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Prof. Dr. Cihan SAÇLIOǦLU (Sabancı U.)
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Diger Jüri Üyeleri Prof. Dr. Mahmut HORTAÇSU (İ.T.Ü.)
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DUALITY IN NONCOMMUTATIVE FIELD THEORIES
A PARENT ACTION APPROACH

SUMMARY

Noncommutative field theories are defined as decoupling limit of the string theory.
Hence, they enable us to study the stringy properties by using the field theory
language. Duality is a powerful tool in physics to investigate the different prop-
erties of a model. S duality is especially important in the noncommutative gauge
theories since it produces results peculiar to the noncommutative case: if one
has a space/space noncommutative theory, then S duality leads to a space/time
noncommutative theory. In such a theory although it is not possible to define
hamiltonian by using the usual quantization procedure because of the noncom-
muting time variable, it is shown that one can define hamiltonian starting from
a parent action. This hamiltonian can be used to define the worldvolume theory
of D3−brane and hence its BPS states can be studied.
Parent action formalism is an appropriate tool for studying dual theories. One can
define the partition functions of dual theories by using the path integral formu-
lation of parent action without any other machinery. Although, on the contrary
of ordinary theory it is not possible to define an explicit transformation between
the partition functions in noncommutative case, it is shown that their partition
functions are equivalent.
On the other hand, parent action formalism can be used to study duality in the
supersymmetric generalization of the noncommutative U(1) gauge theory. For this
aim, supersymmetric generalization of the Seiberg-Witten map must be defined.
Definition of parent action is not unique and this leads to different dual theories.
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KOMÜTATİF OLMAYAN ALAN TEORİLERİNDE DUALİTE
PARENT EYLEM YAKLAŞIMI

ÖZET

Komütatif olmayan (noncommutative) ayar kuramları sicim teorisinin ayrışma
(decoupling) limitini tanımlarlar. Böylece, sicim kuramının özelliklerinin alan ku-
ramı diliyle çalışılmasına imkan verirler. Dualite bir modelin farklı özelliklerinin
anlaşılması için güçlü bir araçtır. Komütatif olmayan ayar kuramlarında S
dualitenin çalışılması bu tip teorilere özgü yeni sonuçlar vermeleri nedeniyle
ayrıca önemlidir. Uzay koordinatları arasında komütatif olmama özelliǧinin
tanımlı bulunduǧu bir kuramda, S dualite zaman ve uzay koordinatları arasında
komütatiflik bulunmayan bir kurama yol açar. Bu tip bir ayar kuramında Hamil-
ton fonksiyonun tanımlanabilmesi bilinen kuantizasyon yöntemleriyle mümkün
deǧilken, bir parent eylemden başlanarak bunun yapılabileceǧi gösterilebilir. Bu
yolla D3−zarlarının yaşam hacim (worldvolume) kuramlarının ve bunların BPS
durumlarının çalışılması mümkün olmaktadır.
Dual kuramların çalışılması için parent eylem yöntemi uygun bir araçtır. Başka
bir araca gerek kalmaksızın parent eylemin path integral formalizminden hareke-
tle dual kuramların bölüşüm fonksiyonları hesaplanabilmiştir. Her ne kadar
komütatif olmayan durumda dual kuramların bölüşüm fonksiyonları arasında
komütatif durumdakine benzer şekilde açık bir dönüşüm tanımlanamasa da bun-
ların bölüşüm fonksiyonlarının eşdeǧer oldukları gösterilmiştir.
Komütatif olmayan U(1) ayar kuramının süpersimetrik duruma genelleştirilmesi
halinde dualitenin kurulabilmesi amacıyla benzer şekilde parent eylemden
yararlanılabilir. Bunun için Seiberg-Witten gönderiminin süpersimetrik duruma
bir genelleştirilmesi tanımlanmalıdır. Parent eylemin farklı tanımlamalarının
mümkün olmasına baǧlı olarak deǧişik sonuçlara ulaşılır.

vii



1 INTRODUCTION

The notion of the space has undergone some radical changes during the improve-

ment of the physical theories. After the development of non-Euclidean geometry

another example of such a great change in thinking the notion of space may be

the noncommutative geometry. Actually until to come to the pioneering paper of

Alain Connes [1, 2] there has already been a great amount of examples for such

spaces both in physics and mathematics. For example Penrose tiling, noncommu-

tative tori, leaf spaces of foliations, Adela class space and the duals of nonabelian

groups.

At the level of topology, this issue is a part of the algebraic topology. A topologi-

cal space may be completely characterized by the algebra of continuous complex-

valued functions defined on it: given the continuity requirement of all functions

on the manifold one may reconstruct the topology. By knowing the associative,

commutative algebra A of the complex-valued functions one could still recon-

struct the manifold M . That is due to Gel′fand− Naimark theorem which makes

possible to construct formally a topological space M for which A is naturally

isomorphic to the space of functions [1, 2]. At this stage it is natural to ask

what happens if one chooses an associative but noncommutative algebra A′ for

example the algebra of N ×N complex-valued matrices. Noncommutative spaces

result from this question. The definition of the Gel′fand transform, which is used

to reconstruct a space from an algebra, becomes ambiguous for noncommutative

algebras, and it is not possible to formally reconstruct the space M in this case.

This ambiguity can be resolved by the Morita equivalence. The Morita equivalent

spaces share many common geometrical characteristics, for example they have the

same K−theory and cyclic homology but gauge theories or more precisely vector

bundles defined over them can be very different.

Historically the first example of these spaces appear in the field theory context. At

the beginning stage of constructing quantum field theory one of the most difficult

problem was the divergences problem. To overcome this difficulty before develop-
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ing a systematic renormalization procedure, it was suggested that replacing the

ordinary spacetime coordinates xµ with the hermitean operators x̂µ which satisfy

the commutation relations

[x̂µ, x̂ν ] = iθµν (1.1)

this would cure the problem [3] 1. Here θµν in general can be a constant, a func-

tion of coordinates or a function of both coordinates and momenta. In the first

case theory satisfies a canonic relation and this type of theories emerge from the

quantization of string theories in a background field. In the latter case noncom-

mutativity parameter is in form of θµν = Cµν
ρ xρ. It defines a Lie-algebra and this

type of theories are typical in some quantum gravitational models. For instance, in

the case of C0i
j = 1/κ and Cij

k = 0 spacetime is called as κ−Minkowski spacetime

and is related to a quantum deformation of Poincaré group. The commutation

relations (1.1) defined between the coordinates lead to a spacetime uncertainty

relation which resembles the Heisenberg uncertainty relation

∆x̂µ∆x̂ν ≥ 1

2
| θµν | (1.2)

As a result of this uncertainty relation the notion of point on the space is no longer

meaningful and a Planck cell is defined instead of the point. By this approach

to define the physical processes at the θ−scale one should remove the notion

of the point and should work with the element of the noncommutative algebra

defined above. Hence the ultraviolet divergences in the quantum field theory

can be regularized by putting an ultraviolet cutoff Λ in the momentum space

integrals. This cutoff in the momentum space is a direct consequence of defining

a fundamental length scale which is given by Λ−1. Below this length scale all the

events can be neglected.

Another assumption that the structure of the spacetime at small length scale

should be deformed arises from the point of view of the general relativity. The en-

ergy at which gravity and quantum effects become of comparable strength is given

by the Planck energy. At the length scales corresponding to the Planck energy,

the quantum gravitational fluctuations become dominant and cannot be ignored

[4]. As a consequence of this, the spacetime becomes “fuzzy” at the very short dis-

tances and ordinary geometry notions fails to define the spacetime structure [5, 6].

1Actually the original idea is referred to the name of Heisenberg
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Thus, one needs to modify the classical geometry notions. These modifications

can be related to the uncertainty relations defined in (1.2). Such a minimal length

scale predictions arise in the different quantum gravity models [7, 8, 9, 10, 11] and

they coincide with the fundamental postulate of the noncommutative geometry

which is nonlocalization property of spacetime.

So far we saw that some intuitive approaches on the problems which we come

across in the different context of physics leads to an unfamiliar geometry defin-

ition. But it is still an unforeseen argument which is forced to the theory from

outside. If we think that nocommutativity defines the nature at small length

scales we should find it somewhere in more fundamental theories. String theory

is a candidate for such a fundamental theory and it is natural to expect that

noncommutativity is included in it. There also exist other physical theories in

which above deformed spacetime structure arise naturally. M-theory is one of

them. The known five perturbative superstring theories can be obtained from

a single 11−dimensional theory which is called M-theory. String theories corre-

spond to the low energy limit of this single theory. Matrix-model is known a

formulation of M-theory and according to this conjecture each momentum sector

of the discrete light cone quantization of M-theory is described by a maximally

supersymmetric Matrix-model (or Supersymmetric Yang-Mills theory) with the

light cone momentum identified with the rank of gauge group. It is believed that

to form a formulation of M-theory, when Matrix model compactified on a circle it

must yield the string theory. Different compactifications of the Matrix model on

different manifolds are possible. A class of toroidal compactifications were con-

structed in early stages of Matrix model development, which relied on a certain

commutative subalgebras of matrices [12, 13]. Connes, Douglas and Schwarz in-

troduced the noncommutative spaces as possible compactification manifolds. By

this noncommutative space compactifications one obtain some different physical

consequences. It can be summarized that it corresponds to adding a constant

3−form background in the 11-dimensional supergravity and a major result is the

Supersymmetric Yang-Mills (SYM) theory of commutative torus compactifica-

tion now becomes a deformed SYM theory [14, 15]. Later it was proved that this

deformed SYM theory and therefore indirectly the noncommutative torus com-

pactifications can be realized as certain D-brane configurations in string theory
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[14]. Subsequently, compactifications on more complicated spaces were studied

[16] and various properties of the deformed SYM theory and their relation to

string theory were considered [17, 18, 19].

Duality appears in several different context of physics. Dual theories provide

to construct two different but equivalent description of the same model in the

two different interaction regimes by using in general different fields. The rela-

tion between the fields is in general not known explicitly and in the most of

the cases it contains nonlinear terms. An exception of this situation appears

in the two-dimensional quantum field theory models. The solitons in the Sine-

Gordon theory S(φ) correspond to the fermions of the massive Thirring model

S(ψ), where φ ∼ ψ̄ψ [20, 21, 22]. The possibility of writing fermions in terms of

bosons (bosonization) has been a powerful method for obtaining nonperturbative

information. Some of the other important dualities are Hodge duality, electric-

magnetic duality, Montonen-Olive duality and string theory dualities (S,T and U

duality). The importance of the S dual theories is that they enable us to work

of the weak and strong coupling properties of any theory. Thus knowing the ex-

plicit relation between the fields allows perturbative calculations in the variables

of the original theory both in the strong and weak coupling regimes. It should be

noted that hereafter whenever we mention the duality it must be understood as

S-duality unless it is stated explicitly.

Electric-magnetic duality exchanges the electric degrees of freedom of theory with

the magnetic degrees of freedom. It also exchanges the electric charge quanta with

the magnetic charge quanta. Electric charge quanta at the same time related to

coupling constant of theory. Such a transformation, if it can be constructed, will

map the strongly coupled electric degrees of freedom of theory to weakly coupled

magnetic degrees of freedom of it. Hence different phases of the gauge theories can

be investigated. This is especially important in the non-Abelian gauge theories,

for example in QCD. Superconductivity is explained by condensation of elec-

tric charges in which magnetic fields confine, i.e, when two magnetic monopoles

(for example ends of a long magnet) inserted in it potential between monopoles

become linear. The dual picture of this event explains the quark confinement

problem: if magnetic monopoles condense instead of electric charges, then mag-

netic currents are superconducting while electric charges are confined. Recently
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Seiberg and Witten showed that breaking of N = 2 supersymmetric Yang-Mills

theory down to N = 1 gives a semi-realistic theory of electric confinement by

using a kind of electric-magnetic duality [24].

The plan of the thesis as follows: In chapter-2 we give a brief summary of the

noncommutativity. Here we also give the cornerstones of the Seiberg-Witten map.

This map defines a field redefinition of the noncommutative gauge field and gauge

parameter in terms of the commutative ones such that both of theories con-

structed from that gauge fields and gauge parameters define the same physics in

terms of different fields. We discuss in what conditions such an equivalence can

be constructed and what are the relations between the fields.

In chapter-3 we present hamiltonian formulations of noncommutative U(1) gauge

theory and its dual. Dual theory has a time/space noncommutativity whereas

the original theory has noncommutativity among the spatial coordinates [82]. In

quantum mechanics time is the evolution parameter of the system. Contrary to

the coordinate and momentum variables of the particle, time is not an operator

and therefore it is not obvious what one means by the noncommutativity of

time. Moreover, in such a case it is not apparent how quantization procedure can

be defined. Nevertheless, examples which produce such a time/space noncom-

mutativity arise in different cases and in string theory context it is unavoidable

in a manner. For instance, the noncommutativity between the space coordinates

occurs when a D-brane considered in a constant background B field which has

nonvanishing components along the space directions. When background field

has nonzero B0i components, in other words when D-brane is put in an electric

background field such a time/space noncommutativity emerges [61]. Actually

an uncertainty relation between time and space can be derived from string

uncertainty principles even when no electric background is present [27]. All of

that leads to a better understanding of the notion of time in string theory. We

will propose an alternative way to construct the hamiltonian of the space/time

noncommutative theory [28]. The parent action will be the starting point of our

approach. Bypassing the usual quantization procedure we were enable to obtain

the hamiltonian. We show that although the time coordinate is noncommuting

with the spatial coordinates it works effectively as if commuting. Under the

light of these results we worked the BPS states of the noncommutative D3−brane.
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In this chapter we will also discuss how electric-magnetic duality transformation

is defined for Lagrange and Hamilton densities of noncommutative U(1) gauge

theory [46].

Chapter-4 contains the partition function analysis of the dual theories. Here we

will focus on the construction of the partition functions starting from the parent

action which yields respective partition function of both dual and original theory

with respect to phase space integrations. First of all we develop formalism for

ordinary U(1) gauge theory. Later it is going to be extended to the noncommu-

tative case. The results of ordinary case are compatible with the previous one

which is obtained by a canonical transformation [62]. It is shown that the parti-

tion function of noncommutative U(1) gauge theory and its dual are equivalent

[46].

Generalization of the Seiberg-Witten map to the supersymmetric theory can be

formulated in some different ways. One of them is to generalize the definition of

the map by using the superfields [94]. In another one generalization is defined

by using the solution of ordinary Seiberg-Witten map [95]. Duality for ordinary

supersymmetric U(1) is defined in terms of superfields [24]. For noncommutative

supersymmetric theory duality is investigated via parent action method by using

the component fields in [87]. Parent action construction is not unique. Therefore

it makes possible to define different parent actions. Chapter-5 is devoted to this

discussion. We will give two different parent action constructions of the duality.

Although they yield the same dual theories in the ordinary case they differ for

supersymmetric noncommutative theory in some ways. Somehow dual symmetry

breaks and dual theories do not possess the ordinary properties. This point will

be discussed and clarified. Another parent action will be proposed in order to

reconstruct the symmetry and some related problems are considered.

The last chapter include the results and conclusions.

6



2 NONCOMMUTATIVITY IN PHYSICS

Beside the other fields of physics, general relativity provides powerful evidences

that spacetime coordinates at small length scales can not be thought classically

no longer in the sense that the usual notion of point is meaningless. Relativity

defines the gravitation as geometry of spacetime and at the very short distances

the notion of point of ordinary geometry is effected by the quantum fluctuations

and hence is lost its meaning. This process deform the spacetime structure at

this scale and points of space become “fuzzy”. At the most fundamental level let

us consider to localize a particle to a space region of Planck size λP ∼ 10−33cm.

This requires an amount of energy equivalent to Planck mass mP ∼ 1019Gev/c2.

Black hole radius is given by R = Gmeff

2c2
where meff = E

c2
. If we consider particle’s

energy is localized in a space region of size a then the energy density E = ~c/a

is well defined for big a. At the limit R = a

a =

√
G~
c3

∼= 10−33cm (2.1)

we obtain the Planck length. This implies that there exist an effective minimum

length scale which form a physical bound to quantization of space. The physical

events below this limit cannot be determined. One can avoid this paradox by

introducing the spacetime uncertainty relation

∑
∆xi∆xj ≥ λ2

P (2.2)

Such an uncertainty relation which we familiar from quantum mechanics is a

natural consequence of the commutation relation (1.2) between the coordinates.

Thus we conclude from this simple example that quantization of general relativity

may bring the spacetime noncommutativity.

String theory is one of the most promising candidate to being a theory of every-

thing. In this context it also provides a consistent picture of quantum theory

of gravitation. It is sensible to expect the emergence of above results in string

picture. Strings have an intrinsic length ls and using them as probes in investiga-

tion of spacetime will not give the information under this intrinsic length. String
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scattering amplitudes at ultra-high energies lead to string modified Heisenberg

uncertainty relations

∆x ≥ ~
2
(

1

∆p
+ l2s∆p) (2.3)

At the point particle limit, i.e. when ls → 0, this relation reduce to the standard

phase space relation. Minimizing the equation (2.3) with respect to ∆p will give

a lower bound ∆x ≥ ∆xmin on the measurability of distances in the spacetime

which is, as can be guessed, the length of the string

∆xmin = ls (2.4)

It is possible to realize such length scales using as probes not strings themselves

but rather certain nonperturbative open string degrees of freedom known as D-

branes. In fact using these objects allow one probe even shorter, sub-Planckian

distance scales in string theory and they enable microscopic derivations of fairly

generalized uncertainty relations which include those described above as a subset.

They are therefore the natural degrees of freedom which capture phenomena

related to quantum gravitational fluctuations of the spacetime and hence will be

important in investigation of the spacetime noncommutativity.

2.1 Landau Problem

Landau problem [29] in a sense provides a prototype example of the noncommu-

tativity in string framework which we are going to deal with in the next section.

There exist phenomenological resemblance between two cases at least at first

sight. Landau problem deals with the dynamics of the particles which are con-

strained to move in a two-dimensional plane with an external magnetic field B

perpendicular to the plane. A cyclotronic motion in plane results from the in-

teraction of magnetic field with particles due to the particles constrained in the

plane. In certain limits the configuration space in which physical observables of

the system take place shows interesting properties. Noncommutativity of space

coordinates is one of them.

Noncommutativity in string framework comes from the quantization of open

strings which are attached to a Dp-brane in presence of a background field Bµν . A

Dp-brane is defined with p spatial dimensions and string end points can move on

the brane worldvolume freely in absence of a background field. This background

8



Kalb-Ramond field form string analogue of the magnetic field in the Landau

problem and couples to a string charge which corresponds to the electrical charge

in the Landau problem. There is also a Maxwell (U(1)) gauge field lives on the

D-brane and couples to the string end points. Quantization of this configuration

leads to noncommutativity which will be considered in detail later. In this chapter

we will review the former case. For a detailed discussion of these issues see [26].

