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Search for the rare decays B+- -> K+- mu+ mu- and B0d -> K*
mu+ mu- with the D0 Experiment

Abstract

The study of processes involving flavour-changing neutral currents provides a particularly promising
probe for New Physics beyond the Standard Model of particle physics. These processes are forbidden at
tree level and proceed through loop processes, which are strongly suppressed in the Standard Model.
Cross-sections for these processes can be significantly enhanced by contributions from new particles as
they are proposed in most extentions of the Standard Model. This thesis presents searches for two
flavour-changing neutral current decays, B± ! K±μ+μ− and B0 d ! K¤μ+μ−. The analysis was performed
on 4.1 fb−1 of data collected by the DØ detector in Run II of the Fermilab Tevatron. Candidate events
for the decay B± ! K±μ+μ− were selected using a multi-variate analysis technique and the number of
signal events determined by a fit to the invariant mass spectrum. Normalising to the known branching
fraction for B± ! J/ÃK±, a branching fraction of B(B± ! K± μ+μ−) = 6.45 ± 2.24 (stat) ± 1.19 (syst) ×
10−7 (1) was measured. The branching fraction for the decay B0 d ! K¤μ+μ− was determined in a
similar way. Normalizing to the known branching fraction for B0 d ! J/ÃK¤, a branching fraction of
B(B0 d ! K¤ μ+μ−) = 11.15 ± 3.05 (stat) ± 1.94 (syst) × 10−7 (2) was measured. All measurements are
in agreement with the Standard Model.
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Zürich 2009





In Loving Memory,

Werner Wenger

5th June 1946 - 30th June 1989

Annemarie Wenger

25th January 1951 - 18th May 2008





Abstract

The study of processes involving flavour-changing neutral currents provides a particu-
larly promising probe for New Physics beyond the Standard Model of particle physics.
These processes are forbidden at tree level and proceed through loop processes, which
are strongly suppressed in the Standard Model. Cross-sections for these processes can be
significantly enhanced by contributions from new particlesas they are proposed in most
extentions of the Standard Model.

This thesis presents searches for two flavour-changing neutral current decays,B± →
K±µ+µ− andB0

d → K∗µ+µ−. The analysis was performed on 4.1 fb−1 of data collected
by the DØ detector in Run II of the Fermilab Tevatron.

Candidate events for the decayB± → K±µ+µ− were selected using a multi-variate
analysis technique and the number of signal events determined by a fit to the invariant
mass spectrum. Normalising to the known branching fractionfor B± → J/ψK±, a
branching fraction of

B(B± → K± µ+µ−) = 6.45 ± 2.24 (stat) ± 1.19 (syst) × 10−7 (1)

was measured.

The branching fraction for the decayB0
d → K∗µ+µ− was determined in a similar way.

Normalizing to the known branching fraction forB0
d → J/ψK∗, a branching fraction of

B(B0
d → K∗ µ+µ−) = 11.15 ± 3.05 (stat) ± 1.94 (syst) × 10−7 (2)

was measured.

All measurements are in agreement with the Standard Model.



Zusammenfassung

Flavour-̈andernde neutrale Ströme sind im Standardmodell durch ihre ”loop”-Struktur
stark unterdr̈uckt und sind daher gut geeignet nach neuer Physik zu suchen.Die Existenz
neuer Teilchen ẅurde den Zerfall durch ihre ”loop”-Struktur beeinflussen. Diese Arbeit
präsentiert die Suche nach den Flavour-ändernden neutralen Strömen in den Zerf̈allen
B± → K± µ+µ− undB0

d → K∗ µ+µ−. Die Analyse basiert auf Daten (4.1 fb−1) welche
mit dem DØ-Detektor im Run II des Tevatron-Beschleunigers am Fermilab aufgezeichnet
wurden.

Die Zerfallsamplitude vonB± → K± µ+µ− wird mit Hilfe des Normierungskanals
B± → J/ψ K± bestimmt, damit sich einige systematischen Fehler auf die Messung
herausk̈urzen. Durch das Bestimmen der Signal Events ueber dem Untergrund kann das
Verzweigungsverḧaltnis bestimmt werden. Es wurde ein Verzweigungsverhältnis von

B(B± → K± µ+µ−) = 6.45 ± 2.24 (stat) ± 1.19 (syst) × 10−7 (3)

gefunden.

Beim ZerfallB0
d → K∗ µ+µ− wurde das VerzweigungsverhältnisB(B0

d → K∗ µ+µ−)
bestimmt, indem die beobachtete Anzahl von Ereignissen in der B0

d Signalregion auf die
Anzahl der rekonstruiertenB0

d → J/ψ K∗(892) Ereignisse normiert wird. Es wurde das
Verzweigungsverḧaltnis von

B(B0
d → K∗ µ+µ−) = 11.15 ± 3.05 (stat) ± 1.94 (syst) × 10−7 (4)

ermittelt.

Alle Messungen stimmen mit den Standard Modell Vorhersagenueberein.
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Introduction

Particle physics is the branch of the physical sciences thataims to understand the ele-
mentary constituents of the universe and the laws which govern their interactions. The
Human race always wondered about what makes up the world around them. The idea that
the world was composed of small indivisible units of matter began with Democritus, a
Greek philosopher in the 5th century BC. Around 1800 it was discovered that the world
is made of molecules and that molecules are made of atoms. Forall the efforts of early
scientists, the investigation of fundamental particles aswe know them today did not begin
in earnest until 1897, with the discovery of the electron by J.J. Thomson. Its discovery
paved the way for further explorations of the sub-atomic world. By now a whole par-
ticle ”Zoo” has been discovered but physicist still can onlydescribe a small part of the
universe.

The theories of particle physics, collectively known as the”Standard Model”, have
withstood testing against mountains of data during the pastfifty years with only minor
modifications. Yet the theory is incomplete: there is no universally accepted and exper-
imentally tested extension that would combine the StandardModel with the other grand
theory of physics, Albert Einstein’s General Relativity, the theory of gravity. The univer-
sally accepted model of cosmology asserts that the universeis composed of 74% ”dark
energy” and 22% ”cold dark matter”. Neither of these two constituents are described by
or known to the Standard Model. A mere 4% of the universe is visible in stars, galaxies
and gas clouds and is described by the Standard Model. The Standard Model still lacks the
experimental observation of the last key element, the Higgsboson, which is the quantum
of the scalar field that creates the mass of the elementary particles.

The most important method for testing the Standard Model is accelerating particles
to high energies and colliding them. An important parameterof an accelerator is the
energy of the colliding particles. Currently the accelerator ”Tevatron” close to Chicago
produces the highest energy at collisions. Soon the Large Hadron Collider (LHC) at
CERN in Geneva will start and increases the energy by a factor of7. The LHC will
provide new possibilities to probe the Standard Model and looks for physics beyond the
Standard Model.

This thesis presents measurements, using data collected bythe DØ experiment at the
Tevatron between 2001 and 2008, of the branching ratios of two flavour changing neutral
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current B hadron decays:B±
u → K±µ+µ− andB0

d → K⋆µ+µ−. The layout of the the-
sis is as follows. The first Chapter provides a brief introduction to the Standard Model
followed by some theoretical background on FCNC decays of B mesons. In Chapter 3
a brief description is given of the Tevatron accelerator andthe DØ detector. For precise
measurements the detector has to be spatially aligned and some alignment studies are pre-
sented in Chapter 4. Chapter 5 provides a brief introduction toevent reconstruction and
object identification at DØ while the data and event selection is presented in Chapter 6.
The methods used for the analysis and the optimisation are described in Chapter 7. Fol-
lowing this, Chapters 8 and 9 present the analysis of the particle decaysB±

u → K±µ+µ−

andB0
d → K⋆µ+µ−. The thesis is concluded with an outlook and a summary.

2



Chapter 1

Standard Model

TheGlashow-Salam-Weinberg(GSW) model [1, 2, 3], which unifies the electromagnetic
and weak interactions into the electroweak theory and the socalledQuantum Chromo-
dynamics(QCD) [4], which explains the strong interactions between the particles, form
theStandard Model(SM) of particle physics [5]. The fourth fundamental force of nature,
gravity, which is perhaps the most important for all the macroscopic phenomena, is not
included in the theoretical framework of the SM. According to the SM, there are two
classes of fundamental particles that shape our universe, the spin1/2 fermions which are
the matter particles and the spin 1 gauge bosons, which are the force carriers between the
fermions.

1.1 Fermions - Quarks and Leptons

The fermions are further classified into leptons (l) and quarks (q). There are six flavours
of leptons: the electron (e), the muon (µ), the tau (τ ) and their corresponding neutrinos
(νe, νµ, ντ ). The electric charged leptons interact via the electromagnetic and weak forces,
while the neutrinos, which carry no electric charge interact only via the weak force. In
the SM the neutrinos were presumed to be massless, but experimentally their masses have
been constraint to be non-zero but small [6] (see Table 1.1).There are also six flavours of
quarks: up (u), down (d), charm (c), strange (s), top (t) and bottom (b). Quarks interact
via the strong force as well as the electromagnetic and weak forces. The strong interac-
tion binds the quarks into a spectrum of particles called hadrons. The fermions can be
classified in three generations according to their rising masses as presented in Table 1.2
and 1.1. The SM does not predict the number of generations.

3



4 Standard Model

Table 1.1: The three generations of the Leptons.

Leptons

Particle Type Symbol Charge Mass (MeV) Generation

electron neutrino νe 0 <0.000003
1

electron e -1 0.511

muon neutrino νµ 0 <0.19
2

muon µ -1 105.6

tau neutrino ντ 0 <18.2
3

tau τ -1 1777

Table 1.2: The fundamental quarks.

Quarks

Particle Type Symbol Charge Mass (GeV) Generation

up quark u 2/3 0.003
1

down quark d -1/3 0.005

charm quark c 2/3 1.2
2

strange quark s -1/3 0.1

top quark t 2/3 178
3

bottom quark b -1/3 4.5

1.2 Interactions

There are four fundamental forces (see Table 1.3) that lead to interactions between the
matter particles:electromagnetic, weak, strong and gravitation. The electromagnetic,
weak and strong forces can be expressed as a quantum field theories, where the interac-
tions are mediated by a boson exchange between the interacting particles.

• Electromagnetic ForceThe quantum field theory of the electrodynamic force is
the Quantum Electrodynamicsor QED [7]. This theory explains the interactions
of all particles due to the electric charge by the exchange ofphotons. Since the
photons are massless the range of the force is infinite.
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• Weak ForceThe weak force is responsible for particle decays that change the type
of particle, such as quark flavours or lepton types. Due to themassive force carriers,
W and Z bosons, the weak force has a short range.

• Strong force The strong force binds quarks into hadrons. Strong interactions are
mediated by the exchange of gluons which carry colour chargeand are described
by the Quantum Chromodynamicsor QCD. The ”Short range” refers to the fact
that the force dies off exponentially in distance. This means that a nucleon is only
affected by the strong force of its nearest neighbors.

• Gravitational Force Gravity, which is classically explained by Einstein’s General
Relativity is responsible for interactions between massivebodies. Until now there
does not exist a correct formulation for a quantum theory of gravity that would
explain the interactions as the exchange of a graviton boson. In particle physics
gravity is generally disregarded due to the low masses of theelementary particles,
however its effects may have some undiscovered influences.

Table 1.3: The fundamental forces and properties.

Bosons

Force Carrier Range (cm) Relative Strength Mass (GeV) Charge Spin

Weak

W+ 80.4 +1 1

W− 10−16 10−6 80.4 -1 1

Z 91.2 0 1

EM photon (γ) infinite 10−2 0 0 1

Strong gluon (g) ∼ 10−13 1 0 0 1

1.3 The CABIBBO-KOBAYASHI-MASKAWA Matrix
and B physics

The exploration of physics withb flavoured hadrons (B mesons) offers a very good test-
ing ground for the SM description of the electroweak interactions. CP is the combined
transformation of charge conjugationC and the parity transformationP. The parity trans-
formation is an inversion of all space coordinates and the charge conjugation reverts the
sign of all charge-like quantum numbers from a particle. TheCP violation, which was
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discovered in 1964 by Christenson, Cronin, Fitch and Turlay inthe neutral kaon system
[8], is still one of the experimentally least constrained phenomena. The other main topic is
the study of rareb decays induced by flavour changing neutral current (FCNC) transitions
b → s, d which are loop-suppressed in the SM and thus very sensitive to new physics.

The B system appears to be most promising for testing the CP violation in the SM
in a quantitative way [9, 10, 11]. The CP violation in the SM is closely related to the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [12, 13]. For for thediscovery of the origin
of the broken symmetry which predicts the existence of at least three families of quarks
in nature Kobayashi and Maskawa got the Noble Prize in 2008. This matrix connects
the electroweak eigenstates (d′, s′, b′) of the down, strange and bottom quarks with their
mass eigenstates (d, s, b) through the following unitary transformation:





d′

s′

b′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 ·





d
s
b



 = V (CKM) ·





d
s
b



 (1.1)

The CKM matrix is a3× 3 unitary matrix withn2 free parameters to describe the matrix.
The phases are arbitrary, so2n − 1 parameters can be eliminated by phase rotations and
leading to(n − 1)2 independent parameters. In case of three generations (n = 3), the
CKM matrix contains four independent parameters which are represented by three Euler
angles and a single complex phase. The three rotation anglesare referred as mixing an-
gles and the complex phase allows for CP violation.
The values of the individual matrix elements can in principle all be determined from weak
decays of the relevant quarks or in some cases from deep inelastic neutrino scattering. Ta-
ble 1.4 shows the strength and a possible method to measure the different CKM matrix
elements and it can be seen that the diagonal elements are highly favored and those el-
ements farthest from the diagonal are the most suppressed. Concerning test of the CP
violation the central targets are probing the unitarity relations of the CKM matrix. The
unitarity of the CKM matrix is described by

V †
CKM · VCKM = 1 (1.2)

This leads to six relations which can be described by triangles in the complex plane
which all have the same area [15]. In only two of this six triangles the three sides are of
comparable magnitude:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

V ∗
udVtd + V ∗

usVts + V ∗
ubVtb = 0

(1.3)

The triangle described by the first Equation in 1.3 is presented in Fig. 1.1.

