishes. In spite of this an electromagnetic potential can be
constructed by putting a singularity in it. This is known as the Dirac monopole.
Hence a magnetic monopole results from a topologically nontrivial configuration

of the potential.
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Actually there exist field theories in which these objects arise naturally. These
are certain Yang-Mills-Higgs systems and they admit static finite energy field
configurations. The Higgs mechanism break the gauge symmetry and a conve-
nient choice of vacuum leads to a perturbative spectrum which contains a Higgs
boson, a photon and two massive charged vector bosons and a solitonic solution.
Magnetic monopoles can be associated with this solitonic solution by relating
their charges to soliton numbers. An explicit construction of such a monopole
was given by 't Hooft — Polyakov ansatz [64, 65]. 't Hooft — Polyakov monopole
carries one unit magnetic charge and no electric charge. These models at the
same time admit solutions which carry both magnetic as well as electric charges,
Julia — Zee dyons [66]. For weak coupling regime of these theories the electric
and magnetic charges appear in completely different characters. Electric charges
appear as elementary quanta obtained by quantizing fields, by contrast magnetic
monopoles arise as collective excitations of the elementary particles which are
solitonic solutions and there is a quantization rule which is known as the Dirac
quantization condition ¢;g; = 2mhn,; for any electric charge ¢; and the magnetic
charge g;. This is one of the important consequence and it says that if there exist
a magnetic monopole then electrical charges are quantized. All of that imply that
there exist fundamental differences between electricity and magnetism.

But this is not all of the story. Montonen and Olive bring a new insight. They
explored a surprising symmetry between electricity and magnetism in the classical
limit of above 4—dimensional field theories. They saw that in these models the
mass of any particle of electric charge ¢ and magnetic charge g was given by a
symmetric formula M = ’U\/m which is invariant under the exchange of ¢
and g. At the same time quantum of electric charge is exchanged with a multiple
of the quantum of magnetic charge [67]. In short if we have a theory with weak
coupling in which electric charges are elementary quanta and magnetic charges are
some collective excitations we can have an equivalent picture in strong coupling
regime with magnetic charges are elementary quanta and electric charges are in
solitonic character.

Another natural extension of electric-magnetic duality of Abelian gauge theory is
to search it in the non-Abelian case. Here the usual interchange between electric

and magnetic degrees of freedom does not relate Yang-Mills theories with inverted
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couplings. In [68] this is examined by the loop space formulation of gauge theory.
They showed that the dual theory is of Freedman-Townsend type [69]. The same
result is obtained in [62] with a canonical transformation and also in [70]. Finally
in supersymmetric theories the idea of electric-magnetic duality has gained its
modern explanation. Here the CP violating term 6-parameter plays a crucial role
and monopoles are in dyonic character [71]. These properties embed the electric-
magnetic duality into a larger symmetry group SL(2, Z), the modular group. For
more information see [72, 73, 74].
In this chapter we will define a parent action construction of electric-magnetic
duality in U(1) gauge theory without source terms. Then we will exhibit the
hamiltonian formulation of the theory from an extended, let us say a parent
hamiltonian, by constraint analysis. Abelian gauge theory action is
1 4 v

S = s d*xF,, F*" (3.8)
where F' = dA. Now we want to perform a Legendre transformation with respect
to the initial variable F'. At this stage I’ is no longer field strength of a potential
and to implement the Bianchi identity we introduce a dual gauge field Ap as a

Lagrange multiplier.
4 1 Qv 1 Au b ad
Sp = d x(—4—g2FWF + §€M,jpo- D F ) (39)

Performing path integral over F' or equivalently solving the field equations for F

and replacing it in the action (3.9) leads to dual action
e
55 =% / Qe FE Fp (3.10)

where Fp = dAp. On the other hand repeating the same process with respect to
Ap instead of F' leads to Bianchi identity 0, *F* = 0 whose unique solution is
F = dA and hence the initial theory (3.8) is recovered. Canonical formulation of
Sp starts with definition of canonical momenta. Here independent variables are

F and Ap, so canonical momenta are

05k Pp, = _9%p (3.11)

i = S(OARY

e (0’
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and associated primary constraints are

®,, =P, ~0, (3.12)
¢''= Ppy ~ 0, (3.13)
1 )
X; = Ppi + §€iijjk ~0 (3.14)

where ¢, j, k = 1,2,3 and "~” denotes that constraints are weakly vanishing , i.e.,
they may have nonvanishing Poisson brackets with some canonical variables. The

related canonical hamiltonian is

1 , 1 .. 1 , ) o
HC’ - \/d3l'[2—ngOZF0i + 4_92FUF’7;]' — §€ijk87'AODFJk + Ez‘jkalAjDFOk] (315)
Denote that we use the definition
0F,, 1
— = (6,6, —6,°0,°). 3.16
SR = 5040, = 8,75.) (3.16)

By adding the primary constraints (3.12)-(3.14) to the canonical hamiltonian with

some Lagrange multipliers oy, 3, Ai;, k; one obtains the extended hamiltonian.
HE — HC —+ /d3.17[04ip0i —+ ﬁPDO + )‘ijpij + HZX?] (317)

Consistency of primary constraints in time may lead to some new constraints or
may impose conditions on some Lagrange multipliers. Constraints which arise in
this way are called secondary constraints. Hence we are left with two secondary

constraints

©° = {Ppo, Hp} = €0 F* = 0 (3.18)

1 )
and two equations related with the multipliers k and A:

(X}, Hg} = N\ij+0iFy; =0 (3.21)

, 1 ,
ki — 0'AY + EeiijJ’“ ~0 (3.20)

Where equal time Poisson brackets are defined as:

{Ph(x), Apu(y)}ps = —0L6°(x—y) (3.22)
(P00, Froy)len = —5(00 — P —y)  (3:23)
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Consistency of the secondary constraints also should be checked. This will not
give further constraints and they terminate here. When constraints (3.18) and

(3.14) are considered together one can obtain another constraint which is;
0iPh ~ 0 (3.24)

Now full constraint structure of the system is obtained and they can be classified
as first class or second class by following the Dirac’s definition [63]. A constraint
is called first class, if its Poisson bracket with all other constraints vanish. On the
other hand if a constraint has a nonvanishing Poisson bracket with at least one
of the other constraints it is called second class. In case of the second class con-
straints dynamics of any function of phase space variables is given by a modified

bracket structure, Dirac bracket

{A,B}p.p. = {A, B}ps — {A xi}r.(C7")?{x;, B}ps. (3.25)

where y; stands for the second class constraints and Cj; for the matrix formed

by the Poisson brackets of the second class constraints

Cij ={xi, X} pB.

Dirac brackets satisfy the same algebraic relations of the Poisson bracket and
Dirac bracket of any function with all y vanishes. So, using the Dirac brackets
instead of Poisson bracket, the weak equations may be written as strong equalities.
This span a reduced phase space and quantization on this reduced space with the
canonical commutators is equivalent to the Dirac quantization on the constrained
phase space. The constraints (3.13) and (3.24) are first class and the rest (3.12),
(3.14), (3.18), (3.19) are second class. In the reduced phase space, obtained by
setting all the second class constraints equal to zero strongly and solving F, P in
terms of Fp, Pp the canonical hamiltonian (3.15) becomes

Hp = / d%[iPDiP}_; + g—zFDing] (3.26)

29> 4

Moreover, there are first class constraints
Ppo =~ 0, ;P =~ 0 (3.27)

Obviously this is the same with the constraint hamiltonian formalism of the dual

theory. Therefore we demonstrated that one can obtain constrained hamiltonian
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formulation of the dual theory beginning from the shifted action (3.9) bypassing
the dual Lagrangian (3.10).

3.2 Noncommutative U(1) Gauge Theory

Noncommutative U(1) gauge theory is given by the action
Q 1 4 .1 [y

where field strength is defined as

By using Seiberg-Witten map (2.77) at the first order in 6*¥ one obtains

A

Fo=F,+0°F,,F,, —0"A,0,F,

Thus the action (3.28) can be written at the first order in 0" as

N 1 1
& _4_g2 d4x(FWFW + 20" F, FPF,, — 5(QP“’FMZ,FMF'”") (3.29)

Now we have the noncommutative action in terms of ordinary fields and in the

light of the previous section we can define noncommutative parent action as
S 54 ! d*z Al 0" F*°
Sp=5S+ 5 2 A€, po 0" F (3.30)

where I’ # dA. As in the commutative case dual action can be found by solving
the field equation for F'in terms of Fp = dAp and plugging it in the action (3.30)
2

N ~ 1
Sp = _gZ/d%(ngFDuy + 20" Fpu, Fy Fpey, — §9WFDWFDPUF£>U) (3.31)

where 9 = g*e"*?0,,. At the first order in 6 it can be derived from the action
2

Sp = —gz / 'z P, R FE (3.32)

where % is given by (2.57) by replacing @ with 6. For 6% = 0 and 67 # 0 the
dual theory is a gauge theory whose time variable is noncommuting in terms of
the Moyal bracket with %, because 6% £ 0, § = 0. For a noncommuting time

canonical formalism is obscure. Thus we would like to bypass the dual action
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(3.32) to obtain a phase space formulation of the dual theory using the method
illustrated in the previous section.

Let 6% # 0 and 0% = 0 in the action (3.30). Definition of canonical momenta

- 53
P,=———, 3.33
H 5(80F“l’) ( )
- 55
Pp, = ——~ 3.34
o= 5@ A) .
Primary constraints do not differ from the commutative case
o, =P, ~0, (3.35)
€' = Ppy ~ 0, (3.36)
1
X; = Ppi + §€ijk:ij ~ 0 (3.37)
and the canonical hamiltonian is
) 3 1 i A0 ik i A Ok 1 0i
HC = d x[—§e,~jk6 ADF + Eijka ADF + Q—gQFQZF
1 i L o ik L kl
+4—g2Fiij + EF Fij07" Fyo + @F]ij@ Fy;
1. 1.
—@9 I Fy For, FO% — 8—929 1Fy Fy FM) (3.38)

By choosing the Lagrange multipliers as d&;, 3, 5\ij and k; one can write extended

hamiltonian as
Hp=He + / d*x[a; Py; + BPpo + A7 Py + ki’ (3.39)
Preserving the primary constraints in time leads to secondary constraints
O = {Ppy, Hg} = ;0" F* = 0 (3.40)
and
Xi ={Py,Hg} = F%— F;6"*F — FYF;.0"
%eijkij — GPend A~ 0 (3.41)

The other primary constraints will fix the multipliers &, )\ as before. In our cal-
culations these multipliers play no role, therefore we do not need determine them

explicitly. Of course we also have
&=0Ppi~0 (3.42)
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from (3.37) and (3.40). Consistency of second class constraints will not yield new
constraints. One can check that (3.36) and (3.42) are first class and the rest are
second class. In the reduced phase space where second class constraints strongly

vanish, the canonical hamiltonian becomes

2
T 3. 19 -2 L 1 ij pk P2
2 . .
—gzeijkewp,’gFglm — g2 Fpi; Pl 0™ ey FI] (3.43)

if we solve F, P in terms of Fp and Pp. Moreover, there are still the constraints
O'Pp; ~0,  Ppy=0 (3.44)

which are first class. This hamiltonian can be written in terms of §% = g2€*g,,,
as
o = /dgx Crg, L+ L,
47D T 9 24" j
+iéOiP]gF,§jk + 0% Fpji Fpjr PE] (3.45)

On the other hand, although the dual action (3.31) possess a noncommuting time
variable in terms of the Moyal bracket (2.57) given by %, it is originated from the
action (3.30) whose time coordinate is commuting. We wonder what would be
the phase space structure if we treat time coordinate as commuting in the action

(3.31) written in components as

~ 1 1 1~
Sp = 92/d437 [§F0iF0i - ZEjFij - 5902Fi0F0jF0j

o 1~
—0" Fy F Fro + ZIeolE-oz«ku,w-] (3.46)

Definition of the spatial components of momentum

A 55 1 o .
Pi=—" = @PIF94+ —0%Fpy:Fpo; — Y Fp:g F° 3.47
D= a0 g [Fp + 50" F'pojF'po; pjofp (3.47)

71 i Lo
+ O Fp P — 190 FpitFpijx]
can be solved to find dyAp;. They lead to the same hamiltonian (3.45) which was
obtained using the action (3.31). Moreover, there are same constraints (3.44).