Position of particles will be considered in the xy−plane

ri = (xi, yi), i = 1, 2, · · · , N (2.5)

and the gauge which produces the external constant magnetic field B is chosen

as

A(ri) = (0, Bxi) (2.6)

Lagrangian of the system is

L =
N∑

i=1

(
1

2
miṙ

2
i +

e

c
ṙiA(ri)− V (ri)) (2.7)

where mi is the particles mass and V is the electron self-energy. To quantize the

system define canonical momentum

pi =
∂L

∂ṙi

= miṙi +
e

c
A (2.8)

Canonical hamiltonian is

Hc =
∑

i

piq̇i − L =
N∑

i=1

1

2mi

π2
i + V (ri) (2.9)

here πi = miṙi shows noncanonical kinematical momentum which is related to

canonical momentum by πi = pi − e
c
A. Canonical commutation relations can be

defined as

[xi, p
x
j ] = i~δij = [yi, p

y
j ], (2.10)

[ri, rj] = 0

[pi, pj] = 0

It should be noted that while the canonical momentum is not gauge invariant the

kinematical momentum preserves the gauge invariance so kinematical momenta π

9



must be considered as physical objects. They satisfy an intriguing commutation

relation

[πi, πj] = i~
eB

c
εij (2.11)

Thus the physical momenta are defined in a noncommutative space in presence of

a background field. In the absence of interactions the hamiltonian can be written

in terms of creation and annihilation operators

E =
N∑

i=1

~ωc

2
(ni + 1), ni = 0, 1, 2, · · · (2.12)

where

ωc =
eB

mic
(2.13)

shows the classical cyclotronic frequency of the electron and these energy eigen-

values are known as the Landau levels. The gap between Landau levels is the

constant

∆ =
1

2
~ωc (2.14)

Now we consider strong field limit, B À me. In that case Lagrangian (2.7) reduce

to

L′ =
N∑

i=1

(
eB

c
xiẏi − V (ri)) (2.15)

which is of the form pq̇−H(p, q). One can identify the canonical pairs as ( eB
c

xi, yi)

and they enjoy

[xa
i , x

b
j] = iδijθ

ab (2.16)

where the noncommutativity parameter is given by

θab =
~c
eB

εab (2.17)

with εab the antisymmetric tensor. The letters a, b = 1, 2 denotes the plane coordi-

nates. Physically at the strong field limit, i.e. B →∞ or equivalently m → 0, the

gap between Landau levels diverges and the lowest level decouples from others.

This forces the system to lie in the lowest level. At the same time this process

degenerate the phase space into a kind of configuration space. This can be seen

from constrained system analysis. The strong field limit turns the hamiltonian

into a topological one

H ′ =
N∑

i=1

V (ri) (2.18)

10



There is not any propagating degrees of freedom and kinematical momenta be-

come a constraint of the system: πi = 0. Because of the commutation relation

(2.11) these are second class. This requires that normal Poisson brackets must be

replaced with Dirac brackets. The result is noncommutation of coordinates.

In the following chapter we will interested in how noncommutativity arise in

string states with D-branes.

2.2 Noncommutativity in String Theory

A Dp−brane is an extended object with p spatial dimensions defined by the

property that strings can end on them. The letter D stands for Dirichlet con-

dition. In the presence of a D-brane, the endpoints of open strings must lie on

the brane. Among the quantum states of open strings attached to a D-brane we

found photon states with polarizations and momentum along the D-brane direc-

tions. Thus one can deduce that a Maxwell field lives on the worldvolume of a

D-brane. The existence of this Maxwell field was in fact necessary to preserve the

gauge invariance of the term that couples the Kalb-Ramond field to the string in

the presence of a D-brane. We also know that the endpoints of open strings carry

Maxwell charge. Since any D-brane has a Maxwell field, it is physically reasonable

to expect that background electromagnetic fields can exist: there may be electric

or magnetic fields that permeate the D-brane. Hence the string endpoints couple

to the Maxwell potential Am in the same way as a charged particle does. In the

case of N coincident Dp-brane a U(N) gauge field lives on the worldvolume of

the brane and this defines a U(N) Yang-Mills theory.

Now consider an open string with its ends on a D-brane such that there exist a

constant non-zero, static and uniform background field Bµν in the bulk. Action of

this configuration is given by the coupling of the string to this background field

in addition to the standard open string action.

S =
1

4πα′

∫

Σ

d2σ[ηµν∂aX
µ∂bX

νgab + εabBµν∂aX
µ∂bX

ν ] (2.19)

where a, b denote string world sheet coordinates and gab string world sheet metric

whereas ηµν shows the spacetime metric. Since Bµν is a constant the second part

of action can be written as a surface integral. To get the equations of motion we
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apply the standard variational principle to the action

δS = −
∫

Σ

d2σ{ηµνg
ab∂a∂bX

νδXµ}+

∫

∂Σ

dτ{−ηµνδX
µ∂σX

ν + BµνδX
µ∂τX

ν}|σ=π
σ=0

(2.20)

Invariance of the action under the variation leads to the equations of motion and

the boundary conditions

(∂2
τ − ∂2

σ)Xµ = 0, (2.21)

and

∂σX
µ −Bµν∂τX

ν = 0, σ = 0, π (2.22)

Thus one can see that inclusion of a static background field to the action does not

change the equations of motion but does the boundary conditions. This boundary

conditions are neither Neumann nor Drichlet but a linear combination of them.

The string positions Xµ can be expanded into the mode expansion by taking care

of the boundary conditions as follows

Xµ = xµ
0 + pµτ + Bµνpνσ +

∑

n6=0

e−inτ

n
(iaµ

n cos nσ + Bµ
ν aν

n sin nσ) (2.23)

One can check that this really satisfies the boundary conditions (2.22)

∂σX
µ = Bµ

ν pν +
∑

n 6=0

e−inτ (−iaµ
n sin nσ + Bµ

ν aν
n cos nσ) (2.24)

and

∂τX
µ = pµ +

∑

n 6=0

e−inτ (aµ
n cos nσ − iBµ

ν aν
n sin nσ) (2.25)

The momentum terms and the cosine terms cancel each other, leaving the sine

terms. Since the boundary condition equations only hold at σ = 0 and σ = π

these terms vanish and equations are satisfied.

Canonical momenta are

Pµ(τ, σ) =
δS

δ(∂τXµ(τ, σ))
=

1

2πα′
(∂τXµ −Bµν∂σX

ν) (2.26)

More precisely

2πα′P µ = Mµ
νp

ν +
∑

n6=0

e−inτMµ
νa

ν
n cos nσ (2.27)

with

Mµ
ν ≡ δµ

ν −BµρBρν (2.28)

12



which is symmetric. To find the commutation relations of the expansion coef-

ficients of Xµ we impose the natural commutation relations on the conjugate

pairs

[Xµ(τ, σ), P ν(τ, σ′)] = iηµνδ(σ − σ′) (2.29)

and also

[P µ(τ, σ), P ν(τ, σ′)] = 0 (2.30)

From (2.29) using (2.23) and (2.27)

[xµ
0 + pµτ + Bµ

ρ pρσ +
∑

n 6=0

e−inτ

n
(iaµ

n cos nσ + Bµ
ρ aρ

n), (2.31)

Mν
κp

κ +
∑

n 6=0

e−inτMν
κa

κ
n cos nσ́] = 2πiα′ηµνδ(σ − σ′)

one can find that

[xµ
0 + pµτ +

π

2
Bµ

ρ pρ, pν ] = 2iα′(M−1)µν (2.32)

and

[
1

n
(e−inτaµ

n − einτaµ
−n), (e−imτaν

m + eimτaν
−m)] = 4α′(M−1)µν (2.33)

should be satisfied. Since (2.32) should hold for any value of τ

[pµ, pν ] = 0 (2.34)

and

[xµ
0 , p

ν ] = 2iα′(M−1)µν (2.35)

From the equation (2.33) by the same way

[aµ
n, a

ν
−m]− [aµ

−n, a
ν
m] = 4nα′δnm(M−1)µν (2.36)

Now using [P µ, P ν ] = 0 will give

[aµ
n, aν

−m] + [aµ
−n, a

ν
m] = 0 (2.37)

Thus we obtain

[aµ
n, aν

m] = 2nα′δn,−m(M−1)µν (2.38)
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and also

[pµ, aν
m] = [xµ

0 , a
ν
m] = 0 (2.39)

Now let’s examine [Xµ, Xν ] commutation relations

[Xµ(σ, τ), Xν(σ′, τ)] = [xµ
0 , x

ν
0] + [xµ

0 , p
ντ + Bν

κpκσ′] + [pµτ + Bµ
ρ pρσ, xν

0] + (2.40)

2α′
∑

n 6=0

1

n
{−(M−1)µν cos nσ cos nσ′ + i(BM−1)µν sin nσ cos nσ′

+i(M−1B)µν cos nσ sin nσ′ + (BM−1B)µν sin nσ sin nσ′}

Utilizing the properties that (M−1B)µν is antisymmetric and BM−1 = M−1B

in the above equation one can obtain

[Xµ(σ, τ), Xν(σ′, τ)] = [xµ
0 , x

ν
0] + 2iα′(M−1B)µν{σ + σ′ +

∑

n 6=0

1

n
sin n(σ + σ′)}

(2.41)

The function (on the right hand side in the curly brackets) has the values

σ + σ′ +
∑

n 6=0

1

n
sin n(σ + σ′) =





0 σ = σ′ = 0
2π σ = σ′ = π
π otherwise

(2.42)

and hence

[Xµ(σ, τ), Xν(σ′, τ)] =





[xµ
0 , x

ν
0] σ = σ′ = 0

[xµ
0 , x

ν
0] + 4πiα′(M−1B)µν σ = σ′ = π

[xµ
0 , x

ν
0] + 2πiα′(M−1B)µν otherwise

(2.43)

There is no information on the xµ
0 commutation but even if it is chosen as 0

we have noncommutativity somewhere. One can conclude that noncommutativ-

ity arise in quantization of open strings attached to a D-brane in presence of a

background field. This arbitrariness in the xµ
0 commutation has been tried to fix

by some different approaches. In the [41] a time averaged symplectic form was

proposed and found that it satisfies

[xµ
0 , x

ν
0] = −2πiα′(M−1B)µν (2.44)

Plugging this result into the (2.43) leads to

[Xµ(σ, τ), Xν(σ′, τ)] =




−2πiα′(M−1B)µν σ = σ′ = 0
2πiα′(M−1B)µν σ = σ′ = π
0 otherwise

(2.45)

This shows that open string coordinates are noncommuting at the where they are

attached to the brane and hence worldvolume of D-brane also becomes noncom-

mutative. In [42] this result arise from Dirac quantization of the string coordinates

which treat the boundary conditions as constraints of system .
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2.3 Gauge Theories on the Noncommutative Spaces

In this section the main interest will be the gauge theories on the noncommutative

spaces. As it is noted before, open strings attached to D-branes contain in their

spectrum a massless vector field. One can find the amplitude of the corresponding

vertex operators. In the field theory limit, i.e., in the limit of string tension pa-

rameter α′ → 0, these amplitudes coincide with those of an ordinary U(1) gauge

field theory. If, however, a constant Bµν field with nonzero components only in

the space directions parallel to the D-brane is switched on the amplitudes have

changed. They are not the amplitudes of an ordinary gauge field theory, rather

they correspond to the amplitudes of a noncommutative field theory, in which

the noncommutativity parameter is precisely related to the value of the B field.

The significance of noncommutative gauge theories can be classified mainly in

the two approaches. First since these type of gauge theories are originated from

string theory and D-brane worldvolume theories, the results obtained from them

can be used to shed light upon the new properties of the string and D-brane

theories. Secondly, by going in the reverse direction of the first, some properties

of string theories can be understood in the field theory language and noncom-

mutative gauge theories provide a natural framework to this aim. It should be

stressed that although the noncommutative gauge theories are the effective the-

ories of the dynamics of the strings there exist an equivalent description in the

commutative world in terms of the ordinary fields. But in some cases the non-

commutative description provide more powerful and suitable technical tools: for

example T−duality [30, 31, 32, 33], instantons [34] and soliton solutions [35, 36].

Some other aspects are easier in the context of commutative description; in par-

ticular, in 3 + 1 dimensions, electric-magnetic duality rotations.

Noncommutative theories enjoy an interesting property under the translations

of the gauge fields along the noncommuting directions. Such a translation is

equivalent to a gauge transformation [37]. A similar thing just appears in the

general relativity where local transformations associated to general coordinate

transformations. But when passed to the commutative side by Seiberg-Witten

map this equivalence is lost. Instead of that another aspect that can be thought

related to gravity emerges. Noncommutative field theories can be interpreted as
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ordinary theories immersed in a gravitational background generated by the gauge

field. The θ dependent terms can be interpreted as a gravitational background

which depends on the gauge field [38].

Another important property of these type theories is that they carry some stringy

properties into the field theory side. One of them is the nonlocal nature of string

theory. As a result of this nonlocality, noncommutative gauge theories share an

intriguing property which is called UV/IR mixing.2 In short it can be explained

that if any Feynman diagram requires an ultraviolet cutoff Λ regularizing the

graph, this naturally leads to an effective infrared cutoff Λθ = 1
Λθ

. In the renor-

malization procedure two types of the diagram occur: planar and nonplanar di-

agrams. Nonplanar diagrams are UV finite. This is the beneficial effect of the

UV/IR mixing and arise from the expected effect of the noncommutativity para-

meter in the high momentum region. However this advantage is compensated by

an increasing singularity pattern in the IR sector3. This feature is actually due to

the lack of the decoupling of the low energy effective field theories from the high

energy dynamics. Physically this means that the quanta in noncommutative field

theory include extended rigid objects whose length grows with its center of mass

momentum. These quanta are responsible for many of the stringy effects that

noncommutative field theories exhibit. The dipoles interact by joining at their

ends and this gives a simple picture of the nonlocal nature of the interactions in

noncommutative quantum field theory.

Noncommutativity can be realized mainly in two different ways. In the operator

formalism coordinates and the fields which are functions of these coordinates are

considered as operators (infinite size matrices). Coordinate operators satisfy the

commutation relation (1.1). This approach based on the Weyl quantization idea

[40]. Secondly noncommutativity of coordinates is realized by replacing the ordi-

nary product of fields with a star product. There is an equivalence called Weyl

transformation between these two formalisms. To show the equivalence we con-

sider the Weyl quantization procedure. Weyl introduced an elegant prescription

2Actually all of the noncommutative field theories share the same property. For example an
explanation for the issue in scalar theory see [39]

3It turns out that, one of the beginning motivation of the noncommutativity seems to be
half achieved.As far as ultraviolet divergences are concerned, it works but in case of the infrared
divergences, the problem keeps on surviving

16



for associating a quantum operator to a classical function of the phase space vari-

ables. One can define a noncommutative space by replacing the local coordinates

xi of Rd by Hermitian operators x̂i obeying the commutation relation (1.1). The

x̂i then generate a noncommutative algebra of operators. Weyl quantization pro-

vides a one-to-one correspondence between the algebra of fields on Rd and this

ring of operators, and it may be thought of as an analogue of the operator-state

correspondence of local quantum field theory. Given the function f(x) one can

define its Fourier transformation4 as

f(x) =

∫
dp e−ipxf(p) (2.46)

Weyl operators f̂(x̂) are defined by relating them to ordinary function f(x) of

ordinary variables

f̂(x̂) =

∫
dx f(x)∆̂(x) (2.47)

where

∆̂(x) =

∫
dk e−ikx̂eikx (2.48)

is a hermitian operator ∆̂(x)† = ∆̂(x) and describes a mixed basis for opera-

tors and fields on spacetime. Definition of Weyl operator is invertible with the

definition

f(x) = Tr(f̂(x̂).∆̂(x)) (2.49)

The associated function obtained from a quantum operator is known as Wigner

distribution function. Hence one can form a one-to-one correspondence between

the Wigner function and Weyl operator. Here the operator trace Tr is equivalent

to integration over the noncommuting coordinates x̂i

Trf̂(x̂) =

∫
dx f(x) (2.50)

From (2.47) one can write the Weyl symbol as

f̂(x̂) =

∫
dp e−ipx̂f(p) (2.51)

Multiplying these operator fields produce

f̂(x̂)ĝ(x̂) ≡ (f̂ ◦ g)(x̂) (2.52)

=

∫
dp e−ipx̂f(p)

∫
dk e−ikx̂g(k)

4we suppressed the factor (2π)′s
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Two exponential do not commute, so using Baker-Campbell-Hausdorff formula

eA eB = eA+B+ 1
2
[A,B]+··· (2.53)

and the commutation relation of Hermitian coordinate operators (1.1) will give

f̂ ĝ =

∫
dpdk e−i(p+k)x̂ exp[− i

2
pµθ

µνkν ]f(p)g(k) (2.54)

We would like to relate the operator fields to the ordinary fields, so using the

inverse Fourier transformation one can manipulate

f̂ ĝ =

∫
dpdkdxdy e−i(p+k)x̂eipxeiky exp[

i

2
∂x

µθµν∂y
ν ]f(x)g(y) (2.55)

=

∫
dq e−iqx̂

∫
dx eiqx exp[

i

2
∂x

µθµν∂y
ν ]f(x)g(y)

in the last line a variable exchange and some integrations have been performed.

We end up with

f̂ ◦ g → exp[
i

2
∂x

µθµν∂y
ν ]f(x)g(y)|x=y ≡ (f ∗ g) (2.56)

the multiplication of operator fields is equivalent to the multiplication of ordinary

fields with an unusual multiplication rule.

We shall use the star product formalism through the work.

f ∗ g(x) = exp(
i

2

∂

∂xµ
θµν ∂

∂yν
)f(x)g(y)|x=y (2.57)

This represantation is also known as the Weyl-Moyal product. The star product

is an associative but noncommuting product rule between fields.

f ∗ (g ∗ h) = (f ∗ g) ∗ h (2.58)

Under the definition (2.57) it can be seen that the ordinary coordinate compo-

nents satisfy the relation

[xµ, xν ]∗ = iθµν (2.59)

where commutator is defined as

[A,B]∗ = A ∗B −B ∗ A (2.60)
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As can be seen that the multiplication rule (2.57) is a deformation of the ordinary

product and at the limit θ → 0 it gives the ordinary case. At the same time under

the integral sign it satisfies

∫
dx f(x) ∗ g(x) =

∫
dx g(x) ∗ f(x) =

∫
dx f(x)g(x) (2.61)

∫
dx f ∗ g ∗ h =

∫
dx (f ∗ g)h =

∫
dx f(g ∗ h)

Gauge theories on noncommutative spaces are defined deformations of the ordi-

nary gauge theories by replacing the ordinary multiplication rule with the Moyal

product. Assume that there exist a noncommutative connection Âµ with curva-

ture

F̂µν = ∂µÂν − ∂νÂµ − i[Âµ, Âν ]∗ (2.62)

Gauge transformations act on this noncommutative vector gauge field as

Âµ → U ∗ Âµ ∗ U−1 + iU ∗ ∂µU
−1, (2.63)

where U is any gauge group. It satisfies the star unitary relation

U ∗ U−1 = 1 (2.64)

Then it is easy to check that

F̂µν → U ∗ F̂µν ∗ U−1 (2.65)

and this ensures the gauge invariance of the action

S = −4π

g2

∫
d4xTr(F̂ µνF̂µν) (2.66)

where trace is defined on the gauge indices. It should be noted that even in the

U(1) case we have a nontrivial deformation of ordinary case which can be seen

from (2.63) that it looks like a non-Abelian theory in a sense. One would like to

find the equations of motion and calculate physically interesting quantities. How-

ever, local quantities in noncommutative gauge theories are not gauge invariant.

Nonlocal expressions can be gauge invariant but we deal with local quantities in

the ordinary gauge theories. Hence it is not possible to compare the results ob-

tained from both sides. There is a way of to get over this difficulty: Seiberg-Witten

map.
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2.4 Seiberg-Witten Map

Here we present an outline of Seiberg-Witten map [75] which stimulated a great

amount of work on the noncommutative gauge theories [76, 77, 78, 79, 80, 81].

As it is stated before the effective physics on the D-branes in presence of a back-

ground field can be described both by a commutative gauge theory and by a

noncommutative one. Seiberg-Witten proved that these two different descriptions

arise from the same two dimensional field theory with different regularizations.