The unitarity triangle provides an important test of the CKM mechanism. The sides
and angles of the triangle can be measured and should ”close”within the confines of the
SM. If the triangle does not close, it would be an indication of New Physics beyond the
SM.
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Table 1.4: Quark transitions and their strength [14].

Quark Transition Strength Method of Measurement

Vud 0.97397-0.97441 Nuclearβ decay

Vus 0.2247-0.2267 K̄0 → π+e−ν̄e

Vub 0.00343-0.00375 B → πlν̄l

Vcd 0.2246-0.2266 D0 → π+e−ν̄e

Vcs 0.97311-0.97357 D0 → K−e+νe

Vcb 0.0404-0.0425 B → χclν̄l

Vtd 0.00837-0.00900 B − B0 mixing

Vts 0.0397-0.0417 b → s

Vtb 0.999090-0.999177 t → bW

(1, 0)

VtdV
∗
tb

VcdV
∗
cb

VudV
∗
ub

VcdV
∗
cb

β

α

γ

(ρ, η)

(0, 0)

Figure 1.1: The unitarity triangle.

1.3.1 Rare decays of B mesons

In the common understanding, rare B decays are due to heavilyCabibbo-suppressedb →
u transitions or flavour-changing neutral currents (FCNC)b → s or b → d which are
forbidden in the SM at tree-level. They proceed at higher order in loop induced effects.
In Table 1.4 it can be seen, that the strength of the matrix elementVts is small. The FCNC
will be discussed in more detail in section 2.



8 Standard Model

1.4 The Future of the Standard Model

To date, the SM fits with all experimental evidence but it is not complete. It contains
the Higgs mechanism to give particles physical masses, and requires the predicted Higgs
boson, which is yet undiscovered. By calculating the mass of the Higgs in the SM in-
cluding radiative corrections the mass diverges quadratically and to solve this problem
New Physics is expected at the TeV scale [16]. There are otherunsolved problems and
questions in the SM such as why the top quark is so much heavierthan the other quarks or
why we have only three generations and how to include gravity. For many years, theorists
have been working on trying to unify the forces; that is, to show that all four forces of
nature can be derived from a single force. The SM coupling strengths extrapolated to very
high energies do not converge at a single point. However, theintroduction of Physics be-
yond the SM such as Supersymmetry (SUSY) causes the couplingstrengths to converge
at a single point (see Fig. 1.2). This new induced heavy particles can appear in loops and
can enhance the branching fraction of rareB and FCNC decays significantly. Answers
to some of these questions are expected to be found at Tevatron and the Large Hadron
Collider (LHC) in Geneva.

Figure 1.2: Unification of couplings constants(ai = g2
i /(4π)) in the minimal su-

persymmetric model (MSSM) as compared to failure without supersymmetry [16].
(a1 =electromagnetic,a2 =weak anda3 =strong coupling constant)



Chapter 2

Flavour changing neutral current

2.1 FCNC and the GIM Mechanism

FCNC are well suited to probe the SM. The FCNC transitionsb → s or b → d are
Cabibbo-suppressed and are forbidden in the SM at tree-level. In the SM the neutral
currents (NC) are flavour conserving and there is no direct coupling between theb and
the s or d quark. The GIM mechanism (Glashow-Iliopoulos-Maiani[17]) explains the
non-existence of FCNC at tree level in the SM. For a two family quark model with the
mixing angleθC the CKM matrix can be written as

(

d′

s′

)

=

(

cos θC sin θC

− sin θC cos θC

)

·
(

d
s

)

(2.1)

The contributions to the NC at tree level can then be summarized by four fundamental
contributions:

NC = uu + d′d
′
+ s′s′ + cc (2.2)

With Equation 2.1:

NC = uu + dd · cos2 θC + ss · sin2 θC+(ds + sd) · cos θC · sin θC

+dd · sin2 θC + ss · cos2 θC−(ds + sd) · cos θC · sin θC + cc
(2.3)

The flavour changing amplitude(ds + sd) in Equation 2.3 cancel out so that finally the
NC consists of the sum of theqq pairs.

NC = uu + dd + ss + cc (2.4)

However, FCNC contributions to such processes are possible through so-called box and
penguin diagrams. These contributions make it possible to observe FCNC. FCNC pro-
cesses are probing virtual particles in the loop and can thusdiscover new physics.

9



10 Flavour changing neutral current

2.2 Box and Penguin Diagrams

As discussed in the previous section, the FCNC is absent in theSM at tree level but can
occur at one loop level. Some possible box and penguin diagrams are shown in Fig. 2.1

W−

γ, Z

tt

b s

W−

g

tt

b s
d

b̄

b
W−

ū, c̄, t̄

W+

u, c, t

d̄

Figure 2.1: Example of penguin and box diagrams

The effective vertices can be calculated by using elementary vertices and propagators,
and effective Feynman rules can be derived [18]. The suppression of these diagrams orig-
inates from the higher order in the gauge couplings. Their relative importance depends on
the mass of the internal fermion lines, which explains the importance of the contribution
of the top quark and the relevant CKM matrix element and also the sensitivity to heavy
new particles.

In the box and penguin diagrams appears a loop factorg2/16π2 ∼ 10−2 which sup-
presses its decay. Due to the mass differenceδmi of the quarks involved in the loop ad-
ditional (suppressing) factors of quadratic (m2

i /M
2
W ) and logarithmic (log m2

i /M
2
W ) form

appear. FCNC transitions for down-type (d, s and b) quarks aresensitive to the mass dif-
ference of the up-type (u,c and t) quarks in the loop and vice versa. On the basis of the
large mass of the top quarkmt > MW ≫ mc, mu the GIM mechanism is attenuated and
the down-type FCNC processesb → s, d ands → d are enhanced.

2.3 Effective Hamiltonian and Operator Product Expan-
sion

The amplitude for a decay of a given mesonM = K, B, ... into a final stateF can be
described as:

A(M → F ) = 〈F |Heff |M〉 (2.5)

whereHeff is the relevant Hamiltonian. These decays originate in weaktransitions me-
diating aW± or a Z boson. However, the presence of strong and electromagneticin-
teractions often has an important impact on weak decays. Dueto the fact that theW±

andZ are very massive the basic weak transition take place at veryshort distance scales
O(1/M2

W,Z). The strong interactions take place at both short and long distances and gen-
erally weak decays of hadrons receive contributions from both. To separate short distance
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effects from long distance effects the Operator Product Expansion (OPE) [19] combined
with the renormalization group is used. The OPE introduces local operators which are
governing ”effectively” the decay in question. All Hamiltonians considered can be writ-
ten as linear combinations of local four-fermion operatorsand the final decay amplitude
can be written as

A(M → F ) = −4 GF√
2

λCKM

∑

i

Ci(µ)〈F |Qi(µ)|M〉 (2.6)

Here,GF is the Fermi constant,λCKM is a CKM factor andµ is an appropriate renor-
malization scale. The local operators are denoted asQi ,andCi stands for the Wilson
coefficients, that are calculated by perturbative methods and are functions of the strong
coupling constantαs, MW andµ. The short distance contributions contained inCi(µ) are
separated by the scaleµ from the long distance contributions contained in〈F |Qi(µ)|M〉.
For B decays the scaleµ is chosen to be at the order of a few GeV, i.e., around the mass
of theb-quark. By evolving the scale fromµ = Q(MW ) down to lower values ofµ one
transforms the physics information at scales higher thanµ from the hadronic matrix ele-
ment intoCi(µ). Since the full amplitude can not depend on the scaleµ, theµ dependence
of the matrix element and the Wilson coefficients must cancelout. A set of basic opera-
tors entering the OPE can be specified at short distance. The typical diagrams in the full
theory which these operators originate from are shown in Fig. 2.2. They can be classified
in six classes [18]:

Current–Current (Figure 2.2a):

Q1 = (s̄LβγµcLα) (c̄LαγµbLβ)

Q2 = (s̄LγµcL) (c̄LγµbL)

QCD–Penguins (Figure 2.2b):

Q3 = (s̄LγµbL)
∑

q=u,d,s,c,b

(q̄γµq)

Q4 = (s̄LαγµbLβ)
∑

q=u,d,s,c,b

(q̄LβγµqLα)

Q5 = (s̄LγµbL)
∑

q=u,d,s,c,b

(q̄RγµqR)

Q6 = (s̄LαγµbLβ)
∑

q=u,d,s,c,b

(q̄RβγµqRα)
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Figure 2.2: Typical penguin and box diagrams [20].

Electroweak–Penguins (Figure 2.2c):

Q3Q =
3

2
(s̄LγµbL)

∑

q=u,d,s,c,b

eq (q̄RγµqR)

Q4Q =
3

2
(s̄LαγµbLβ)

∑

q=u,d,s,c,b

eq(q̄RβγµqRα)

Q5Q =
3

2
(s̄LγµbL)

∑

q=u,d,s,c,b

eq(q̄LγµqL)

Q6Q =
3

2
(s̄LαγµbLβ)

∑

q=u,d,s,c,b

eq (q̄LβγµqLα)
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Magnetic–Penguins (Figure 2.2d):

Q7 =
e

16π2
mbs̄LασµνbRαFµν

Q8 =
g

16π2
mbs̄LασµνT a

αβbRβGa
µν

Q7′ =
e

16π2
mss̄RασµνbLαFµν

Q8′ =
g

16π2
mss̄RασµνT a

αβbLβGa
µν

∆S = 2 and ∆B = 2 Operators (Figure 2.2e):

Q(∆S = 2) = (s̄LγµdL)(s̄LγµdL)

Q(∆B = 2) = (b̄LγµdL)(b̄LγµdL)

Semi–Leptonic Operators (Figure 2.2f):

Q9 =
e2

16π2
(s̄LγµbL)(l̄γµl)

Q10 =
e2

16π2
(s̄LγµbL)(l̄γµγ5l)

Q9′ =
e2

16π2
(s̄RγµbR)(l̄γµl)

Q10′ =
e2

16π2
(s̄RγµbR)(l̄γµγ5l)

Qνν̄ =
αem

4π
(s̄LγµbL)(ν̄LγµνL)

The quark color indices are represented byα andβ and are omitted for colour singlet
currents andeq is the electric charge of the relevant quark. The subscriptsR andL re-
fer to the left- and right-handed components of the fermion field. Fµν andGα

µν are the
electromagnetic and strong interaction tensor.

Different decays are sensitive to different Wilson coefficients. For example the transi-
tion b → s ℓ+ ℓ− is sensitive to the values and signs ofC7, C9 andC10 and limits on this
coefficients can be obtained by measuring such decays. The calculation of the rare decay
rates involves three distinct steps:

• Determination of the initial conditions of the Wilson coefficients at the electroweak
scale.

• Evaluation by means of the renormalization group equationsof Ci down to
µ = O(mb)

• Evaluation of the hadronic matrix element of the effective operators atµ = O(mb),
including both perturbative and non-perturbative QCD corrections.
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2.4 B → Xs γ

It was recognized some time ago that, because of structure ofthe quark mixing matrix
and because of the very heavy top mass [21], rates for processes such asB → Xs γ and
B → Xs ℓ+ ℓ− could be sizable. Among rareB decays, theB → Xs γ mode is the most
prominent because it was already measured by several independente+ e− experiments,
mostly at theΥ(4S) resonance. As this process is dominated by the two-body decay
b → s γ , its photon energy spectrum is expected to be a smeared deltafunction centered
atEγ ≈ mb/2. The effective Hamiltonian is given by

Heff = −4GF√
2

V ∗
tsVtb

8
∑

i=1

Ci(µ)Qi(µ) (2.7)

The operators contributing to the effective Hamiltonian are the current-current operators
(Q1, Q2), the QCD-penguin operators (Q3, . . . , Q6) and the magnetic penguin operators
(Q7γ , Q8G). It is the magneticγ-penguin that plays the crucial role in this decay. However,
the role of the dominant current-current operatorQ2 should not be underestimated. Indeed
the short distance QCD effects involving in particular the mixing betweenQ2 andQ7γ are
very important in this decay. They are known to enhanceC7γ(µ) substantially, so that
the resulting branching fraction Br(B → Xs γ ) turns out to be a factor 2-3 higher than
it would be without QCD effects [22, 23]. At next-to-next-to-leading order QCD the
theoretical SM branching fraction is predicted to be [24]

B(B → Xs γ )SM = (3.15 ± 0.23) × 10−4

for Eγ > 1.6 GeV in the B-meson rest frame. The latest measurements were performed
by Belle [25] and BABAR [26] and the world average performed bythe Heavy Flavour
Averaging Group [27] forEγ > 1.6 GeV is

B(B → Xs γ )exp = (3.52 ± 0.23 ± 0.09) × 10−4 (2.8)

which is in good agreement with theory.

2.5 B → Xs ℓ+ ℓ−

The inclusiveB → Xs ℓ+ ℓ− decay presents a complementary and a more complex test
of the SM, since different contributions add to the decay rate. It is particularly attractive
because of kinematic observables such as the invariant dilepton mass spectrum and the
forward-backward (FB) asymmetry. The effective Hamiltonian of this decay is given by

Heff(b → sµ+µ−) = Heff(b → sγ) − 4GF√
2

V ∗
tsVtb[C9V (µ)Q9V + C10A(µ)Q10A] (2.9)
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The semileptonicZ0 and theγ penguin operators (Q9V , Q10A) are additional contribu-
tions compared toHeff(b → sγ). The SM values of the Wilson coefficients can be found
in Table 2.1 [28].