We conclude that at the first order in # whatever the method used we obtain

the same hamiltonian and the constraints. However, the method of obtaining
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hamiltonian from the shifted action (3.30) seems easier: when the higher orders
in @ are considered the unique change will be in the constraint (3.41), the other
constraints (3.35)-(3.37), (3.40) will remain intact. Thus, finding hamiltonian of

the dual theory is reduced to find solution of a constraint.

3.3 Relations Between the Electric-Magnetic Duality and the Dual
Actions of Noncommutative U(1) Theory

Although electric-magnetic duality transformation is an invariance of Maxwell
equations in vacuum, it is known that it maps the lagrangian density to itself up
to an overall minus sign and keeps intact the hamiltonian density of U(1) gauge
theory. Electric-magnetic duality transformation of the equations of motion of
noncommutative U(1) theory is studied in [83]. Discussion of relations of the
electric-magnetic duality with the dual description of the noncommutative gauge
theory utilizing the lagrangian and the hamiltonian densities was made in [46].
Let us write the action (3.29) and (3.31) in terms of the electric and magnetic

fields: when the magnetic field vector
1 )
Bf:—iqmFm (3.48)

and the electric field vector E; = Fy; are employed, the original action becomes
[36]
S = /d%[L(EQ—BQ)(1—9~B)+i0-EE~B] (3.49)
297 92
where the vector 6 is defined by 6% = €7%f),.. For the dual case we adopt the same
notation: F; = Fpg; and
1 ,
B; = —§eiijlJ)k. (3.50)

Hence, the dual action can be written as
2

&yz/ﬁ%ﬁ%@?—Eﬁxy+éﬁn+g%-BE-B] (3.51)
where 0 vector is defined as 8 = %. One can observe that under the transfor-
mation

E - ¢°B, B — —¢’E, (3.52)
(3.49) is mapped into the dual action (3.51) up to an overall minus sign. This
is a well known property of abelian gauge theory action. Thus, it persists in the

noncommutative theory.
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We also would like to obtain relations between electric-magnetic duality and
the (S) duality transformation of noncommutative U(1) theory in hamiltonian

formalism. Canonical hamiltonian associated with (3.29) can be derived as

2
T 3. [9 po, 1 i L i Kl 1 s kl
2
+9°0" P;P*Fy,; — gZGiijiP,f , (3.53)

where we choose the subsidiary condition Ag = 0 which corresponds to the con-
straint Py = 0. Furthermore, there is the constraint 9;P’ = 0. Hamiltonian of
the dual noncommutative U(1) gauge theory (3.45) is obtained in the previous

subsection by two different approaches as

1
00 FY FDjkPB} (3.54)

- 1 2 i 1~ 1. ‘
HD = /dgx |:2—g2P12)1 -+ g—FDz]FD] + 2_g400iPDP12)j + ZGOiPDFDijgg

with the constrained 9;Pp = 0 after setting Ppg = 0, Apg = 0.

Let us introduce the vector field P, = ¢=2D; and the magnetic fields as before
(3.48). Hence, we write the hamiltonian (3.53) as

- 1 1 1
o 3 _ 2 2 _ - n. 2 2 _ - n. .
H_/dx[ZQQ(D + B?) 2929 B(B? — D?) 929 DB D] (3.55)

Similarly, let us introduce Pp; = ¢?D; and the magnetic field as in (3.50). Then,

the hamiltonian (3.45) becomes
~ g2 g2 ~ ~
Hp = /d% b(m +B?) — 50 D(D? - B?) — ¢°0 - BB - D} . (3.56)
One can show that under the map
D — —¢’B, B —¢’D (3.57)

the hamiltonian (3.55) transforms into the dual hamiltonian (3.56). Thus, the
noncommutative electric-magnetic duality transformation in the hamiltonian for-
mulation is given by (3.57). Observe that the lagrangian and the hamiltonian
description of electric-magnetic duality transformations, (3.52) and (3.57), seem

to be “inverted”.
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Definition of the canonical momenta P; following from (3.29) can be used to
express P; in terms of the electric field E; = Fp;. Then, one can express the
hamiltonian (3.53) as [86]

ﬂ:/d% [L(EQ+B2)(1—9-B)+ie-EE-B]. (3.58)

29 92
Analogously, the canonical momenta Pp; derived from (3.31) can be expressed in
terms of the electric field E; = Fpg;. Making use of it in the hamiltonian (3.45)
one obtains
Hp = /d% {%2(132 +B?) + 4% - EE21 . (3.59)

(3.58) and (3.59) are not related with a transformation resembling the electric—
magnetic duality transformation (3.57).
Electric-magnetic duality transformation of the noncommutative hamiltonians
cannot be given in terms of E, B fields but using D, B. This is an expected
result: Hamiltonians should be written in momenta P; or Pp; not by using the
“velocities” Fy; or Fpg;. In the commuting case this difference does not appear

due to the fact that P = E.

3.4 BPS States Of Noncommutative D3-Brane

The notion of BPS states plays a fundamental role in discussion of nonpertur-
bative duality symmetries. Massive BPS states appear in theories with extended
supersymmetry. It just so happens that supersymmetry representations are some-
times shorter than usual. This is due to some of the supersymmetry operators
being “null”, so that they cannot create new states. The vanishing of some super-
charges depends on the relation between the mass of a multiplet and some central
charges appearing in the supersymmetry algebra. These central charges depend
on electric and magnetic charges of the theory as well as on expectation values
of scalars. In 1978 Witten and Olive noted that in supersymmetric theories with
solitons the topological charges play the role of the central charges of the super
Poincaré algebra. In a sector with given charges, the BPS states are the lowest
lying states and they saturate the so called BPS bound. BPS states behave in
a very special way: they are absolutely stable. The reason is the dependence of

their mass on conserved charges. For a detailed discussion see [47].
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In the zero slope limit, o/ — 0, and considering slowly varying fields noncommu-
tative DBI action becomes noncommutative gauge theory (3.31) up to constant
terms [75]. Noncommutative D3—brane worldvolume action can be extracted
from 10 dimensional noncommutative gauge theory in the static gauge where the
first three spatial coordinates are taken equal to brane worldvolume coordinates
and the rest of the coordinates as scalar field on the brane. We consider only one
scalar field. D3—brane worldvolume Hamiltonian density resulting from (3.45)
when 6% £ 0, 0% =0, is
Lo Lo 1o pe laein o Goi k
H = P+ -F;— 59 PP — ZH PiF; + 0" Py P

2 4

1 1 1~ -
+§7T2 + 5(81925)2 — éeoz.PZ"ﬂ'Q + QOZWEjﬁj(b

~ 1~
—0% P;0;¢0; + ieola(aj@? (3.60)

The scalar field and the corresponding canonical momentum denoted as ¢ and 7.
Moreover we renamed the dual variables Fp, Pp as F, P. We choose m = 0 to
deal with the static case.
To discuss bounds on the value of the Hamiltonian we would like to write (3.60)
as

=1 lpylowy (3.61)

20t 2T 2 '

with the restrictions

Pilp—o =0, Bilp—o =0, 9;¢|4p—0 = 0,

These are fulfilled by

P, = P, — a,0” P? — a,0 P, P, (3.62)
~ 1 1~ ~ ~
B, = EEijk(ij — éemplek + 010" Py Fy + 020" PLEY), (3.63)
— 1~ o o
Db = 0,0 + Eeofpjaigb — 10%0;0P; — c20% 0;0 P, (3.64)

where a1 9 b1 2 ¢12 are constants which should satisfy
1
CL1+CL2:§7 b1+b2:—2, Cl+02:1, (365)

otherwise arbitrary. These do not correspond to the Seiberg—Witten map (2.77).

There the fields of commutative and noncommutative gauge theories are mapped
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into each other by changing the gauge group from commutative U(1) to noncom-
mutative one such that (2.73) is satisfied. In our case gauge group is always U(1).
Although we write the Hamiltonian (3.61) in terms of 8% dependent fields we still
have the constraint 0;P; = 0, indicating U(1) gauge group. Seiberg—Witten map
in phase space is studied in [48, 52].

Now, in terms of an arbitrary angle a the Hamiltonian density (3.60) can be put

into the form

]. = - ]_ -~ —~
H = §(Pi—sinoz8iq5)2—|—§(Bi—cosozaigb)2

+sina ﬁ,@:?b + cos « E,(i;b (3.66)

Thus, we can write a bound on total energy E relative to the worldvolume vacuum

of noncomutative D3—brane as

E>\/Z%+ 72, (3.67)

where, we introduced

Ju = / & B, (3.68)
D3

Zmz/d%E@x (3.69)
D3

In the commutative case Zel and Zmag become topological charges due to the
Gauss law and the Bianchi identity: 0;F; = 0, 9;B; = 0. In the commuting case
(3.67) is known as BPS bound [53, 54]. However, in our case we do not have an
integrability conditions for P,, B;. Nevertheless, it will be shown that they can
be topological charges for some specific configurations.