Pauli-Villars regularization leads to an effective action which depends on back-

ground field B and F only in the combination F + B. This effective lagrangian

L(F +B) has an ordinary gauge symmetry given by A → A+Λ and B → B−dΛ

for any one-form Λ. On the other hand point splitting regularization5 yield a

noncommutative theory L̂(F̂ ) which has noncommutative gauge symmetry and a

different B−dependence. Since the physics does not depend on the regularization,

theories obtained with different regularizations can be related to each other by

coupling constant redefinition. Worldsheet lagrangians have spacetime field de-

pendent coupling constants, therefore relating these two descriptions requires a

field redefinition. Seiberg-Witten map achieves this task by mapping the standard

Yang-Mills theory gauge invariance to the gauge invariance of noncommutative

Yang-Mills theory. In the α′ → 0 limit, the effective action for slowly varying

fields is given by the Dirac-Born-Infeld lagrangian

LDBI(F + B) =
1

gs(2π)p(α′)
p+1
2

√
det(g + 2πα′(B + F)) (2.67)

when the effective action is expressed in terms of noncommutative gauge field

L̂DBI(F̂ ) =
1

Gs(2π)p(α′)
p+1
2

√
det(G + 2πα′F̂) (2.68)

where Gs is the effective open string coupling and gs is that of closed string.

Comparing the LDBI(F = 0) and L̂DBI(F̂ = 0) will give

Gs = gs

(
detG

det(g + 2πα′B)

)1/2

(2.69)

Now one can define such a field redefinition of noncommutative gauge field Â and

gauge parameter λ̂ in terms of ordinary ones A, λ that under this definition the

5different operators are taken at different points
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effective actions come from two different regularizations are related as

LDBI = L̂DBI + total derivative +O(∂F) (2.70)

The difference in total derivative arises from the fact that the action is derived in

string theory by using the equations of motions which are not sensitive to such

total derivatives. The O(∂F ) term is possible because these two lagrangians are

derived in string theory in the approximation of slowly varying fields,i.e neglecting

the ∂F terms. But at this point one should be careful that this transformation is

not simply a field redefinition of the gauge fields Â = Â(A, ∂A, ∂2A, · · · ; θ) and a

simultaneous reparametrization of the gauge parameter λ̂ = λ̂(λ, ∂λ, ∂2λ, · · · ; θ).

Since such a redefinition causes an isomorphy relation between the gauge groups

of ordinary and noncommutative theories, this is not the case happen here. To

realize this, it is enough to look at the rank one theory. The ordinary gauge group,

which acts by

δAµ = ∂µλ (2.71)

is abelian, while the noncommutative gauge invariance, which acts by

δAµ = ∂µλ + iλ ∗ Aµ − iAµ ∗ λ (2.72)

is nonabelian. So no redefinition of the gauge parameter can map the ordinary

gauge parameter to noncommutative one while intertwining the gauge symmetry.

Seiberg-Witten map constructs a relation between the gauge equivalence classes

of ordinary and noncommutative gauge theories instead of gauge groups. In short

Â(A) + δ̂λ̂Â(A) = Â(A + δλA) (2.73)

with infinitesimal λ and λ̂. This can be achieved by taking the noncommuting

gauge parameter a function of both ordinary gauge parameter and gauge field

while the noncommutative gauge field is a function of ordinary gauge field, i.e.,

Â(A) = A+A′(A) and λ̂(λ,A) = λ+λ′(λ,A) where prime denotes the components

of orders of θ . Gauge transformation for an ordinary Yang-Mills theory is given

by

δλAµ = ∂µλ + i[λ,Aµ], (2.74)

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ],

δλFµν = i[λ, Fµν ].
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For noncommutative theory gauge transformations is given by the same formulas

except that multiplication rule exchanged with a Moyal star product. Thus

δ̂λ̂Âµ = ∂µλ̂ + iλ̂ ∗ Âµ − iÂµ ∗ λ̂, (2.75)

F̂µν = ∂µÂν − ∂νÂµ − iÂµ ∗ Âν + iÂν ∗ Âµ,

δ̂λ̂F̂µν = iλ̂ ∗ F̂µν − iF̂µν ∗ λ̂.

Expanding the equation (2.73) with respect to the orders of θ and using the

definition of star product (2.57) one can obtain the noncommuting fields in terms

of the ordinary ones

Âµ(A) = Aµ − 1

4
θνρ{Aν , ∂ρAµ + Fρµ}+O(θ2)

λ̂(λ,A) = λ +
1

4
θµν{∂µλ,Aν}+O(θ2) (2.76)

From the definition (2.62) it follows that

F̂µν = Fµν + θρσ(FµρFνσ − Aρ∂σFµν) +O(θ2) (2.77)
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3 HAMILTONIAN OF DUAL NCU(1) AS A CONSTRAINT SYS-
TEM

Seiberg-Witten’s work displays that the noncommutative and ordinary gauge

theory description of D−branes in a constant background B−field are equivalent

perturbatively in the noncommutativity parameter. It is natural to ask whether

this equivalence is valid nonperturbatively. Some evidence has been found in the

context of noncommutative D3−brane BIon and dyon solutions [44]. Noncommu-

tative D3−brane BIon configuration is attained when open string metric satisfies

GMN = diag(−1, 1, · · · , 1) where M,N = 0, 1, · · · , 9. This geometry is accom-

plished allowing a background B-field on D3-brane worldvolume, producing a

noncommutativity parameter θ01 6= 0 and θ02 = θ03 = θij = 0, where i, j = 1, 2, 3.

At the lowest order in the string slope parameter α′ and for slowly varying fields

( ∂F ∼ 0 ) noncommutative D3−brane is described in terms of noncommutative

U(1) gauge theory. Although it is possible to obtain an energy density which is

derived from the invariance of the theory under translations, hamiltonian descrip-

tion of the theory is obscure because of the noncommuting time variable.

When time is noncommuting with the spatial coordinates the usual hamiltonian

method is not applicable. Some different approaches are possible. One of them

is to introduce a spurious time like variable [45]. In this case the energy is the

same as the one derived from Lagrangian path integral formalism of the original

theory. Another approach [28] is based on the fact that the theories with non-

commuting time variable are S duals of the ones with commuting time variable

[61]. Similarly, in [82] noncommutative U(1) gauge theory with the noncommu-

tativity parameter θ0i 6= 0, θij = 0 is established as the dual theory of the one

whose noncommutativity parameter satisfies θ0i = 0, θij 6= 0. Dual theory can be

obtained via a parent action [43] which is defined from the original theory by a

Legendre transformation. Constrained system analysis [63] of the shifted action

will lead to the hamiltonian formulation of both dual and initial theories without

referring their Lagrangian. This bypass procedure seems interesting and useful.
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3.1 Duality in Ordinary U(1) Gauge Theory

First of all let us recall some basic facts. The symmetry of the vacuum Maxwell

equations

∂νF
µν = 0 (3.1)

∂ν
?F µν = 0 (3.2)

under exchange of the fields E and B is a well known property. Exchange of fields

is defined by Hodge star operation in terms of field strength

Fµν → ?Fµν =
1

2
εµνρσF

ρσ (3.3)

If one would like to extend this symmetry into the case of charges and currents

are present, it is necessary that magnetic charges and currents are included as

well.

∂νF
µν = −jµ (3.4)

∂ν
?F µν = −kµ (3.5)

where jµ = {ρ,
−→
j } is electric four current and kµ = {σ,

−→
k } is its magnetic

analogue. Now symmetry is valid under the transformation of currents among

themselves beside the Hodge star operation.

F → ?F , ?F → −F , (3.6)

jµ → kµ , kµ → −jµ. (3.7)

This dualization procedure triggered the study of magnetic monopoles and has

important consequences. In nature although electric charges can be observed any

magnetic monopole has not been detected yet. In fact, this violation can be seen

from a different point of view. When we investigate duality in quantum world, we

should define a quantization which is based on the canonic variables.In terms of

this canonical variable Fµν is given by Fµν = ∂µAν−∂νAµ. This definition requires

Bianchi identity (3.2) vanishes. In spite of this an electromagnetic potential can be

constructed by putting a singularity in it. This is known as the Dirac monopole.

Hence a magnetic monopole results from a topologically nontrivial configuration

of the potential.
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Actually there exist field theories in which these objects arise naturally. These

are certain Yang-Mills-Higgs systems and they admit static finite energy field

configurations. The Higgs mechanism break the gauge symmetry and a conve-

nient choice of vacuum leads to a perturbative spectrum which contains a Higgs

boson, a photon and two massive charged vector bosons and a solitonic solution.

Magnetic monopoles can be associated with this solitonic solution by relating

their charges to soliton numbers. An explicit construction of such a monopole

was given by ′t Hooft− Polyakov ansatz [64, 65]. ′t Hooft− Polyakov monopole

carries one unit magnetic charge and no electric charge. These models at the

same time admit solutions which carry both magnetic as well as electric charges,

Julia− Zee dyons [66]. For weak coupling regime of these theories the electric

and magnetic charges appear in completely different characters. Electric charges

appear as elementary quanta obtained by quantizing fields, by contrast magnetic

monopoles arise as collective excitations of the elementary particles which are

solitonic solutions and there is a quantization rule which is known as the Dirac

quantization condition qigj = 2π~nij for any electric charge qi and the magnetic

charge gj. This is one of the important consequence and it says that if there exist

a magnetic monopole then electrical charges are quantized. All of that imply that

there exist fundamental differences between electricity and magnetism.

But this is not all of the story. Montonen and Olive bring a new insight. They

explored a surprising symmetry between electricity and magnetism in the classical

limit of above 4−dimensional field theories. They saw that in these models the

mass of any particle of electric charge q and magnetic charge g was given by a

symmetric formula M = υ
√

q2 + g2 which is invariant under the exchange of q

and g. At the same time quantum of electric charge is exchanged with a multiple

of the quantum of magnetic charge [67]. In short if we have a theory with weak

coupling in which electric charges are elementary quanta and magnetic charges are

some collective excitations we can have an equivalent picture in strong coupling

regime with magnetic charges are elementary quanta and electric charges are in

solitonic character.

Another natural extension of electric-magnetic duality of Abelian gauge theory is

to search it in the non-Abelian case. Here the usual interchange between electric

and magnetic degrees of freedom does not relate Yang-Mills theories with inverted
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couplings. In [68] this is examined by the loop space formulation of gauge theory.

They showed that the dual theory is of Freedman-Townsend type [69]. The same

result is obtained in [62] with a canonical transformation and also in [70]. Finally

in supersymmetric theories the idea of electric-magnetic duality has gained its

modern explanation. Here the CP violating term θ-parameter plays a crucial role

and monopoles are in dyonic character [71]. These properties embed the electric-

magnetic duality into a larger symmetry group SL(2, Z), the modular group. For

more information see [72, 73, 74].

In this chapter we will define a parent action construction of electric-magnetic

duality in U(1) gauge theory without source terms. Then we will exhibit the

hamiltonian formulation of the theory from an extended, let us say a parent

hamiltonian, by constraint analysis. Abelian gauge theory action is

S = − 1

4g2

∫
d4xFµνF

µν (3.8)

where F = dA. Now we want to perform a Legendre transformation with respect

to the initial variable F . At this stage F is no longer field strength of a potential

and to implement the Bianchi identity we introduce a dual gauge field AD as a

Lagrange multiplier.

SP =

∫
d4x(− 1

4g2
FµνF

µν +
1

2
εµνρσA

µ
D∂νF ρσ) (3.9)

Performing path integral over F or equivalently solving the field equations for F

and replacing it in the action (3.9) leads to dual action

SD = −g2

4

∫
d4xF µν

D FDµν (3.10)

where FD = dAD. On the other hand repeating the same process with respect to

AD instead of F leads to Bianchi identity ∂µ
?F µν = 0 whose unique solution is

F = dA and hence the initial theory (3.8) is recovered. Canonical formulation of

SP starts with definition of canonical momenta. Here independent variables are

F and AD, so canonical momenta are

Pµν =
δSP

δ(∂0F µν)
; PDµ =

δSP

δ(∂0Aµ
D)

(3.11)
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and associated primary constraints are

Φ1
µν ≡ Pµν ≈ 0, (3.12)

ξ1 ≡ PD0 ≈ 0, (3.13)

χ2
i ≡ PDi +

1

2
εijkF

jk ≈ 0 (3.14)

where i, j, k = 1, 2, 3 and ”≈” denotes that constraints are weakly vanishing , i.e.,

they may have nonvanishing Poisson brackets with some canonical variables. The

related canonical hamiltonian is

HC =

∫
d3x[

1

2g2
F 0iF0i +

1

4g2
F ijFij − 1

2
εijk∂

iA0
DF jk + εijk∂

iAj
DF 0k] (3.15)

Denote that we use the definition

∂Fµν

∂Fρσ

=
1

2
(δµ

ρδν
σ − δµ

σδν
ρ). (3.16)

By adding the primary constraints (3.12)-(3.14) to the canonical hamiltonian with

some Lagrange multipliers αi, β, λij, κi one obtains the extended hamiltonian.

HE = HC +

∫
d3x[αiP0i + βPD0 + λijPij + κiχ

2
i ] (3.17)

Consistency of primary constraints in time may lead to some new constraints or

may impose conditions on some Lagrange multipliers. Constraints which arise in

this way are called secondary constraints. Hence we are left with two secondary

constraints

Φ3 ≡ {PD0, HE} = εijk∂
iF jk ≈ 0 (3.18)

χ4
i ≡ {P0i, HE} =

1

g2
F0i + εijk∂

jAk
D ≈ 0 (3.19)

and two equations related with the multipliers κ and λ:

{Pij, HE} ≡ κi − ∂iA0
D +

1

g2
εijkF

jk ≈ 0 (3.20)

{χ2
i , HE} ≡ λij + ∂iF0j ≈ 0 (3.21)

Where equal time Poisson brackets are defined as:

{P µ
D(x), ADν(y)}P.B. = −δµ

ν δ3(x− y) (3.22)

{P µν(x), Fρσ(y)}P.B. = −1

2
(δµ

ρ δν
σ − δµ

σδν
ρ)δ3(x− y) (3.23)
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Consistency of the secondary constraints also should be checked. This will not

give further constraints and they terminate here. When constraints (3.18) and

(3.14) are considered together one can obtain another constraint which is;

∂iP
i
D ≈ 0 (3.24)

Now full constraint structure of the system is obtained and they can be classified

as first class or second class by following the Dirac’s definition [63]. A constraint

is called first class, if its Poisson bracket with all other constraints vanish. On the

other hand if a constraint has a nonvanishing Poisson bracket with at least one

of the other constraints it is called second class. In case of the second class con-

straints dynamics of any function of phase space variables is given by a modified

bracket structure, Dirac bracket

{A,B}D.B. = {A,B}P.B. − {A,χi}P.B.(C
−1)ij{χj, B}P.B. (3.25)

where χi stands for the second class constraints and Cij for the matrix formed

by the Poisson brackets of the second class constraints

Cij ≡ {χi, χj}P.B.

Dirac brackets satisfy the same algebraic relations of the Poisson bracket and

Dirac bracket of any function with all χ vanishes. So, using the Dirac brackets

instead of Poisson bracket, the weak equations may be written as strong equalities.

This span a reduced phase space and quantization on this reduced space with the

canonical commutators is equivalent to the Dirac quantization on the constrained

phase space. The constraints (3.13) and (3.24) are first class and the rest (3.12),

(3.14), (3.18), (3.19) are second class. In the reduced phase space, obtained by

setting all the second class constraints equal to zero strongly and solving F, P in

terms of FD, PD the canonical hamiltonian (3.15) becomes

HD =

∫
d3x[

1

2g2
PDiP

i
D +

g2

4
FDijF

ij
D ] (3.26)

Moreover, there are first class constraints

PD0 ≈ 0, ∂iP
i
D ≈ 0 (3.27)

Obviously this is the same with the constraint hamiltonian formalism of the dual

theory. Therefore we demonstrated that one can obtain constrained hamiltonian
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formulation of the dual theory beginning from the shifted action (3.9) bypassing

the dual Lagrangian (3.10).

3.2 Noncommutative U(1) Gauge Theory

Noncommutative U(1) gauge theory is given by the action

S̃ = − 1

4g2

∫
d4xF̂µν ∗ F̂ µν (3.28)

where field strength is defined as

F̂µν = ∂µÂν − ∂νÂµ − iÂµ ∗ Âν + iÂν ∗ Âµ

By using Seiberg-Witten map (2.77) at the first order in θµν one obtains

F̂µν = Fµν + θρσFµρFσν − θρσAρ∂σFµν

Thus the action (3.28) can be written at the first order in θµν as

S̃ = − 1

4g2

∫
d4x(FµνF

µν + 2θµνFνρF
ρσFσµ − 1

2
θµνFµνFρσF

ρσ) (3.29)

Now we have the noncommutative action in terms of ordinary fields and in the

light of the previous section we can define noncommutative parent action as

S̃P = S̃ +
1

2

∫
d4xAµ

Dεµνρσ∂
νF ρσ (3.30)

where F 6= dA. As in the commutative case dual action can be found by solving

the field equation for F in terms of FD = dAD and plugging it in the action (3.30)

S̃D = −g2

4

∫
d4x(F µν

D FDµν + 2θ̃µνFDνρF
ρσ
D FDσµ − 1

2
θ̃µνFDµνFDρσF

ρσ
D ) (3.31)

where θ̃µν = g2εµνρσθρσ. At the first order in θ̃ it can be derived from the action

S̃D = −g2

4

∫
d4xF̂Dµν ∗̃F̂ µν

D (3.32)

where ∗̃ is given by (2.57) by replacing θ with θ̃. For θ0i = 0 and θij 6= 0 the

dual theory is a gauge theory whose time variable is noncommuting in terms of

the Moyal bracket with ∗̃, because θ̃0i 6= 0, θ̃ij = 0. For a noncommuting time

canonical formalism is obscure. Thus we would like to bypass the dual action
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(3.32) to obtain a phase space formulation of the dual theory using the method

illustrated in the previous section.

Let θij 6= 0 and θ0i = 0 in the action (3.30). Definition of canonical momenta

P̃µν =
δS̃

δ(∂0F µν)
, (3.33)

P̃Dµ =
δS̃

δ(∂0Aµ
D)

(3.34)

Primary constraints do not differ from the commutative case

Φ̃1
µν ≡ Pµν ≈ 0, (3.35)

ξ̃1 ≡ PD0 ≈ 0, (3.36)

χ̃2
i ≡ PDi +

1

2
εijkFjk ≈ 0 (3.37)

and the canonical hamiltonian is

H̃C =

∫
d3x[−1

2
εijk∂

iA0
DF jk + εijk∂

iAj
DF 0k +

1

2g2
F0iF

0i

+
1

4g2
FijF

ij +
1

g2
F 0iFijθ

jkFk0 +
1

2g2
F ijFjkθ

klFli

− 1

4g2
θijFijF0kF

0k − 1

8g2
θijFijFklF

kl] (3.38)

By choosing the Lagrange multipliers as α̃i, β̃, λ̃ij and κ̃i one can write extended

hamiltonian as

H̃E = H̃C +

∫
d3x[α̃iP0i + β̃PD0 + λ̃ijPij + κ̃iχ̃

2
i ] (3.39)

Preserving the primary constraints in time leads to secondary constraints

Φ̃3 ≡ {PD0, H̃E} = εijk∂
iF jk ≈ 0 (3.40)

and

χ̃4
i ≡ {P0i, H̃E} = F 0i − Fijθ

jkFk0 − F 0jFjkθ
ki

− 1

2
θjkFkjF0i − g2εijk∂

jAk
D ≈ 0 (3.41)

The other primary constraints will fix the multipliers κ̃, λ̃ as before. In our cal-

culations these multipliers play no role, therefore we do not need determine them

explicitly. Of course we also have

ξ̃2 ≡ ∂iPDi ≈ 0 (3.42)
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from (3.37) and (3.40). Consistency of second class constraints will not yield new

constraints. One can check that (3.36) and (3.42) are first class and the rest are

second class. In the reduced phase space where second class constraints strongly

vanish, the canonical hamiltonian becomes

H̃D =

∫
d3x [

g2

4
F 2

Dij +
1

2g2
P 2

Di −
1

2g2
εijkθ

ijP k
DP 2

Dl

−g2

4
εijkθ

ijP k
DF 2

Dlm − g2FDijP
j
DθikεklmF lm

D ] (3.43)

if we solve F, P in terms of FD and PD. Moreover, there are still the constraints

∂iPDi ≈ 0, PD0 ≈ 0 (3.44)

which are first class. This hamiltonian can be written in terms of θ̃0i = g2εijkθjk

as

H̃D =

∫
d3x [

g2

4
F 2

Dij +
1

2g2
P 2

Di +
1

2g4
θ̃0iP

i
DP 2

Dj

+
1

4
θ̃0iP

i
DF 2

Djk + θ̃0iFDjiFDjkP
k
D] (3.45)

On the other hand, although the dual action (3.31) possess a noncommuting time

variable in terms of the Moyal bracket (2.57) given by ∗̃, it is originated from the

action (3.30) whose time coordinate is commuting. We wonder what would be

the phase space structure if we treat time coordinate as commuting in the action

(3.31) written in components as

S̃D = g2

∫
d4x [

1

2
F0iF0i − 1

4
FijFij − 1

2
θ̃0iFi0F0jF0j

−θ̃0iFijFjkFk0 +
1

4
θ̃0iFi0FjkFkj] (3.46)

Definition of the spatial components of momentum

P i
D =

δS̃

δ(∂0ADi)
= g2[F i0

D +
1

2
θ̃0iFD0jFD0j − θ̃0jFDj0F

i0
D (3.47)

+ θ̃0kFDkjF
ji
D − 1

4
θ̃0iFDjkFDjk]

can be solved to find ∂0ADi. They lead to the same hamiltonian (3.45) which was

obtained using the action (3.31). Moreover, there are same constraints (3.44).