Table 2.1: Values of SM Wilson coefficients. Here,Ceff
7 ≡ C7 − C5/3 − C6) andC(0) ≡

3C1 + C2 + 3C3 + C4 + 3C5 + C6 [28].

C1 C2 C3 C4 C5 C6 Ceff
7 C9 C10

−0.248 +1.107 +0.011 −0.026 +0.007 −0.031 −0.313 +4.344 −4.669

By precise measurements of the forward-backward asymmetry in b → s ℓ+ℓ− the
Wilson coefficientsC7, C9, andC10 and their signs can be determined. This helps to con-
solidate the SM or indicate New Physics (see Fig. 2.3). The forward-backward asymmetry

Figure 2.3: FB asymmetry for the decayB → K∗ℓ+ℓ− as a function ofq2. The light
band corresponds to the region of parameter space with same (negative) sign forC7 as in
the SM; the dark band refers to solutions with flipped sign forC7; the dotted line is the
central value of the SM prediction [29].
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for leptons as a function of the squared di-lepton massm2
ℓℓ = q2 is defined as

AFB(q2) =

∫ 1

0

d2Γ

dxdq2
dx −

∫ 0

−1

d2Γ

dxdq2
dx

dΓ

dq2

, (2.10)

wherex ≡ cos θ parameterises the angle between theℓ+ and theB meson in the di-lepton
centre-of-mass frame.

The long-distance contributions are generated by the current-current operatorsQ1 and
Q2. In the dimuon invariant mass regions around theJ/ψ andψ(2S) resonances, the
decay is largely dominated by the long-distance contributions, while the short-distance
contributions dominate away from these resonances. The branching fraction of the reso-
nant long-distance decay is about two to three orders of magnitude larger than the short-
distance decay (see Fig. 2.4). For the calculation of the non-resonant branching fraction
the large distance processes have to be excluded. For most final states, the long-distance
decayB → Xs J/ψ is well established (with theJ/ψ usually seen via its decay to two
muons), and the main interest lies in the observation of the short distance processes. To

Figure 2.4: Schematic dilepton mass spectrum ofB → Xs ℓ+ ℓ−, the dashed line corre-
sponds to the perturbative contribution [30]. The solid line shows the two resonances of
J/ψ andψ′
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evaluate the short-distance physics in the di-lepton mass spectrum two regions are inter-
esting:

• low q2 region between 1 and 6 GeV/c2 with a reliableq2 spectra and small1/mb

corrections. Here, the decay rate is sensitive to the interference ofC7 andC9.

• high q2 region where the1/mb corrections are more important and with a less
reliableq2 spectra. Here, it is easier to perform a inclusive measurement although
the rate is lower. The branching fraction in this region is mainly sensitive to|C10|2

2.5.1 Exclusive decays

It is experimentally easier to measure the exclusive decaysB → K ℓ+ ℓ− or B →
K∗ ℓ+ ℓ− than to perform an inclusive measurement. The uncertainties on the SM pre-
dictions are dominated by the errors on the hadronic form factors and are much larger
than in the corresponding inclusive decays. Different methods have been used to calcu-
late the form factors. Usually they are calculated in a smallq2 region and then extrapolated
to the entire region. Aliet al. used in their calculations the Light Cone-QCD sum rule
approach while Melikhovet al. used the quark model. The results of their calculations
for the branching fractions can be seen in Table 2.2. Due to the theoretical uncertainties
in the determination of the form factor, it is difficult to obtain fundamental parameters of
the SM, such as CKM elements, from the exclusive decays.

Table 2.2: Branching fractions forB → K(∗) ℓ+ℓ− predicted in the framework of the
Standard Model.

Predicted branching fractionB[×10−6]
Mode

Ali et al. [31] Melikhov et al. [32]

B± → K ℓ+ℓ− 0.35 ± 0.12 0.44

B → K∗ e+e− 1.58 ± 0.49 1.5

B0
d → K∗ µ+µ− 1.19 ± 0.39 1.15

The exclusive decays have been measured at hadron collidersand at B-factories. The
first observation ofB → K ℓ+ ℓ− was reported in 2002 by the Belle collaboration [33].
Also the decayB → K∗ ℓ+ ℓ− was first observed by the Belle experiment, in 2003 [34].
Shortly after, also the BaBar collaboration reported measurements of these exclusive de-
cays [35]. The most recent measurements are summarized in Table 2.3 [27].
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Table 2.3: Measurements of the branching fractions forB → K(∗) ℓ+ℓ−.

Measured branching fractionB[×10−6]
Mode

Belle [36] BaBar [37] CDF [27]

B± → K ℓ+ℓ− 0.53+0.06
−0.05 ± 0.03 0.34+0.07

−0.07 ± 0.03

B± → K± µ+µ− 0.53+0.08
−0.07 ± 0.03 0.31+0.15

−0.12 ± 0.04 0.60 ± 0.15 ± 0.04

Bd → K∗ ℓ+ℓ− 1.08+0.11
−0.10 ± 0.09 0.78+0.19

−0.17 ± 0.12

B0
d → K∗ µ+µ− 1.12+0.16

−0.14 ± 0.08 0.90+0.35
−0.30 ± 0.13 0.82 ± 0.31 ± 0.10

As discussed in the previous chapter, the forward-backwardasymmetryAFB is an
interesting kinematic property. The Belle collaboration reported in [38] the first measure-
ment of the forward-backward asymmetry as a function ofq2 for B → K∗ ℓ+ ℓ−. Within
their limited statistical precision, the measured asymmetry is consistent with the SM. In
a more recent Belle publication [36] the forward-backward asymmetry tends to be shifted
toward the positive side from the SM expectation (see Fig. 2.3).

2.6 Normalisation processes

When observing a decay of aB meson to a specific final statef the expected number of
events is given by

Nobs(f) =

∫

Ldt · σB · B(B → f) · ǫ (2.11)

where
∫

Ldt is the total integrated luminosity of the data sample used inthe analysis,σB

is theB meson production cross section,B(B → f) is the branching fraction into the
specific final state andǫ is the corresponding detection and reconstruction efficiency. The
fragmentation of thebb to the differentB mesons has to be taken into account and is given
by

σB± = σbb · f(b → B±) (2.12)

σBd
= σbb · f(b → Bd) (2.13)

whereσbb is the totalbb production cross section which has to be multiplied by the frag-
mentation fractionf of producing aB± or aBd. The expected number of events for the



Flavour changing neutral current 19

decaysB± → K± µ+µ− andB± → J/ψ K± is then given by:

NB±→J/ψ K± =

∫

L dt · σB± · B(B± → J/ψ K±) · B(J/ψ → µ+µ−) · ǫB±

J/ψK

NB±→K± µ+µ− =

∫

L dt · σB± · B(B± → K± µ+µ−) · ·ǫB±

µ+µ−K . (2.14)

By the normalisation of the measurement to a decay with a similar final state the total lu-
minosity an the B production cross section cancel out. The ratio of the two Equations 2.14
is:

NB±→K± µ+µ−

NB±→J/ψ K±

=
B(B± → K± µ+µ−) · ǫB±

µ+µ−K

B(B± → J/ψ K±) · B(J/ψ → µ+µ−) · ǫB±

J/ψK±

(2.15)

From Equation 2.15, one can derive a formula to calculate thebranching fraction or a limit
for the decayB± → K± µ+µ−

B(B± → K± µ+µ−) =
NB±→K± µ+µ−

NB±→J/ψ K±

·
ǫB±

J/ψK±

ǫB±

µ+µ−K

· B(B± → J/ψ K±) · B(J/ψ → µ+µ−)

(2.16)
The same holds for the decayB0

d → K∗ µ+µ− usingB0
d → J/ψ K∗(892) as normalisa-

tion channel. The decaysB± → J/ψ K± andB0
d → J/ψ K∗(892) occur at tree level (see

Fig. 2.5) and therefore the branching fractions are about103 times larger than for the rare
decaysB± → K± µ+µ− andB0

d → K∗ µ+µ− (see Table 2.4). The normalisation chan-
nel is also used for comparisons between data and simulationas it should have similar
kinematic properties as the signal channel and a larger branching fraction. .

b c

c

s

u

W

u

Figure 2.5: SM diagrams for the decayB± → J/ψ K±.
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Table 2.4: The branching fraction for the signal and normalisation channel. The values
are taken from the PDG [14].

Decay Channel Branching fraction

B± → K± µ+µ− (4.5+1.4
−1.7) · 10−7

B± → J/ψ K± (1.00 ± 0.04) · 10−3

B0
d → K∗ µ+µ− (1.10+0.29

−0.26) · 10−6

B0
d → J/ψ K∗(892) (1.33 ± 0.06) · 10−3



Chapter 3

The DØ experiment at the Tevatron

The Tevatron proton-antiproton (pp) collider at theFermi National Accelerator Labora-
tory (FERMILAB ) [39] in Batavia, Illinois, USA, is the highest-energy particle collider
currently operational (see Fig. 3.1). The two experiments DØ [40] and CDF [41] col-
lected about 125 pb−1 of pp collision data at a center-of-mass energy of 1.8 TeV during
the years 1992 to 1996 (Run I), leading to the discovery of the top quark [42, 43] and
the measurement of its mass. Further a precision measurement of the mass of theW
boson, detailed analyses of gauge boson couplings, studiesof jet production and vastly
improved limits on new phenomena, such as leptoquarks and supersymmetric particles,
among many other measurements have been accomplished.

Figure 3.1: The accelerator facilities at FERMILAB with the two multi purpose detectors
CDF and DØ.

21
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During a shutdown of five years the accelerator and the experiments were signifi-
cantly upgraded [44, 45]. In 2001 the second data-taking period started (Run II) and it is
expected to collect around 8 fb−1 - 9 fb−1 by the year 2009.

3.1 Tevatron

After the upgrade the Tevatron accelerator operates at a center-of-mass energy of
1.96 TeV. The main ring has a circumference of about6 km in which the protons cir-
culate clockwise and the antiprotons counter clockwise. Intwo interaction regions, where
the detectors of CDF and DØ are built, the particles collide.

There are several stages to complete this process, startingfrom producing the protons
and antiprotons, successive acceleration and finally colliding them at the two detector
points. The Fermilab accelerator facilities are shown in Fig 3.2

Figure 3.2: The accelerator facilities at FERMILAB with the two multi purpose detectors
CDF and DØ.
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3.1.1 Production of protons and pre-acceleration

Negatively charged hydrogen ions are accelerated to 750 keVby a Cockcroft-Walton ac-
celerator and then injected into a 165 m long linear accelerator which boosts their energy
to 400 MeV. The H− ions pass through a carbon foil to strip off their two electrons and
leave H+ ions (protons) which are injected into the Booster, a synchrotron which brings
their energy to 8 GeV. From the Booster the protons are sent to the Main Injector for the
next stage of acceleration.

3.1.2 Main Injector (MI)

The Main Injector performs several functions besides accelerating protons and antiprotons
to an energy of 150 GeV and injecting them into the Tevatron [46]. The 8 GeV protons
from the Booster are first accelerated to 120 GeV and then delivered to the antiproton
production target (a Nickel-Copper target). The collision energy is chosen such that the
energy spectrum of the emerging antiprotons (p̄) has its maximum at about 8 GeV. On
average, around 50 000 protons are necessary to produce one antiproton in the required
energy range. The Tevatron complex is designed in such a way that new antiprotons can
be produced in parallel to collisions taking place in the main Tevatron ring. The produced
antiprotons are cooled and debunched in the Debuncher and Accumulator, and once the
number of antiprotons is sufficiently large they are passed back to the MI where they are
accelerated to 150 GeV before being transfered to the Tevatron.

3.1.3 The Tevatron Ring Synchrotron

In the last stage of the acceleration process the 150 GeV protons and antiprotons from the
MI are passed in bunches into the Tevatron ring. 36 bunches ofprotons and 36 bunches
of antiprotons are loaded in opposite directions which results in a time interval of 396 ns
between two consecutive collisions. After the injection the particles are accelerated to
their final energy of 980 GeV, squeezed in the transverse plane through the quadrupole
magnets and collided at the two intersection points.

The number of collisions per second depends on the instantaneous luminosity. Fig-
ure 3.3 shows the integrated luminosity per week and the total integrated luminosity accu-
mulated in Run II from May 2001 until August 2008 as of today an integrated luminosity
of 5 fb−1.
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Figure 3.3: The integrated luminosity per week and total integrated luminosity for Run II
from May 2001 until August 2008 in pb−1.

3.2 The DØ Detector

The DØ detector is a multi-purpose detector designed to measure the remnants ofpp colli-
sions, especially muons, electrons, jets and missing transverse energy. It was constructed
in the late 1980’s and early 1990’s. After the period from 1992 to 1996 (Run I) the DØ de-
tector was upgraded to handle the increased luminosity of the Tevatron [47, 48] in Run
II. The DØ detector, like other high energy particle physicsdetectors, is composed of dif-
ferent sub-systems that surrounds each other like the layers of an onion. There are three
major sub-systems. In the core of the detector, there is the tracking system surrounded
by a 2 Tesla solenoid magnetic field. This combination allowsprecise measurements of
the positions and transverse momenta of the charged particles traveling outwards from
the interaction point. Outside of the tracking volume and the solenoid, there are the DØ
calorimeters, a system of finely grained Uranium and Liquid Argon calorimeters which
record the energies and positions of hadronic and electromagnetic showers. The last sub-
system is a three layer muon spectrometer which detects the presence and measures the
momenta of the muons escaping the detector. Figure 3.4 showsa schematic overview of
the detector.
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Figure 3.4: Cross-sectional view of the DØ Run II detector.
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3.2.1 The coordinate System

DØ uses a right-handed coordinate system where the proton beam defines the positivez-
axis. They-axis points upwards and thex-axis points towards the center of the Tevatron
ring. There are two common choices for the origin of the coordinate system: The physics
coordinates, where the origin is located at the reconstructed vertex of the interaction, and
the detector coordinates, where the origin is chosen to be atthe center of the DØ detector.
Because the DØ detector has cylindrical symmetry around thez-axis it is often useful to
use cylindrical coordinates (r,φ) with the transformation:

r =
√

x2 + y2

(3.1)

φ = arctan
y

x

Additionally, it is sometimes convenient to introduce the pseudorapidityη, which can be
expressed with the polar angleθ:

η = − ln tan
θ

2
. (3.2)

3.2.2 Central Tracking System

The central tracking system (see Fig. 3.5) consists of an inner high resolution silicon
tracker (Layer 0 and SMT) surrounded by a scintillating central fiber tracker (CFT).
These detectors are immersed in a 2 Tesla magnetic solenoid field. The tracking sys-
tem was designed to provide momentum measurements using themagnetic field good
electron identification, tracking over a large pseudorapidity range, secondary vertex de-
tection, triggering, and a fast response for a bunch crossing time of 396 ns.