The bound (3.67)is saturated for

~

P, = 8:-;5, B; = 0, sina = 1. (3.70)
This can be accomplished at the first order in 8%, when
Fi; =0, P = 00, (3.71)

if we fix the parameters as

1
a; = C1, Qg = Cy — 5, (372)
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which are consistent with (3.65). Because of the constraint (3.42) ¢ should satisfy
¢ = 0. (3.73)

For this configuration Zmag vanishes: Z(,}()lg =0, and Zel reads
2 = [ #soioni0) - [ @ o007 (3.74)

For the commutative case isolated singularities of ¢ satisfying these conditions
are called Blon [53]. The simplest choice satisfying (3.73) is [54]

e

o(r) =—— (3.75)

" 4
where r is the radial variable. In general we cannot write g dependent part as
a surface integral. However, this choice of harmonic function (3.73) renders it
possible. Indeed, we can write Z 6(; ) as an integral over a sphere of radius € about

the origin and find }

2
1) _ (e —

el

) lim ¢(e€), (3.76)

20met” e=0

where 6 = \/ §00%

Observe that the usual Blon solution (3.75) leads to a solution for the noncommu-
tative case (3.70). This is similar to the fact that linearized and full DBI actions
lead to the same Blon solution with the same energy [55]. Here the solutions
are the same but energies differ. When one sets P, = 0 the terms depending
on the noncommutativity parameter gvi disappear. This is what we expected:
noncommutativity is only between time and space coordinates not between spa-
tial coordinates. Thus, when momenta vanish noncommutativity should cease to

exist. For P, = 0 the bound (3.67) is saturated for

1
—€iFip = 00, cosa =1 3.77
2 J J

where as before ¢ should satisfy (3.73). For this commuting configuration Z, and

Zmag become Ze(?) =0, and

>(2 3
28, = [ #s0000) (3.78)
To satisfy (3.77) and (3.73) consider a magnetic charge at the origin
o(r) = -1 (3.79)
Ay



Let the integral be over a sphere of radius € about the origin which yields

= _
Zig = 91im o(e). (3.80)

There is another configuration
131» =sino a/i?b, R = cos « 51»25, (3.81)

which saturates the bound (3.67). The constant angle « is defined as

Ze
tan o = —2—. (3.82)
Zmag

This can be realized if the commuting variables are fixed as
1
P; = sina 0;0, §€iijjk = cosa 0;¢ (3.83)
and the free parameters in (3.62)—(3.64) satisfy (3.72) and
(6] :b1/2, Cy = 1—b1/2 (384)

These are consistent with (3.65). Thus, in the hatted quantities (3.62)—(3.64) now,
there is only one free constant parameter. For this configuration Zel and Zmag are
given by

A / PP sina 0;(p0;0) — / Pr 07 sin® o 8,0(06)%,  (3.85)
Z,ngg = /d% cos v 8i(gz5(9igz5),—/d3a: 0% cos® v 0;0(0¢)>. (3.86)

Similar to the other configurations, ¢ should satisfy (3.73) and we consider the

simplest choice

g
=— 3.87

o(r) dmcosa r ( )
For this choice of the harmonic function (3.87) the integrals in (3.85) and (3.86)
can be performed over a sphere of radius € about the origin. Therefore, the energy

can be calculated as

. - 1/2
Oe? 0g*
E = — 2 — 2 li .
where e/g = tana. Similar to the above mentioned configurations ordinary

D3—brane dyon solution (3.87), provide a solution of the noncommutative con-

dition (3.81).
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Hamiltonian formulation of noncommutative D3—brane when Moyal bracket of
time coordinate with spatial coordinates is nonvanishing, i.e. gvi # 0 is obtained
without introducing any new machinery. This follows from the fact that its action
can be obtained from an action where time is as usual, commuting. The result
which we obtained is only at the first order in noncommutativity parameter,
however it can be generalized to the higher orders. Obviously, one of the method
is to solve JyAp in terms of Pp, Fp from the generalization of (3.47). However, it
is highly non-linear. On the other hand using the shifted action as it is illustrated
here seems more manageable. It is an encouraging property that one should only
solve a constraint similar to (3.41). The other constraints (3.35)-(3.37),(3.40)
remain intact.

Noncommuting D3—brane formulation which we deal with is somehow differ-
ent from the one considered in [44, 56, 57, 58, 59, 60]. There, gauge group is
noncommutative U(1), in our case although Hamiltonian depend on the non-
commutativity parameter, gauge group is still U(1). This seems to be the basic
reason that the BPS solutions of ordinary case [53, 54] provide solutions of the

noncommutative case as it happens between linearized and full DBI action [55].
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4 PARTITION FUNCTIONS OF DUAL THEORIES

In four dimensional gauge theories with complexified coupling constant 7 =
% + % S-duality emerges as a symmetry of the theory. This is known as the mod-
ular transformations of the 7 and under this transformations partition function
transforms as a modular form with a weight proportional to the Euler charac-
teristic of 4-manifold. This analysis for U(1) gauge theory without charges could
be done explicitly at the level of path integral and it was shown that there is an
analogy to the transformation law for the dilaton under T duality in non-linear
sigma model [23]. In supersymmetric theories, especially in N = 2 and N = 1
supersymmetric Yang-Mills theories, S-duality has been also studied [24, 25].

In the previous chapter we studied the parent action construction of S-dual theo-
ries of noncommutative gauge theory. We would like to obtain partition functions
of these dual theories by using the same machinery. Our treatment will be a min-
imalistic approach to the problem: we will neglect the 6—term in the 7 and work
nonsupersymmetric theory. When parent action is employed in the path integral
if one integrates over dual field Ap the partition function of the ordinary U(1)
theory results. Instead of Ap one can integrate antisymmetric second rank tensor
F,,, which yields the partition function of the dual U(1) theory. Thus one can
easily show equivalence of partition function for the U(1) and its dual theory, up
to a normalization constant. On the other hand hamiltonian description of these
theories are shown to be connected by a canonical transformation and as a conse-
quence it followed that the partition functions in their phase spaces are the same
[62]. This equivalence can also be demonstrated directly in terms of the hamil-
tonian formulation of the parent action [46]. In the light of this strategy partition
function of S-dual theories in noncommutative spacetime can be obtained.

For U(1) gauge theory the parent action can be used in path integrals to derive
relations between the original and the dual theories. But, for noncommutative the-

ory one should employ equations of motion to obtain the initial or dual noncom-
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mutative U(1) theory and relation between their partition functions is unknown.
We will show that partition functions of noncommutative U(1) theory with spa-
tial noncommutativity and its dual whose time coordinate is effectively noncom-
muting with spatial coordinates, are equivalent in appropriate phase spaces. To
achieve this we will follow the approach presented for the commutative gauge

theory.

4.1 Partition Functions of U(1) Gauge Theory and Its Dual

The parent action which gives U(1) gauge theory and its dual and constraint
structure of this action was obtained in the chapter-3. When one inserts this
parent action into path integral it contains all of the degrees of the freedom
and hence it is highly redundant. Because of that it requires a careful analysis
of constraints. Let us find out the number of physical phase space fields: the
constraint (3.13) is obviously first class. Besides it, the linear combination

1
=02 - 5<I>3 = 9,Pp; ~ 0, (4.1)

is also a first class constraint. A vector can be completely described by giving
its divergence and rotation (up to a boundary condition). (4.1) is derived taking
divergence of x?, so that, there are still two linearly independent second class
constraints following from the curl of x?. Obviously, the constraints ®', &3 y?
are all second class and linearly independent. Therefore, the number of physical
phase space fields is four.

To deal with path integrals, we choose the gauge fixing (subsidiary) conditions
Al = ADO ~ 0, A2 = @ADl ~ 0 (42)

for the first class constraints (3.13) and (4.1). The linearly independent second

class constraints resulting from the curl of x? can be taken as
P2 = Clx? = Kleijrdixi =~ 0, (4.3)

where n = 1,2, and K! are some constants which should be chosen in accor-

dance with solutions of the other constraints when they vanish strongly. For the
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later convenience, instead of dealing with x} we introduce another set of linearly

independent second class constraints:
) = My} = Lienixi =0, ®3=0F,~0. (4.4)

L are some constants. As we will see, explicit forms of K and L! play no role
in our calculations.
Partition function associated with the hamiltonian (3.15) in the total phase space

18
7 = /DADDFDPDDP A exp {i/d% [PDMA% + PNVF’“’ — HC] } . (4.5)

We suppressed the indices of the integration variables and the measure A is
defined as[84], [85]

4

A = det{€*, A%}det!/?{d*, d*} f[ 3(67)5(A7) [T (). (4.6)

o=1 =1
The determinant related to first class constraints and their subsidiary conditions
is

det{¢*, AP} = det 0;0" = det(0?)

The determinant due to the second class constraints can be calculated as
det'?{2%, @'} = det(g) det(9?) det (€,;,0°C{Cy) det (€, 0'MIME),  (4.7)

where C! and M are defined in (4.3) and (4.4). Here the determinants of these
linear operators should be interpreted as multiplication of their eigenvalues. Ex-
plicit form of these determinants and calculations can be found in the appendix.
Performing functional integrations over the variables F** P, and AY, P we

obtain the partition function of the dual theory in hamiltonian formalism

7 = /DADDPD5(8~PD)é(a.AD)det(GZ)
1

2 ..
exp {z / d*x {PDiAiD — Q—QQPDZ-P}'J — gZFgFDU] } : (4.8)

Here, the factor det'/?{®® &} is canceled with the determinant arising from
the Dirac delta functions §(®*) when we use them to express F),, in terms of

the “physical” fields Ap, Pp. Although here this can be observed by direct
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calculation®, it is true in general when one gets rid of second class constraints
by imposing them strongly and deal with the reduced phase space path integrals
[85].
Now, in (4.5) we would like to perform integrations over the dual fields Ap,, Pp,
and the momenta P,,. Vanishing of the constraint (3.18) strongly, i.e. 3 = 0,
dictates that

Eij = 0:4; — 0;Ai. (4.9)

Being a second class constraint ®* = 0 should eliminate one phase space variable.
However, the number of independent components of F;; and A; are the same.
So that, solving ®* = 0 as (4.9) and dealing with A; instead of F};, has to be
accompanied with a condition on A;. The constraint x? involves only curl of A;,
therefore, 2 = 0 give information only about the two components of A;. In order
to describe A; completely one needs to furnish its divergence. Thus, we choose as

the missing condition

0;A" = 0. (4.10)

After performing the Ap,, Pp, and P,, integrations in (4.5) we obtain

Z = detg™ / DAD Fyydet(82)5(0'Fo)5(0 - A)

1 '
| Bal—= Ry A+ —FYF, — —FiE]Y . (411
eXp{Z/ gt g e = 4 j]} @10

We used the fact that expressing Ap; and Pp; in terms of the “physical” fields
A;, Fy;, using the Dirac delta functions 6(®%), §(0 - Pp), d(0 - Ap), contributes

to the measure as
o o -1
det(g4)det(02)det (eijkalCJlC§> det <GijkalMJ1Mg>] (412)

See the appendix-A for details. Moreover, here F}; is given by (4.9) and we per-
formed the change of variables F;; — A;. We choose domains of the integrals such

that in (4.5) we can perform the replacement

DFy6(M™" Oy Fiyn )6 (C;z (PB + §€iijjk)) — (4.13)

6To obtain (4.8) we do not need to deal with the set (4.4). It is easier to employ (3.19) with
an appropriate determinant.
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One can observe that det(9?) should be included in the measure when one deals
with the gauge fields A; satisfying the condition (4.10), considering this change of
variables from the beginning with an appropriate change of the momenta F;; —
P;, where the later are canonical momenta of A;.