We conclude that at the first order in θ̃ whatever the method used we obtain

the same hamiltonian and the constraints. However, the method of obtaining
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hamiltonian from the shifted action (3.30) seems easier: when the higher orders

in θ̃ are considered the unique change will be in the constraint (3.41), the other

constraints (3.35)-(3.37), (3.40) will remain intact. Thus, finding hamiltonian of

the dual theory is reduced to find solution of a constraint.

3.3 Relations Between the Electric-Magnetic Duality and the Dual
Actions of Noncommutative U(1) Theory

Although electric-magnetic duality transformation is an invariance of Maxwell

equations in vacuum, it is known that it maps the lagrangian density to itself up

to an overall minus sign and keeps intact the hamiltonian density of U(1) gauge

theory. Electric-magnetic duality transformation of the equations of motion of

noncommutative U(1) theory is studied in [83]. Discussion of relations of the

electric-magnetic duality with the dual description of the noncommutative gauge

theory utilizing the lagrangian and the hamiltonian densities was made in [46].

Let us write the action (3.29) and (3.31) in terms of the electric and magnetic

fields: when the magnetic field vector

Bi = −1

2
εijkF

jk (3.48)

and the electric field vector Ei = F0i are employed, the original action becomes

[86]

S̃ =

∫
d4x[

1

2g2
(E2 −B2)(1− θ ·B) +

1

g2
θ · EE ·B] (3.49)

where the vector θ is defined by θij = εijkθk. For the dual case we adopt the same

notation: Ei = FD0i and

Bi = −1

2
εijkF

jk
D . (3.50)

Hence, the dual action can be written as

S̃D =

∫
d4x[

g2

2
(E2 −B2)(1 + θ̃ · E) + g2θ̃ ·BE ·B] (3.51)

where θ̃ vector is defined as θ̃i ≡ θ̃0i. One can observe that under the transfor-

mation

E → g2B, B → −g2E, (3.52)

(3.49) is mapped into the dual action (3.51) up to an overall minus sign. This

is a well known property of abelian gauge theory action. Thus, it persists in the

noncommutative theory.
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We also would like to obtain relations between electric–magnetic duality and

the (S) duality transformation of noncommutative U(1) theory in hamiltonian

formalism. Canonical hamiltonian associated with (3.29) can be derived as

H̃ =

∫
d3x

[g2

2
P 2

i +
1

4g2
FijF

ij +
1

2g2
θijFjkF

klFli − 1

8g2
θijFijFklF

kl

+g2θijPjP
kFki − g2

4
θijFjiP

2
k

]
, (3.53)

where we choose the subsidiary condition A0 = 0 which corresponds to the con-

straint P0 = 0. Furthermore, there is the constraint ∂iP
i = 0. Hamiltonian of

the dual noncommutative U(1) gauge theory (3.45) is obtained in the previous

subsection by two different approaches as

H̃D =

∫
d3x

[ 1

2g2
P 2

Di +
g2

4
FDijF

ij
D +

1

2g4
θ̃0iP

i
DP 2

Dj +
1

4
θ̃0iP

i
DFDjkF

jk
D

+θ̃0iF
ij
D FDjkP

k
D

]
(3.54)

with the constrained ∂iP
i
D = 0 after setting PD0 = 0, AD0 = 0.

Let us introduce the vector field Pi = g−2Di and the magnetic fields as before

(3.48). Hence, we write the hamiltonian (3.53) as

H̃ =

∫
d3x

[
1

2g2
(D2 + B2)− 1

2g2
θ ·B(B2 −D2)− 1

g2
θ ·DB ·D

]
. (3.55)

Similarly, let us introduce PDi = g2Di and the magnetic field as in (3.50). Then,

the hamiltonian (3.45) becomes

H̃D =

∫
d3x

[
g2

2
(D2 + B2)− g2

2
θ̃ ·D(D2 −B2)− g2θ̃ ·BB ·D

]
. (3.56)

One can show that under the map

D → −g2B, B → g2D (3.57)

the hamiltonian (3.55) transforms into the dual hamiltonian (3.56). Thus, the

noncommutative electric-magnetic duality transformation in the hamiltonian for-

mulation is given by (3.57). Observe that the lagrangian and the hamiltonian

description of electric–magnetic duality transformations, (3.52) and (3.57), seem

to be “inverted”.
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Definition of the canonical momenta Pi following from (3.29) can be used to

express Pi in terms of the electric field Ei = F0i. Then, one can express the

hamiltonian (3.53) as [86]

H̃ =

∫
d3x

[
1

2g2
(E2 + B2)(1− θ ·B) +

1

g2
θ · EE ·B

]
. (3.58)

Analogously, the canonical momenta PDi derived from (3.31) can be expressed in

terms of the electric field Ei = FD0i. Making use of it in the hamiltonian (3.45)

one obtains

H̃D =

∫
d3x

[
g2

2
(E2 + B2) + g2θ̃ · EE2

]
. (3.59)

(3.58) and (3.59) are not related with a transformation resembling the electric–

magnetic duality transformation (3.57).

Electric–magnetic duality transformation of the noncommutative hamiltonians

cannot be given in terms of E, B fields but using D, B. This is an expected

result: Hamiltonians should be written in momenta Pi or PDi not by using the

“velocities” F0i or FD0i. In the commuting case this difference does not appear

due to the fact that P = E.

3.4 BPS States Of Noncommutative D3-Brane

The notion of BPS states plays a fundamental role in discussion of nonpertur-

bative duality symmetries. Massive BPS states appear in theories with extended

supersymmetry. It just so happens that supersymmetry representations are some-

times shorter than usual. This is due to some of the supersymmetry operators

being “null”, so that they cannot create new states. The vanishing of some super-

charges depends on the relation between the mass of a multiplet and some central

charges appearing in the supersymmetry algebra. These central charges depend

on electric and magnetic charges of the theory as well as on expectation values

of scalars. In 1978 Witten and Olive noted that in supersymmetric theories with

solitons the topological charges play the role of the central charges of the super

Poincaré algebra. In a sector with given charges, the BPS states are the lowest

lying states and they saturate the so called BPS bound. BPS states behave in

a very special way: they are absolutely stable. The reason is the dependence of

their mass on conserved charges. For a detailed discussion see [47].
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In the zero slope limit, α′ → 0, and considering slowly varying fields noncommu-

tative DBI action becomes noncommutative gauge theory (3.31) up to constant

terms [75]. Noncommutative D3−brane worldvolume action can be extracted

from 10 dimensional noncommutative gauge theory in the static gauge where the

first three spatial coordinates are taken equal to brane worldvolume coordinates

and the rest of the coordinates as scalar field on the brane. We consider only one

scalar field. D3−brane worldvolume Hamiltonian density resulting from (3.45)

when θ̃0i 6= 0, θ̃ij = 0, is

H =
1

2
Pi

2 +
1

4
F 2

ij −
1

2
θ̃0iPiP

2
j −

1

4
θ̃0iPiF

2
jk + θ̃0iFjiFjkP

k

+
1

2
π2 +

1

2
(∂iφ)2 − 1

2
θ̃0iPiπ

2 + θ̃0iπFij∂jφ

−θ̃0iPj∂iφ∂jφ +
1

2
θ̃0iPi(∂jφ)2 (3.60)

The scalar field and the corresponding canonical momentum denoted as φ and π.

Moreover we renamed the dual variables FD, PD as F, P. We choose π = 0 to

deal with the static case.

To discuss bounds on the value of the Hamiltonian we would like to write (3.60)

as

H =
1

2
P̂ 2

i +
1

2
B̂2

i +
1

2
(∂̂iφ)2 (3.61)

with the restrictions

P̂i|P=0 = 0, B̂i|F=0 = 0, ∂̂iφ|φ=0 = 0,

These are fulfilled by

P̂i = Pi − a1θ̃
oiP 2

j − a2θ̃
ojPjPi, (3.62)

B̂i =
1

2
εijk(Fjk − 1

2
θ̃0lPlFjk + b1θ̃

0lPkFjl + b2θ̃
0kPlFjl), (3.63)

∂̂iφ = ∂iφ +
1

2
θ̃0jPj∂iφ− c1θ̃

0i∂jφPj − c2θ̃
0j∂jφPi, (3.64)

where a1,2 b1,2 c1,2 are constants which should satisfy

a1 + a2 =
1

2
, b1 + b2 = −2, c1 + c2 = 1, (3.65)

otherwise arbitrary. These do not correspond to the Seiberg–Witten map (2.77).

There the fields of commutative and noncommutative gauge theories are mapped

35



into each other by changing the gauge group from commutative U(1) to noncom-

mutative one such that (2.73) is satisfied. In our case gauge group is always U(1).

Although we write the Hamiltonian (3.61) in terms of θ̃0i dependent fields we still

have the constraint ∂iPi = 0, indicating U(1) gauge group. Seiberg–Witten map

in phase space is studied in [48, 52].

Now, in terms of an arbitrary angle α the Hamiltonian density (3.60) can be put

into the form

H =
1

2
(P̂i − sin α ∂̂iφ)2 +

1

2
(B̂i − cos α ∂̂iφ)2

+ sin α P̂i∂̂iφ + cos α B̂i∂̂iφ. (3.66)

Thus, we can write a bound on total energy E relative to the worldvolume vacuum

of noncomutative D3−brane as

E ≥
√

Z̃2
el + Z̃2

mag, (3.67)

where, we introduced

Z̃el =

∫

D3

d3x P̂i∂̂iφ, (3.68)

Z̃mag =

∫

D3

d3x B̂i∂̂iφ. (3.69)

In the commutative case Z̃el and Z̃mag become topological charges due to the

Gauss law and the Bianchi identity: ∂iPi = 0, ∂iBi = 0. In the commuting case

(3.67) is known as BPS bound [53, 54]. However, in our case we do not have an

integrability conditions for P̂i, B̂i. Nevertheless, it will be shown that they can

be topological charges for some specific configurations.

The bound (3.67)is saturated for

P̂i = ∂̂iφ, B̂i = 0, sin α = 1. (3.70)

This can be accomplished at the first order in θ̃0i, when

Fij = 0, Pi = ∂iφ, (3.71)

if we fix the parameters as

a1 = c1, a2 = c2 − 1

2
, (3.72)
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which are consistent with (3.65). Because of the constraint (3.42) φ should satisfy

∂2
i φ = 0. (3.73)

For this configuration Z̃mag vanishes: Z̃
(1)
mag = 0, and Z̃el reads

Z̃
(1)
el =

∫
d3x∂i(φ∂iφ)−

∫
d3x θ̃0i∂iφ(∂φ)2. (3.74)

For the commutative case isolated singularities of φ satisfying these conditions

are called BIon [53]. The simplest choice satisfying (3.73) is [54]

φ(r) =
e

4πr
, (3.75)

where r is the radial variable. In general we cannot write θ̃0i dependent part as

a surface integral. However, this choice of harmonic function (3.73) renders it

possible. Indeed, we can write Z̃
(1)
el as an integral over a sphere of radius ε about

the origin and find

Z̃
(1)
el = (e− θ̃e2

20πε4
) lim

ε→0
φ(ε), (3.76)

where θ̃ ≡
√

θ̃0iθ̃0i.

Observe that the usual BIon solution (3.75) leads to a solution for the noncommu-

tative case (3.70). This is similar to the fact that linearized and full DBI actions

lead to the same BIon solution with the same energy [55]. Here the solutions

are the same but energies differ. When one sets Pi = 0 the terms depending

on the noncommutativity parameter θ̃0i disappear. This is what we expected:

noncommutativity is only between time and space coordinates not between spa-

tial coordinates. Thus, when momenta vanish noncommutativity should cease to

exist. For Pi = 0 the bound (3.67) is saturated for

1

2
εijkFjk = ∂iφ, cosα = 1 (3.77)

where as before φ should satisfy (3.73). For this commuting configuration Z̃el and

Z̃mag become Z̃
(2)
el = 0, and

Z̃(2)
mag =

∫
d3x∂i(φ∂iφ). (3.78)

To satisfy (3.77) and (3.73) consider a magnetic charge at the origin

φ(r) =
g

4πr
. (3.79)
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Let the integral be over a sphere of radius ε about the origin which yields

Z̃(2)
mag = g lim

ε→0
φ(ε). (3.80)

There is another configuration

P̂i = sin α ∂̂iφ, B̂i = cos α ∂̂iφ, (3.81)

which saturates the bound (3.67). The constant angle α is defined as

tan α =
Z̃el

Z̃mag

. (3.82)

This can be realized if the commuting variables are fixed as

Pi = sin α ∂iφ,
1

2
εijkFjk = cos α ∂iφ (3.83)

and the free parameters in (3.62)–(3.64) satisfy (3.72) and

c1 = b1/2, c2 = 1− b1/2. (3.84)

These are consistent with (3.65). Thus, in the hatted quantities (3.62)–(3.64) now,

there is only one free constant parameter. For this configuration Z̃el and Z̃mag are

given by

Z̃
(3)
el =

∫
d3x sin α ∂i(φ∂iφ)−

∫
d3x θ̃0i sin2 α ∂iφ(∂φ)2, (3.85)

Z̃(3)
mag =

∫
d3x cos α ∂i(φ∂iφ),−

∫
d3x θ̃0i cos2 α ∂iφ(∂φ)2. (3.86)

Similar to the other configurations, φ should satisfy (3.73) and we consider the

simplest choice

φ(r) =
g

4π cos α r
. (3.87)

For this choice of the harmonic function (3.87) the integrals in (3.85) and (3.86)

can be performed over a sphere of radius ε about the origin. Therefore, the energy

can be calculated as

E =

[
(e− θ̃e2

20πε4
)2 + (g − θ̃g2

20πε4
)2

]1/2

lim
ε→0

φ(ε), (3.88)

where e/g = tan α. Similar to the above mentioned configurations ordinary

D3−brane dyon solution (3.87), provide a solution of the noncommutative con-

dition (3.81).
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Hamiltonian formulation of noncommutative D3−brane when Moyal bracket of

time coordinate with spatial coordinates is nonvanishing, i.e. θ̃0i 6= 0 is obtained

without introducing any new machinery. This follows from the fact that its action

can be obtained from an action where time is as usual, commuting. The result

which we obtained is only at the first order in noncommutativity parameter,

however it can be generalized to the higher orders. Obviously, one of the method

is to solve ∂0AD in terms of PD, FD from the generalization of (3.47). However, it

is highly non-linear. On the other hand using the shifted action as it is illustrated

here seems more manageable. It is an encouraging property that one should only

solve a constraint similar to (3.41). The other constraints (3.35)-(3.37),(3.40)

remain intact.

Noncommuting D3−brane formulation which we deal with is somehow differ-

ent from the one considered in [44, 56, 57, 58, 59, 60]. There, gauge group is

noncommutative U(1), in our case although Hamiltonian depend on the non-

commutativity parameter, gauge group is still U(1). This seems to be the basic

reason that the BPS solutions of ordinary case [53, 54] provide solutions of the

noncommutative case as it happens between linearized and full DBI action [55].
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4 PARTITION FUNCTIONS OF DUAL THEORIES

In four dimensional gauge theories with complexified coupling constant τ =

θ
2π

+ 4πi
g2 S-duality emerges as a symmetry of the theory. This is known as the mod-

ular transformations of the τ and under this transformations partition function

transforms as a modular form with a weight proportional to the Euler charac-

teristic of 4-manifold. This analysis for U(1) gauge theory without charges could

be done explicitly at the level of path integral and it was shown that there is an

analogy to the transformation law for the dilaton under T duality in non-linear

sigma model [23]. In supersymmetric theories, especially in N = 2 and N = 1

supersymmetric Yang-Mills theories, S-duality has been also studied [24, 25].

In the previous chapter we studied the parent action construction of S-dual theo-

ries of noncommutative gauge theory. We would like to obtain partition functions

of these dual theories by using the same machinery. Our treatment will be a min-

imalistic approach to the problem: we will neglect the θ–term in the τ and work

nonsupersymmetric theory. When parent action is employed in the path integral

if one integrates over dual field AD the partition function of the ordinary U(1)

theory results. Instead of AD one can integrate antisymmetric second rank tensor

Fµν which yields the partition function of the dual U(1) theory. Thus one can

easily show equivalence of partition function for the U(1) and its dual theory, up

to a normalization constant. On the other hand hamiltonian description of these

theories are shown to be connected by a canonical transformation and as a conse-

quence it followed that the partition functions in their phase spaces are the same

[62]. This equivalence can also be demonstrated directly in terms of the hamil-

tonian formulation of the parent action [46]. In the light of this strategy partition

function of S-dual theories in noncommutative spacetime can be obtained.

For U(1) gauge theory the parent action can be used in path integrals to derive

relations between the original and the dual theories. But, for noncommutative the-

ory one should employ equations of motion to obtain the initial or dual noncom-
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mutative U(1) theory and relation between their partition functions is unknown.

We will show that partition functions of noncommutative U(1) theory with spa-

tial noncommutativity and its dual whose time coordinate is effectively noncom-

muting with spatial coordinates, are equivalent in appropriate phase spaces. To

achieve this we will follow the approach presented for the commutative gauge

theory.

4.1 Partition Functions of U(1) Gauge Theory and Its Dual

The parent action which gives U(1) gauge theory and its dual and constraint

structure of this action was obtained in the chapter-3. When one inserts this

parent action into path integral it contains all of the degrees of the freedom

and hence it is highly redundant. Because of that it requires a careful analysis

of constraints. Let us find out the number of physical phase space fields: the

constraint (3.13) is obviously first class. Besides it, the linear combination

ξ2 ≡ ∂iχ
2
i −

1

2
Φ3 = ∂iPDi ≈ 0, (4.1)

is also a first class constraint. A vector can be completely described by giving

its divergence and rotation (up to a boundary condition). (4.1) is derived taking

divergence of χ2
i , so that, there are still two linearly independent second class

constraints following from the curl of χ2
i . Obviously, the constraints Φ1, Φ3, χ4

i

are all second class and linearly independent. Therefore, the number of physical

phase space fields is four.