Silicon Microstrip Tracker - SMT

The SMT uses the siliconpn-junction technology with readout strips to perform precise
position measurements with a resolution of about 20µm. In order to allow good vertexing
and three-dimensional track reconstruction for higher momentum tracks over a large ac-
ceptance up to an|η ≈ | 3, a layout was chosen with six barrel modules with rectangular
silicon sensors parallel to the beam axis, interspersed with twelve F-disks with wedge-
shaped sensors transverse to the beam axis (see Fig. 3.6). Inthe forward and backward
region are two more disks, the so-called H-disks. While the barrel detector measures
primarily ther - φ coordinates, the disks measure bothr - φ andr - z.

Each barrel is built of silicon 4 detector layers that can be seen in Fig. 3.7. The two
layers 1 and 3 of the four inner barrels are double-sided silicon ladders with axial strips
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Figure 3.5: Schematic view of the inner tracking system in the (y, z)-plane. Depicted are
the tracking detectors SMT and CFT, located inside the 2 Teslasolenoid field.

H−Disk 1

F−Disk 11
F−Disk 12

H−Disk 4Barrel 1 Barrel 4 Barrel 6
Beam Pipe

F−Disk 1

Figure 3.6: Isometric view of the DØ Silicon Microstrip Tracker.

(parallel to the beam line) on one side and90◦ stereo angle strips on the other side, while
the outer barrels have only single-sided ladders with axialstrips and hence provide no
stereo information. Layers 2 and 4 of all barrels are equipped with double-sided silicon
sensors with axial strips on one side and2◦ stereo angle on the reverse side.

The F-disks are made of double-sided wedges with−15◦ stereo angle on one side and
+15◦ on the other. Four F-disks are sandwiched between the barrels while the remaining
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cooling pipe

beryllium bulkhead

ladder (layer 4)

carbon fiber support 

2

4

1

3

Figure 3.7: Cross section of an an DØ SMT barrel with the 4 detector layers build of
single or double-sided ladders (ladders) .

eight are located at both ends of the SMT barrel. Towards the end of the interaction region,
there are the H-disks, two on each side. These disks are made of single-sided wedges and
help to extend the SMT coverage to|ηdet| < 3.0. A summary of the SMT layout is given
in Table 3.1 [49].

Barrels F-Disks H-Disks

#Channels 387 072 258 048 147 456

Sensors s/d sided double sided single sided

Stereo 0◦, 2◦, 90◦ ±15◦ ±7.5◦

#Modules 432 144 96 pairs

Si area 1.3 m2 0.4 m2 1.3 m2

Inner radius 2.7 cm 2.6 cm 9.5 cm

Outer radius 9.4 cm 10.5 cm 26 cm

Maximal |z| 38.4 cm 54.8 cm 120 cm

Table 3.1: Specifications of the silicon vertex detector, where ”s,d” means single, double
sided.
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Central Fiber Tracker - CFT

The Central Fiber Tracker [47, 48] surrounds the SMT what can be seen in Fig. 3.5 and 3.8
and covers the central region to|ηdet| < 2.0 . The CFT is composed of approximately
200 km of scintillating fiber [50] with a diameter of 830µm. The scintillating fibers are
arranged in 8 barrels between radii of 20 cm and 60 cm. Each barrel consists of two double
layers of fibers, one axial double layer and one stereo doublelayer of either+3◦ or −3◦

stereo fibers. The fibers in each layer are grouped into ”ribbons”. The number of ribbons
varies from 10 in the first CFT layer to 28 in the last layer. To provide maximal coverage,
the fibers of a double layer are staggered with an offset of half a fiber width as shown in
Fig. 3.8. The resolution of the CFT is about 100µm.

Figure 3.8: r - z view of a quarter of the DØ tracking system. The insert shows more
details of the configuration of the CFT.

The light is only observed from one end of each scintillatingfiber. The opposite end of
the scintillating fibers is sputtered with an aluminum coating that provides a reflectivity
of 85 to 90%. The scintillating light is further propagated through clear fiber waveg-
uides to visible light photon counters (VLPCs) located at theend of the waveguides. The
VPLCs, situated outside of the detector acceptance, read outthe signal and convert it to
an electrical pulse.
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Solenoid Magnet

The transverse momenta of charged particles are determinedfrom their curvature in the
2 Tesla magnetic field produced by the solenoid magnet [51]. The solenoid is a 2.73 m
long superconducting magnet with a mean radius of 60 cm. The uniformity of the field
inside the tracking volume is better than 0.5% and the solenoid has a thickness of approx-
imately 0.9 radiation lengths.

Layer 0

The extended running period of the Tevatron until 2009 made an upgrade of the existing
DØ silicon tracker mandatory. First, plans were made to exchange the complete SMT
detector [52]. After cancellation of this project at the endof 2003 due to budget con-
straints, it was immediately decided to construct a new inner silicon layer [53] which is
closer to the beam line than the SMT. The so-called Layer 0 uses much of the existing
infrastructure of the ”old” SMT. The outer H-disks on each side were removed and their
readout is now used for Layer 0. This design was rather challenging because it had to fit
in the existing SMT and had to be able to slide over the beam pipe for its installation. A
photograph of Layer 0 is shown in Fig. 3.9. .

Figure 3.9: An overview of Layer 0 detector is shown on the left. The right photo shows
the silicon sensors in the center of Layer 0

Layer 0 consists of 48 single-sided sensors with a 50µm readout pitch [54] and has an
inner radius of 16 mm and and outer radius of 17.6 mm. An individual Layer 0 module
consists of a silicon sensor, a pair of analog cables with 91µm pitch stacked on top of
each other with 45µm offset and a hybrid with two readout sensors.

During November 2005 a dedicated cosmics muon experiment has been set up in
the SiDet laboratory to study the pedestals, noise and determination of the single track
reconstruction [55]. The setup consisted of four layers of spare Layer 0 modules, precisely
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aligned with a cosmics muon trigger system. About 10000 cosmics muon events have
been triggered, and about 4000 tracks have been fully reconstructed. The main results of
this test are:

• We define hit finding efficiency as ”number of track-pointed hits/the number of
expected hits”. The number of ”Expected hits” is equal to thenumber of events that
have a track. Tracks are formed with hits in the modules 1 and 4and the efficiency
is determined on hits in modules 2 and 3. The hit reconstruction efficiency is 96%.
Systematic errors were not taken into account. In the Monte Carlo simulation the
corresponding efficency is found to be 99%.

• The hit position resolution is defined as ”measured position- projected position”,
where the ”projected position” is the calculated position on module 2 or 3 of a track
built out of hits in module 1 and 4. The hit position resolution is about 11µm for
incident muons, which is very well simulated in the Monte Carlo.

The installation and commissioning were during the shutdown in spring 2006. Layer 0 is
important for the DØ experiment in order to enhance the b-tagging capabilities due to an
improved impact parameter resolution (see Fig. 3.10 and 3.11).

Figure 3.10: The three lines show simulations of the impact parameter resolution as a
function of the transverse momentum of the tracks. The squares show the performance of
the current Run IIa detector. The other two lines correspond to simulations with total loss
of the innermost Layer-1 of the current Run IIa detector: one with the addition of Layer
0 (triangles) and one without (circles) [56].
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Figure 3.11: Impact parameter resolution for tracks without (left) and with (right) a hit in
Layer 0. The tracks are from cosmics muons with apt <5 GeV/c [57].

Preshower detectors

The preshower detectors are situated just outside the solenoid and just before the calorime-
ter. They function as tracking devices as well as calorimeters and help in electron identi-
fication and triggering. They are used in the offline reconstruction to correct electromag-
netic energy measurements of the calorimeter for losses in the solenoid, lead absorber,
and in material such as cables and supports. The preshower system consists of the central
(CPS) and the forward (FPS) preshower detectors.

The CPS are located in the 51 mm gap between the solenoid and thecentral calorime-
ter cryostat and cover a region of|η| < 1.3. In front of the CPS a one radiation length
thick Pb layer acts as a pre-radiator. The CPS are built of three concentric layers of scin-
tillating strips: one inner axial layer and two outer stereolayers at an angle of±23◦. A
wavelength shifting fiber in the center of each element is used for the readout. The light is
transmitted by clear waveguides and is read out by visible light photon counters (VPLCs)
in a similar manner as in the fiber tracker.

The FPS are mounted on the faces of the end calorimeters and cover the region
1.5 < |η| < 2.5. The design of the FPS is similar to that of the CPS. A layer of lead
absorber is sandwiched between two scintillator planes in the region of|η| > 1.65. In
the smallerη region electrons and photons are expected to shower as they pass through
the solenoid, hence no additional material is used. Directly in front of the lead absorbers,
there are two additional layers of scintillating pre-shower fibers which are known as the
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MIP layers. Photons do not leave a signature in the MIP and so the MIP layers can be
used to distinguish muons, electrons and photons.

The preshower detectors are discussed in more detail in [58]and [59].

3.2.3 Calorimeter system

The calorimeters [47, 48, 60] were designed to provide energy measurements for elec-
trons, photons and jets and to assist in the particle identification. The system consists of
three sampling calorimeters (electromagnetic, fine hadronic and coarse hadronic) and an
intercryostat detector. An overview of the calorimeter system can be seen in Figure 3.12.

Figure 3.12: Isometric view of the central and two end calorimeters.

The central calorimeter (CC) covers|η| . 1 and the two end calorimeters, ECN (north)
and ECS (south) extend the coverage to|η| ≈ 4. Closest to the interaction region, there is
the electromagnetic section followed by the fine and coarse hadronic sections. The active
medium of the calorimeters is liquid argon. Each of the threecalorimeters (CC, ECN
and ECS) is located within its own cryostat which maintains the detector temperature at
approximately 90 K. Different absorber materials are used in different locations. The elec-
tromagnetic section (EM) uses thin plates (3 or 4 mm) made from nearly pure depleted
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uranium. The fine hadronic sections are made from 6 mm thick uranium-niobium (2%)
alloy. In the CC the coarse hadronic modules contain relativethick (46.5 mm) plates of
copper and in the EC there are stainless steel plates.

3.2.4 Muon System

The outermost detector subsystem is devoted to the detection and triggering of muons
and to measure their momentum and charge. Due to the small interaction cross-sections
of muons they pass all the material in the inner part of the detector while almost all elec-
trons and hadrons are absorbed. The muon system is composed of sheets of scintillation
pixels, proportional drift tubes (PDTs) and mini drift tubes (MDTs). These perform posi-
tion measurements and time measurements, which also can be used to reject cosmic ray
muons. A 1.8 Tesla iron toroid magnet provides the ability for a momentum measurement
independent of the central tracking system. The muon systemis divided into a central
muon system with a coverage of|η| ≤ 1 which uses PDTs for the position measurement
and a forward muon system which covers1 < |η| ≤ 2 with MDTs. Both systems employ
scintillating counters for triggering and vetoing of cosmic ray muons. Each system is split
into three layers known as the A, B and C layers (see Fig. 3.13). Layer A is the inner-
most layer and lies just outside the calorimeter but inside the toroid magnet. The other
two layers (B and C) are positioned outside the toroid. In the region directly below the
calorimeter, only partial coverage by muon detectors is possible since the support struc-
ture for the DØ detector and readout electronics are locatedin this region. Fig. 3.13 and
Fig. 3.14 show the layout of PDTs, MDTs and scintillators in an exploded view.

Proportional Drift Tubes - PDTs

The layout of the PDTs [61] can be seen in Fig. 3.13. They are rectangular (∼
2.8×5.6m2) gasfilled cells with anode wire at the center, cathode pads above and be-
low the wire. Charged particles traversing this volume ionize the gas and the electrons
from the ionization are collected and amplified by a wire in the center of the cell. The
maximum drift time of the electrons in the PDTs is 500 ns. The drift direction is parallel
to thez-coordinate, with an expected drift distance resolution ofapproximately 1 mm.

Mini Drift Tubes - MDTs

The MDTs [62] (∼ 9.4×9.4mm2)which cover the forward region (see Fig. 3.13) are
similar to the PDTs but have shorter electron drift time (< 60 ns, as opposed to almost
500 ns in the PDTs), and slightly better coordinate resolution of≈ 0.7 mm.
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Figure 3.13: Exploded view of the muon wire chambers.

Scintillation Counters

Sheets of scintillating material serve to provide additional position measurements and
are used for triggering, cosmic ray veto and track reconstruction. The scintillation light
is collected by photomultipliers attached to one corner. Scintillating muon detectors are
arranged in each layer except the B layer of the central muon system as shown in Fig. 3.14.