Observe that in (4.11) the variables Fp; can be renamed as
Foi = —¢*P;, (4.14)
where P; are the canonical momenta associated to A;. Thus, (4.11) becomes

Z = detg™* / DADPdet(6?)5(0-P)5(0 - A)
exp z‘/d%[P-Ai — g—ZP-P" — LF”F] (4.15)
i 9 ) 492 iJ . .
Although (4.14) is resulted after performing functional integrals in (4.5), we could

derive it from the constraint structure using Dirac brackets:

{FOi(x)a PDj(y)}Dirac = {Fm', POk}{POka ‘D?}fl{@ﬁ ij}
2 653@ —9)

9 €ikj axk ( )
On the other hand making use of (4.9) in x? = 0 yields

Plugging (4.17) into the left hand side of the Dirac bracket (4.16), leads to

0 983 (z — y)

_Ejkla_yk{FOi(x)aAl(y)}DiraC = ff@'jka—xka (4-18)

which is solved as
{FOi(SC)7 Aj (y)}Dirac = 925¢j53(13 - Z/>~ (4-19)

Thus, (4.14) follows.
We choose the normalization such that partition function for Maxwell theory in

hamiltonian formalism is given by

Zy=7Zn(g) = detg_Z/DADP5(8~A)5(8-P)

2
. ii Y i R
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We denoted the normalized partition function as Zy(g). The normalized partition

function of the dual theory in phase space is

Zup = Zn(g™Y) = deth/DADPé(E)-A)é(a-P) (4.21)
Mo lpii- Lppi_ L pp 4.29
exp < i x |PA" — 92 ij | ¢ (4.22)

where we renamed A%, P} as A’, P'. By comparing Z obtained in (4.8) and (4.15)
we conclude that in hamiltonian formalism partition functions for Maxwell theory
and its dual are the same

Zy = Zup, (4.23)

which can equivalently be written in terms of the normalized partition function

Zn(g) = Zn(g7"). (4.24)

This result was obtained in [62] in terms of canonical transformations without

gauge fixing factor and with another normalization.

4.2 Partition Functions of Noncommutative U(1) Theory and Its Dual

Here we will make a similar discussion for the noncommutative theory. We know
from the previous chapter that except the constraint (3.41) the other constraints
are the same as in the commuting case. Hence the constraint (3.36) and the linear
combination of the (3.37) and (3.40)

- 1-~ )
=0, — 5@3 = 0;P}, ~ 0 (4.25)

are first class constraints. Curl of x? leads to two linearly independent second

class constraints:

P2 = = Kleijud; Xi =~ 0, (4.26)

where n = 1, 2. Analogous to the commuting case, instead of Y} we deal with the

following set of second class constraints

&) = MiY! = Lied;xi = 0, (4.27)

@% = 81 (PWOz — Ejeijko - FOijkeki - %Hﬂ“FkJFOZ) ~ 0. (428)
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K'! and L’ are some constants which should be determined by taking into account
the other constraints when they vanish strongly. The constraints (3.35) and (3.40)
are also second class. Structure of the constraints is similar to commuting case
discussed in the previous chapter. In fact, the number of physical phase space
fields is four.

In phase space, partition function associated with the parent action for noncom-

mutative U(1) theory (3.30) is defined as
7 = / DPDPL,DFDAp Aexp {z / d*z [P{;ADM + P, F" — ﬂc] } . (4.29)

Indices of integration variables are suppressed. We have adopted the gauge fixing

conditions
]\1 = ADO ~ O7 /~X2 = @ADZ =~ 0. (430)
Therefore, the measure A is
2 4
A = det{€, A%}detz {®°, 3"} [ 6(€)6(A7) ] 6(9). (4.31)
o=1 c=1

Contribution of the first class constraints éa and their subsidiary conditions A®
to the measure is
det{€®, A’} = det(d?). (4.32)
The second class constraints ®* contribute to the measure as
det? {d, 3"} = g*det(9?) det (eijkaiMfMQk) (4.33)
. 1 ..
det (eijké?’C{Cf) det (—1 + 59”Fji) )

eijk(‘?iMf My and eijk(‘?iC’f Ck denote multiplication of the three linear differential
operators and as usual, determinants of them are defined as multiplication of the
eigenvalues of the linear operators. The last term in (4.33) is to be interpreted as
multiplication of the value of (—1+ 367 F};) over all spacetime. The determinant
should be regularized, however as we will show, our results are independent of
their regularizations.

Performing the functional integrations over F'* and P,, in (4.29) we obtain

7 = / DApRDP (0 -Pp)s(d- Ap)det(d?)

.. 1 . 2 .
exp {z / &z [PDiA}) ~ 5@ toih - QZFDing

1 - - . 1~
ol " PoiPh+ 6% Fpy; FI¥ Py, + ZQOZPDiFf)} } (4.34)
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The determinant (4.33) is cancelled” when we used §(®%) to express the “redun-
dant” fields F*, P, in terms of the “physical” fields A%, P},. Obviously, there
are other solutions of (4.27) and (4.28) which would be useful to express another
set of fields in terms of the remaining ones. We take the solution yielding the par-
tition function which we desire. We observe that in (4.34) the exponential term
is the first order of the dual noncommutative U(1) theory whose hamiltonian is
(3.54).

Like the commuting case discussed in the previous subsection, when ®* = 0 is

used to write

Fij = 0;A; — 0; A,
we demand that the constraint
should be fulfilled. Moreover, when we change the variables F;; — A; we
choose the normalization and domains of integrations in (4.29) such that (4.13)
is satisfied. Equipped with these, we perform the integrations over the fields

Apu, Ppu, P in (4.29) which yields

- . 1 ..
7 = detg™ / DADF%5(9 - A) det(9?) det (—1 + Qellei>
. ) . ) 1 .
5 <ai(F01 — F0"" Fyo — FY Fy0" — §eJkajF0i))

) 1 .. . ) . . 1 .
exXp {Z / dsiU [—2AZ(FOZ — Ejeijko — FOJF}kekl — 59]kajF0i)
9

1 0z 1 1% 1 0¢ 1705 ki 1 ik 01
1 ..
+8—920”FijF,dF“} } (4.35)

We made use of the fact that employing 0(®%), §(9 - Pp), 6(0 - Ap) to express

P}, A% in terms of Fy; and A; gives the following contribution to the measure

[det(g4)det (eijkaicjlcg) det (eijkaiMleg)] - (4.36)

To deal with P; which are the canonical momenta of A;, let us adopt the change

of variables

gng — 0 _ Fz‘jeijkO _ FOJij(gkl _ EeijkjFOh (4.37)

"Obviously, to obtain (4.34) one does not need to separate X} as (4.27)— (4.28).
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by inspecting the terms multiplying A?. Thus, the partition function (4.35) can

be written as

Z = det(g™) / DADPS(9 - P)5(0 - A)det(0?)

2
‘ {i 9 i [ ij
exp {z/d% 4P~ SR = 1o FIFy — 4P,

2
9" hij L
HOUERP £ 550 TRy FaF™ | }. (4.38)
In the exponential factor of (4.38) we recognize the hamiltonian of the noncom-
mutative U(1) theory (3.53).

It could be possible to show that the canonical momenta P; are given as in (4.37)

using Dirac brackets:
{FOi($)> PDj(y)}Dirac = {Fou POk}{POka ‘i?}_l{‘i?7 PDj} = 92€jkl[5f + kaemi
1

Vanishing of (3.37) and (3.40) strongly the left hand side of (4.39) can equivalently

be written as

{Foi(2), Pp;(y)}pirac = =€ {Foi(x), A'(y) }pirac- (4.40)

By comparing the right hand sides of (4.39) and (4.40) we observe that they are

compatible when

) . 1 ,
Fou = —g* (P Fyt" P+ 700, — SFy6" P). (4.41)

Solving this equation for P; at the first order in 6;;, gives rise to (4.37).
We adopt the normalization consistent with the ordinary case to write partition

function of the noncommutative U(1) theory in phase space as

Z = det(g™?) / DADPS(0 - P)6(0 - A)det(5?)

2
exp { i / do| AP, - L RP - g2 Fs — O PP E
92 . 1 ..
HOEP ewﬂijlF’ﬂ } (4.42)

Accordingly, the dual partition function is given by

Zp = det(g?) / DADPS( - P)3(D - A)det(d?)
exp {z‘/d% 4P - L ppi_Lpip, 4 L gipp

7 292 7 A J 294 7
0% F Py + iéOiPiFQ] } (4.43)
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where we renamed Ap;, Pp; as A;, P;.
We conclude that in phase space, partition functions for the noncommutative

U(1) theory and its dual are the same

7 = Zp. (4.44)

This results demonstrates that strong-weak duality transformation is helpful to
make calculations in weak coupling regions to extract information about physical
quantities in the strong coupling regions. Contrary to the usual U(1) theory,
momentum integrals in Z and Zp are not easily computable. Because of this we
cannot derive any relation between the partition functions in configuration space.
Nevertheless, the result obtained (4.44) demonstrates that strong—weak duality
can be helpful to calculate physical quantities in weak coupling regions to extract

information about the strong coupling regions.

49



5 SUPERSYMMETRIC NONCOMMUTATIVE U(l) GAUGE
THEORY

Supersymmetry is a graded Lie algebra which is the only one can be added con-
sistently to the S-matrix symmetries. This is a symmetry between bosons and
fermions and hence in a manner supersymmetric theories are the attempts of
unifying the matter and interactions. Historically in the context of string theory
the first examples of these kind of theories were introduced by Neveu, Schwarz
and Ramond [88]. Especially an important property of supersymmetric theories
is that radiative corrections tend to be less important in them due to cancelations
between fermion loops and boson loops. As a result certain quantities that are
small or vanish classically will remain so once radiative corrections are taken into
account.

According to the Coleman-Mandula theorem [89] the internal symmetries such as
spin, electric charge, hypercharge, etc. do not mix with space-time symmetries.
This means that the symmetry generators associated with internal quantum de-
grees must be translationally and rotationally invariant. In Coleman-Mandula
theorem this internal symmetries defined by a Lie group with real parameters
and the charge operators associated with such Lie groups obey commutation re-
lations with each other. More precisely the particle states which are related with
each other by an internal symmetry transformation must have the same mass and
spin.

Haag-Lopuszanski-Sohnius proved that by relaxing one assumption of the
Coleman-Mandula, space-time symmetries can be related with internal symme-
tries [90]. In that case symmetry operators are fermionic and obey an anticom-
mutation relation. Hence bosons and fermions appear in the same representation
which is called multiplet and have the same mass. The symmetry operations will
transform different members of a multiplet into each other. These multiplets con-
tain the same number of fermions and bosons. The minimal supersymmetry have

one supersymmetry generators and called N = 1 supersymmetry. The number

50



of supersymmetry generators is constrained with consistency condition. This is
four for supersymmetry and eight for supergravity. Theories with more then one
generators are called extended supersymmetries.

Here we of course can not give a complete discussion of superymmetry but only
the part of that we will deal with, N = 1 supersymmetry. There is a great amount
of material but we will especialy refer to the [91] and[92]. Conventional details and
spinor multiplication rules are defined in the appendix-B. So in the first part we
will take a look at N = 1 supersymmetry and then deal with the supersymmetric
gauge theory in the context of noncommutative space. Mainly we will exhibit how
duality can be defined in noncommutative supersymmetric U(1) gauge theory by
using our previous approach.