To deal with path integrals, we choose the gauge fixing (subsidiary) conditions

Λ1 = AD0 ≈ 0, Λ2 = ∂iADi ≈ 0 (4.2)

for the first class constraints (3.13) and (4.1). The linearly independent second

class constraints resulting from the curl of χ2
i can be taken as

Φ2
n ≡ Ci

nχ2
i ≡ Ki

nεijk∂jχ
2
k ≈ 0, (4.3)

where n = 1, 2, and Ki
n are some constants which should be chosen in accor-

dance with solutions of the other constraints when they vanish strongly. For the
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later convenience, instead of dealing with χ4
i we introduce another set of linearly

independent second class constraints:

Φ4
n ≡ M i

nχ4
i ≡ Li

nεijk∂jχ
4
k ≈ 0, Φ4

3 ≡ ∂iF0i ≈ 0. (4.4)

Li
n are some constants. As we will see, explicit forms of K i

n and Li
n play no role

in our calculations.

Partition function associated with the hamiltonian (3.15) in the total phase space

is

Z =

∫
DADDFDPDDP ∆ exp

{
i

∫
d4x

[
PDµȦ

µ
D + PµνḞ

µν −HC

]}
. (4.5)

We suppressed the indices of the integration variables and the measure ∆ is

defined as[84], [85]

∆ = det{ξα, Λβ}det1/2{Φa, Φb}
2∏

σ=1

δ(ξσ)δ(Λσ)
4∏

c=1

δ(Φc). (4.6)

The determinant related to first class constraints and their subsidiary conditions

is

det{ξα, Λβ} = det ∂i∂
i ≡ det(∂2)

The determinant due to the second class constraints can be calculated as

det1/2{Φa, Φb} = det(g4) det(∂2) det
(
εijk∂

iCj
1C

k
2

)
det

(
εijk∂

iM j
1M

k
2

)
, (4.7)

where Ci
n and M i

n are defined in (4.3) and (4.4). Here the determinants of these

linear operators should be interpreted as multiplication of their eigenvalues. Ex-

plicit form of these determinants and calculations can be found in the appendix.

Performing functional integrations over the variables F µν ,Pµν and A0
D, P 0

D we

obtain the partition function of the dual theory in hamiltonian formalism

Z =

∫
DADDPDδ(∂ ·PD)δ(∂ ·AD)det(∂2)

exp

{
i

∫
d3x

[
PDiȦ

i
D −

1

2g2
PDiP

i
D −

g2

4
F ij

D FDij

]}
. (4.8)

Here, the factor det1/2{Φa, Φb} is canceled with the determinant arising from

the Dirac delta functions δ(Φa) when we use them to express Fµν in terms of

the “physical” fields AD, PD. Although here this can be observed by direct
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calculation6, it is true in general when one gets rid of second class constraints

by imposing them strongly and deal with the reduced phase space path integrals

[85].

Now, in (4.5) we would like to perform integrations over the dual fields ADµ, PDµ

and the momenta Pµν . Vanishing of the constraint (3.18) strongly, i.e. Φ3 = 0,

dictates that

Fij = ∂iAj − ∂jAi. (4.9)

Being a second class constraint Φ3 = 0 should eliminate one phase space variable.

However, the number of independent components of Fij and Ai are the same.

So that, solving Φ3 = 0 as (4.9) and dealing with Ai instead of Fij, has to be

accompanied with a condition on Ai. The constraint χ2
i involves only curl of Ai,

therefore, Φ2
n = 0 give information only about the two components of Ai. In order

to describe Ai completely one needs to furnish its divergence. Thus, we choose as

the missing condition

∂iA
i = 0. (4.10)

After performing the ADµ, PDµ and Pµν integrations in (4.5) we obtain

Z = detg−4

∫
DADF0jdet(∂2)δ(∂lF0l)δ(∂ ·A)

exp

{
i

∫
d3x[− 1

g2
F0iȦ

i +
1

2g2
F 0iF0i − 1

4g2
F ijFij]

}
. (4.11)

We used the fact that expressing ADi and PDi in terms of the “physical” fields

Ai, F0i, using the Dirac delta functions δ(Φa), δ(∂ · PD), δ(∂ ·AD), contributes

to the measure as

[
det(g4)det(∂2)det

(
εijk∂

iCj
1C

k
2

)
det

(
εijk∂

iMj
1M

k
2

)]−1

(4.12)

See the appendix-A for details. Moreover, here Fij is given by (4.9) and we per-

formed the change of variables Fij → Ai. We choose domains of the integrals such

that in (4.5) we can perform the replacement

DFijδ(ε
klm∂kFlm)δ

(
C i

n

(
P i

D +
1

2
εijkF

jk

))
→ (4.13)

det(∂2)DAiδ(∂jA
j)δ

(
Ci

n(PDi + εijk∂
jAk)

)
.

6To obtain (4.8) we do not need to deal with the set (4.4). It is easier to employ (3.19) with
an appropriate determinant.
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One can observe that det(∂2) should be included in the measure when one deals

with the gauge fields Ai satisfying the condition (4.10), considering this change of

variables from the beginning with an appropriate change of the momenta Pij →
Pi, where the later are canonical momenta of Ai.

Observe that in (4.11) the variables F0i can be renamed as

F0i = −g2Pi, (4.14)

where Pi are the canonical momenta associated to Ai. Thus, (4.11) becomes

Z = detg−4

∫
DADPdet(∂2)δ(∂ ·P)δ(∂ ·A)

exp

{
i

∫
d4x[PiȦ

i − g2

2
PiP

i − 1

4g2
F ijFij]

}
. (4.15)

Although (4.14) is resulted after performing functional integrals in (4.5), we could

derive it from the constraint structure using Dirac brackets:

{F0i(x), PDj(y)}Dirac = {F0i, P0k}{P0k, Φ
4
l }−1{Φ4

l , PDj}
= g2εikj

∂δ3(x− y)

∂xk

. (4.16)

On the other hand making use of (4.9) in χ2
i = 0 yields

PDi = −εijk∂
jAk (4.17)

Plugging (4.17) into the left hand side of the Dirac bracket (4.16), leads to

−εjkl
∂

∂yk

{F0i(x), Al(y)}Dirac = g2εijk
∂δ3(x− y)

∂xk

, (4.18)

which is solved as

{F0i(x), Aj(y)}Dirac = g2δijδ
3(x− y). (4.19)

Thus, (4.14) follows.

We choose the normalization such that partition function for Maxwell theory in

hamiltonian formalism is given by

ZH ≡ ZN(g) = detg−2

∫
DADPδ(∂ ·A)δ(∂ ·P)

exp

{
i

∫
d4x

[
PiȦ

i − g2

2
PiP

i − 1

4g2
F ijFij

]}
. (4.20)
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We denoted the normalized partition function as ZN(g). The normalized partition

function of the dual theory in phase space is

ZHD ≡ ZN(g−1) = detg2

∫
DADPδ(∂ ·A)δ(∂ ·P) (4.21)

exp

{
i

∫
d4x

[
PiȦ

i − 1

2g2
PiP

i − g2

4
F ijFij

]}
, (4.22)

where we renamed Ai
D, P i

D as Ai, P i. By comparing Z obtained in (4.8) and (4.15)

we conclude that in hamiltonian formalism partition functions for Maxwell theory

and its dual are the same

ZH = ZHD, (4.23)

which can equivalently be written in terms of the normalized partition function

as

ZN(g) = ZN(g−1). (4.24)

This result was obtained in [62] in terms of canonical transformations without

gauge fixing factor and with another normalization.

4.2 Partition Functions of Noncommutative U(1) Theory and Its Dual

Here we will make a similar discussion for the noncommutative theory. We know

from the previous chapter that except the constraint (3.41) the other constraints

are the same as in the commuting case. Hence the constraint (3.36) and the linear

combination of the (3.37) and (3.40)

ξ̃2 ≡ ∂iχ̃
2
i −

1

2
Φ̃3 = ∂iP

i
D ≈ 0 (4.25)

are first class constraints. Curl of χ2
i leads to two linearly independent second

class constraints:

Φ̃2
n ≡ Ci

nχ̃2
i ≡ Ki

nεijk∂jχ̃
2
k ≈ 0, (4.26)

where n = 1, 2. Analogous to the commuting case, instead of χ̃4
i we deal with the

following set of second class constraints

Φ̃4
n ≡ M i

nχ̃
4
i ≡ Li

nεijk∂jχ̃
4
k ≈ 0, (4.27)

Φ̃4
3 ≡ ∂i

(
F 0i − Fijθ

jkFk0 − F 0jFjkθ
ki − 1

2
θjkFkjF0i

) ≈ 0. (4.28)
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K i
n and Li

n are some constants which should be determined by taking into account

the other constraints when they vanish strongly. The constraints (3.35) and (3.40)

are also second class. Structure of the constraints is similar to commuting case

discussed in the previous chapter. In fact, the number of physical phase space

fields is four.

In phase space, partition function associated with the parent action for noncom-

mutative U(1) theory (3.30) is defined as

Z̃ =

∫
DPDPDDFDAD ∆̃ exp

{
i

∫
d4x

[
P µ

DȦDµ + PµνḞ
µν − H̃C

]}
. (4.29)

Indices of integration variables are suppressed. We have adopted the gauge fixing

conditions

Λ̃1 = AD0 ≈ 0, Λ̃2 = ∂iADi ≈ 0. (4.30)

Therefore, the measure ∆̃ is

∆̃ = det{ξ̃α, Λ̃β}det
1
2{Φ̃a, Φ̃b}

2∏
σ=1

δ(ξ̃σ)δ(Λ̃σ)
4∏

c=1

δ(Φ̃c). (4.31)

Contribution of the first class constraints ξ̃α and their subsidiary conditions Λ̃α

to the measure is

det{ξ̃α, Λ̃β} = det(∂2). (4.32)

The second class constraints Φ̃a contribute to the measure as

det
1
2{Φ̃a, Φ̃b} = g4 det(∂2) det

(
εijk∂

iM j
1M

k
2

)
(4.33)

det
(
εijk∂

iCj
1C

k
2

)
det

(
−1 +

1

2
θijFji

)
.

εijk∂
iM j

1M
k
2 and εijk∂

iCj
1C

k
2 denote multiplication of the three linear differential

operators and as usual, determinants of them are defined as multiplication of the

eigenvalues of the linear operators. The last term in (4.33) is to be interpreted as

multiplication of the value of (−1 + 1
2
θijFji) over all spacetime. The determinant

should be regularized, however as we will show, our results are independent of

their regularizations.

Performing the functional integrations over F µν and Pµν in (4.29) we obtain

Z̃ =

∫
DADDPDδ(∂ ·PD)δ(∂ ·AD)det(∂2)

exp
{

i

∫
d3x

[
PDiȦ

i
D −

1

2g2
PDiP

i
D −

g2

4
FDijF

ij
D

+
1

2g4
θ̃0iPDiP

2
D + θ̃0iFDijF

jk
D PDk +

1

4
θ̃0iPDiF

2
D

]}
. (4.34)
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The determinant (4.33) is cancelled7 when we used δ(Φ̃a) to express the “redun-

dant” fields F µν , Pµν in terms of the “physical” fields Ai
D, P i

D. Obviously, there

are other solutions of (4.27) and (4.28) which would be useful to express another

set of fields in terms of the remaining ones. We take the solution yielding the par-

tition function which we desire. We observe that in (4.34) the exponential term

is the first order of the dual noncommutative U(1) theory whose hamiltonian is

(3.54).

Like the commuting case discussed in the previous subsection, when Φ̃3 = 0 is

used to write

Fij = ∂iAj − ∂jAi,

we demand that the constraint

∂iA
i ≈ 0

should be fulfilled. Moreover, when we change the variables Fij → Ai we

choose the normalization and domains of integrations in (4.29) such that (4.13)

is satisfied. Equipped with these, we perform the integrations over the fields

ADµ, PDµ, Pµν in (4.29) which yields

Z̃ = detg−4

∫
DADF0iδ(∂ ·A) det(∂2) det

(
−1 +

1

2
θijFji

)

δ

(
∂i(F

0i − Fijθ
jkFk0 − F 0jFjkθ

ki − 1

2
θjkFkjF0i)

)

exp
{

i

∫
d3x

[ 1

g2
Ȧi(F 0i − Fijθ

jkFk0 − F 0jFjkθ
ki − 1

2
θjkFkjF0i)

+
1

2g2
F0iF

0i − 1

4g2
FijF

ij +
1

g2
F 0iF 0jFjkθ

ki − 1

4g2
θjkFjkF0iF

0i

+
1

8g2
θijFijFklF

kl
]}

. (4.35)

We made use of the fact that employing δ(Φ̃a), δ(∂ · PD), δ(∂ · AD) to express

P i
D, Ai

D in terms of F0i and Ai gives the following contribution to the measure

[
det(g4)det

(
εijk∂

iCj
1C

k
2

)
det

(
εijk∂

iMj
1M

k
2

)]−1

(4.36)

To deal with Pi which are the canonical momenta of Ai, let us adopt the change

of variables

g2P i = F 0i − Fijθ
jkFk0 − F 0jFjkθ

ki − 1

2
θjkFkjF0i, (4.37)

7Obviously, to obtain (4.34) one does not need to separate χ̃4
i as (4.27)– (4.28).
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by inspecting the terms multiplying Ȧi. Thus, the partition function (4.35) can

be written as

Z̃ = det(g−4)

∫
DADPδ(∂ ·P)δ(∂ ·A)det(∂2)

exp
{

i

∫
d3x

[
ȦiPi − g2

2
PiP

i − 1

4g2
F ijFij − g2θijPiP

kFjk

+
g2

4
θijFjiP

2 +
1

8g2
θijFijFklF

kl
]}

. (4.38)

In the exponential factor of (4.38) we recognize the hamiltonian of the noncom-

mutative U(1) theory (3.53).

It could be possible to show that the canonical momenta Pi are given as in (4.37)

using Dirac brackets:

{F0i(x), PDj(y)}Dirac = {F0i, P0k}{P0k, Φ̃
4
l }−1{Φ̃4

l , PDj} = g2εjkl[δ
k
i + F kmθmi

+Fimθmk +
1

2
δk
i θ

mnFnm]∂l
xδ

3(x− y). (4.39)

Vanishing of (3.37) and (3.40) strongly the left hand side of (4.39) can equivalently

be written as

{F0i(x), PDj(y)}Dirac = −εjkl∂
k
y{F0i(x), Al(y)}Dirac. (4.40)

By comparing the right hand sides of (4.39) and (4.40) we observe that they are

compatible when

F0i = −g2(Pi + Fijθ
jkPk + F jkθkiPj − 1

2
Fjkθ

kjPi). (4.41)

Solving this equation for Pi at the first order in θij, gives rise to (4.37).

We adopt the normalization consistent with the ordinary case to write partition

function of the noncommutative U(1) theory in phase space as

Z̃ = det(g−2)

∫
DADPδ(∂ ·P)δ(∂ ·A)det(∂2)

exp
{

i

∫
d3x

[
ȦiPi − g2

2
PiP

i − 1

4g2
F ijFij − g2θijPiP

kFjk

+
g2

4
θijFjiP

2 +
1

8g2
θijFijFklF

kl
]}

(4.42)

Accordingly, the dual partition function is given by

Z̃D = det(g2)

∫
DADPδ(∂ ·P)δ(∂ ·A)det(∂2)

exp
{

i

∫
d3x

[
ȦiPi − 1

2g2
PiP

i − g2

4
F ijFij +

1

2g4
θ̃0iPiP

2

+θ̃0iFijF
jkPk +

1

4
θ̃0iPiF

2
]}

(4.43)
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where we renamed ADi, PDi as Ai, Pi.

We conclude that in phase space, partition functions for the noncommutative

U(1) theory and its dual are the same

Z̃ = Z̃D. (4.44)

This results demonstrates that strong-weak duality transformation is helpful to

make calculations in weak coupling regions to extract information about physical

quantities in the strong coupling regions. Contrary to the usual U(1) theory,

momentum integrals in Z̃ and Z̃D are not easily computable. Because of this we

cannot derive any relation between the partition functions in configuration space.

Nevertheless, the result obtained (4.44) demonstrates that strong–weak duality

can be helpful to calculate physical quantities in weak coupling regions to extract

information about the strong coupling regions.
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5 SUPERSYMMETRIC NONCOMMUTATIVE U(1) GAUGE
THEORY

Supersymmetry is a graded Lie algebra which is the only one can be added con-

sistently to the S-matrix symmetries. This is a symmetry between bosons and

fermions and hence in a manner supersymmetric theories are the attempts of

unifying the matter and interactions. Historically in the context of string theory

the first examples of these kind of theories were introduced by Neveu, Schwarz

and Ramond [88]. Especially an important property of supersymmetric theories

is that radiative corrections tend to be less important in them due to cancelations

between fermion loops and boson loops. As a result certain quantities that are

small or vanish classically will remain so once radiative corrections are taken into

account.

According to the Coleman-Mandula theorem [89] the internal symmetries such as

spin, electric charge, hypercharge, etc. do not mix with space-time symmetries.

This means that the symmetry generators associated with internal quantum de-

grees must be translationally and rotationally invariant. In Coleman-Mandula

theorem this internal symmetries defined by a Lie group with real parameters

and the charge operators associated with such Lie groups obey commutation re-

lations with each other. More precisely the particle states which are related with

each other by an internal symmetry transformation must have the same mass and

spin.

Haag-Lopuszanski-Sohnius proved that by relaxing one assumption of the

Coleman-Mandula, space-time symmetries can be related with internal symme-

tries [90]. In that case symmetry operators are fermionic and obey an anticom-

mutation relation. Hence bosons and fermions appear in the same representation

which is called multiplet and have the same mass. The symmetry operations will

transform different members of a multiplet into each other. These multiplets con-

tain the same number of fermions and bosons. The minimal supersymmetry have

one supersymmetry generators and called N = 1 supersymmetry. The number
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of supersymmetry generators is constrained with consistency condition. This is

four for supersymmetry and eight for supergravity. Theories with more then one

generators are called extended supersymmetries.

Here we of course can not give a complete discussion of superymmetry but only

the part of that we will deal with, N = 1 supersymmetry. There is a great amount

of material but we will especialy refer to the [91] and[92]. Conventional details and

spinor multiplication rules are defined in the appendix-B. So in the first part we

will take a look at N = 1 supersymmetry and then deal with the supersymmetric

gauge theory in the context of noncommutative space. Mainly we will exhibit how

duality can be defined in noncommutative supersymmetric U(1) gauge theory by

using our previous approach.

Supersymmetry is defined by the algebra of the supersymmetry transformation

generators in addition to Poincaré algebra. That is

{QA
α , Q̄β̇B} = 2σµ

αβ̇
Pµδ

A
B (5.1)

{QA
α , QB

β } = {Q̄α̇A, Q̄β̇B} = 0 (5.2)

{Pµ, Q
A
α} = {Pµ, Q̄α̇A} = 0 (5.3)

where α, β, α̇, β̇ = 1, 2 denote components of Weyl spinors, µ, ν are Lorentz indices

and take values from 0 to 3, and A,B refer to an internal space degree which is

in our case equal to 1. This supersymmetry algebra can be defined in terms of

commutators by introducing anticommuting parameters θα, θ̄α̇ which satisfy

{θα, θβ} = {θα, θ̄β̇} = · · · = [Pµ, θ
α] = 0 (5.4)

Here it should be noted that we made a change of parametrization of variables.

