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Abstract.
We consider the construction of interval estimates for the parameters with one-sided

constraints. We show that the so-called method of sensitivity limit yields a correct solution of the
problem. Derived are the solutions for the cases of a continuous distribution with non-negative
estimated parameter and a discrete distribution, specifically a Poisson process with background.
For both cases, the best upper limit is constructed that accounts for the a priori information.
Particular applications to the neutrino mass measurements, rare processes (neutrinoless double
beta-decay etc.) searches and cosmic ray studies are discussed.

1. Introduction
The Neyman construction [1] of confidence intervals for estimated parameters is a basic element
of experimental data processing. Often one also possesses a priori information about the
estimated parameters, and it is important to include that information into the confidence
intervals in a consistent way. A limited domain of the parameters is an example of such a priori
information. The problem with the conventional confidence intervals is seen if the experimental
estimate of the parameter falls out of the domain. For instance, in the Troitsk-ν-mass experiment
on the direct measurement of the mass of neutrino in tritium β-decay [2],[3] the neutrino
mass squared is non-negative while the formal fit yields a negative value. The construction
of confidence intervals for Poisson distribution with Poisson-distributed background is another
situation where one should take into account the a priori information about the background. The
situation is usual for studying rare events (in experiments on neutrinoless double β-decay [4], and
neutrino oscillations, for instance T2K, MINOS [5], etc.) and in astrophysical observations [6].
In Section 2 of this paper we briefly remind the concept of frequentist approach to interval
estimation using the Neyman construction. In Section 3 we consider various solutions to
the problem of estimating the bounded parameters, indicating their advantages and possible
drawbacks. Sections 4 and 5 present three examples in neutrino physics and cosmic rays of
using the sensitivity limit method for the continuous and discrete distributions correspondingly.
Section 6 contains the concluding remarks on the use of the sensitivity limit method.

2. Neyman confidence intervals
Parameter estimation starts from choosing a function of experimental data X termed
“estimator”. The estimator θ̂ = θ̂(X) for a parameter θ is a variable with distribution Pθ(θ̂) (see
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Fig.1). The probability density is considered known; it contains the whole information about
the experiment, i.e. the set of control and apparatus parameters and the estimation method.

To construct an α-level (c.f. 90%) left one-sided interval for the parameter θ one defines

for each value of θ the corresponding value of θ̂α for which the following condition is satisfied:
Pθ(θ̂ > θ̂α) = α. All the values of θ̂ to the right of the θ̂α (upper arrow in Fig.2) form a so-
called acceptance region. The construction for the symmetrical two-sided 90% interval gives the
acceptance region shown in Fig.2 by the lower arrow. Constructing the acceptance region for all
θ usually yields a so-called confidence belt (between the solid lines in Fig.2).

The last step in finding a confidence interval is calculating the value of θ̂exp - the actual value
of estimator on the measured experimental data. The two intersections of vertical line θ̂ = θ̂exp

define the confidence interval.
The two important features should be emphasized. First, the confidence interval is stochastic

by its nature, it depends on measured data and by its definition contains (or covers) the true
value of the estimated parameter in α percent of all measurements/experiments. Second, the
described construction procedure has an inherited freedom: one can continuously modify the
boundaries of the confidence belt in the horizontal direction, i.e. along the θ̂ axis. For more
details refer to [10],[11].

To construct a confidence interval for a parameter of a discrete distribution one has to weaken
the condition Pθ(θ̂ > θ̂α) = α substituting the equality with inequality Pθ(θ̂ > θ̂α) ≥ α. That
leads to conservative intervals (the acceptance region can contain more probability than chosen
value α).

Figure 1. Schematic presentation of
distribution of estimator θ̂ and its dependence
on the real value of the parameter θ.

Figure 2. Schematic presentation of con-
structing one-sided and symmetrical confi-
dence intervals.

3. Estimation of bounded parameters
In many cases one possesses some additional information about the estimated parameter. An
example of such a priori knowledge is a known boundary for the values of the parameter,
for instance if the parameter is non-negative. Another example is a known background in a
poissonian process. A priori information on the parameters should be used in construction of
the confidence intervals to get a “better” parameter estimation.

There were several solutions suggested. They could be divided into two groups according
to the way of incorporating the additional information. The first group of candidate solutions
uses the information while constructing the acceptance region. Here belong the so called CCGV
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constructions (or Power Constrained limits) [8] and the Feldman-Cousins recipe [7]. Including
a priori information into the construction of the acceptance region could lead to undesirable
features of the resulting confidence belts such as overcoverage and undercoverage (see [7], [11] for
the details). The Feldman-Cousins recipe, though formally correct, yields a shrinking confidence
interval for a non-negative parameter, so the more negative is the estimate, the narrower is the
interval.

The second class of solutions incorporates the a priori information into the estimator itself.
It was shown to be more consistent with respect to comparability of the resulting intervals [11].
The particular case of maximal likelihood estimation method was considered in [9]. The full
solution (so-called sensitivity limit method), independent from the estimation method, was given
in [10] and extended to the case of discrete distributions in [11].

4. Sensitivity limit method
The comprehensive solution of the issue of constructing confidence intervals for a parameter of
a continuous distribution with a priori information about the limited domain of the parameter
was presented in [10]. The essential quality of an estimator of a parameter is that its value is as
close to the true value of the parameter as possible. Therefore one defines a new estimator:

θ̃ = max(θ̂, 0) (1)

for the non-negative parameter θ ≥ 0. The corresponding confidence belt is presented in Fig.3.