Supersymmetry is defined by the algebra of the supersymmetry transformation

generators in addition to Poincaré algebra. That is

{Q3, Qppt = QUZﬂ'Pu‘Sg (5.1)
{Q4,QF} = {Qaa, Qpp} =0 (5.2)
{P,QY} = {P,Qaa}=0 (5.3)

where «, 3, &, f = 1, 2 denote components of Weyl spinors, u, v are Lorentz indices
and take values from 0 to 3, and A, B refer to an internal space degree which is
in our case equal to 1. This supersymmetry algebra can be defined in terms of

commutators by introducing anticommuting parameters 6%, 0, which satisfy
{0907} = {005} = - = [P, 0°] = 0 (5.4)

Here it should be noted that we made a change of parametrization of variables.
Here after we will use the parameter 6 for supersymmetry parameter and © for

noncommutativity paramater. Hence the algebra (5.1)-(5.3) become

[0Q,0Q] = 200"0P, (5.5)
0Q.0Q] = [0Q,0Q] =0
[P, 0Q] = [P,0Q] =0
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Realization of this algebra on fields is especially important. For example being
the most simplest supersymmetric theory Wess-Zumino model contains a chiral
and an anti-chiral multiplet. Chiral multiplet is formed by two complex scalars

and a chiral Weyl spinor
® = (¢, Y, F). (5.6)

Multiplet constructions can be found in [91] in detail. Beginning from a ground
state, we use the term ground state to denote the element of multiplet with the
smallest spin number from which other elements of multiplet can be obtained, and
acting the generators on this state in a consistent way with the supersymmetry
algebra give the entire multiplet. At some stage of algebra it requires to impose
some constraints. For chiral multiplet the constraint is [¢, Q4] = 0 for ground

state. Component fields in the multiplet transform under the supersymmetry as

5p = V2601 (5.7)
o = iV2(0"0)00,0 + V20, F (5.8)
OF = iV/205"0,1) (5.9)
where
6A =[0Q + 60, A). (5.10)

Anti-chiral multiplet can be obtained from chiral multiplet by hermitian conju-
gation;

f = (@7, 94, F1). (5.11)

Constraint equation for anti-chiral multiplet is [¢f, Q] = 0. By these definitions

(anti)chiral multiplet forms a linear representation of the algebra. The action
Swz = / d*z{—0,¢'0"p — e + F'F (5.12)
1
Hm(OF — Sv) + 9(60F — ¥yd) + h.c]}

is invariant under above supersymmetry variations.

The superspace formalism is useful for calculations in supersymmetric theories
especially in N = 1. Fields in superspace are defined as functions of the superspace
coordinates (z#,0,,04); where o are usual space-time coordinates and 6,6 are

independent spinorial coordinates. Naturally, because of the anticommutation
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property of 6’s and #’s any superfield does not contain terms bigger than 62 and

2. Hence any superfield can always be expanded as

F(x,0,0) = f(x)+0(z)+ 0x(x) + 00m(x) + 00n(z) (5.13)
+ Oo"0v, + 000X (z) + 000p(z) + 0000d(x)
This definition is identical to express the components of multiplet as power se-

ries expansion together with certain constraints. Supersymmety generators are

realized as differential operators in superspace.

Q = % —ich;0%0, (5.14)
~N a - [ /éd
Q = a—e—d — 10 Oaﬂg 8M

Above differential operators generate a motion in the parameter space (z,6,0)
and obey the same anticommutation relation (5.1). Definition (5.13) contains all
possible terms with respect to the powers of #,0 and by this form they form

reducible representations of supersymmetry. Covariant derivatives are defined as

D, = % + it 040, (5.15)
_ 0 o,
Dd = —% — 0 O'Zda#

Covariant derivative operators form a different realization of the super — Poincaré
group and yield an inverted motion with respect to the operators Q and Q. They

satisfy the following anticommutation relations

(Do, D} = —2ic".0, (5.16)
{D,D} = {D,D}=0 (5.17)

and they anticommute with Q’'s
{D.Q}={D.Q} ={D.Q} ={D.Q} =0 (5.18)
Now a chiral superfield is defined by putting the condition

Da® =0 (5.19)

D.® =0 (5.20)



These constraints are more tractable in the new coordinate system (y*, 6, 8) where

y" = " +ifohd. (5.21)
Covariant derivatives become
0 _. 0

D, = — 420" 0%— 5.22
aea + Waa ayu ( )

_ 0

Dd - — =

00%

The most general solution of (5.19) can be given as

O = Gy) +V200(y) + 00F (y) (5.23)

= ¢(z) +i(05"0)0,¢(z) + 3090_9—&5(%)
V2

and anti-chiral superfield can be obtained easily from (5.23) by hermitian conju-

+ V20i(z) — —=000,3 ()"0 + B0F ()

gation instead of solving the constraint (5.20),
O = 6" (y') + V200 (y") + 00F(y") (5.24)

where y* = 2# — ifo*0 and in this coordinates operators are

0
Da = oo (5.25)
_ o .0
Ddc = —% — 210 JadayTM

As can be seen easily, field content of above superfields are consistent with the
definition of chiral and anti-chiral multiplets (5.6),(5.11). Products of chiral su-
perfields are again a chiral superfield and it is also so for anti-chiral ones.

Vector superfield is defined by reality condition
V=Vl (5.26)
The corresponding superfield which satisfy above condition is given by
V(z,0,0) = C(x)+ifx(x) —ifx(x) (5.27)
+L00(M (2) +iN(2)) — SO(M(z) — iN(2))
90" v, (x) + 00BN () + %a—ua,,x(x)]

— BBIA() + 500, x(@)] + LH0RAID(r) + JOC()]
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Here C, M, N and D are real scalars,v, is a real vector field and A, x are Weyl
spinors. Addition of chiral and anti-chiral superfields (5.23),(5.24) gives a real
superfield and one can observe that combination of this addition with vector

superfield yield the supersymmetric generalization of gauge transformation.
V-V+o+ 0 (5.28)
Under this transformation component fields transform as

C — C+o+¢ (5.29)
X — x—ivV2y
M+iN — M+iN —2iF
U = U —10u(¢ — ¢')
A > A
D — D

As can be seen transformation of vector component resembles an ordinary gauge
transformation, while the fields A and D are gauge invariants. This gauge freedom
provides a special gauge in which C,x, M and N are all zero. Thus the vector

superfield has a more simple form.
_ _ _ 1
Vivz = —00"0v,,(x) + 000\ (x) — 600X (z) + 59999D(x) (5.30)
Powers of V satisfy the properties
2 Loas
Ve = —5(96991)#11 (5.31)
Vi o= 0 (5.32)

This gauge is known as Wess-Zumino gauge. Gauge choice breaks the supersym-
metry but fermionic and bosonic degrees of freedoms still equal to each other.
Thus superfield V can be viewed as the supersymmetric generalization of the

Yang-Mills potential. Corresponding supersymmetric field strengths are

1 - -
Wo = —;DDD.V (5.33)
_ 1 _
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which are chiral and anti-chiral superfield respectively, i.e,

DsWs =0 (5.35)
D Wy =0 (5.36)

Component expansion in WZ gauge and in (y*,6,0) coordinates is
Wo = =iXa(y) + 0aD(y) — ok *05(8,0,(y) — dyv,u(y)) + 0005,0,0%(y) (5.37)
and
We = X (") + 64D (y") + a0 (Quvn(y") — Buu(y’)  (5:38)
+ 0650 0"a(y")
Field strengths derived from vector superfield satisfy the additional constraint
equation,supersymmetric Bianchi identity.
D*W, = DyW* (5.39)

We have defined a gauge invariant field strength which is constructed from a
vector superpotential. The supersymmetric gauge invariant generalization of the
Lagrangian for a vector field can be defined from this chiral superfield. For this
aim observe that 60 component of the product W*W,, give a space derivative.

The same is valid for 80 component of W<,

S = 4_;2 / d*a( / d>OW W, + / d*OW, W) (5.40)

This reduce to the action of supersymmetric U(1) gauge theory
s= [aeti-tpwp, —ixoran+ tp? 5.41)
= a;g2{—4 w — 1AM, —i—2 } (5.

This is pure N = 1 gauge theory and component field v, is a gauge boson, A is
the supersymmetric partner of the gauge boson, gaugino, and D is a real scalar,

auxiliary field.

5.1 Duality in Supersymmetric U(1) Gauge Theory

Parent action of “ordinary” supersymmetric U(1) gauge theory was formulated by

superfields [24]. In terms of component fields we will define two different parent
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actions which yield the same dual symmetric actions. Duality transformation
of supersymmetric U(1) gauge theory can be formulated in terms of a general
superfield W, and a dual vector superfield Vp, as,

1 ~ e 1 ~ _ =~
Ip = d*x( / dOW? + / d29W2)+§ / d*zd*0(VpDW — VpDW) (5.42)
g
where with general superfield we mean that it is not field strength of a vector
superfield (5.33). The equations of motion with respect to the dual superfield Vp,

gives

DW — DW =0 (5.43)

that is the supersymmetric generalization of Bianchi identity, and solution of this
restriction gives the ordinary superfield (5.33). Substituting this solution in the
parent action (5.42), one gets the action of supersymmetric U(1) gauge theory,
1 _
I=_— / d%(/ d*OW? + /dQHWQ) (5.44)
g
On the other hand, when solutions of the equations of motion with respect to W,
and W& following from Ip are plugged into (5.42), one obtains the dual action in

terms of superfields
2
Ip = gz / d*a( / d*OW3 + / d*OW3) (5.45)

where Wp, is the dual superfield strength Wp, = 1D?D,Vp.

1
4

The original and the dual actions (5.44) and (5.45) are in the same form except
with ¢g=2 replaced with g2 Thus, one can conclude that supersymmetric U(1)
gauge theory possesses () duality symmetry.

Instead of superfields, we would like to consider duality transformations in terms
of their component fields. It is straightforward to construct a general chiral su-

perfield T, that does not satisfy the condition(5.39) as

Waly) = =ida(y) + 0D (y) — iok 05 (y) + 0004:,0,0% (y) (5.46)

Here, \ and 1) are two independent Weyl spinors, F, w18 a complex anti-symmetric
second rank tensor field and D is a complex scalar field. Hermitean conjugate of

the chiral superfield W, can be written as,

Wyt = ix*(y") + 6°D'(y") + ia“gdégﬁjy(yT) + 00550 Ya(y'). (547
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It should be stressed that these are not the same fields as (5.37) and (5.38). There
Weyl spinors are hermitian conjugate of each other and F,, is field strength of
vector potential A,. Moreover the auxiliary field D is real.

Plugging (5.46) and (5.47) and the real vector superfield
Vi = —(60"8) Ap, + 0007 — i080Ap + %eeééDD (5.48)
into (5.42) the parent action in component fields is obtained
L, = L,[F, 4, A, D] + I, (5.49)
where we defined

1 Lowp 0 o Loty
I, = p / d*z[-=F"E,, — %E“WFWFM —gF EL +

8
2 pos it frt 3) ) — 3&’ 1[)2 lDT2 5.50
and the Legendre transformation term
L= 2 [ deiFo,Ap, + L E 0y Ap, + iF10,A
= 5 dil?[—Z “w Du+§€ pur U D T 1 n‘1iDy
1 vAK T 1 n 3
+§6‘u F/Wa)\ADH + 5)\D@¢ + A@)\D
1. - __ -
—§>\D@¢ — AM@\p +iDp(D — D). (5.51)

here we use ¢ for 0”0, and @ for G+,

We now proceed as before to derive supersymmetric U(1) gauge theory in terms
of the component fields from the parent action (5.49): the equations of motion

with respect to the dual vector field Ap,,

i ) K ) [Tk 1 LUK I il _

(O F = 9, F ) — L0\ (Fry 4 Fl)pp =0, (552)
lead to F),,, which satisfy

F,=F

p

e MONF,, =0 (5.53)

which are solved by taking ), = 0,4, — 0,A, which is the field strength of the
vector field A,. When we also use the equation of motion with respect to the

other dual fields

Po=9x, Jp=9r, D= D'|5_, =0. (5.54)
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in the parent action (5.49) we obtain the supersymmetric U(1) gauge theory

action in terms of component fields

1 1 i i 1
I=— Ap[—-~FWE — — - —-D? .
g2/dx[ . w = APA = AN+ S D7) (5.55)

Note also that when the above equations are substituted in the general superfield
given in (5.46), one finds the standard chiral vector field W, that can be obtained
from the N=1 vector field V as W, = —}LDDDQV in the Wess-Zumino gauge.