Shielding

In order to reduce background in the central and forward muonsystem, a shielding system
consisting of layers of iron, polyethylene and lead in a steel structure is installed, around
the beam pipe and the low beta quadrupole magnets. Iron is used as a hadronic and
electromagnetic absorber, polyethylene is a good absorberfor neutrons due to its high
hydrogen content, and lead is used to absorb gamma rays.



36 The DØ experiment at the Tevatron

Figure 3.14: Exploded view of the muon scintillator counters.

3.2.5 Luminosity System

The primary purpose of the Luminosity Monitor (LM) [63] is todetermine the Tevatron
collider luminosity in the DØ interaction region [64]. Thisrequires a measurement of
the rate of the inelasticpp interactions and is achieved by detecting the charged remnants
of the proton and antiproton after the collision. The LM detector consists of two arrays
of scintillation counters and is located in front of the end calorimeters. They occupy the
radial region between the beam pipe and the forward preshower detector at az ∼ ±
140 cm as shown in Fig. 3.15. Each array consists of 24 wedges of scintillating material
read out by photomultipliers and covers the pseudorapidityrange2.7 < |η| < 4.4.
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Figure 3.15: Luminosity Monitor layout. Ther − φ view is shown on the left, ther − z
view of the two arrays is shown on the right.

3.2.6 Trigger System

Three distinct levels form the trigger system [65] with eachsucceeding level examining
fewer events but in greater detail and with more complexity.An overview of the DØ
trigger and data acquisition system is shown in Fig. 3.16.

Figure 3.16: Overview of the integrated DØ trigger and data acquisition system.

Collisions occur at a rate of 1.7 MHz. The first stage (Level 1 orL1) comprises a
collection of hardware trigger elements that provide an accept rate of about 2 kHz. Events
awaiting L1 trigger decisions, are buffered in a piplined and thus make minimal contribu-
tion to the deadtime. The trigger framework (TFW) gathers digital information from each
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of the specific L1 trigger devices and chooses if a particularevent is to be accepted for
further examination. In order to participate in the triggerdecision the L1 trigger decision
must arrive at the trigger framework in 4.2µs or less.

The second stage (Level 2 or L2) [66] consists of two stages, preprocessors which are
specific to each subdetector and a global processor which combines information from the
different preprocessors to make a trigger decision. The L2 trigger system is the first one
in the chain to look at event-wide variables to create objects like muons, electrons or jets.
The L2 was designed to handle an input rate up to 10 kHz with a maximum acceptance
rate of 1 kHz. Events passing L2 are tagged for full read out and further analysis. A block
diagram of the L1 and L2 system can bee seen in Fig. 3.17.

Figure 3.17: A block diagram of the L1 and L2 system.

Candidates passing L1 and L2 are sent to a farm of Level 3 (L3) [67] microprocessors
where the rate is reduced to 50 Hz. The L3 decisions are based on complete physics
objects as well as the relations between such objects (such as rapidity or azimuthal angle
separating physics objects or their invariant mass). Events also passing the L3 trigger are
send to FERMILAB ‘s Feynman Computing Center, where the events are stored to tape for
offline analysis.



Chapter 4

Event Reconstruction

The raw data recorded from the DØ Detector consists of digitized readout for each channel
of each sub-detector such as pulse heights of collected charge in the calorimeter and
silicon, light yields from the scintillators, hits in the tracking system, drift time from
muons etc. The DØ reconstruction program DØ Reco [68] uses theraw data as input and
decodes the detector hits, fits track trajectories and uses particle identification algorithms
to create the particle objects like muons, electrons, jets and photons. The major steps of
the DØ Reco are:

1. Decoding hit information: The digitized signals from the tracking detectors (SMT
and CFT) are converted to spatial locations of the hits. The output of the calorimeter
cells is decoded to energy deposits.

2. Tracking and Clustering: The hits from the tracking system are then combined to
form tracks while the calorimeter energy deposits are grouped to form clusters.

3. Vertexing: With the help of various kinematic quantities the location of the pp
interaction point (primary vertex) and decay vertices of long-lived particles (sec-
ondary vertices) can be found. The vertices are essential for the particle identifica-
tion.

4. Particle identification: The tracking and calorimeter information is combined to
form candidates for muons, electrons, photons, etc.

The reconstruction and particle identification algorithmsused in this analysis ,such as
muon identification, track and vertex reconstruction, are discussed in this chapter.

39
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4.1 Track Reconstruction

The reconstruction of particle trajectories is a first step in the event reconstruction. The
trajectories of all charged particles are reconstructed from the energy they deposit in the
tracking detectors i.e. in the SMT and the CFT. Two algorithmsare used to find the tracks,
the histogram track finding algorithm (HFT) [69] and the alternative algorithm (AA) [70].
The collection of track candidates from the AA and HTF methods are combined and
duplicates are removed. .

4.1.1 HFT Tracking Algorithm

A charge particle will follow a helical path as it travels through the longitudinally oriented
magnetic field of solenoid. The projection of this path on thex×y plane will form a circle
of radiusρ = q B

pt
and positionφ, whereq is the charge of the particle,B is the magnitude

of the magnetic field,pt is the transverse momentum of the track andφ is the angular
direction of the particle at the distance of closest approach (DCA) to the beam spot. Since
all points along the true path will have identical values forρ and φ, it is possible to
identify hits that belong to the same particle track by forming a histogram of the hits in
theρ× φ coordinate space. By using the Hough transformation [71], a single hit inx× y
coordinate space will correspond to a line of potential values inρ × φ plane. A similar
transformation can be made between hits in ther×z plane to lines in the parameter space
z0 × C, wherez0 is the position of the track origin along thez axis, andC = δz/δr is
the track inclination. The collection of lines from hits belonging to the same track will
intersect at the true path coordinate inρ × φ andz0 × C planes and produce a peak in
the resulting histograms. However, straightforward peak finding is not feasible. Instead,
the histograms are cleaned up by removing bins with few entries, and then each bin in
parameter space is considered to be a track template. Kalmanfiltering [72, 73] is used to
select tracks from the templates.

4.1.2 AA algorithm

In the alternative algorithm, a pool of track candidates arecreated by using an extrapola-
tion based on a cluster of 3 hits in the SMT. The second hit mustbe on a following layer
within |δφ| < 0.08. The third, on a following layer, must be on a circle of radiusgreater
than 30 cm and axial impact parameter with the beam spot of less than 2.5 cm. The overall
fit must haveχ2 < 16. Each track is extrapolated to the next layer of the SMT or CFT
and hits are added to the track hypothesis if the increase ofχ2 is less than 16. If there are
multiple hits in a given layer, they each become a new hypothesis. A certain number of
misses (i.e., no hits) in layers are allowed to improve the efficiency. The pool of poten-
tial tracks are then sorted with precedence being given to the candidates with the greatest
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number of hits. For candidates with the same number of hits, precedence is given to those
with the least number of missing layers. In the case of a double degeneracy, precedence is
given to a candidate with the smallestχ2. To reduce false candidates a veto, based on the
number of shared hits, is applied to candidates with a lower importance. To further reduce
the number of fake tracks, primary vertices are determined using the accepted tracks, and
every track that comes close to a vertex is given two additional hits in the ranking. Using
this new weight, the tracks are resorted, and a new pool of tracks is determined. The
same procedure is now used with the CFT hits, however in this case the track candidate is
required to pass near one of the primary vertices to control the huge combinatorics.

4.2 Muons

First information of the muon systems, such as hits in the drift chambers, is used to make
local track segments in each layer (A, B and C). Hits in the scintillator paddles are added
to these segments. Segments consistent with a common trajectory are merged into a
local muon track [74]. In order to form a global muon, the local track is combined with
central tracks identified in the CFT and SMT. The matching is done using the error matrix
propagation, which takes into account the magnetic field as well as Coulomb scattering
and energy loss in the material of the solenoid and toroid magnets and the calorimeter. If
the algorithm finds a match, the two tracks and two error matrices are combined to obtain
the final muon track parameters.

The reconstructed muons are classified usingtypeandquality. The type is given by
the parameternseg(see Table 4.1). A positive value indicates that local muon track is
matched to a track in the central tracking system. A negativevalue indicates that the local
muon could not be matched to a central track. The absolute value|nseg| = 1,2 or 3 gives
information if the local muon is made up of hits only in layer A, only layer in B or C or
in layer A and layers B or C.

The muonquality can be LOOSE, MEDIUM or TIGHT. This criteria depends on the
number of hits in the different layers.

• nseg = +1 Loose/Medium muons
Muons withnseg = 1 are muons with an A segment matched with a central track.
Such a muon is loose if it has:

– at least one scintillator hit

– at least two A layer wire hits

• nseg = +2 Loose/Medium muons
Muons with|nseg| < 3 can only be loose or medium if they are matched to a central



42 Event Reconstruction

track.nseg = 2 muons are muons with a BC segment matched with a central track.
Loose requires

– at least one BC scintillator hit

– at least two BC layer wire hits

• |nseg| = 3 Medium/Loose muons
When|nseg| = 3 muon candidate is medium if it has:

– at least one scintillator hit

– at least two A layer wire hits

– at least three BC layer wire hits

– a converged local fit (χ2
loc > 0)

The muon is defined loose if one of the above criteria fails.

• Tight muons
Only |nseg| = 3 muons can be tight. A muon is tight if it has:

– at least one scintillator hit

– at least two A layer wire hits

– at least one BC scintillator hit

– at least three BC layer wire hits

– a converged local fit (χ2
loc > 0)

A muon isMedium if it fulfills the above requirements and if its located in thebottom
part of the detector (octant 5 and 6 with|η| < 1.6).

A more detailed description of the muonqualitycan be found in [75].

4.3 Vertex Reconstruction

The algorithm for vertex reconstruction must be able to reconstruct the primary vertex
and displaced vertices (secondary vertices) in an event with high accuracy. For details of
the vertex reconstruction see [76, 77].
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Table 4.1: Criteria for the nseg variable

nseg Muon Type Central track matching algorithm

3

Central track+ Muon to central if local

local muon track muon track fit converged.

(A and BC layer) Central to muon otherwise

2 Central track+ BC only central to muon

1 Central track+ A only central to muon

0 Central track+ muon hit central to muon

-1 A segment only no match

-2 BC segment only no match

-3 local muon track (A+BC) no match

Primary Vertex (PV)

For the primary vertex determination an iterative method isused. The finding of the
primary vertex starts from all selected tracks and the procedure is:

1. Fit a vertex from a set of tracks (total numberNtrk) and computeχ2(Ntrk) .

2. Each track is removed separately and a newχ2(Ntrk − 1) is calculated.

3. Select the track with the maximum difference∆max = χ2(Ntrk) − χ2(Ntrk − 1).

4. Exclude the track from the set if∆max > ∆threshold.

5. Repeat the procedure as long as there are tracks with∆max > ∆threshold.

A minimum of two tracks is required to fit a vertex candidate.

Secondary Vertex (SV)

Secondary vertices are due to the decay of long lived particles such as B hadrons. Re-
constructing a SV is more difficult than a PV because there arefewer tracks associated to
the SV. Tracks from the SV usually have a large impact parameter with respect to the PV
what is shown in Fig. 4.1. The first step in the reconstructionof a SV is to make a list of
all tracks that do not originate from the PV. The procedure offinding a SV is described
as:
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1. Make a vertex out of two tracks not belonging to the PV or a previously find SV

2. Fit the vertex from the set ofNtrk tracks (Ntrk=2 for the first time) and compute
χ2(Ntrk).

3. Compute the newχ2(Ntrk + 1) obtained by adding each of the other tracks one by
one.

4. Select the track with the smallest contribution∆min = χ2(Ntrk + 1) − χ2(Ntrk).

5. Add the good track to the set if∆min < ∆threshold.

6. Repeat the procedure from step 2 until there are no tracks fitting the requirements.

Figure 4.1: Primary and Secondary vertex. Tracks from SV have a in general a large
impact parameter with respect to the PV



Chapter 5

Stability checks of the tracking
alignment

In this Chapter stability checks of the software alignment procedure of the DØ tracker
are presented. The tracking system of the DØ detector consists of the SMT and the CFT
detectors as described in section 3.2. The resolution of theSMT is about 10µm an the
CTF has a resolution of about 100µm. The structure of SMT is extremely complicated.
The barrel is build of rectangular elements (”ladders”), and the disks of wedge-shaped
elements (”wedges”). In contrast the structure of the CFT is relatively simple. This
detector contains of eight cylindrical barrels of fibers directed along the beam line. Each
barrel has an ”axial layer”, parallel to the beam axis and a ”stereo layer” with an angle of
3◦ with respect to the beam axis. The fibers in each layer are grouped into ”ribbons”. The
number of ribbons varies from 10 in the first CFT layer to 28 in the last layer.

The alignment of the detector should be better than its intrinsic spatial resolution such
that misalignments do not deteriorate the resolution of thetrack reconstruction. The posi-
tioning, or alignment, of the individual detector units is determined by using reconstructed
tracks. When the presumed position of a given detector element is off from its true lo-
cation, the offsets will manifest themselves as systematicanomalies in the residuals, i.e.
the difference between the position of the measured hit and reconstructed trajectory. The
distribution of residuals for a well aligned detector system should show a gaussian shape
with zero mean and a standard deviation close to the intrinsic detector resolution.

The stability of the alignment algorithm was checked by changing the nominal posi-
tions of detector elements such as:

• Single CFT ribbon

• CFT layer

• SMT layer

45
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• All SMT elements

The modified configuration is then aligned and compared to theoriginal aligned geometry.
The procedure to check the stability of the alignment algorithm is depicted in Fig.5.1.

aligned org. Geometry aligned mod Geometry

Modified GeometryOriginal Geometry

compare

align align

modify

Figure 5.1: The procedure to check the stability of the alignment algorithm by comparing
original and modified geometry after the alignment.