Here after we will use the parameter θ for supersymmetry parameter and Θ for

noncommutativity paramater. Hence the algebra (5.1)-(5.3) become

[θQ, θ̄Q̄] = 2θσµθ̄Pµ (5.5)

[θQ, θQ] = [θ̄Q̄, θ̄Q̄] = 0

[Pµ, θQ] = [Pµ, θ̄Q̄] = 0
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Realization of this algebra on fields is especially important. For example being

the most simplest supersymmetric theory Wess-Zumino model contains a chiral

and an anti-chiral multiplet. Chiral multiplet is formed by two complex scalars

and a chiral Weyl spinor

Φ = (φ, ψα, F ). (5.6)

Multiplet constructions can be found in [91] in detail. Beginning from a ground

state, we use the term ground state to denote the element of multiplet with the

smallest spin number from which other elements of multiplet can be obtained, and

acting the generators on this state in a consistent way with the supersymmetry

algebra give the entire multiplet. At some stage of algebra it requires to impose

some constraints. For chiral multiplet the constraint is [φ, Q̄α̇] = 0 for ground

state. Component fields in the multiplet transform under the supersymmetry as

δφ =
√

2θψ (5.7)

δψα = i
√

2(σµθ̄)α∂µφ +
√

2θαF (5.8)

δF = i
√

2θ̄σ̄µ∂µψ (5.9)

where

δA = [θQ + θ̄Q̄, A]. (5.10)

Anti-chiral multiplet can be obtained from chiral multiplet by hermitian conju-

gation;

Φ† = (φ†, ψ̄α̇, F †). (5.11)

Constraint equation for anti-chiral multiplet is [φ†, Q] = 0. By these definitions

(anti)chiral multiplet forms a linear representation of the algebra. The action

SWZ =

∫
d4x{−∂µφ

†∂µφ− iψ̄σ̄∂ψ + F †F (5.12)

+[m(φF − 1

2
ψψ) + g(φφF − ψψφ) + h.c.]}

is invariant under above supersymmetry variations.

The superspace formalism is useful for calculations in supersymmetric theories

especially in N = 1. Fields in superspace are defined as functions of the superspace

coordinates (xµ, θα, θ̄α̇); where xµ are usual space-time coordinates and θ, θ̄ are

independent spinorial coordinates. Naturally, because of the anticommutation
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property of θ’s and θ̄’s any superfield does not contain terms bigger than θ2 and

θ̄2. Hence any superfield can always be expanded as

F (x, θ, θ̄) = f(x) + θψ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x) (5.13)

+ θσµθ̄vµ + θθθ̄λ(x) + θ̄θ̄θρ(x) + θθθ̄θ̄d(x)

This definition is identical to express the components of multiplet as power se-

ries expansion together with certain constraints. Supersymmety generators are

realized as differential operators in superspace.

Q =
∂

∂θα
− iσµ

αα̇θ̄α̇∂µ (5.14)

Q̄ =
∂

∂θ̄α̇

− iθασµ

αβ̇
εβ̇α̇∂µ

Above differential operators generate a motion in the parameter space (x, θ, θ̄)

and obey the same anticommutation relation (5.1). Definition (5.13) contains all

possible terms with respect to the powers of θ, θ̄ and by this form they form

reducible representations of supersymmetry. Covariant derivatives are defined as

Dα =
∂

∂θα
+ iσµ

αα̇θ̄α̇∂µ (5.15)

D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇∂µ

Covariant derivative operators form a different realization of the super− Poincaré

group and yield an inverted motion with respect to the operators Q and Q̄. They

satisfy the following anticommutation relations

{Dα, D̄α̇} = −2iσµ
αα̇∂µ (5.16)

{D,D} = {D̄, D̄} = 0 (5.17)

and they anticommute with Q′s

{D, Q} = {D̄,Q} = {D, Q̄} = {D̄, Q̄} = 0 (5.18)

Now a chiral superfield is defined by putting the condition

D̄α̇Φ = 0 (5.19)

on superfield and an anti-chiral one by

DαΦ̄ = 0 (5.20)
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These constraints are more tractable in the new coordinate system (yµ, θ, θ̄) where

yµ = xµ + iθσµθ̄. (5.21)

Covariant derivatives become

Dα =
∂

∂θα
+ 2iσµ

αα̇θ̄α̇ ∂

∂yµ
(5.22)

D̄α̇ = − ∂

∂θ̄α̇

The most general solution of (5.19) can be given as

Φ = φ(y) +
√

2θψ(y) + θθF (y) (5.23)

= φ(x) + i(θσµθ̄)∂µφ(x) +
1

4
θθθ̄θ̄¤φ(x)

+
√

2θψ(x)− i√
2
θθ∂µψ(x)σµθ̄ + θθF (x)

and anti-chiral superfield can be obtained easily from (5.23) by hermitian conju-

gation instead of solving the constraint (5.20),

Φ† = φ∗(y†) +
√

2θ̄ψ̄(y†) + θ̄θ̄F ∗(y†) (5.24)

where y†µ = xµ − iθσµθ̄ and in this coordinates operators are

Dα =
∂

∂θα
(5.25)

D̄α̇ = − ∂

∂θ̄α̇
− 2iθασµ

αα̇

∂

∂y†µ

As can be seen easily, field content of above superfields are consistent with the

definition of chiral and anti-chiral multiplets (5.6),(5.11). Products of chiral su-

perfields are again a chiral superfield and it is also so for anti-chiral ones.

Vector superfield is defined by reality condition

V = V † (5.26)

The corresponding superfield which satisfy above condition is given by

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) (5.27)

+
i

2
θθ(M(x) + iN(x))− i

2
θ̄θ̄(M(x)− iN(x))

− θσµθ̄υµ(x) + iθθθ̄[λ̄(x) +
i

2
σ̄µ∂µχ(x)]

− iθ̄θ̄θ[λ(x) +
i

2
σµ∂µχ̄(x)] +

1

2
θθθ̄θ̄[D(x) +

1

2
¤C(x)]

54



Here C,M, N and D are real scalars,υµ is a real vector field and λ, χ are Weyl

spinors. Addition of chiral and anti-chiral superfields (5.23),(5.24) gives a real

superfield and one can observe that combination of this addition with vector

superfield yield the supersymmetric generalization of gauge transformation.

V → V + Φ + Φ† (5.28)

Under this transformation component fields transform as

C → C + φ + φ† (5.29)

χ → χ− i
√

2ψ

M + iN → M + iN − 2iF

υµ → υµ − i∂µ(φ− φ†)

λ → λ

D → D

As can be seen transformation of vector component resembles an ordinary gauge

transformation, while the fields λ and D are gauge invariants. This gauge freedom

provides a special gauge in which C, χ,M and N are all zero. Thus the vector

superfield has a more simple form.

VWZ = −θσµθ̄υµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) (5.30)

Powers of V satisfy the properties

V 2 = −1

2
θθθ̄θ̄υµυ

µ (5.31)

V 3 = 0 (5.32)

This gauge is known as Wess-Zumino gauge. Gauge choice breaks the supersym-

metry but fermionic and bosonic degrees of freedoms still equal to each other.

Thus superfield V can be viewed as the supersymmetric generalization of the

Yang-Mills potential. Corresponding supersymmetric field strengths are

Wα = −1

4
D̄D̄DαV (5.33)

W̄α̇ = −1

4
DDD̄α̇V (5.34)
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which are chiral and anti-chiral superfield respectively, i.e,

D̄α̇Wβ = 0 (5.35)

DαW̄β̇ = 0 (5.36)

Component expansion in WZ gauge and in (yµ, θ, θ̄) coordinates is

Wα = −iλα(y) + θαD(y)− iσµν β
α θβ(∂µυν(y)− ∂νυµ(y)) + θθσµ

αα̇∂µψ̄
α̇(y) (5.37)

and

W̄ α̇ = iλ̄α̇(y†) + θ̄α̇D†(y†) + iσ̄µν α̇

β̇
θ̄β̇(∂µυν(y

†)− ∂νυµ(y†)) (5.38)

+ θ̄θ̄σ̄α̇α
µ ∂µψα(y†)

Field strengths derived from vector superfield satisfy the additional constraint

equation,supersymmetric Bianchi identity.

DαWα = D̄α̇W̄ α̇ (5.39)

We have defined a gauge invariant field strength which is constructed from a

vector superpotential. The supersymmetric gauge invariant generalization of the

Lagrangian for a vector field can be defined from this chiral superfield. For this

aim observe that θθ component of the product WαWα give a space derivative.

The same is valid for θ̄θ̄ component of W̄α̇W̄ α̇.

S =
1

4g2

∫
d4x(

∫
d2θW αWα +

∫
d2θ̄W̄α̇W̄ α̇) (5.40)

This reduce to the action of supersymmetric U(1) gauge theory

S =

∫
d4x

1

g2
{−1

4
F µνFµν − iλσµ∂µλ̄ +

1

2
D2} (5.41)

This is pure N = 1 gauge theory and component field υµ is a gauge boson, λ is

the supersymmetric partner of the gauge boson, gaugino, and D is a real scalar,

auxiliary field.

5.1 Duality in Supersymmetric U(1) Gauge Theory

Parent action of “ordinary” supersymmetric U(1) gauge theory was formulated by

superfields [24]. In terms of component fields we will define two different parent
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actions which yield the same dual symmetric actions. Duality transformation

of supersymmetric U(1) gauge theory can be formulated in terms of a general

superfield W̃α and a dual vector superfield VD as,

IP =
1

4g2

∫
d4x(

∫
d2θW̃ 2 +

∫
d2θ̄ ˜̄W 2) +

1

2

∫
d4xd4θ(VDDW̃ − VDD̄ ˜̄W ) (5.42)

where with general superfield we mean that it is not field strength of a vector

superfield (5.33). The equations of motion with respect to the dual superfield VD

gives

DW̃ − D̄ ¯̃W = 0 (5.43)

that is the supersymmetric generalization of Bianchi identity, and solution of this

restriction gives the ordinary superfield (5.33). Substituting this solution in the

parent action (5.42), one gets the action of supersymmetric U(1) gauge theory,

I =
1

4g2

∫
d4x(

∫
d2θW 2 +

∫
d2θ̄W̄ 2) (5.44)

On the other hand, when solutions of the equations of motion with respect to W̃α

and ¯̃W α̇ following from IP are plugged into (5.42), one obtains the dual action in

terms of superfields

ID =
g2

4

∫
d4x(

∫
d2θW 2

D +

∫
d2θ̄W̄ 2

D) (5.45)

where WD is the dual superfield strength WDα = 1
4
D̄2DαVD.

The original and the dual actions (5.44) and (5.45) are in the same form except

with g−2 replaced with g2. Thus, one can conclude that supersymmetric U(1)

gauge theory possesses (S) duality symmetry.

Instead of superfields, we would like to consider duality transformations in terms

of their component fields. It is straightforward to construct a general chiral su-

perfield W̃α that does not satisfy the condition(5.39) as

W̃α(y) = −iλα(y) + θαD̃(y)− iσµν β
α θβF̃µν(y) + θθσµ

αα̇∂µψ̄
α̇(y) (5.46)

Here, λ and ψ̄ are two independent Weyl spinors, F̃µν is a complex anti-symmetric

second rank tensor field and D̃ is a complex scalar field. Hermitean conjugate of

the chiral superfield W̃α can be written as,

¯̃W α̇(y†) = iλ̄α̇(y†) + θ̄α̇D̃†(y†) + iσ̄µνα̇

β̇
θ̄β̇F̃ †

µν(y
†) + θ̄θ̄σ̄α̇α

µ ∂µψα(y†). (5.47)
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It should be stressed that these are not the same fields as (5.37) and (5.38). There

Weyl spinors are hermitian conjugate of each other and Fµν is field strength of

vector potential Aµ. Moreover the auxiliary field D is real.

Plugging (5.46) and (5.47) and the real vector superfield

VD = −(θσµθ̄)ADµ + iθθθ̄λ̄D − iθ̄θ̄θλD +
1

2
θθθ̄θ̄DD (5.48)

into (5.42) the parent action in component fields is obtained

Ip = Io[F̃ , ψ, λ, D̃] + Il, (5.49)

where we defined

Io =
1

g2

∫
d4x[−1

8
F̃ µνF̃µν − i

16
εµνλκF̃µνF̃λκ − 1

8
F̃ †µνF̃ †

µν +

i

16
εµνλκF̃ †

µνF̃
†
λκ −

i

2
λ∂/ψ̄ − i

2
λ̄∂̄/ψ +

1

4
D̃2 +

1

4
D̃†2], (5.50)

and the Legendre transformation term

Il =
1

2

∫
d4x[−iF̃ µν∂µADν +

1

2
εµνλκF̃µν∂λADκ + iF̃ †µν∂µADν

+
1

2
εµνλκF̃ †

µν∂λADκ +
1

2
λD∂/ψ̄ + λ∂/λ̄D

−1

2
λ̄D∂̄/ψ − λ̄∂̄/λD + iDD(D̃ − D̃†)]. (5.51)

here we use ∂/ for σµ∂µ and ∂̄/ for σ̄µ∂µ.

We now proceed as before to derive supersymmetric U(1) gauge theory in terms

of the component fields from the parent action (5.49): the equations of motion

with respect to the dual vector field ADµ

[
i

2
(∂µF̃

µκ − ∂µF̃
†µκ)− 1

4
εµνλκ∂λ(F̃µν + F̃ †

µν)]F̃=F = 0. (5.52)

lead to Fµν which satisfy

Fµν = F †
µν , εµνλκ∂λFµν = 0 (5.53)

which are solved by taking Fµν = ∂µAν − ∂νAµ which is the field strength of the

vector field Aµ. When we also use the equation of motion with respect to the

other dual fields

∂/ψ̄ = ∂/λ̄ , ∂̄/ψ = ∂̄/λ , D̃ − D̃†|D̃=D = 0. (5.54)
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in the parent action (5.49) we obtain the supersymmetric U(1) gauge theory

action in terms of component fields

I =
1

g2

∫
d4x[−1

4
F µνFµν − i

2
λ∂/λ̄− i

2
λ̄∂̄/λ +

1

2
D2] (5.55)

Note also that when the above equations are substituted in the general superfield

given in (5.46), one finds the standard chiral vector field Wα that can be obtained

from the N=1 vector field V as Wα = −1
4
D̄D̄DαV in the Wess-Zumino gauge.

Similarly, we can obtain the dual action (5.45) in terms of the component fields

using the equations of motion (5.49) with respect to the fields F̃µν , λ, ψ̄, D̃:

(ηµληνκ − ηµκηνλ + iεµνλκ)Fλκ = −ig2(ηµληνκ − ηµκηνλ + iεµνλκ)FDλκ (5.56)

∂/ψ̄ = −ig2∂/λ̄D, ∂̄/λ = −ig2∂̄/λD, D̃ = −ig2DD (5.57)

and the equations of motion with respect to F̃ †
µν , λ̄, ψ, D̃†:

(ηµληνκ − ηµκηνλ − iεµνλκ)F̃ †
λκ = ig2(ηµληνκ − ηµκηνλ − iεµνλκ)FDλκ (5.58)

∂/λ̄ = ig2∂/λ̄D, ∂̄/ψ = ig2∂̄/λD, D̃† = ig2DD (5.59)

where FDµν = ∂µADν−∂νADµ. These equations can be solved for the original fields

to substitute them in the parent action (5.49) yielding the dual supersymmetric

U(1) gauge action

ID = g2

∫
d4x[−1

4
F µν

D FDµν − i

2
λD∂/λ̄D − i

2
λ̄D∂̄/λD +

1

2
D2

D] (5.60)

Instead of the complex field F̃µν we can deal with the real antisymmetric tensor

field FRµν from the beginning. We propose the following parent action for this

case

Sp = So[FR, ψ, λ, D̃] + Sl, (5.61)

where

So =
1

4g2

∫
d4x[−F µν

R FRµν − 2iλ̄σµ∂µψ − 2iλσµ∂µψ̄ + D̃2 + D̃†2] (5.62)

and the Legendre transformation part

Sl =
1

2

∫
d4x[εµνρσFRµν∂ρADσ + λDσµ∂µψ̄ + λ̄Dσ̄µ∂µλ

−λDσµ∂µλ̄− λ̄Dσ̄µ∂µψ + iDD(D̃ − D̃†)]. (5.63)
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Now equations of motions with respect to the dual fields, AD, λD, λ̄D, DD, yield

εµνρσ∂νFRρσ|FR=F = 0, (5.64)

σµ
αα̇∂µψ̄

α̇ − σµ
αα̇∂µλ̄

α̇ = 0, (5.65)

σ̄µα̇α∂µλα − σ̄µα̇α∂µψα = 0, (5.66)
(
D̃ − D̃†

)
D̃=D

= 0 (5.67)

When solution of this equations with respect to Fµν and real scalar field D used

in (5.61) yields the supersymmetric U(1) gauge theory (5.55).

The equations of motions with respect to the original fields FRµν , λ, ψ, λ̄, D̃, ψ̄, D̃†

are

− 1

g2
F µν

R + εµνρσ∂ρADσ = 0 (5.68)

1

g2
D̃† − iDD = 0,

1

g2
D̃ + iDD = 0

σµ
αα̇∂µ(− i

g2
ψ̄α̇ + λ̄α̇

D) = 0, σ̄µα̇α∂µ(− i

g2
ψα − λDα) = 0

∂µ(− i

g2
λ̄α̇ + λ̄Dα̇)σ̄µα̇α = 0, ∂µ(− i

g2
λα + λα

D)σµ
αα̇ = 0

Solving these equations for the dual fields and substituting them in the parent

action (5.61) yield the dual of action of N = 1 supersymmetric U(1) gauge theory

(5.60). We conclude that both of the parent actions (5.49) and (5.61) generate

supersymmetric U(1) gauge theory and its dual.

5.2 Supersymmetric Seiberg–Witten map

Generalization of the Seiberg-Witten map to supersymmetric gauge theories can

be formulated in some different ways. One of these is to generalize the defini-

tion of the map between Â(A), λ̂(λ,A) and A, λ to V̂ (V ), Λ̂(Λ, V ) and V, Λ. Here

V is a vector superfield, Λ is a chiral superfield and V̂ and Λ̂ are correspond-

ing noncommutative superfields [94]. Infinitesimal gauge transformation of the

noncommutative supervector field V̂ is defined by

δ̂Λ̂V̂ = i(Λ̂− ˆ̄Λ)− i

2
[(Λ̂ + ˆ̄Λ) ∗ V̂ − V̂ ∗ (Λ̂ + ˆ̄Λ)] (5.69)
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It has the properties of a nonabelian gauge transformation, although the ordinary

vector field V gauge transforms as

δΛV = i(Λ− Λ̄) (5.70)

Supersymmetric Seiberg-Witten map is defined as

V̂ (V ) + δ̂Λ̂V̂ (V ) = V̂ (V + δΛV ). (5.71)

In [94] a solution of this equation is given in terms of superfields. However, it is

nonlocal and do not yield the original solution

Âµ = Aµ − 1

2
Θkl(Ak∂lAµ + AkFlµ), (5.72)

at the first order in the noncommutativity parameter θµν .

On the other hand the approach suggested in [95] is to generalize the solution

(5.72) to supersymmetric case as

V̂ (V ) = V + aP µν∂µ∇νV + bP αβDαV Wβ + cPαβV DαWβ + c.c (5.73)

Λ̂(Λ, V ) = Λ + dD̄2(PαβDαDβV ) (5.74)

where a,b,c,d are some constants which should be derived using (5.72). Here P

and ∇ are some operators which do not depend on fields.

We would like to obtain a generalization of Seiberg-Witten map to supersymmet-

ric U(1) gauge theory in terms of the components of the superfield V. This will be

performed utilizing both of the methods mentioned above. We adopt the defini-

tion (5.71) for supersymmetric Seiberg-Witten map but solve it for components

of the superfield V by keeping the original solution (5.72).