Similarly, we can obtain the dual action (5.45) in terms of the component fields

using the equations of motion (5.49) with respect to the fields F,,, \, 1, D:
(nu)\num o 77;“{171//\ + i&NVAH)F,\N — —Zg2 (nu)\nun . npnnw\ + Z.G#V)\H)FD)\H (556)

@7]) = _Z.QQ@;\D7 a/\ = _ig2éADa D = _Z.QQDD (557)
and the equations of motion with respect to F/Lj, A1, Dt:

(n,u)\nwf . nunnu)\ o iEuVAn)F)]\LH — Z'g2(n,u)\nyn o ,r];mnzz/\ o Z'E'LW)\H)FD,\,{ (558)

IN=ig*Prp, M =ig*P\p, D' =ig’Dp (5.59)
where Fp,,, = 0,Ap,—0,Ap,. These equations can be solved for the original fields
to substitute them in the parent action (5.49) yielding the dual supersymmetric
U(1) gauge action

9 TR i - i< = 1
ID:g d x[—zFD FDMV_§)‘D@>\D_§)\D@)\D+§DD] (560)
Instead of the complex field F w we can deal with the real antisymmetric tensor

field Fg,, from the beginning. We propose the following parent action for this

case

SP:SO[F37¢7>\7D]+SI7 (561)

where
1 _ o .
So = 1 d*z[—FL Fr, — 2iAa" 0,10 — 2iAa* 0,30 + D* + D' (5.62)
and the Legendre transformation part

1 -
Sl = §/d4x[6“l’p”Fij8ﬁADg + )\DO"ualﬂ,D + /\Dﬁ‘uau)\

~Apo" I\ — Apdtd,p +iDp(D — DY)]. (5.63)
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Now equations of motions with respect to the dual fields, Ap, Ap, Ap, Dp, yield

EMVpUaVFRpa‘FR:F = 0,
Ugo‘zau&d - Ugaauj‘d = 0,
DA — P00 = 0,
(D-D1). =0
D=D
When solution of this equations with respect to F},, and real scalar field D used

in (5.61) yields the supersymmetric U(1) gauge theory (5.55).

are
1 1224 pvpo
—Efk+f 8,Ap, = 0 (5.68)
1~ 1=
—2D —ZDD = 0, —2D+ZDD:O
9 9
P . i
gsdau(_?d]a + )‘%) = 07 5#0[&8/1(_?77004 - >\Do¢) =0

8#(_%5\01 +Apa)dt = 0, au(_iz)‘a +AD)Tas =0
g 9

Solving these equations for the dual fields and substituting them in the parent
action (5.61) yield the dual of action of N = 1 supersymmetric U (1) gauge theory
(5.60). We conclude that both of the parent actions (5.49) and (5.61) generate
supersymmetric U(1) gauge theory and its dual.

5.2 Supersymmetric Seiberg—Witten map

Generalization of the Seiberg-Witten map to supersymmetric gauge theories can
be formulated in some different ways. One of these is to generalize the defini-
tion of the map between A(A), A\(\, A) and A, X to V(V), A(A, V) and V, A. Here
V is a vector superfield, A is a chiral superfield and V and A are correspond-
ing noncommutative superfields [94]. Infinitesimal gauge transformation of the

noncommutative supervector field V is defined by

~ A

0,V =i(A -

~ ~

[(A+A)«V = Vs (A+A)] (5.69)

=0
>I>

N | .

>_
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It has the properties of a nonabelian gauge transformation, although the ordinary

vector field V' gauge transforms as
AV =i(A—A) (5.70)

Supersymmetric Seiberg-Witten map is defined as
VV)+0,V(V) =V(V +6,V). (5.71)
In [94] a solution of this equation is given in terms of superfields. However, it is

nonlocal and do not yield the original solution
- 1
Au = A# — é@kl(Aké)lA# + AkFl,u), (572)

at the first order in the noncommutativity parameter 6*”.
On the other hand the approach suggested in [95] is to generalize the solution

(5.72) to supersymmetric case as

A

V(V) = V4+aP"™9,V,V +bP*D VW + cPV D, W5+ c.c (5.73)

AN, V) = A+dD*P**D,D3V) (5.74)
where a,b,c,d are some constants which should be derived using (5.72). Here P
and V are some operators which do not depend on fields.

We would like to obtain a generalization of Seiberg-Witten map to supersymmet-
ric U(1) gauge theory in terms of the components of the superfield V. This will be
performed utilizing both of the methods mentioned above. We adopt the defini-
tion (5.71) for supersymmetric Seiberg-Witten map but solve it for components
of the superfield V' by keeping the original solution (5.72).

The vector superfield V' in Wess-Zumino gauge and chiral and anti-chiral super-

fields A and A, respectively, are given as
V = —(00"B)A, + i006X — i0G0N + %99991}, (5.75)
A = B+i(05"0)0,8 + 39999826 + V20K — %99(‘%50“0 +00f, (5.76)
R = B —i(66"8)0,8" + ieeééa%* + V205 + %H_H_Ga“ﬁufi + 00 £4(5.77)
Noncommuting superfields V, A, A can be written in the same form in terms of

their components. At the first order in #*” let us denote the noncommutative
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fields as
V(V) = V+Vy
AVA) = A+ Ay (Vi Ay)
AV,A) = A+ Aay(Vi, A)
and plug them into the definition (5.71)

00" 0] Awu(V; + 0Vi) — Awyu(Vi) — 8u(Biay (Vi M) + By (Vi, M)

i
Eauau“(l)(vu Ai)]

By ? - A
+Z€99[)\(1)(V; + 5‘/;) — )\(1)(‘/;) + Eg“au/{(l)(‘/;, A,)]

—%9999[1?(1)(‘4 +0Vi) = Dy(Vi) — Z52(&1)(‘4, Ai) = By (Vi, Ai))]
V2i0k0y (Vi, As) — V2i0F 1) (Vi, As) + 100 f 1) (Vi, As)

—i00 f(1) (Vi Ai) + (B (Vi Ai) = By (Vi, Ad))

= %@”ﬂ[—(eaﬂé)ayA#ap(ﬁ + %) + i06000,00,(8 + B7)

—i000[ Ay (Vi + 0Vi) — Ay (Vi) —

__ 1
—i0009,70, (8 + 5%) + 50000{[0,D3,(8 + 57)
+0,A4,0,0,(8 — 5*) — V2P0, A0 0t
+V/2ie,30,7%0,77]} — V2(00"8)0, A,.0,(0k + OF)]

(5.78)
(5.79)
(5.80)

(5.81)

Here V; and A; denote the components. The equations which component fields

satisfy can be obtained by matching the same 6 order terms. These will give rise

to following equations

Bay—Bq = 0

fay =1 = ko) =ka) = 0.

Moreover, there are the equations

AD(V; 4 6Vi) = Awu(Vi) = BuBay = —0"0,A,0,
Ay(Vi+ Vi) = A\py(Vi) = —0©"P0,)0,0
Ay(Vi+6V) = Ay (Vi) = —©"9,)0,03

Dy (Vi +6Vi) = Dy (Vi) = —©79,D0,3

(5.82)
(5.83)

5.84)
5)
)
)

ot o
w00

6

(
(
(
(5.87

where V; and A; denote the component fields. Obviously, one can write (5.71) in

terms of a general vector superfield instead of choosing the Wess-Zumino gauge
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(5.75), which would have drastically changed the equations for component fields.
However, we prefer to choose V' as (5.75), so that, we deal with the equations
(5.82)-(5.87) as defining supersymmetric Seiberg-Witten map. One can solve the
above equations and get the noncommutative fields in terms of the commutative

ones at the first order of noncommutativity parameter.

AD = LO(A,0,A, + ALE,) (5.88)
Ny = —O79NA, (5.89)
A1y = —O"9,M\4, (5.90)
Dy = —©"9,DA,. (5.91)

(5.88) and (5.89) are also found in [96] considering deformations of supersymmet-
ric Yang—Mills theory while preserving supersymmetry. To define a parent action

to obtain duality transformation we also need to define

vy = —OMOWA (5.92)
2/_1(1) = —OMoA (5.93)

5.3 Duals of Noncommutative Supersymmetric U(1) Gauge Theory

Noncommutative generalization of supersymmetric U(1) gauge theory [93] can be
written in terms of the so called noncommuting component fields, although they

satisfy the usual (anti)commutation relations, by the star product as
1 ~ . 7 = . " 7 = A - 1 -~ -
_ 4 v —
Sne = /d 13[—4—92}7’“ ij — 2—‘92)\0"uDH * )\ — 2_92)\0#1)“ * A+ 2—92DD] (594)

where lju A = 8,}\ + z(flu A — A x Au) The action is invariant under the

supersymmetry transformations given by the fermionic constant spinor parameter

¢ as

SeA, = i€o"\+ifo"\, (5.95)
oA = oMEE,, +iED, (5.96)
5D = Ea"Dy\— oD, (5.97)

Making use of the generalization of Seiberg-Witten map to the supersymmetric

case (5.84)-(5.87) we write, up to the first order in ©, the action of noncommu-
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tative supersymmetric U(1) gauge theory (5.94) in terms of the ordinary fields

as
1 1
SnclFy A\, D,B] = /d%{——(F’“’F v+ 20, FPF,, — 59“”FWFWF”")

1< 1< 1<
——(—A&“&M + @“”[ZMPGPAFW + —A&Paﬂ)\pr}

g
+5 )\0“8 A+ 9“”[ NI NE,, + = Aaﬂa AE,,])

1
JFZ(D2 @WD?FW)] (5.98)

When we write this action we set the surface terms to zero while performing
required partial integrations. The same action was also obtained in [97] using a
completely different approach.