5.1 Cosmics Data, reconstruction and geometry

The cosmics muon data used for the alignment procedure was taken without magnetic
field in the DØ Detector in November 2005. In total about 40000cosmics muon events
were reconstructed. The muons were reconstructed as a single straight track passing
through the whole detector by matching two tracks, one from the upper half (+x) and
one from the lower half (−x) of the detector. The position of each SMT ladder is de-
scribed by three coordinatesx,y andz of the center of gravity and the three Euler-angles
of its orientation in space. The ribbons of the CFT are given bythex andy position of
the corresponding circle which is approximating the ribbon.

5.2 Alignment procedure

The alignment procedure consists in determining the position and the rotation angles of
the basic elements of the DØ tracking system. The basic element is a ladder or a wedge
for the SMT, and a ribbon for the CFT detector. As a first step in the alignment, a large
number of tracks passing through a given detector element are collected, and a residual
for each track is determined. To avoid biases, the expected track position is determined
excluding the detector element itself from the track fit (seeFig. 5.2). Any misalignment
of the detector element results in the non-zero mean value ofthe residual distribution.
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Since many detector elements are included in the track measurement, the observed
residuals in different elements are correlated. In this alignment procedure the shifts for
each element are determined independently, and the correlation between the elements is
taken into account by iterating the alignment until the resulting shifts of all detectors are
below a predefined threshold. A detector element can be aligned if it has 10 or more hits
otherwise the statistics is insufficient for alignment and the element is left at its nominal
position. The data set is skimmed during the first alignment iteration using only good
tracks which fit a certain quality criteria. Further iterations to align the detector are based
on this selected tracks only. After 100 iterations the alignment procedure is stopped.
The whole procedure is started again and due to some alignment more tracks pass the
selection criteria and this helps to improve the alignment further. In the following the
word CYCLES refers to a repeated alignment run with the whole data set.

X

X

X

X
x

y

z residual

y

z

O O O
axial residual

Track fit

Hit Ladder

Figure 5.2: The hit ”O” on the ladder is excluded for the trackfit. The axial residual is
calculated in the (x, y)-plane and the z residual on thez axis.

5.3 Different geometry modifications

In this section different geometrical modifications are described and their impact based
on various alignment cycles is given. The following modifications have been tested:

• Translational shifts inx- or y- direction up to 1 mm.

• Radial shifts: Both coordinatesx andy of the detector element are modified to
shift radially viaxmod = x · k andymod = y · k for k = 1%.

• Telescoping shifts (only for SMT): The telescoping effect is described by a shift of
thez coordinate so thatz = z0 + c · r wherer =

√

(x2
0 + y2

0) andc = 1% or 0.5%.
The telescoping shift produces larger displacements for detector elements further
away from the beam pipe.
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These modifications are applied to single elements or whole layers of the CFT or SMT or
even to the whole SMT. The alignment precision is given by thestandard deviation of a
gaussian fit applied on the peak region of the residual distribution.

5.3.1 Shift of SMT layer 3 and layer 6 - random shifts

In the actual detector not all elements of a detector part areshifted coherently into the
same direction with the same displacement. In this section amore realistic scenario is
tested. All elements of the SMT barrels layer 3 and layer 6 areshifted randomly in the
direction of±x and±y by about 200µm.

One cycle

The Fig. 5.3 shows that after the alignment CFT elements are centered around zero for
both theaxial andradial distributions. Both distributions show small tails on the sides
which is due to the random shift in both directions ofx andy. The axial andradial
alignment precision for the CFT is around 19µm.

The radial distribution of the SMT layer 3 and 6 is shown in Fig. 5.4. Most elements
of both layer are between±50µm. The outliers are identified as ladders with insufficient
number of hits to be aligned. For all SMT barrel elements theaxial andradial precision
is of about 3-5µm (see Fig. 5.5). The tails in both distribution are a result of the elements
from layer 3 and layer 6.
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Figure 5.3: Theaxial- and radial-difference between the modified and the original
aligned geometry for all CFT elements for random shifts of SMTlayer 3 and 6.
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Figure 5.4: Theradial-difference between the modified and the original SMT layer 3
(left) and SMT layer 6 (right) for random shifts.
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Figure 5.5: Theradial-difference between the modified and the original aligned geometry
for all SMT barrel elements , for random shifts of SMT layer 3 and 6.

Four cycles

To check if the alignment improves more cycles have been done. After the fourth cycle
the alignment does not improve further. In the following thealignment after four cycles
is presented.

Compared to Fig. 5.3, Fig. 5.6 shows a clear improvement. Theaxial and radial
alignment precision of the CFT improved to about 10µm. The tails also disappeared
for both distributions. Elements with a sufficient number ofhits are well aligned and
moved to the same position as in the aligned original geometry. The improvement of the
alignment of the modified layers can be seen in Fig .5.7 compared to Fig 5.4. For the
SMT barrel, the small tails in theaxial andradial distributions due to layer 3 and layer
6 disappeared (see Fig. 5.8). The precision for the whole SMTbarrel does not improve
if cycles are repeated and stays at 3µm. The alignment procedure works fine for random
shifts of the SMT layers.
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Figure 5.6: Theaxial- and radial-difference between the modified and the original
aligned geometry after 4 cycles for all CFT elements for random shifts of SMT layer
3 and 6.
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Figure 5.8: Theradial-difference between the modified and the original aligned geometry
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5.4 Summary and Conclusion

From the various alignment studies using different modification of the initial geometry
a final systematic uncertainty of the alignment was determined. For the CFT detector
a systematic uncertainty on the position determination dueto the alignment procedure
of about 25µm (axial and radial) was found. For the SMT detector the systematic
uncertainty for theaxial precision is of the order of 5µm, for theradial precision the
order of about 7µm and forz order of 15µm. Table 5.1, an overview over the results of
all different studies that were done in order to check the alignment stability is given.

Shifts of single elements do not influence the alignment and the shifted elements are
well aligned after one cycle. Also modifications of whole layers of the CFT or SMT
are well corrected after a few cycles (< 5). The radial shift of the whole SMT barrel
resolves after more cycles (about 40). The telescoping effect is corrected by the alignment
although there is a systematic shift if the CFT is not fixed. Also random shifts of different
SMT ladders are well corrected by the alignment. The currentalignment procedure of
DØ corrects various misalignments with a good precision.
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Chapter 6

Multivariate Analysis Method

The aim of multivariate analysis methods is to maximize background suppression while
keeping the signal efficiency as high as possible. Traditional Simple-Cuttechniques are
straightforward but often have a poor performance. The mainadvantage of the multivari-
ate analysis methods is that they make use of non-linear combinations of several variables
which usually leads to an enhanced performance in seperating signal from background
events. There are different approaches likeArtificial Neural Networks(ANN) [78],
Boosted Decision Trees(BDT) [79, 80, 81] and many others. In the presented analysis
the BDT method is used and described in the following sections.

6.1 Decision tree

The BDT method is based on a decision tree [82] which is a sequence of binary splits of
the data. At the beginning there is the root node which contains all signal and background
events (see Fig. 6.1). Then the cut value on that variable with the best separation power is
taken to split the data into signal and background. After thesplitting there are two nodes
(branches). This process is repeated on these new branches and continued until a given
number of final nodes (leaves) is obtained, until a node has to few events or until all leaves
are pure. We assume that the events are weighted with each event having weightWi. For
unweighted eventsWi is equal 1. The purityP of the data in the node is calculated by:

P =

∑

s Ws
∑

s Ws +
∑

b Wb

(6.1)

where
∑

s is the sum over signal events and
∑

b is the sum over background events. For a
leaf with only signal (P=1) or only background (P=0) events the valueP(1−P) is 0. In
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Figure 6.1: An example of a decision tree where the squares are the signal or background
leaves [79].

order to define the quality of the separation between signal and background theGini-value
is used. It reaches its minimum (zero) when all events are signal or background like.

Gini =

(

n
∑

i=0

Wi

)

P(1 − P) (6.2)

wheren is the number of events in that branch. In order to optimize the cut value on a
variable the value of the following expression has to be minimized

Ginileft son + Giniright son (6.3)

where Ginileft son and Giniright son are the two nodes after the splitting. The criterion
described in equation 6.3 gives the value for the best branchsplit. The increase in quality
when a node (Ginifather) is split into two branches (Giniright son, Ginileft son) is given by:

Ginifather − Ginileft son − Giniright son (6.4)
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At the end, if a leaf has a purity greater than a given valuep it is called signal leaf or
background leaf. To classify an event as signal or background it is checked if the event
belongs to a signal leaf or a background leaf. The resulting tree is called a decision tree.

6.2 Boosted Decision Tree

The difference of a BDT to a standard decision tree is the boosting algorithm. A BDT
learns from its mistakes. At the beginning all events are unweighted and a first tree is
built. If a signal event ends up on a background leaf or a background event ends up on
a signal leaf, then the weight of this event is increased (boosted). A second tree is then
built, taking into account the new weights. The whole procedure can be repeated up to
several 100 times.

The next step is to assign ascoreto an event. If an event is found on a background
leaf it gets the score of -1 and if it is on a signal leaf the assigned score is +1. At the
end the sum of all scores is the final score of the event. Eventswith high scores are most
likely signal events and events with low scores tend to be background like. This method
of classification is very efficient and robust.

There are different methods for the boosting. One of the commonly used algorithms
is AdaBoost[83] which also was used in this analysis.

6.2.1 AdaBoost-Algorithm

A sample of totalN events is taken andNtrees trees are generated and the weight of each
event is initially taken aswi = 1/N . Furthermore:

• m is the index of an individual tree

• xi: set of variables for thei-th event

• yi = 1 if the event is a signal event elseyi = 0

• wi: the weight for each event

• Tm(xi) = 1 if the i-th event belongs to a signal leaf of them-th tree, elseTm(xi) = 0

• Ii = 1 if an event is misclassified (yi 6= Tm(xi)), elseIi = 0 if an event is classified
correctly (yi = Tm(xi))
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For them-th tree a misclassification rateerr and a boost weightαm can be calculated.

errm =

∑N
i=1 wiIi

∑N
i=1 wi

. (6.5)

αm = β × ln

(

1 − errm

errm

)

(6.6)

whereβ = 1 in the standard AdaBoost method. Misclassified events are boosted by this
factor, by changing the weight of each event to

wi → wi × eαmIi (6.7)

The entire event sample is then renormalized to keep the total number of events (sum of
all weights) in a tree constantwi → wi/

∑

i wi. The final score for an event is then given
by:

T (x) =
Ntrees
∑

m=1

αmTm(xi) (6.8)

A schematic overview how to get the final score of an event be seen in Fig. 6.2.

6.3 Toolkit for Multivariate Analysis

TMVA ( Toolkit for MultivariateAnalysis) [84] is a package integrated in ROOT [85] for
processing and parallel evaluation of various multivariate classification techniques. The
usage if this tool requires a sample of signal events and a sample of background events.
The two samples are splitted into a training and a test sample, using the random splitting
tool of the TMVA package. After training with the training sample, the obtained selection
is tested on the independent test sample to estimate the accuracy of the procedure. It is
important to have two independent samples for training and testing otherwise the result
would be biased.

6.4 Optimization

After the evaluation of the BDT the optimal cut value on the BDT response, which is a
combination of all cut variables has to be found. There are different approaches for the
optimization to enhance the signal (S) over the background (B):

1. S/
√

B
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Figure 6.2: An overview of getting the final score of an event.[80].

2. S/
√

S + B

Maximization of these expression could lead to really low efficiencies and breaks down
when the signal and backround tends to be 0. An other approachis given by G. Punzi [86].
In an experiment a theoryH0 is the current best theory and as a result of the experiment
we wish to confirm or disprove the theoryH0 in favor of a new theoryHm. In a counting
experiment with presence of background there is the discrete observablen, the number of
observed events, which are Poisson-distributed with mean of expected number of back-
ground eventsB and a possible contribution of signal eventsSm

p(n|H0) = e−BBn/n! (6.9)

p(n|Hm) = e−B−Sm(B + Sm)n/n! (6.10)

To completely define the test a desired significance levelα and CL has to be chosen and
this leads to the constraintSm > Smin (see Fig. 6.3).
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Figure 6.3: The lower limit of the sensitivity regionSmin for a search experiment with
(significance, CL) respectively of (95%,95%),(3σ,95%) and (5σ,90%) [86].

With a Gaussian approximation of the Poisson a simple resultcan be obtained.

Smin = a
√

B + b
√

B + Smin (6.11)

wherea andb are the number of standard deviations corresponding to one-sided Gaussian
tests. Solving Equation 6.11 forSmin:

Smin =
b2

2
+ a

√
B +

b

2

√

b2 + 4a
√

B + 4B (6.12)

Equation 6.12 is valid for one specific set of data selection criteria but can be modified to
a general case whereB andSm depend on the cutst.

Smin(t) =
b2

2
+ a

√

B(t) +
b

2

√

b2 + 4a
√

B(t) + 4B(t) (6.13)

Further the signal yieldSm can be written as

Sm(t) = ǫ(t) · L · σm (6.14)

whereǫ is the efficiency at a chosen cut value,L is the integrated luminosity andσm is
the cross section of the process being searched. Equation 6.14 can now be inverted to find
the minimum ”detectable” cross section.

σmin =

b2

2
+ a

√

B(t) + b
2

√

b2 + 4a
√

B(t) + 4B(t)

ǫ(t) · L (6.15)
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The maximum sensitivity is attained whenσm is smallest. This means that the Equation:

ǫ(t)

b2

2
+ a

√

B(t) + b
2

√

b2 + 4a
√

B(t) + 4B(t)
(6.16)

has to be maximized. By choosinga = b the expression 6.16 becomes even simpler

ǫ(t)

a/2 +
√

B(t)
(6.17)

This simple equation can be maximized depending on the different cutst to find the best
cut value. a is a constant and has to be chosen depending on the number of standard
deviations corresponding to the confidence level at which the signal hypothesis is tested.