The vector superfield V in Wess-Zumino gauge and chiral and anti-chiral super-

fields Λ and Λ̄, respectively, are given as

V = −(θσµθ̄)Aµ + iθθθ̄λ̄− iθ̄θ̄θλ +
1

2
θθθ̄θ̄D, (5.75)

Λ = β + i(θσµθ̄)∂µβ +
1

4
θθθ̄θ̄∂2β +

√
2θκ− i√

2
θθ∂µκσµθ̄ + θθf, (5.76)

Λ̄ = β∗ − i(θσµθ̄)∂µβ
∗ +

1

4
θθθ̄θ̄∂2β∗ +

√
2θ̄κ̄ +

i√
2
θ̄θ̄θσµ∂µκ̄ + θ̄θ̄f ∗.(5.77)

Noncommuting superfields V̂ , Λ̂, ˆ̄Λ can be written in the same form in terms of

their components. At the first order in θµν let us denote the noncommutative
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fields as

V̂ (V ) = V + V(1) (5.78)

Λ̂(V, Λ) = Λ + Λ(1)(Vi, Λi) (5.79)

ˆ̄Λ(V, Λ̄) = Λ̄ + Λ̄(1)(Vi, Λ̄i) (5.80)

and plug them into the definition (5.71)

θσµθ̄[A(1)µ(Vi + δVi)− A(1)µ(Vi)− ∂µ(β(1)(Vi, Λi) + β∗(1)(Vi, Λi))]

−iθθθ̄[λ̄(1)(Vi + δVi)− λ̄(1)(Vi)− i√
2
σ̄µ∂µκ(1)(Vi, Λi)]

+iθ̄θ̄θ[λ(1)(Vi + δVi)− λ(1)(Vi) +
i√
2
σµ∂µκ̄(1)(Vi, Λ̄i)]

−1

2
θθθ̄θ̄[D(1)(Vi + δVi)−D(1)(Vi)− i

2
∂2(β(1)(Vi, Λi)− β∗(1)(Vi, Λi))]

+
√

2iθκ(1)(Vi, Λi)−
√

2iθ̄κ̄(1)(Vi, Λi) + iθθf(1)(Vi, Λi)

−iθ̄θ̄f ∗(1)(Vi, Λi) + i(β(1)(Vi, Λi)− β∗(1)(Vi, Λi))

=
1

2
Θνρ[−(θσµθ̄)∂νAµ∂ρ(β + β∗) + iθθθ̄∂νλ̄∂ρ(β + β∗) (5.81)

−iθ̄θ̄θ∂νλ∂ρ(β + β∗) +
1

2
θθθ̄θ̄{[∂νD∂ρ(β + β∗)

+∂νAµ∂ρ∂µ(β − β∗)−
√

2iεαβ∂νλα∂ρκβ

+
√

2iεα̇β̇∂νλ̄
α̇∂ρκ̄

β̇]} −
√

2(θσµθ̄)∂νAµ∂ρ(θκ + θ̄κ̄)]

Here Vi and Λi denote the components. The equations which component fields

satisfy can be obtained by matching the same θ order terms. These will give rise

to following equations

β(1) − β∗(1) = 0 (5.82)

f(1) = f ∗(1) = κ(1) = κ̄(1) = 0. (5.83)

Moreover, there are the equations

A(1)
µ (Vi + δVi)− A(1)µ(Vi)− ∂µβ(1) = −Θνρ∂νAµ∂ρβ (5.84)

λ(1)(Vi + δVi)− λ(1)(Vi) = −Θνρ∂νλ∂ρβ (5.85)

λ̄(1)(Vi + δVi)− λ̄(1)(Vi) = −Θνρ∂νλ̄∂ρβ (5.86)

D(1)(Vi + δVi)−D(1)(Vi) = −Θνρ∂νD∂ρβ (5.87)

where Vi and Λi denote the component fields. Obviously, one can write (5.71) in

terms of a general vector superfield instead of choosing the Wess-Zumino gauge
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(5.75), which would have drastically changed the equations for component fields.

However, we prefer to choose V as (5.75), so that, we deal with the equations

(5.82)-(5.87) as defining supersymmetric Seiberg-Witten map. One can solve the

above equations and get the noncommutative fields in terms of the commutative

ones at the first order of noncommutativity parameter.

A(1)
µ = −1

2
Θνρ(Aν∂ρAµ + AνFρµ) (5.88)

λ(1) = −Θνρ∂νλAρ (5.89)

λ̄(1) = −Θνρ∂νλ̄Aρ (5.90)

D(1) = −Θνρ∂νDAρ. (5.91)

(5.88) and (5.89) are also found in [96] considering deformations of supersymmet-

ric Yang–Mills theory while preserving supersymmetry. To define a parent action

to obtain duality transformation we also need to define

ψ(1) = −Θkl∂kψAl (5.92)

ψ̄(1) = −Θkl∂kψ̄Al (5.93)

5.3 Duals of Noncommutative Supersymmetric U(1) Gauge Theory

Noncommutative generalization of supersymmetric U(1) gauge theory [93] can be

written in terms of the so called noncommuting component fields, although they

satisfy the usual (anti)commutation relations, by the star product as

SNC =

∫
d4x[− 1

4g2
F̂ µνF̂µν − i

2g2
ˆ̄λσ̄µD̂µ ∗ λ̂− i

2g2
λ̂σµD̂µ ∗ λ̄ +

1

2g2
D̂D̂] (5.94)

where D̂µ ∗ λ̂ = ∂µλ̂ + i(Âµ ∗ λ̂ − λ̂ ∗ Âµ). The action is invariant under the

supersymmetry transformations given by the fermionic constant spinor parameter

ξ as

δ̂ξÂµ = iξσµ ˆ̄λ + iξ̄σ̄µλ̂, (5.95)

δ̂ξλ̂ = σµνξF̂µν + iξD̂, (5.96)

δ̂ξD̂ = ξ̄σ̄µD̂µλ− ξσµD̂µ
ˆ̄λ. (5.97)

Making use of the generalization of Seiberg-Witten map to the supersymmetric

case (5.84)-(5.87) we write, up to the first order in Θ, the action of noncommu-
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tative supersymmetric U(1) gauge theory (5.94) in terms of the ordinary fields

as

SNC [F, λ, D, Θ] =

∫
d4x{− 1

4g2
(F µνFµν + 2ΘµνFνρF

ρσFσµ − 1

2
ΘµνFνµFρσF

σρ)

− i

g2
(
1

2
λ̄σ̄µ∂µλ + Θµν [

1

4
λ̄σ̄ρ∂ρλFµν +

1

2
λ̄σ̄ρ∂µλFνρ}

+
1

2
λσµ∂µλ̄ + Θµν [

1

4
λσρ∂ρλ̄Fµν +

1

2
λσρ∂µλ̄Fνρ])

+
1

2g2
(D2 +

1

2
ΘµνD2Fµν)] (5.98)

When we write this action we set the surface terms to zero while performing

required partial integrations. The same action was also obtained in [97] using a

completely different approach.

Supersymmetry transformations which leave (5.98) invariant can be read from

(5.95)-(5.97) as

δξAµ = iξσµλ̄ + iξ̄σ̄µλ− iΘρκ(ξσρλ̄ + ξ̄σ̄ρλ)(
1

2
Fκµ +

1

2
∂κAµ)

−iΘρκ 1

2
(ξσρ∂µλ̄ + ξ̄σ̄ρ∂µλ)Aκ (5.99)

δξλ = σµνξFµν + iξD + Θρκ∂ρλ(iξσκλ̄ + iξ̄σ̄κλ)

+iΘρκσµνξFµρFνκ (5.100)

δξD = ξ̄σ̄µ∂µλ− ξσµ∂µλ̄− iΘρκ(ξσρλ̄ + ξ̄σ̄ρλ)∂κD

+ΘρκξσµFρµ∂κλ̄−Θρκξ̄σ̄µFρµ∂κλ (5.101)

We would like to generalize the parent actions of the ordinary supersymmet-

ric gauge theory to the noncommutative case. To this aim let us first take F̂ µν

complex and deal with

IoNC =
−1

g2

∫
d4x[

1

8
F̂ µνF̂µν +

i

16
εµνρσF̂µνF̂ρσ +

1

8
F̂ †µνF̂ †

µν +
i

16
εµνρσF̂ †

µνF̂
†
ρσ

+
i

2
λ̂σµD̂µ ∗ ˆ̄ψ +

i

2
ˆ̄λσ̄µD̂µ ∗ ψ̂ − 1

4
D̂2 − 1

4
D̂†2] (5.102)

It is possible to discuss supersymmetry and gauge transformations of (5.102),

however, it is not needed for the purpose of this work. Although the transforma-

tions (5.88)-(5.91) are derived for a read vector superfield, we suppose that they

are also valid for complex fields. We perform the transformations (5.88)-(5.93)
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and their complex conjugates to write (5.102) as

IoNC = I0[F, λ, ψ,D]− Θµν

g2

∫
d4x[

1

4
F ρσF ρµFνσ +

1

16
FµνF

ρσFρσ

+
i

8
ελκρσFλκFρµFνσ +

i

32
ελκρσFµνFλκF

ρσ)

+
i

4
λσρ∂ρψ̄Fµν − i

2
λσρ∂νψ̄Fµρ − 1

4
FµνD

2 + c.c.]. (5.103)

where Io is defined in (5.50). We define the parent action

IP = IoNC [F̃ , λ, ψ, D̃] + Il (5.104)

where Il is given in (5.51). We would like to emphasize that F̃µν is not a field

strength but a complex, antisymmetric field. When the solutions of the equations

of motion with respect to dual fields are used in the parent action, it leads to the

noncommutative supersymmetric U(1) gauge theory action (5.98). However, when

the equations of motion with respect to the fields F̃ , λ, ψ, D̃ and their complex

conjugates are solved and used in the parent action (5.103) one finds

IDNC = ID +
g4

4
Θµν

∫
d4x [

1

4
ελκρσFDλκFDρµFDνσ

+
1

16
ελκρσFDµνFDλκFDρσ)] (5.105)

where FD is the field strength of AD. Obviously, we cannot define any duality sym-

metry between (5.98) and (5.105). The latter does not possess any contribution

in terms of the fields λ,D at the first order in Θµν .

As the other possibility, let us take F̂µν real and deal with

SoNC =

∫
d4x[− 1

4g2
F̂ µν

R F̂R µν− i

2g2
ˆ̄λσ̄µD̂µ∗ψ̂− i

2g2
λ̂σµD̂µ∗ ˆ̄ψ+

1

2g2
D̂ ˆ̄D] (5.106)

Through the supersymmetric Seiberg-Witten map (5.88)-(5.93) we write the ac-

tion (5.106) as

SoNC [FR, λ, ψ, D] =

∫
d4x{− 1

4g2
(F µν

R FRµν + 2ΘµνFRνρF
ρσ
R FRσµ − 1

2
ΘµνFRνµFRρσF

σρ
R )

− i

2g2
(λ̄σ̄µ∂µψ + Θµνλ̄σ̄ρ∂µψFRνρ +

1

2
Θµνλ̄σ̄ρ∂ρψFRµν)

− i

2g2
(λσµ∂µψ̄ + Θµνλσρ∂µψ̄FRνρ +

1

2
Θµνλσρ∂ρψ̄FRµν)

+
1

4g2
[(D2 + D̄2) +

1

2
Θµν(D2 + D̄2)FRµν ]} (5.107)
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Now, we define the parent action as

SP = S0NC [FR, λ, ψ, D̃] + Sl (5.108)

where as before FRµν denotes an antisymmetric real fields and the Legendre trans-

formation part Sl is given in (5.63).

Equations of motion with respect to the dual fields AD, λD, λ̄D, DD are given as

before by (5.64)-(5.67). Plugging their solution into SoNC leads to the noncom-

mutative supersymmetric U(1) gauge theory (5.98). Equations of motion with

respect to the other fields are

1

g2
F µν

R +
1

g2
Θρ[µF

ν]σ
R FRσρ +

1

2g2
ΘρσFRσ[µFRν]ρ − 1

4g2
ΘµνFRρσF

ρσ
R

− 1

2g2
ΘρσFRρσF

µν
R +

i

2g2
(Θρµλ̄σ̄ν −Θρνλ̄σ̄µ)∂ρψ +

i

2g2
Θµν(λ̄σ̄ρ∂ρψ)

+
i

2g2
(Θρµλσν −Θρνλσµ)∂ρψ̄ +

i

2g2
Θµνλσρ∂ρψ̄

− 1

4g2
Θµν(D̃2 + D̃†2) + εµνρσ∂ρADσ = 0, (5.109)

i

2g2
σµ∂µψ̄ +

i

4g2
Θµνσρ∂ρψ̄FRµν +

i

2g2
Θµνσρ∂µψ̄FRνρ (5.110)

−1

2
σµ∂µλ̄D = 0,

i

2g2
σ̄µ∂µψ +

i

4g2
Θµν σ̄ρ∂ρψFRµν +

i

2g2
Θµν σ̄ρ∂µψFRνρ (5.111)

+
1

2
σ̄µ∂µλD = 0,

∂µ

[
i

2g2
λ̄σ̄µ − i

4g2
Θρνλ̄σ̄µFRρν − i

2g2
Θµνλ̄σ̄ρFRνρ − 1

2
λ̄Dσ̄µ

]
= 0,(5.112)

∂µ

[
i

2g2
λσµ +

i

4g2
ΘρνλσµFRρν +

i

2g2
ΘµνλσρFRνρ − 1

2
λDσµ

]
= 0,(5.113)

1

2g2
D̃ +

1

4g2
ΘµνD̃FRµν +

i

4
DD = 0, (5.114)

1

2g2
D̃† +

1

4g2
ΘµνD̃†FRµν − i

4
DD = 0. (5.115)

We solve these equations for FR, ψ, λ, D̃ and plug the solutions into (5.108) to

obtain the dual action

SNCD =

∫
d4x[−g2

4
(F µν

D FDµν + 2Θ̃µνFDνρF
ρσ
D FDσµ − 1

2
Θ̃µνFDνµFDρσF

Dσρ)

−ig2(
1

2
λDσµ∂µλ̄D +

1

2
λ̄Dσ̄µ∂µλD +

1

4
Θ̃µνλDσµ∂

ρλ̄DFDρν) (5.116)

+
g2

4
Θ̃µνλ̄Dσ̄µ∂

ρλDFDρν +
g2

2
(D2

D +
g2

2
Θ̃µνD2

DFDµν)].
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where

Θ̃µν ≡ g2εµνρσΘρσ, (5.117)

When the fermionic and auxiliary fields λD, DD set equal to zero one obtains the

results of [82]: there is a duality symmetry under the replacement of Aµ with Aµ
D

and Θµν with Θ̃µν . Unfortunately, this symmetry accompanied by the replacement

of λ,D with λD, DD cease to exist between the noncommutative supersymmetric

action (5.98) and its dual (5.117). Inspecting the terms which obstruct the duality

symmetry we can find actions in terms of the component fields which possess this

symmetry. Let us define the action

Σ(Θ, F, λ, λ̄,D) = SNC − i

g2

∫
d4xΘµν

(
λσµ∂

ρλ̄ + λ̄σ̄µ∂
ρλ

)
Fρν , (5.118)

which can be obtained from the parent action

ΣP = SP − i

2g2

∫
d4xΘµν

(
ψσµ∂

ρλ̄ + ψ̄σ̄µ∂
ρλ + λσµ∂

ρψ̄ + λ̄σ̄µ∂
ρψ

)
FRρν .

(5.119)

Dual theory which follows from (5.119) can be shown to be

ΣD = g4Σ(Θ̃, FD, λD, λ̄D, DD). (5.120)

Therefore we conclude that the action (5.118) possesses duality symmetry when

the original fields are substituted by the dual ones and the noncommutativity

parameter Θ is replaced with Θ̃. However, whether the action (5.118) is super-

symmetric or not is an open question. However, it is explicitly gauge invariant.
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6 RESULTS AND DISCUSSION

In this thesis we provide a complete and consistent study of the electric-magnetic

duality in the noncommutative U(1) gauge theory. Noncommutative gauge theo-

ries emerge in the string theory context. Therefore study of these theories provide

appropriate tools to understand the different properties of the string theory. Du-

ality in noncommutative theories has interesting consequences in some ways. First

of all electric-magnetic duality plays role in the study of different phases of the

gauge theories. If one has a strong coupling theory in terms of its dual theory it

become possible to obtain information from this weakly coupled theory, especially

by using the powerful technics of the perturbatif calculations. On the other hand

duality leads to another important consequence in the noncommutative theories:

starting from a space/space noncommutative theory, by duality one passes to a

space/time noncommutative theory. Such space/time noncommutative theories

are typical examples of string theory. The better understanding of this type of

theories may have consequences in the string theory side.

The first part of our work includes investigation of how hamiltonian can be de-

fined in such a space/time noncommutative theory. Because of the noncommu-

tation property of time the usual quantization procedure is not obvious. For this

aim the parent action seems to be an appropriate tool. It is shown that it be-

comes possible to define hamiltonian starting from the parent action by using the

Dirac’s constraint system analysis. For ordinary case our results consistent with

the previous ones. We extended the formalism to the noncommutative case and

obtained the hamiltonian of the dual theory. It is also shown that the hamiltonian

which is obtained from the parent action coincides with the one calculated from

the dual action by using the usual quantization procedure and pretending as if

the time is commuting. This analysis performed at the first order of θ̃ parameter.

However, the method of obtaining hamiltonian from the shifted action seems eas-

ier. When higher order terms are considered the unique change will be in a single
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constraint while other constraints remain intact. Results of this section are used

in the study of the D3−brane worldvolume theories. The worldvolume action of

noncommutative D3−brane is obtained from the noncommutative gauge theory

in 10−dimensions by using the static gauge. The first three spatial coordinates

are taken as spatial coordinates of the brane and the rest of the coordinates as

scalar fields on the brane. We considered the existence of only one scalar field on

the brane. For this configuration we obtained the hamiltonian density by using

the static gauge. BPS states are investigated for this configuration. Noncommu-

tative D3−brane formulation which we deal with is somehow different from the

one considered previously [44, 56, 57, 58, 59, 60]. The difference stems from the

difference of the gauge groups. In our case although hamiltonian depends on the

noncommutativity parameter, gauge group is still U(1) but there gauge group is

noncommutative U(1). In chapter-1 we also studied the electric-magnetic duality

transformation of both lagrangian and hamiltonian densities. It is well known

that duality maps the lagrangian to itself up to an overall minus sign and keeps

intact the hamiltonian density. In the noncommutative theory this property per-

sists. We show that duality transformation of hamiltonian density is given by

a somehow inverted one with respect to the transformation rule of lagrangian

density.

In chapter-4 partition functions of these dual theories were established. We started

from the path integral formulation of parent action which include the constraints

as Dirac delta functions in the measure. By definition determinant of first class

and second class constraints also included in the measure. This path integral

definition gives partition function of both dual and original theory with respect

to appropriate phase space integrations. We showed that partition functions for

the noncommutative U(1) theory and its dual are equivalent. This result demon-

strates that strong weak duality transformations is helpful to make calculations

in weak coupling regime to extract information about physical quantities in the

strong coupling regions. We would like to emphasize the difference between the

results obtained for the commutative case and for the noncommutative U(1) the-

ory. In U(1) gauge theory, partition functions for the initial and the dual theories

are equivalent and they are related with the map g → g−1. However, the par-

tition function of noncommutative U(1) does not yield the partition function of

69



its dual by only inverting the coupling constant, although they are equivalent.

Application of the approach presented here to noncommutative supersymmetric

U(1) gauge theory may shed light on the duality symmetry of the supersymmetric

noncommutative theory. We dealt with free theories, although introducing source

terms into the starting path integral to gain insight about relations of the Green

functions of the noncommutative U(1) theory would be interesting.

In the chapter-5 we studied the supersymmetric noncommutative U(1) theory.