Figure 3. 90% C.L. confidence interval for a
non-negative parameter θ constructed via the
sensitivity limit method with the estimator in
the form Eq.1.

Figure 4. Constructing the 90% C.L.
confidence interval for a parameter of the
Poisson distribution with known background
b = 3 using the sensitivity limit estimator in
the form of Eq.2.

One can extend the above method to the case of discrete distributions. For instance, the
experiments on detecting the rare processes (neutrinoless double β-decay etc.) usually deal with
a poissonian signal and poissonian background that is measured or estimated separately and
can be considered as known. The number of measured events n in such a case is governed

by a Poisson distribution: Pµ(n) = (µ+b)n

n! e−(µ+b), where µ is the signal and b is the known
background value. Following [11] one chooses a proper estimator for the parameter µ+ b:

˜(µ+ b) = max(n, b), (2)

that prevents the estimated value of µ to go below 0. The corresponding scheme of the confidence
belt for the estimator Eq.2 is given in Fig.4.
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Both sensitivity limit constructions (see Fig.3 and 4) treat the unphysical values of the original

estimators in the following way: for all the values of estimator θ̂ below 0 one receives the same
interval, these values are not differentiated. Similarly, if the measured number of events fall
below the expected/known background, the sensitivity limit estimator yields the same value
that corresponds to the sensitivity of the experiment. That feature of the sensitivity limit
intervals allows one to directly compare the results of different experiments which is the goal of
producing the confidence intervals in the first place. In the following examples it is shown that
other recipes (like Feldman-Cousins and CCGV) do not always produce comparable results.

5. Neutrino mass estimation via sensitivity limit method
The first example of the sensitivity limit method application comes from the direct neutrino
mass measurements performed in the Troitsk-ν-mass experiment [2]. The estimated parameter
- neutrino mass squared - is non-negative, but its estimator was constructed in a way to include
also negative values. As a result of the measurement and fitting one obtains [2] m2

ν = −0.67±2.53
eV 2. With the estimator 1 one constructs the confidence belt as presented in Fig.5. Using the
plot and the estimated value of m2

ν = −0.67 eV 2 one obtains the confidence interval upper
and lower limits as intersections of a vertical line m2

ν = −0.67 eV 2 with the confidence belt
boundaries. For the given value of the error the interval is 0 ≤ m2

ν ≤ 4.96 eV 2. Finally,
taking a square root one arrive at the estimate of 0 ≤ mν ≤ 2.2 eV at 95% C.L. The value
could be directly compared to the estimate of the neutrino mass from the Mainz experiment [3]
(0 ≤ mν ≤ 2.4 eV at 95% C.L., obtain via the same steps as above).

Figure 5. The use of sensitivity
limit estimator and confidence belt
for the Troitsk-ν-mass neutrino mass
estimation.

Figure 6. 90% C.L. confidence intervals for a
parameter of the Poisson distribution with known
background b = 3 with the sensitivity limit
estimator in the form of Eq.2 and in the Feldman-
Cousins procedure [12].

6. Problem of lower then the background number of events
The problem of measuring less events than the expected/known background can be considered
in light of the recent results of GERDA collaboration [4]. The search for the neutrinoless double
β-decay entered a new era of background free measurements. The new generation of experiment
aims at achieving the level of background that is less than one event in the lifetime of the
experiment. The expected background in GERDA is b ' 0.97count≤ 1count. The number of
measured events is 0.

In that case it is worth comparing the confidence intervals, given by the Feldman-Cousins
recipe [7], [12] and the sensitivity limit method (see also Fig.6). For the given values of b and
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n the implementation of Feldman-Cousins recipe in a special software [12] yields the 90% C.L.
limit on the signal rate as µ ≤ 1.6events. The sensitivity limit method yields the limit of
µ ≤ 2.0events at the same C.L. The considerable difference comes from the unphysical shrinking
of the Feldman-Cousins intervals in the region n < b while the sensitivity limit method provides
a robust estimate.

The shrinking intervals of Feldman-Cousins recipe do not allow a direct comparison of the
limits and can lead to rather confusing results. Consider the derivation of the upper limits on
the integral diffuse gamma-ray fluxes estimated in Table I of [6]. For instance, for the photon
energies above Emin = 6 ·1016 eV the measured number of events is nobs = 29 while the expected
background is b = 42.6. The Feldman-Cousins recipe yields an extremely strong limit on the
signal events nFCγ = 2.46 which does not seem reliable since it, probably, exceeds the sensitivity
of the measurement. The method of sensitivity limit [11],[12] provides a more reliable estimate of
the number of signal events: nSensLimγ = 11.7 at 90% C.L.. The estimate nSensLimγ also answers
the given background rate of 42.6 events.

7. Conclusions
We considered a problem of constructing the confidence intervals for bounded parameters
(limited to non-negative values, poissonian process with a priori known value of background
etc.). It was shown that the sensitivity limit method consistently incorporates the a priori
information into the estimator of the parameter. In comparison to the other proposed solutions
the method: a) provides the explicit formula for the estimator; b) yields the so-called sensitivity
limit for the unphysical values of the estimator; c) provides a confidence belt constructed within
the frequentist approach via usual Neyman procedure.

The main feature of the sensitivity limit method is the comparability of results of different
experiments. The estimation is robust; it treats the non-physical values of the estimator
correctly. It solves the problem of less then the background number of events in the case of
discrete distributions. The presented examples show how the method is applied to various
problems in particle physics and illustrate the comparability of the resulting intervals which is,
possibly, the main advantage and the main goal of the presenting the experimental results in
form of confidence intervals.
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