60 Multivariate Analysis Method



Chapter 7

Data and Event Selection

7.1 Data Sample and Selection

The analyses that are described in the following sections were performed on data taken by
the DØ detector between August 2002 and August 2008, corresponding to an integrated
luminosity of 4.1 fb−1 (see Fig. 3.3). Data taken with the detector before the Layer0
installation, which happend in spring 2006, is named as Run IIa (1.4 fb−1) and data after
spring 2006 is named as Run IIb (2.7 fb−1). Two reduce the data a preselected subsample
is used that contains only events with at least two reconstructed muons.

In order to get only good quality data, data quality monitoring is performed online and
offline. The selection of good runs is based on information stored in the DØ Run Quality
Database [87]. The requirements ensure that no hardware failures occurred and that all
readout crates are included in the readout for the muon system [88], the SMT and the CFT.
The tracking quality is particularly important for the identification of muons originating
from the secondary vertex and for building the event variables.

7.2 B-physics trigger strategy

The most appealing features of hadron machines as a tool to studyB-physics is their very
high cross section forbb production and the access to all sorts ofb-flavoured hadrons. On
the other hand the fraction ofb events is small, about 0.1%-0.5% of the overall event rate
and it is challenging to develop a trigger system to select the b events. The goal of theB-
physics trigger strategy [89] is to maximize the number ofB-physics events being written
to tape. The selection of theB events often relies on semi-leptonic or multi-leptonic
B decays. A first background suppression can be achieved by triggering on a certain
leptonpt threshold, as the leptons ofB decays tend to have a harderpt spectra than from
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minimum bias events. At low momenta the preferred choice of the leptons triggers are
muons, since they are easily identified at trigger level. At Tevatron dimuon triggers are
used for lifetime and mass measurements while the single muon events are exploited for
mixing analysis. In addition there are triggers on displaced vertices.

7.2.1 Muon Triggers

All the decays studied in this thesis contain two muons in thefinal state. Triggering
events starts in the L1 muon trigger system. The muon signatures at L1 are separated into
four categories based on lose and tight requirements in either muon scintillator or wire
chambers [90]. At L2 these muon candidates are then matched to tracks in the central
tracker, and the trigger is fired if the tracks of the matched muon candidates satisfy a
pre-definedpt cut and a track match quality cut. All dimuon triggers are based on muon
scintillator hits at L1, a muon quality requirement at L2 anddifferent criteria at L3. The
main dimuon triggers are based on the muon system only, therefore taking the advantage
of the full η coverage of the muon system, unlike track based triggers. Currently, DØ has
an approximate bandwidth limit at L3 of writing 50 Hz to tape where 10% of this rate is
allocated toB physics. The dimuon trigger has a present L3 rate of about 2 Hz[20].

Dimuon Triggers

The L1 and L2 requirements are the same for most of the used dimuon triggers. The
L1 condition, abbreviatedmu2ptxatxx, requires two muons (mu2), without a specific
pt threshold (ptx), anywhere in the detector (a), with tight scintillator hits (t), but with
no wire hits (xx). The L2 condition requires at least one medium muon. The L3 con-
ditions often require somept threshold for the muons or an additional track. As we try
to maximize the number of events all dimuon triggers have been used except those trig-
gers which require some missing energy. The main dimuon trigger used forB physics is
DMU1 1L1MM2 which uses the same requirements asmu2ptxatxx for L1 and requires
at least a medium muon at L2. In Table 7.1 an overview of some dimuon triggers is given.

7.3 Monte Carlo Simulation (MC)

Monte Carlo samples with about 200k events of the following decays, which are under
study in this thesis were generated:

• B± → K± µ+µ−
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• B± → J/ψ K±

• B0
d → K∗ µ+µ−

• B0
d → J/ψ K∗(892)

As the detector layout changed from Run IIa to Run IIb Monte Carlosamples for both
Runs had to be generated. The Monte Carlo version for Run IIa is known as p17 and for
Run IIb it is called p20. For all samples, PYTHIA [91] was used for the generation of
events. For theB-decay samples, a modified version of the program EvtGen [92]was used
to simulate theB-decays. EvtGen has been developed for the simulation ofB-decays at
colliders operating at theΥ(4S) resonance, such as the PEP-II collider at SLAC [93] and
the KEKB collider at KEK [94]. At these colliders the twoB mesons are predominantly
produced by the decay ofΥ(4S), and the twoB-mesons are in a coherent quantum state.
This coherence does not exist betweenB-meson pairs produced at a hadron collider. The
version of the EvtGen program used at DØ has therefore been modified to remove the
coherence between theB-mesons.

PYTHIA and EvtGen were used to generatebb events with the condition for theb
quarkspb

t > 0.1 GeV/c and|ηb| < 4.2 required on the parton level.

After the event generation, the DØ Mess package (DØ Monte Carlo Event Selection
System) [95] is used to apply cuts on generator level, that gobeyond the selections that
are offered by the generator or EvtGen. On all Monte Carlo samples, the following re-
quirements were applied at generator level:

• pt of theB candidate> 4.0 GeV/c

• At least two opposite charged muons with

– muonpt > 1.5 GeV/c

– |η| < 2.1 for each muon

• pt of the kaon and pion had to be larger than 0.5 GeV/c

• pt of the J/ψ had to be larger than 4 GeV/c

The two muons were required to come from theB-meson in the decaysB± → K± µ+µ−,
B0

d → K∗ µ+µ− and from theJ/ψ in the other cases. For all decays these cuts have
different efficiencies which are 7.2% for B± → J/ψ K±, 6% for B± → K± µ+µ−,
4.0% for B0

d → J/ψ K∗(892) and 3.7% for B0
d → K∗ µ+µ−.

The DØ GSTAR program (DØ GEANT Simulation of the Total Apparatus Re-
sponse) [96] is used to track the particles through the detector and simulate their interac-
tions with the material of the detector. The DØ Sim [97] program simulates the detector
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response and signal digitization, based on the DØ GSTAR output. Finally, event recon-
struction is performed by the DØ RECO [68] program. In all samples ”minimum bias
events” were overlaid. The number of ”minimum bias events” was randomly distributed
following a Poisson distribution with an average of 0.8.

7.4 Discriminating Variables

The selected variables used in the analyses to distinguish between signal and background
events are described in the following section. Fig. 7.1 shows a sketch of the discriminating
variables for the decayB± → K± µ+µ−.

Proton Anti−Proton

K

p

µ

α

µ

Lxy

B

ip

Figure 7.1: Pictogram for visualisation of the discriminating variables of the decayB± →
K± µ+µ−.

Transverse Decay Length Significance

The B± andB0 mesons have a lifetime of about 1.6 ps [98] leading to a properdecay
length of about 500µm. This characteristic is a good quantity to reject background events.
The transverse decay lengthLxy is calculated as

Lxy =

−→
l vtx · −→p B

t

pB
t

(7.1)

where−→p B
t is the transverse momentum vector of theB candidate and

−→
l vtx is the vector

pointing from the primary vertex to the secondary vertex. The discriminating variables
used in the multivariate analysis is the transverse decay length significanceLxy/δLxy with
δLxy described as the error on the transverse decay length.
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Isolation

Due to fragmentation characteristics it is expected that the B meson carries most of the
energy of theb quark and thus the number of additional tracks close to theB meson tends
to be small. The isolation variableI is used as a second discriminating variable for the
Boosted decision tree:

I =
|−→p (B±)|

|−→p (B±)| +
∑

track i 6= B

pi(∆R < 1)

Here,
∑

track i 6= B pi is the scalar sum over the momenta of all tracks excluding themuons
and the kaon within a cone of∆R < 1 around the momentum vector−→p (B±) of theB
meson, where∆R =

√

(∆φ)2 + (∆η)2.

Opening Angleα

The opening (or pointing) angleα is defined as the angle between the momentum vector
−→p (B) of the B candidate and the vector

−→
l vtx between the primary and the secondary

vertex. This angle should be around 0◦ if the B meson is built out of the right daughter
particles. This variable ensures the consistency between the direction of the decay vertex
and the momentum vector of theB candidate.

χ2 of secondary vertex

Theχ2 of the secondary vertex should be of the orderχ2 = 2n− 3 wheren is the number
of tracks.

Impact Parameter

To define the impact parameters, first the point of closest approach (PCA) is defined as
projection of the track trajectory in the axial plane to the primary vertex. Theaxial impact
parameter (ipa) is defined as the distance between the PCA and the vertex in theaxial
plane. Thestereoimpact parameter (ips) is the difference of z-coordinates between the
PCA on the three dimensional track and the primary vertex.

• Minimal Axial Muon Impact Parameter The impact parameters of the two muons
(ipµ), originating from the displaced secondary vertex of aB meson, tend to be
large. In this analysis the projection of the impact parameter to the axial plane of
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the primary vertex is used. The multivariate analysis uses the minimal axial impact
parameter significance of the two muons, defined as:

ipµ = Min

(

(

ipa
µ1

δipa
µ1

)2

;

(

ipa
µ2

δipa
µ2

)2
)

(7.2)

whereδipa
µ is the error on the axial impact parameter.

• Impact parameter significance of the kaonIn this analysis the impact parameter
significance is defined as(ipa

P /δipa
P )2 + (ips

P /δips
P )2. The thirdB meson decay

particle, for example the charged kaonK± of B± → K± µ+µ− also tends to have
a large impact parameter with respect to the primary vertex.
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Chapter 8

Rare DecayB± → K± µ+µ−

In this Chapter we present the search for the rare decayB± → K± µ+µ− and a measure-
ment of its branching fraction. For normalisation purposesthe decayB± → J/ψ K± is
being used as described in section 2.6. The decayB± → K± µ+µ− only occurs via box
and penguin diagrams as shown in Fig. 8.1. At DØ the inclusivesearch forb → s µ+ µ−

was performed earlier in Run I and a limit ofb → s µ+ µ− < 3.2 · 10−4 at 90% CL was
set usingL = 50±2.7 pb−1 [99].

µ−µ+

Z µ−

µ+

t sb

u u

b s

uu

t

ν
W+

W

γ
W−

Figure 8.1: SM diagrams for the decayB± → K± µ+µ−.

8.1 Introduction

For the decayB± → K± µ+µ− we have three tracks in the final state. The two muons
should give a clear signature and then a third track is added.Looking at the dimuon
spectra of data and Monte Carlo in Fig.8.2 several resonancescan be seen in the data.

69
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The branching fractions of the decays with aJ/ψ or aψ in the final state are orders of
magnitude larger than that of the non-resonant decayB± → K± µ+µ−.
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Figure 8.2: The dimuon invariant mass distribution of the Monte Carlo (left) and data
(right).The region between the red lines is removed in the dimuon invariant mass spectra
of the decaysB± → K± µ+µ− andB0

d → K∗ µ+µ−.

TheJ/ψ mass width in data and in Monte Carlo is fitted by a single Gaussian (see Fig.
8.3), resulting in a mass resolution ofσ =65 MeV/c2 for Monte Carlo andσ =75 MeV/c2

for data, respectively.
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Figure 8.3: The J/ψ resolution in Monte Carlo (σ =65 MeV/c2) on the left and in Data
(σ =75 MeV/c2) on the right side.

For the calibration processB± → J/ψ K± the invariantµ+ µ− mass is required to
be in the range of 2.84 GeV/c2 < mµ+ µ− < 3.35 GeV/c2. For the signal processB± →
K± µ+µ− the mass regions of the resonancesJ/ψ → µ+ µ− and ψ(2S) → µ+ µ−

(2.5 GeV/c2 < mµ+ µ− < 4.04 GeV/c2) are excluded. This mass exclusion region corre-
sponds to±8σ of the J/ψ mass in order to make sure that no noticeable contribution
from theJ/ψ tail leaks into the signal window. For theψ(2S) resonance the same reso-
lution as for theJ/ψ was taken but only±5σ is excluded.
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8.2 Pre-selection

A medium quality for the two muons is required. Both muons needto satisfy
pt ≥2.5 GeV/c and have to be in the central rapidity region|η| ≤2.0. They need to
have at least 2 hits in the Silicon Microstrip Tracker (SMT) and 2 hits in the Central Fiber
Tracker (CFT). The sum of their charges has to be zero. The third particle is required to
havept > 0.5 GeV/c and at least one hit in the SMT. A secondary vertex isbuilt out of
these three particles and aχ2 < 35 of the vertex fit is required.

After the secondary vertex is found, the invariant mass of the three particles is cal-
culated. As there are more than oneB candidate in each event, the candidate with the
highestpt of the K in each event is selected. All preselection cuts are summarized in
Table 8.1.

Table 8.1: Preselection cuts for theB± → K± µ+µ− candidates. For the calibration
channelB± → J/ψ K± the same cuts are applied except for the invariantµµ mass where
the range 2.84 GeV/c2 < mµ+ µ− < 3.35 GeV/c2 is selected.