First of all we investigated that how parent action can be defined for ordinary

supersymmetric U(1) theory. We introduced two different parent actions which

yield the same results. Then to generalize these parent actions to noncommutative

case we studied the generalization of the Seiberg-Witten map to the supersym-

metric case. There are two different approaches through superfields to achieve

this [94, 95]. We utilized both of them to define a generalization of the Seiberg-

Witten map in terms of component fields. By using the results of these approaches

we proposed two different parent actions. Both of them generate noncommuta-

tive supersymmetric U(1) gauge theory given by the component fields defined

in commuting spacetime. However, they yield different dual actions contrary to

the ordinary case. At the first order in noncommutativity parameter one of the

dual actions does not have any contribution from the fermionic and the auxil-

iary fields. Moreover, it does not lead to the dual action of non-supersymmetric

gauge theory. The other parent action generates a dual theory which embraces

the results of previous works. However, this dual action is not in the same form

with the noncommutative U(1) gauge theory. Thus, duality symmetry of the non-

supersymmetric theory given by replacing the field strength F µν with the dual

one F µν
D and the noncommutativity parameter Θµν with Θ̃µν = g2εµνρσΘρσ is

not satisfied when actions are considered. We introduced a parent action for the

component fields which generates actions possessing this duality symmetry. Un-

fortunately, it is not clear if these duality symmetric actions are supersymmetric,

though they are explicitly gauge invariant.
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APPENDIX-A

Here we present some calculational details. When we evaluate the determinant of

the second class constraints we have established the following matrix.




0 0 0 0 0 0 0 0 0 M1
1 M1

2 ∂1

0 0 0 0 0 0 0 0 0 M2
1 M2

2 ∂2

0 0 0 0 0 0 0 0 0 M3
1 M3

2 ∂3

0 0 0 0 0 0 −C3
1 −C3

2 −∂3 0 0 0
0 0 0 0 0 0 C2

1 C2
2 ∂2 0 0 0

0 0 0 0 0 0 −C1
1 −C1

2 −∂1 0 0 0
0 0 0 C3

1 −C2
1 C1

1 0 0 0 k l 0
0 0 0 C3

2 −C2
2 C1

2 0 0 0 m n 0
0 0 0 ∂3 −∂2 ∂1 0 0 0 0 0 0

−M1
1 −M2

1 −M3
1 0 0 0 −k −m 0 0 0 0

−M1
2 −M2

2 −M3
2 0 0 0 −l −n 0 0 0 0

−∂1 −∂2 −∂3 0 0 0 0 0 0 0 0 0




Non zero Poisson brackets are

{P01(x), Φ4
1(y)} =

1

g2
M1

1 δ(x− y) , {P01(x), Φ4
2(y)} =

1

g2
M1

2 δ(x− y),(A.1)

{P01(x), Φ4
3(y)} = ∂1

yδ(x− y), (A.2)

{P02(x), Φ4
1(y)} =

1

g2
M2

1 δ(x− y) , {P02(x), Φ4
2(y)} =

1

g2
M2

2 δ(x− y),(A.3)

{P02(x), Φ4
3(y)} = ∂2

yδ(x− y), (A.4)

{P03(x), Φ4
1(y)} =

1

g2
M3

1 δ(x− y) , {P03(x), Φ4
2(y)} =

1

g2
M3

2 δ(x− y),(A.5)

{P03(x), Φ4
3(y)} = ∂3

yδ(x− y), (A.6)

{P12(x), Φ2
1(y)} = −C3

1δ(x− y) , {P12(x), Φ2
2(y)} = −C3

2δ(x− y) , (A.7)

{P12(x), Φ3(y)} = −∂3δ(x− y) , (A.8)

{P13(x), Φ2
1(y)} = C2

1δ(x− y) , {P13(x), Φ2
2(y)} = C2

2δ(x− y) , (A.9)

{P13(x), Φ3(y)} = ∂2δ(x− y) , (A.10)

{P23(x), Φ2
1(y)} = −C1

1δ(x− y) , {P23(x), Φ2
2(y)} = −C1

2δ(x− y) ,(A.11)

{P23(x), Φ3(y)} = −∂1δ(x− y) , (A.12)
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We have used the abbreviations k, l, m, n for the following Poisson brackets

k ≡ {Φ2
1(x), Φ4

1(y)} = εilmCi
1(x)M l

1(y)∂m
y δ(x− y), (A.13)

l ≡ {Φ2
1(x), Φ4

2(y)} = εilmCi
1(x)M l

2(y)∂m
y δ(x− y), (A.14)

m ≡ {Φ2
2(x), Φ4

1(y)} = εilmCi
2(x)M l

1(y)∂m
y δ(x− y), (A.15)

n ≡ {Φ2
2(x), Φ4

2(y)} = εilmCi
2(x)M l

2(y)∂m
y δ(x− y), (A.16)

To obtain (4.8) one should solve the constraint equations for Fµν in terms of

the physical fields AD, PD. Delta functions contribute the determinant of the

following matrix




M1
1 M2

1 M3
1 0 0 0

M1
2 M2

2 M3
2 0 0 0

∂1 ∂2 ∂3 0 0 0
0 0 0 C3

1 −C2
1 C1

1

0 0 0 C3
2 −C2

2 C1
2

0 0 0 ∂3 −∂2 ∂1




︸ ︷︷ ︸
Sij

·




F01

F02

F03

F12

F13

F23




= Aij ·




AD1

AD2

AD3

PD1

PD2

PD3




It can be easily seen that the related determinant is

detSij = det(εijkC
i
1C

j
2∂

k)det(εijkM
i
1M

j
2∂

k) (A.17)

For (4.12) one can establish the following matrix equation from the related con-

straints



C1
1 C2

1 C3
1 0 0 0

C1
2 C2

2 C3
2 0 0 0

∂1 ∂2 ∂3 0 0 0
0 0 0 a b c
0 0 0 d e f
0 0 0 ∂1 ∂2 ∂3




︸ ︷︷ ︸
Zij

·




PD1

PD2

PD3

AD1

AD2

AD3




= Bij ·




F01

F02

F03

F12

F13

F23




where we have used the a, b, c, d, e, f, for

a = g2(M2
1 ∂3 −M3

1 ∂2) , b = g2(M3
1 ∂1 −M1

1 ∂3), (A.18)

c = g2(M1
1 ∂2 −M2

1 ∂1) , d = g2(M2
2 ∂3 −M3

2 ∂2)

e = g2(M3
2 ∂1 −M1

2 ∂3) , f = g2(M1
2 ∂2 −M2

2 ∂1)

and

det(Zij) = det(g4)det(εijkC
i
1C

j
2∂

k)det(εijkM
i
1M

j
2∂

k)det(∂2) (A.19)
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For noncommutative case determinant of the second class constraints is given by

the following matrix




0 0 0 0 0 0 0 0 0 M1
(θ)1 M1

(θ)2 ∂1
(θ)

0 0 0 0 0 0 0 0 0 M2
(θ)1 M2

(θ)2 ∂2
(θ)

0 0 0 0 0 0 0 0 0 M3
(θ)1 M3

(θ)2 ∂3
(θ)

0 0 0 0 0 0 −C3
1 −C3

2 −∂3 a1
(θ) a2

(θ) a3
(θ)

0 0 0 0 0 0 C2
1 C2

2 ∂2 b1
(θ) b2

(θ) b3
(θ)

0 0 0 0 0 0 −C1
1 −C1

2 −∂1 c1
(θ) c2

(θ) c3
(θ)

0 0 0 C3
1 −C2

1 C1
1 0 0 0 k l 0

0 0 0 C3
2 −C2

2 C1
2 0 0 0 m n 0

0 0 0 ∂3 −∂2 ∂1 0 0 0 0 0 0
−M1

(θ)1 −M2
(θ)1 −M3

(θ)1 −a1
(θ) −b1

(θ) −c1
(θ) −k −m 0 0 0 0

−M1
(θ)2 −M2

(θ)2 −M3
(θ)2 −a2

(θ) −b2
(θ) −c2

(θ) −l −n 0 0 0 0

−∂1
(θ) −∂2

(θ) −∂3
(θ) 0 0 0 0 0 0 0 0 0




where the subscript θ denotes that the related terms are θ dependent and the

explicit form of them are displayed below

{Poi(x), Φ4
n(y)} = M j

n(y)(−δji + Fjkθ
klδli + δkiF

klθlj (A.20)

−1

2
θklFlkδji)(y)δ(x− y)

{P0i(x), Φ4
3(y)} = (−δji + Fjkθ

klδli + δkiF
klθlj (A.21)

−1

2
θklFlkδji)(y)∂j

yδ(x− y)

{Pij(x), Φ2
n(y)} = −εijkC

k
n(y)δ(x− y) (A.22)

{Pij(x), Φ3(y)} = −εijk∂
k
y δ(x− y) (A.23)

{Pij(x), Φ4
n(y)} = [(M i

nθjk −M j
nθ

ik)Fk0 + (F 0iθjk − F 0jθik)Mk
n (A.24)

−θijF0kM
k
n ](y)δ(x− y)

{Pij(x), Φ4
3(y)} = [(∂i

yθ
jk − ∂j

yθ
ik)Fk0 + (F 0iθjk − F 0jθik)∂k

y (A.25)

−θijF0k∂
k
y ](y)δ(x− y)

{Φ2
s(x), Φ4

r(y)} = g2εijkC
i
s(x)M j

r (y)∂k
y δ(x− y) (A.26)

Although it seems very confusing the calculations are performed for the first order

of the θ. Hence determinant of the matrix give rise to the (4.33).

Like the commuting case solving the Fµν and Pµν in terms of AD, PD requires to

evaluate the following matrix equation
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


ã1 ã2 ã3 0 0 0

b̃1 b̃2 b̃3 0 0 0
c̃1 c̃2 c̃3 0 0 0
0 0 0 C3

1 −C2
1 C1

1

0 0 0 C3
2 −C2

2 C1
2

0 0 0 ∂3 −∂2 ∂1




︸ ︷︷ ︸
S̃ij

·




F01

F02

F03

F12

F13

F23




= Ãij ·




AD1

AD2

AD3

PD1

PD2

PD3




where

ã1 = −M1
1 + 2M1

1 (F12θ
21 + F13θ

31) + M2
1 (F13θ

32 + F23θ
31) (A.27)

+M3
1 (F12θ

23 + F32θ
21)− 1

2
M1

1 θjkFkj

ã2 = −M2
1 + 2M2

1 (F12θ
21 + F23θ

32) + M1
1 (F13θ

32 + F23θ
31) (A.28)

+M3
1 (F12θ

31 + F13θ
21)− 1

2
M2

1 θjkFkj

ã3 = −M3
1 + 2M3

1 (F31θ
13 + F32θ

23) + M1
1 (F12θ

23 + F32θ
21) (A.29)

+M2
1 (F21θ

13 + F31θ
12)− 1

2
M3

1 θjkFkj

b̃1 = −M1
2 + 2M1

2 (F12θ
21 + F13θ

31) + M2
2 (F13θ

32 + F23θ
31) (A.30)

+M3
2 (F12θ

23F32θ
21)− 1

2
M1

2 θjkFkj

b̃2 = −M2
2 + 2M2

2 (F21θ
12 + F23θ

32) + M1
2 (F13θ

32 + F23θ
31) (A.31)

M3
1 (F12θ

31 + F13θ
21)− 1

2
M3θ

jkFkj

b̃3 = −M3
2 + 2M3

2 (F31θ
13 + F23θ

32) + M1
2 (F12θ

23 + F32θ
21) (A.32)

M2
2 (F21θ

13 + F31θ
12)− 1

2
M3

2 θjkFkj

c̃1 = −∂1 + 2∂1(F12θ
21 + F13θ

31) + ∂2(F13θ
32 + F23θ

31) (A.33)

∂3(F12θ
23 + F32θ

21)− 1

2
∂1θjkFkj

c̃2 = −∂2 + 2∂2(F21θ
12F23θ

32) + ∂1(F13θ
32 + F23θ

31) (A.34)

+∂3(F12θ
31 + F13θ

21)− 1

2
∂2θjkFkj

c̃3 = −∂3 + 2∂3(F31θ
13 + F32θ

23) + ∂1(F12θ
23 + F32θ

21) (A.35)

+∂2(F21θ
13 + F31θ

12)− 1

2
∂3θjkFkj

By the same way we construct the following equation in order to solve the dual

fields in terms of the ordinary ones.
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


C1
1 C2

1 C3
1 0 0 0

C1
2 C2

2 C3
2 0 0 0

∂1 ∂2 ∂3 0 0 0

0 0 0 k̃1 k̃2 k̃3

0 0 0 l̃1 l̃2 l̃3
0 0 0 ∂1 ∂2 ∂3




︸ ︷︷ ︸
Z̃ij

·




PD1

PD2

PD3

AD1

AD2

AD3




= B̃ij ·




F01

F02

F03

F12

F13

F23




and

k̃1 = g2(M2
1 ∂3 −M3

1 ∂2) (A.36)

k̃2 = g2(M3
1 ∂1 −M1

1 ∂3) (A.37)

k̃3 = g2(M1
1 ∂2 −M2

1 ∂1) (A.38)

l̃1 = g2(M2
2 ∂3 −M3

2 ∂2) (A.39)

l̃2 = g2(M3
2 ∂1 −M1

2 ∂3) (A.40)

l̃3 = g2(M1
2 ∂2 −M2

2 ∂1) (A.41)

Determinant of this matrix produce the following result

detZ̃ij = det(g4)det(∂2)det(εijkC
i
1C

j
2∂

k)det(εijkM
i
1M

j
2∂

k) (A.42)
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APPENDIX-B

Throughout the work we used the conventions of the Wess-Bagger [92]. Greek

letters are used to denote the spinor indices while the Latin letters to denote the

vector and tensor indices. Metric convention is

ηµν = diag(−1, 1, 1, 1) (B.1)

Antisymmetric tensors with dotted and undotted index are

ε12 = −ε21 = ε1̇2̇ = −ε2̇1̇ = 1 (B.2)

ε12 = −ε21 = ε1̇2̇ = −ε2̇1̇ = −1 (B.3)

and

ε0123 = −ε0123 = 1 (B.4)

Raising or lowering the dotted and undotted Weyl spinors, which form the (0, 1/2)

and (1/2, 0) representations of the SL(2, C) respectively, are performed with the

antisymmetric tensor

ψα = εαβψβ , ψα = εαβψβ (B.5)

ψα̇ = εα̇β̇ψβ̇ , ψα̇ = εα̇β̇ψβ̇ (B.6)

Multiplication of the spinors is

ψχ = ψαχα = −ψαχα = χαψα = χψ (B.7)

ψ̄χ̄ = ψ̄α̇χ̄α̇ = −ψ̄α̇χ̄α̇ = χ̄α̇ψ̄α̇ = χ̄ψ̄ (B.8)

(ψχ)† = χ̄ψ̄ = ψ̄χ̄ (B.9)

Sigma matrices are

σ0 =

( −1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(B.10)
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Index structure of the sigma matrices and the operations with respect to the both

spinor indices and Lorentz indices of them are given by

σµ
αα̇ = εαβεα̇β̇σ̄µ β̇β , σ̄µ α̇α = εα̇β̇εαβσµ

ββ̇
(B.11)

σ̄0 = σ0 , σ̄i = −σi i = 1, 2, 3 (B.12)

Tr(σµσ̄ν) = −2ηµν , σµ
αα̇σ̄β̇β

µ = −2δβ
αδβ̇

α̇ (B.13)

(σµσ̄ν + σν σ̄µ)β
α = −2ηµνδ β

α , (σ̄µσν + σ̄νσµ)α̇
β̇

= −2ηµνδα̇
β̇

(B.14)

σµσ̄νσλ + σλσ̄νσµ = 2(ηµλσν − ηνλσµ − ηµνσλ) (B.15)

σ̄µσν σ̄λ + σ̄λσν σ̄µ = 2(ηµλσ̄ν − ηνλσ̄µ − ηµν σ̄λ) (B.16)

σµσ̄νσλ − σλσ̄νσµ = 2iεµνλκσκ , σ̄µσν σ̄λ − σ̄λσν σ̄µ = −2iεµνλκσ̄κ (B.17)

σµν β
α =

1

4
(σ µ

αα̇σ̄να̇β − σ ν
αα̇σ̄µα̇β) , σ̄µν α̇

β̇
=

1

4
(σ̄µα̇ασ ν

αβ̇
− σ̄να̇ασ µ

αβ̇
) (B.18)

σµν α
α = 0 = σ̄µνα̇

α̇ , σµν β
α εβγ = σµν β

γ εβα (B.19)

εµνλκσλκ = −2iσµν , εµνλκσ̄λκ = 2iσ̄µν (B.20)

εµνλκσλκ = −2iσµν , εµνλκσ̄λκ = 2iσ̄µν (B.21)

Trσµν σ̄λκ = −1

2
(ηµληνκ − ηµκηνκ)− i

2
εµνλκ (B.22)

σµ
αα̇σν

ββ̇
− σν

αα̇σµ

ββ̇
= 2(σµνε)αβεα̇β̇ + 2(εσ̄µν)α̇β̇εαβ (B.23)

σµ
αα̇σν

ββ̇
+ σν

αα̇σµ

ββ̇
= −ηµν + 4(σλµε)αβ(εσ̄λν)α̇β̇ (B.24)

σµνσλ =
1

2
(−ηλνσµ + ηλµσν + iελµνκσκ) (B.25)

σµσ̄νλ =
1

2
(ηµλσν − ηµνσλ + iεµνλκσκ) (B.26)

σ̄µν σ̄λ =
1

2
(−ηλν σ̄µ + ηλµσ̄ν − iελµνκσ̄κ) (B.27)

σ̄µσνλ =
1

2
(ηµλσ̄ν − ηµν σ̄λ − iεµνλκσ̄κ) (B.28)

σµνσν = σν σ̄
νµ = −3

2
σµ , σ̄µν σ̄ν = σ̄νσ

νµ = −3

2
σ̄µ (B.29)
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σµν β
α σν γγ̇ =

1

2
(σµ

δγ̇εγαεβδ − σµ
αγ̇δ

β
γ ) (B.30)

σµν β
α σ̄α̇γ

ν =
1

2
(σ̄µ α̇δεαδε

βγ + σ̄µ α̇βδγ
α) (B.31)

σ̄µν α̇

β̇
σ̄γ̇γ

ν =
1

2
(σ̄µ δ̇γεα̇γ̇εδ̇β̇ − σ̄µ α̇γδγ̇

β̇
) (B.32)

σ̄µν α̇

β̇
σν αγ̇ =

1

2
(σµ

αδ̇
εα̇δ̇εβ̇γ̇ + σµ

αβ̇
δα̇
γ̇ ) (B.33)

Some useful spinor identities:

θαθβ = −1

2
εαβθθ , θαθβ =

1

2
εαβθθ (B.34)

θ̄α̇θ̄β̇ =
1

2
εα̇β̇ θ̄θ̄ , θ̄α̇θ̄β̇ = −1

2
εα̇β̇ θ̄θ̄ (B.35)

(θφ)(θψ) = −1

2
(φψ)(θθ) , (θ̄φ̄)(θ̄ψ̄) = −1

2
(φ̄ψ̄)(θ̄θ̄) (B.36)

χσµψ̄ = −ψ̄σ̄µχ , (χσµψ̄)† = ψσµχ̄ (B.37)

χσµσ̄νψ = ψσν σ̄µχ , (χσµσ̄νψ)† = ψ̄σ̄νσµχ̄ (B.38)

θσµθ̄θσν θ̄ = −1

2
θθθ̄θ̄ηµν , (B.39)

(ψφ)χ̄β̇ = −1

2
(θσµχ̄)(ψσµ)β̇. (B.40)

Differentiation and integration of the Grassmann variables:

∂θα

∂θβ
= δα

β , (B.41)

εαβ ∂

∂θβ
= − ∂

∂θα

,
∂

∂θ̄α̇

= −εα̇β̇ ∂

∂θ̄β̇
, (B.42)

εαβ ∂

∂θα

∂

∂θβ
θθ = 4 , εα̇β̇

∂

∂θ̄α̇

∂

∂θ̄β̇

θ̄θ̄ = 4 , (B.43)

∫
dη = 0 ,

∫
dη η = 1 (B.44)
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