Supersymmetry transformations which leave (5.98) invariant can be read from

(5.95)-(5.97) as

- o
Sl = i€o,A+ 6o, — 07 (Ea A+ Ea,N)(5

1 _
—z’@””§(5apam +£6,0,M) Ay (5.99)

1
Fou + ianAu)

S = 0MEE,, +iED + OO\ (i€o \ + 1T, N)

+iOP T EF,, (5.100)
6D = &M\ — Lot O\ — iOP (Eop A + E5,M)0, D

+OP £ F,, 00\ — OPEGHE,, O (5.101)

We would like to generalize the parent actions of the ordinary supersymmet-
ric gauge theory to the noncommutative case. To this aim let us first take F

complex and deal with

PN 1. 1
o 4 v vpo v T vpo 1t T
Ive = —/d SFWE,, + 166‘“ P EwF oy + gF w 166“ vl ET,
1.y 14
+2)\0“D x4 = )\a“D Q) — ZDQ_Z 2] (5.102)

It is possible to discuss supersymmetry and gauge transformations of (5.102),
however, it is not needed for the purpose of this work. Although the transforma-
tions (5.88)-(5.91) are derived for a read vector superfield, we suppose that they
are also valid for complex fields. We perform the transformations (5.88)-(5.93)
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and their complex conjugates to write (5.102) as

o

92

1 1
4 PO TP po
/d $[—4F F E,o- + —16F‘MVF F1pU

[oNC’ = IO[Fa )\ﬂ%D] -

+%EM‘”FMFWFM n S%EWJFWFMFPU)

. ) . ) )
+iAaP0p¢Fw - %Aapawaup — 1D +ccl. (5.103)

where I, is defined in (5.50). We define the parent action
Ip = Ine[F, A\, D] + 1 (5.104)

where I; is given in (5.51). We would like to emphasize that F),, is not a field
strength but a complex, antisymmetric field. When the solutions of the equations
of motion with respect to dual fields are used in the parent action, it leads to the
noncommutative supersymmetric U (1) gauge theory action (5.98). However, when
the equations of motion with respect to the fields £, A\, v, D and their complex

conjugates are solved and used in the parent action (5.103) one finds

4
1
]DNC = ID + gz@'wj\/dzlﬂf [ZEAHPGFD)\,{FDMLFDVU

1
+EE’\W’FDWFDMFDM)] (5.105)

where Fp is the field strength of Ap. Obviously, we cannot define any duality sym-
metry between (5.98) and (5.105). The latter does not possess any contribution
in terms of the fields A, D at the first order in ©*”.
As the other possibility, let us take F ww real and deal with

Soxc = / d4x[_4_;ﬁgvﬁw_2%2&5—@“*1;_#;0@“*@ 2L92ms] (5.106)
Through the supersymmetric Seiberg-Witten map (5.88)-(5.93) we write the ac-
tion (5.106) as

1 174 v g 1 v loa
S,nc|Fr, N\, 0, D] = / d4x{—4—92(F§ Fruy + 20" Fr, ,F& Fry, — 5@# FrouFroo F7F)

B i
292
. ) _ 1 .
_2L92(>\0“(9“¢ + O AP0, FRyp + §@W)‘UpaprRW)
1

_ 1 _
2 2 v 2 2
+ 3lD? DY) 4 50" (D? 4 DY) P}

_ _ 1
(A" 0, + O NGP 0, Fryp + 5@“")\6”6,,1/)5{“1,)

65

(5.107)



Now, we define the parent action as

Sp = Sonc|[Fr, A\, D] + S| (5.108)

where as before Fg,,,, denotes an antisymmetric real fields and the Legendre trans-

formation part ; is given in (5.63).

Equations of motion with respect to the dual fields Ap, Ap, Ap, Dp are given as

before by (5.64)-(5.67). Plugging their solution into S,y¢ leads to the noncom-

mutative supersymmetric U(1) gauge theory (5.98). Equations of motion with

respect to the other fields are

1 v ]- v]|o 1 o 1 v o
EF;; + E@”“FR] FRUP T —@p FrotuFrup — 4—92@ﬂ FropoF?,

—%@’”FRPUF# 2 — (0P NG" — O AG") Db + #@‘“’(A&”@pw)
+§(@p“)\0 — 07 a0, + %&@“"Aap@pw

R D), =, (5.109)
2—;]20”0 v+ —@“Vapa wFR;W + QL;IQGWU’JGMDFRW) (5.110)
—%U“Q;\D =0,

2%25“8#1& i é@#@—papwm " ziég@””&pauwmp (5.111)
+16“8“)\D =0,

o, |:Z)\O'” — %&G’WS\OHFRW, — QLQZ@”VS\JPFRVP — %S\DO'H] =0,(5.112)
O {7)\0“ + g@p”)\a”FRm/ + 2%]2@“”)\0”171@,) — %)\DU“:| =0,(5.113)
2%/2 + —@WDFRW + %DD =0, (5.114)
2; Dt + —@’“’DTFRW — ZDD = 0. (5.115)

We solve these equations for Fg, v, \, D and plug the solutions into (5.108) to

obtain the dual action

Snep

1~
= / d*z[— I (F’“’FDW + 20" Fpyy F Fpoy — 5@””FDWFDPUFD‘W)
1 - 1- 1~ _
—z'g2(§)\Da”8u/\D + iAD5“8u>\D + ZG)W/)\DO-,uap/\DFDpu) (5116)
9 2w 9’ 9’ =
—i—z@“”)\D&u&p)\DFDp,, + ?<D2D + E@'LWD%)FDW/)]-
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where

oM = g%’ 0, (5.117)

When the fermionic and auxiliary fields Ap, Dp set equal to zero one obtains the
results of [82]: there is a duality symmetry under the replacement of A* with A%
and ©" with ©*. Unfortunately, this symmetry accompanied by the replacement
of A\, D with A\p, Dp cease to exist between the noncommutative supersymmetric
action (5.98) and its dual (5.117). Inspecting the terms which obstruct the duality
symmetry we can find actions in terms of the component fields which possess this

symmetry. Let us define the action
_ i , —
Y(0,F,\ A\, D) = Sye — ?/d4x@“ (Ao, 0PX + XG0P ) F, (5.118)

which can be obtained from the parent action

Yp=25p— 2L92 d*zO" (o, 0° N + 15,0° X + A0,0°¢ + A5,0°¢) Frp.
(5.119)

Dual theory which follows from (5.119) can be shown to be
ED :g42(é,FD,)\D,5\D,DD). (5120)

Therefore we conclude that the action (5.118) possesses duality symmetry when
the original fields are substituted by the dual ones and the noncommutativity
parameter © is replaced with ©. However, whether the action (5.118) is super-

symmetric or not is an open question. However, it is explicitly gauge invariant.
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6 RESULTS AND DISCUSSION

In this thesis we provide a complete and consistent study of the electric-magnetic
duality in the noncommutative U(1) gauge theory. Noncommutative gauge theo-
ries emerge in the string theory context. Therefore study of these theories provide
appropriate tools to understand the different properties of the string theory. Du-
ality in noncommutative theories has interesting consequences in some ways. First
of all electric-magnetic duality plays role in the study of different phases of the
gauge theories. If one has a strong coupling theory in terms of its dual theory it
become possible to obtain information from this weakly coupled theory, especially
by using the powerful technics of the perturbatif calculations. On the other hand
duality leads to another important consequence in the noncommutative theories:
starting from a space/space noncommutative theory, by duality one passes to a
space/time noncommutative theory. Such space/time noncommutative theories
are typical examples of string theory. The better understanding of this type of
theories may have consequences in the string theory side.

The first part of our work includes investigation of how hamiltonian can be de-
fined in such a space/time noncommutative theory. Because of the noncommu-
tation property of time the usual quantization procedure is not obvious. For this
aim the parent action seems to be an appropriate tool. It is shown that it be-
comes possible to define hamiltonian starting from the parent action by using the
Dirac’s constraint system analysis. For ordinary case our results consistent with
the previous ones. We extended the formalism to the noncommutative case and
obtained the hamiltonian of the dual theory. It is also shown that the hamiltonian
which is obtained from the parent action coincides with the one calculated from
the dual action by using the usual quantization procedure and pretending as if
the time is commuting. This analysis performed at the first order of  parameter.
However, the method of obtaining hamiltonian from the shifted action seems eas-

ier. When higher order terms are considered the unique change will be in a single
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constraint while other constraints remain intact. Results of this section are used
in the study of the D3—brane worldvolume theories. The worldvolume action of
noncommutative D3—brane is obtained from the noncommutative gauge theory
in 10—dimensions by using the static gauge. The first three spatial coordinates
are taken as spatial coordinates of the brane and the rest of the coordinates as
scalar fields on the brane. We considered the existence of only one scalar field on
the brane. For this configuration we obtained the hamiltonian density by using
the static gauge. BPS states are investigated for this configuration. Noncommu-
tative D3—brane formulation which we deal with is somehow different from the
one considered previously [44, 56, 57, 58, 59, 60]. The difference stems from the
difference of the gauge groups. In our case although hamiltonian depends on the
noncommutativity parameter, gauge group is still U(1) but there gauge group is
noncommutative U(1). In chapter-1 we also studied the electric-magnetic duality
transformation of both lagrangian and hamiltonian densities. It is well known
that duality maps the lagrangian to itself up to an overall minus sign and keeps
intact the hamiltonian density. In the noncommutative theory this property per-
sists. We show that duality transformation of hamiltonian density is given by
a somehow inverted one with respect to the transformation rule of lagrangian
density.

In chapter-4 partition functions of these dual theories were established. We started
from the path integral formulation of parent action which include the constraints
as Dirac delta functions in the measure. By definition determinant of first class
and second class constraints also included in the measure. This path integral
definition gives partition function of both dual and original theory with respect
to appropriate phase space integrations. We showed that partition functions for
the noncommutative U(1) theory and its dual are equivalent. This result demon-
strates that strong weak duality transformations is helpful to make calculations
in weak coupling regime to extract information about physical quantities in the
strong coupling regions. We would like to emphasize the difference between the
results obtained for the commutative case and for the noncommutative U(1) the-
ory. In U(1) gauge theory, partition functions for the initial and the dual theories
are equivalent and they are related with the map g — ¢~!. However, the par-

tition function of noncommutative U(1) does not yield the partition function of
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its dual by only inverting the coupling constant, although they are equivalent.
Application of the approach presented here to noncommutative supersymmetric
U(1) gauge theory may shed light on the duality symmetry of the supersymmetric
noncommutative theory. We dealt with free theories, although introducing source
terms into the starting path integral to gain insight about relations of the Green
functions of the noncommutative U(1) theory would be interesting.

In the chapter-5 we studied the supersymmetric noncommutative U(1) theory.
First of all we investigated that how parent action can be defined for ordinary
supersymmetric U(1) theory. We introduced two different parent actions which
yield the same results. Then to generalize these parent actions to noncommutative
case we studied the generalization of the Seiberg-Witten map to the supersym-
metric case. There are two different approaches through superfields to achieve
this [94, 95]. We utilized both of them to define a generalization of the Seiberg-
Witten map in terms of component fields. By using the results of these approaches
we proposed two different parent actions. Both of them generate noncommuta-
tive supersymmetric U(1) gauge theory given by the component fields defined
in commuting spacetime. However, they yield different dual actions contrary to
the ordinary case. At the first order in noncommutativity parameter one of the
dual actions does not have any contribution from the fermionic and the auxil-
iary fields. Moreover, it does not lead to the dual action of non-supersymmetric
gauge theory. The other parent action generates a dual theory which embraces
the results of previous works. However, this dual action is not in the same form
with the noncommutative U(1) gauge theory. Thus, duality symmetry of the non-
supersymmetric theory given by replacing the field strength F* with the dual
one F1” and the noncommutativity parameter ©* with o = G0, s
not satisfied when actions are considered. We introduced a parent action for the
component fields which generates actions possessing this duality symmetry. Un-
fortunately, it is not clear if these duality symmetric actions are supersymmetric,

though they are explicitly gauge invariant.
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APPENDIX-A

Here we present some calculational details. When we evaluate the determinant of

the second class constraints we have established the following matrix.

0 0 o 0 0 0 0 0 0 M M
0 0 o 0 0 0 0 0 0 M M2 &
0 0 o 0 0 0 0 0 0 M M &
0 0 0 0 0 0 —-CdP —C3 -8 0 0 0
0 0 o 0 0 0 C* C2 9 0 0 0
0 0 0O 0 0 0 —-Ci -C!@ -9 0 0 0
0 0 o ¢ -c2c 0o 0 0 k I 0
0 0 0 C3 -c2cl 0o 0 0 m n 0
0 0 0o & -9 9 0o 0 0 0 0 0
~M} M2 -MP 0 0O O -k -m O 0 0 0
~M} -M2 -M} 0 0 O -l -n O 0 0 O
—9t -2 - 0 0 0 0 0 0 0 0 0

Non zero Poisson brackets are

(Pule). 91} = M@ =9) . {Pule). 930} = Mo (A1)
[Pu(2), @4} = 9(z—y), (A2)
(Pu(e). 910)} = M@ =1) . {Pule). 930)} = Mo = )(A3)
[Po(2), @4} = 826(z—y), (A1)
(Pule). 91} = M@ =1) . {Pule). 930)} = Mo = )(A5)
[Pos(2), @4} = oz —y), (A.6)
[Pa(2), B2)} = ~Ci6x —y) . {Puale), B3(y)} = ~CLo( — 1) , (A7)
[Pa(@), @)} = ~0%( — ), (A8)
[Pis(@), B)} = 30w —y) ,  {Pro(a), B3)} = 20w —y), (A9)
{Pi3(2), ®°(y)} = 6(z—y), (A.10)
{Pas(x), @ (y)} = —=Cié(x —y) , {Pas(x), ®5(y)} = —Cyd(z —y) (A11)
{Pa3(2), ®*(y)} = —0'6(xz—y), (A.12)
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We have used the abbreviations k, [, m,n for the following Poisson brackets

cunC () ML ()] (x —
i C () ()05 —
cunC3(x) ML ()06 (x —
cun C3() ()05 —

To obtain (4.8) one should solve the constraint equations for F),, in terms of

the physical fields Ap, Pp. Delta functions contribute the determinant of the

following matrix

Ml M2 ME OO O
M} M2 M} O 0
o 9 B 0 0
0 0 0 ¢ -2 C
0 0 0 C3 —C2 C}
0o 0 0 & -9

a'e

For
Foo
Fos
Fiy
Fi3
Fo3

Ap
ADQ
AD3

It can be easily seen that the related determinant is

detSij = det(eijkCil C%@k)det(eijkl\/[il Méak)

(A.17)

For (4.12) one can establish the following matrix equation from the related con-

straints

clCcr ot 0 0 0
clc2 oo o0 0
o 92 9 0 0 0
0O 0 0 a b ¢
0O 0 0 d e f
0O 0 0 ot 9% o

where we have used the a, b, c,d, e, f, for

o= PO - Mi0P)

= (M1~ M3

= PO - Mj0P)

and

det(Zy;) = det(g*)det (€;5,CL ChLO*)det (e M, MLI*)det (5?)

)

)

)

b

d
f
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OB~ M30P)
010" - M3

(A.18)
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For noncommutative case determinant of the second class constraints is given by

the following matrix

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
Mgy, =My, —Mg,
Mgy, =My, —Mg,
—0 0 —0p

1
2

0 0 0 0 0 0 M(le)1 ]\/[(19)2
0 0 0 0 0 0 M(Ze)1 M(Qe)2
0 0 0 0 0 0 M(30)1 M(Be)z
o A O
1 2 o) “o
c; -c: 0 0 0 k l
cs  —C: Ci 0 0 0 m n
o? -0 Ot 0 0 0 0 0
—a%e) —b%e) —0%9) -k —-m 0 0 0
—a%e) _b%e) —c%e) -1 —-n 0 0 0
0 0 0 0 0 0 0 0

where the subscript # denotes that the related terms are 6 dependent and the

explicit form of them are displayed below

{Poi(), @p(y)} =
{Poi(x), ®5(y)} =
{P(x), ®5(y)} =
{P(x),®°(y)} =
{Pyj(x), ®p(y)} =

{Pi(=), 23()} =

{2i(2). 22(y)} =

M} (y)(=0ji + Fj0™61 + 0, F0 (A.20)
1

—59“51@5]'@')@)5(33 )

(=0ji + Fixt*61; + 61 F™0); (A.21)

1 |
—§9lelk5ﬁ)(y)3§5($ ~ )
—ejkC(y)0(x — y) (A.22)
—Gijka;jé(.f — y) (A23)
[(M07% — MIO™) Fro + (FU07F — FO6%) M (A.24)
—0" For My ()8 (z — y)
(9678 — DI0™) Fyg + (FY67F — FY0™)0k  (A.25)
~0" Fordy)(y)d(z — y)
geinCy(x) M1 (y)0yd(z — y) (A.26)

Although it seems very confusing the calculations are performed for the first order

of the #. Hence determinant of the matrix give rise to the (4.33).

Like the commuting case solving the F),, and P,, in terms of Ap, Pp requires to

evaluate the following matrix equation
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a1 Gy @ 0 0 0 For Ap
by by by 0 0 0 Foo Aps
¢, G ¢3 0 0 0 | fos A Aps
0 0 0 C} —C? C} Fiy Y Pp,
0o 0 0 C3 —-C3 Ci Fi3 Pp
0 0 0 0 -9* o Fog Pps
- .
where
Gy = —M}+2M}(F16% + Fis6®) + M2(Fi36% + Fp®)
FMI (P 4 Pot®) — M0 E
Gy = —M?+2MP(Fiab™ + Fps60%2) + M} (Fi36% + Fps6®)
+ M} (Fo0* + Fi30*') — %Mfeijkj
a3 = —M; 4 2M7 (F510" + F350%) + M| (F150°° + F0%")
+ M7 (Fp6" + Fy6') — %Mf’ej’“ij
by = —M) +2M)(Fiab* + Fi30%") + MZ(Fi36% 4 Fp0™)
+ M3 (F120% F30°") — %leeijkj
by = —MZ2+2M2(Fpb2 + F36) + M (F136%2 + Fps6™)
ME(F12931 + F13921) - %MSijij
by = —Mj+2M;(F360" + Fps0°?) + My (Fi20% + F3p6™)
ME(Fnb" + Fub) — SMOF
& = —0' 4+ 20" (F120®" + Fi30°") + 0°(F130* + Fp30°")
OP(F1o0® + F30°") — %aleijkj
G = —0%+ 20%(Fy 02 Fy36%) + 0" (F136% + Fps0®)
O (Fpb® + Fig6?) — %(:)29ijkj
Gy = —0°+20°(F310" + F320%) + 0" (F120% + F326*)

1 )
+0%(Fn 0" + F3,0'?) — §a3eﬂkaj

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

By the same way we construct the following equation in order to solve the dual

fields in terms of the ordinary ones.
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ct ¢t ¢ o 0 0 Ppy Fo
clc2 o o0 0 Ppy Fo
A O O O I I
0 0 0 ki Kk ks Ap1 Y Fiy
0O 0 0 L1 I I Aps Fis
0o 0 0 9 o* & Aps Fys
and

ki = F(M2P — MPD?) (A.36)

ky = (MO — MLo%) (A.37)

ks = g2(M * — M2oY) (A.38)

L = PA(M20°— M3 (A.39)

l, = F(M3d"— Mo®) (A.40)

Ils = ¢*(MIo*— M29Y) (A.41)
Determinant of this matrix produce the following result

detZ;; = det(g*)det(0?)det (e Ch CLOF ) det (e M M*) (A.42)
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APPENDIX-B

Throughout the work we used the conventions of the Wess-Bagger [92]. Greek
letters are used to denote the spinor indices while the Latin letters to denote the

vector and tensor indices. Metric convention is
ymy :dz'ag(—l,l,l,l) (Bl)

Antisymmetric tensors with dotted and undotted index are

12 21 2 _621 -1 (B 2)
€12 = —€21 = €j5 = —€3{ = —1 (B?))

and
60123 = —€p123 — 1 (B4)

Raising or lowering the dotted and undotted Weyl spinors, which form the (0, 1/2)
and (1/2,0) representations of the SL(2,C') respectively, are performed with the

antisymmetric tensor

wa = Eaﬂqwbﬁ ) ¢a = Eaﬂwﬂ <B5)

VX = V" Xa = —VYaX* = X Vo = XY (B.7)
VX = YaX® = =0 Xa = X = XU (B.8)
(¥x)t = xv = ¥x (B.9)

Sigma matrices are

o_( -1 0 1 (01 s (0 —i s (1 0
U‘(o ) ={10)o=i o )o=0 1) B
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Index structure of the sigma matrices and the operations with respect to the both

spinor indices and Lorentz indices of them are given by

ot = €apespo : ohae = ea’gea’gazﬁ. (B.11)
7’ =o° , gl=—0" i=1,2,3 (B.12)
Tr(o"a") = —2nt , aid556 = —25555 (B.13)
(00" +a"a")] = =296, (5"0" +avo")G = —28Y (B.14)
ot'g" ot 4+ orgl ot = 2o’ — ot — o) (B.15)
glo" et + arovar = 2ntreY — niet —ne?t) (B.16)
otc ot — o*g ot = 2ie" Mo, , GloVe — G ove! = —2i" G, (B.17)
o f = Yo g _grgrany | gms _ Lgusagy _ guaasiy (g 1)
o 4N ol ad ’ Jé; 4 af af ’
ot =0= 5“”602 , a”o’jﬁem = a“f/’”gega (B.19)
gy = =20t MGy = 2i6M (B.20)
MG = —200M | NGy, = M (B.21)
1 :
Tro_,uua,)\/-e — _§(nyA77un o nunnun) o %euu)\ﬁ (B22)
UZaUVgB — U”ada’zm = 2(0"€)apesp + 2(60M) 45608 (B.23)
0na0'%s + Uzdo‘éﬁ. = " + 4(0€)ap(€d™) 45 (B.24)
1
oo = 5(—77’\”0“ + Mo¥ 4 ieM g, (B.25)
1
oha?N = 5(77“)‘0” — "o + i Ma,,) (B.26)
1
Fet = 5(—77’\”6“ + MG — e, (B.27)
1
Ghor = 5(77/“5” — e — i MG,,) (B.28)
v —v, 3 — v = ~ v —
oo, =o,0" = —50“ , oo, =0,0" = —50“ (B.29)
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ot P, v o= %(U%A‘yeweﬁa - %55) (B.30)
ot 5537 = %(6“ e 5677 4 Gt dﬁ&g) (B.31)
ot ;037 = 1((’7“ 576‘5‘*’655 —a* %57) (B.32)

5“”;0,@7 = %(0'”66 €5 T 0" (5a) (B.33)

Some useful spinor identities:

6°0° = —%eaﬁ% , 0,05 = 1%300 (B.34)
g L agan - 1
6408 = € 506 : 0:0 5 —5 a599 (B.35)
1 _ o
(00)(00) = —5(s0)(00) . (89)(6Y) = ——(CW)(%) (B.36)
xot = —garx . (xo")' =o'y (B.37)
xota'y =potaty . (xo"a"y)l = Paraty (B.38)
Oot000" 0 = ;969077“” (B.39)
1
WOXs = —50" D)oty (B.40)
Differentiation and integration of the Grassmann variables:
00 N
0 0 0 0
af_~ i  _ 045 4
65— 96, ’ D0, 008’ (B.42)
0 00 4oy : 0 9 g5 4, (B.43)

00> pHs “as 59, 90, 00,

/dn:() , /dnn:1 (B.44)
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