Cuts value

muon quality medium

sum of muon charge 0

muonpµ
t pµ

t ≥2.5 GeV/c

pseudo rapidity of muons |ηµ| ≤2.0

muon tracking hits 2 SMT, 2 CFT

third particle pt >0.5 GeV/c; 1 SMT hit

excluded mass window 2.50 GeV/c2 < Mµµ < 4.04 GeV/c2

Vertexχ2 χ2 < 35

best candidate highestpK
t

For the further analysis the mass resolution of theB± → K± µ+µ− decay has to be
determined. TheµµK± mass distributions of the Monte CarloB± → K± µ+µ− decay
and theJ/ψK± mass distribution of the calibration channelB± → J/ψ K± with no
mass constraint on theJ/ψ mass are compared in Fig. 8.4. The resolutions in the two
distributions, as determined by a single Gaussian fit, are ingood agreement. TheJ/ψ
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mass fits in Fig. 8.3 demonstrate that the mass resolution obtained in Monte Carlo is a few
percent better than in data and thus we scale the observedB mass resolution in Monte
Carlo B± → K± µ+µ− events in order to obtain a more precise expectation of theB
mass resolution in data. To determine the resolution in datafor B± → K± µ+µ− the
following Equation is used:

(∆Mdata)
2 = (∆MMonteCarlo)

2 + (∆Munknown)2 (8.1)

There are some unknown effects which enlarge the resolutionin data compared to Monte
Carlo. This is taken into account in the term∆Munknown in Equation 8.1.∆Munknown is
determined by theJ/ψ mass resolution of the normalisation channelB± → J/ψ K± (see
Fig. 8.3) and so a resolution of 100 MeV/c2 is calculated for theB± → K± µ+µ− channel
in data.
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Figure 8.4: TheB± → K± µ+µ− invariant mass distributions of the signal Monte Carlo
(left histogram) and of the calibration data (B± → J/ψ K±) (no mass constraint on the
J/ψ). The Gaussian fit results in mass widths ofσ =(93±1) MeV/c2 for the Monte Carlo
and ofσ =(94±2) MeV/c2 for the data.

8.3 Trigger Simulation

The trigger is simulated by reweighting the Monte Carlo events according to a thresh-
old function applied to thept of the muons. In addition it turns out, that the simulated
pB

t distribution of the calibration channel does not completely match the data, therefore
an additional weighting function for thepB

t distribution has been determined as in other
B physics analyses [100]. The trigger threshold functions and thepB

t weighting are cor-
related, thus an iterative procedure to optimize the weighting functions was chosen.All
weighting functions are always applied eventwise. The trigger simulation andpB

t weight-
ing is performed for p17 Monte Carlo which is used for Run IIa andp20 Monte Carlo
used for Run IIb independently. In this section we show the results for Run IIa data and
p17 Monte Carlo.
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The method to determine the threshold function for a single muon trigger is described
in Ref. [101]. A function of the type

f(pt) =
2a − d

2
· erf[b(pt − c)] +

d

2
(8.2)

was used with

erf =
2√
π

∫ x

0

e−t2dt (8.3)

In our case two muons are required in the trigger. Two different threshold values need to
be applied to the first (higherpt) and second (lowerpt) muon, respectively. In order to
determine the trigger function, the data of theJ/ψ K calibration dataset after the prese-
lection as described in section 8.2 is used, without thepµ

t cut and only requiring a loose
muon quality. In order to obtain a higher-purity sample ofB± → J/ψ K± events for the
calculation of the reweighting function an additional cut on the decay length significance
is applied requiring theB candidate to be separated from the primary vertex by at least
4.0 standard deviations. The effect of this additional criterion is demonstrated in Fig. 8.5.
This cut is not part of the main event selection.
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Figure 8.5: The calibration dataB± → J/ψ K± after the preselection cuts (left) and
with the additional decay length significance cut (right). This additional cut is only used
for the trigger calibration of the Monte Carlo. Note that the zero on the vertical scale is
suppressed.

For the first muon (pµ1
t ), the parameters of the threshold function were taken from the

single muon trigger, described in [101]. For the second muon(pµ2
t ), all parameters of the

threshold function were redetermined, using a similar method as in [101]. Two data sets
were compared: The preselected data described above, and a sample that was obtained by
applying all pre-selection cuts except the dimuon trigger.Fig. 8.6 (right) shows the ratio
of thepµ2

t distributions of the two data sets. To this histogram the same threshold function
as described in Equation 8.2 is fitted to obtain the parameters for the second muon. After
applying these weights to the Monte Carlopµ

t spectra there are still some discrepancies
between data and Monte Carlo (see Fig. 8.7).
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Figure 8.6: The trigger threshold function forpµ1
t (left) andpµ2

t (right) to be applied to the
Monte Carlo events. The histogram in the right figure represents the ratio of the two data
selections, with and without the dimuon trigger requirement. The bin size of the histo is
0.2 GeV/c
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Figure 8.7: Thepµ1
t (left) andpµ2

t (right) distributions fordata after preselection(crosses)
and Monte Carlo (line) events, after reweighting with the twotrigger threshold functions.

Also thepB
t distribution shows some disagreement between data and Monte Carlo.

In order to correct for this, an additional exponential reweighting function is determined
using the calibration channelB± → J/ψ K±.
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The ratio of thepB
t distributions ofB± → J/ψ K± in data and Monte Carlo is shown

in Fig. 8.9. It is fitted with an exponential function:

f(pB
t ) = exp(s + t · pB

t ) (8.4)

This weight is applied to the Monte Carlo distributions in addition to the trigger weights.
The resultingpµ

t distributions can be seen in Fig. 8.8. The threshold of data and Monte
Carlo of thepµ1

t shows still some discrepancies. As thepµ1
t spectra for the dimuon trigger

is expected to be softer than for the single muon trigger, theparameterc of the trigger
function 8.2 of the first muon, which describes the threshold, is refitted to the data.
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Figure 8.8: Thepµ1
t (left) andpµ2

t (right) distributions fordata after preselection(crosses)
and Monte Carlo (line) events, after reweighting the Monte Carlo events with the two
trigger threshold functions and applying thepB

t weight.

As a second iteration of the weighting procedure, thepB
t distributions are then com-

pared again and the final weighting functions are obtained. The fit of thepB
t ratio with

Equation 8.4 results ins = 0.784 ± 0.0550 andt = −0.052 ± 0.003. Due to the discrep-
ancies on lowpB

t an additional cut onpB
t ≥ 8 GeV/c is applied on both Monte Carlo and

data. ThepB
t spectra before and after applying thepB

t weights can be seen in Fig. 8.10.
The plots in Fig. 8.11 show thept spectra of the muons in Monte Carlo and data after ap-
plying the weight-functions. Due to this reweighting procedure a satisfactory agreement
between data and Monte Carlo could be obtained. The resultingparameters of the thresh-
old functions for both muons are given in Table 8.2. All the discriminating variables of
the decayB± → J/ψ K± are compared in Monte Carlo and data to see if the weighting
is correct and can bee seen in Fig. 8.12.
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Figure 8.9: Weighting function determined from the ratio ofpB
t distributions for Run IIa

data and for p17 Monte Carlo, for the calibration channelB± → J/ψ K±.
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Figure 8.11: Thepµ1
t (left) andpµ2

t (right) distributions fordata after preselection(crosses)
and Monte Carlo (line) events, after reweighting with the corrected trigger threshold func-
tions and thepB

t weighting function (after final iteration).

Table 8.2: Parameters of the Monte Carlo trigger threshold function

a b c d

p17f(pµ1
t ) 0.9477 0.7223 3.683 0.9656

p17f(pµ2
t ) 0.7739 0.5974 1.061 ≈ 0

p20f(pµ1
t ) 0.9693 0.9593 3.702 0.98

p20f(pµ2
t ) 0.8510 0.6411 1.04 ≈ 0

8.4 Final selection - TMVA

To obtain the best possible distinction between signal and background a six-variable
multivariate analysis (MVA) is performed. The Toolkit for Multivariate Data Analysis
(TMVA) implemented in the ROOT analysis software is used forthis purpose.

Due to the exclusion of the ofJ/ψ andψ(2S) resonances in the invariant mass of
the dimuon system, no peaking background is expected in the signal window. A back-
ground sample is obtained from the data after preselection in the upper (4.379 GeV/c2

to 4.979 GeV/c2) and lower (5.579 GeV/c2 to 6.179 GeV/c2) sidebands of the invari-
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Figure 8.13: The definition of the sidebands (−9σ to −3σ), (+3σ to +9σ) and signal
region (−2σ to +2σ) for the data of the decayB± → K± µ+µ−. The mass resolution in
the data is assumed to beσ =100 MeV/c2 as described in section 8.2

ant µµK± mass distribution (see Fig. 8.13). The signal sample consists of the prese-
lectedB± → K± µ+µ− Monte Carlo events in the mass window of (5.079 GeV/c2 to
5.479 GeV/c2).

The following variables are used in the MVA:

• Transverse decay length significance(see Fig. 8.14)

• Isolation variable(see Fig. 8.14)

• Opening angle(see Fig. 8.15)

• Vertex quality(see Fig. 8.15)

• Muon impact parameter(see Fig. 8.16)

• Kaon impact parameter(see Fig. 8.16)



80 Rare DecayB± → K± µ+µ−

decay length sign.
50 100 150 200 250 300

N
o

rm
al

is
ed

-510

-410

-310

-210

-110

decay length sign.
50 100 150 200 250 300

N
o

rm
al

is
ed

-510

-410

-310

-210

-110

isolation
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

is
ed

0

1

2

3

4

5

6

isolation
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
al

is
ed

0

1

2

3

4

5

6

Figure 8.14: The transverse decay length significance is shown on the left side. On the
right the isolation variable can be seen. The filled histogram is thesignaland the shaded
histogram is thebackground.
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shown on the left side. On the right the vertexχ2 can be seen. The filled histogram is the
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As MVA selection method we have chosen a Boosted Decision Tree(BDT). The discrim-
inating variables are tested to find the best separation between signal and background.
Fig. 8.17 shows the distribution of the final selection variable of the BDT.
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Figure 8.17: Distribution of the Boosted Decision Tree forsignal(filled) andbackground
(shaded). The plot on the left is for Run IIa and p17 Monte Carlo and the plot on the right
is Run IIb data and p20 Monte Carlo.

The optimization criterion of Punzi is used to derive the best cut on the BDT response.
The Punzi variableP is defined as

P =
ǫsig

a/2 +
√

Nback

(8.5)

The parameterǫsig stands for the reconstruction efficiency of the signal whichis deter-
mined from Monte Carlo,Nback is the expected number of background events interpolated
from the sidebands anda is a constant and has to be chosen depending on the number of
standard deviations corresponding to the confidence level at which the signal hypothesis
is tested. For examplea = 2 corresponds to a 95% C.L. anda = 5 corresponds to a 90%
C.L. For this analysisa = 2 was chosen.

To obtain the best cut value on the BDT response a scan of all BDT values has been
performed.Nback was determined by an exponential distribution, fitted to thedata using
the upper and lower sidebands without taking the events in the signal window into ac-
count. Fig. 8.18 showsP and the Monte Carlo selection efficiency as a function of the cut
value on the BDT response. The best cut value on the BDT responsefor Run IIa data was
obtained at 0.11 and for Run IIb data at 0.05. All events on the right side of the cut value
were used in the following section.
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Figure 8.18: The Punzi valueP (left) and the signal selection efficiencyǫsig (right) as
a function of the BDT response cut, as determined on Monte Carlowith all weighting
functions applied. The data is from Run IIb and the Monte Carlo is p20.

8.5 Results

8.5.1 Branching fraction for B± → K± µ+µ−

The Figures. 8.19 and 8.20 show the invariant mass of the reconstructedµµK candidates
after applying the BDT-cut at 0.11 (Run IIa) and 0.05 (Run IIb) onthe full data sample
as described in the previous sections. In total 25 (Run IIa) and 19 (Run IIb) events are
observed in the 400 MeV/c2 wide signal window around theB± mass, corresponding to
±2σ of theB± mass resolution. The number of background events in the signal region
was estimated by an exponential fit to the lower and upper sidebands in theµµK mass
plot as defined in Fig. 8.13. The fit is interpolated into the signal region and the number
of background events is determined from the integral over this function within the signal
region to be16.0 ± 4.0(stat) for Run IIa and7.5 ± 2.7(stat) for Run IIb. For the signal
region a single Gaussian is added to the exponential distribution leading to:

f(x) = exp(a + b · x) + c · exp

(

−(x − 5.279 GeV/c2)2

(0.1 GeV/c2)2

)

(8.6)

For the fit the width and the mean of the signal are kept at theirfixed values. Integrating
the fitted function over the signal window in Fig. 8.19 and Fig. 8.20 gives 7.8±5.0 (stat)
signal events for Run IIa and 10.7±4.4 (stat) signal events for Run IIb.
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Figure 8.19: Reconstructed B± mass for the decayB± → K± µ+µ− in Run IIa data. The
±2σ signal window corresponds to the shaded area.
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Figure 8.20: Reconstructed B± mass for the decayB± → K± µ+µ− in Run IIb data. The
±2σ signal window corresponds to the shaded area.

Since the number of signal events is small, we attempt to derive an upper limit for the
branching fractionB(B± → K± µ+µ−) according to Equation 2.16 replacingNsig, the
number of signal events, byNlim, the upper limit.

B(B± → K± µ+µ−) =
Nlim

NNorm

· ǫNorm

ǫSignal

· B(B± → J/ψ K±) · B(J/ψ → µ+ µ−) (8.7)

Nlim can be calculated using a program based on a frequentist (Feldman-Cousins) ap-
proach which includes a proper treatment of the systematic errors described by Gaus-
sians [102, 103, 104].

In Table 8.3 all sources of the uncertainties on the branching fraction B(B± →
K± µ+µ−) calculation can be found. The dominating uncertainty of about 65.4% (Run
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IIa) and 40.7% (Run IIb) originates from the statistics of the small number of observed
events. The systematic uncertainty on the BDT method was estimated by varying the
cut value on the BDT response and observing the resulting variation of the branching
fraction. The uncertainty on the Monte Carlo weighting is determined by determing the
branching fraction with and without thepB

t -weight. The analysis was performed with
loose, medium or tight quality muons and the differences of the resulting branching frac-
tions were used as the systematical error due to the muon quality. The branching fractions
B(J/ψ → µ+ µ−) = (5.88± 0.1)× 10−2 andB(B± → J/ψ K±) = (1.0± 0.04)× 10−3

are taken from the PDG [14].

Table 8.3: The sources of the relative uncertainties of the branching fraction calculation.

Data Run IIa Run IIb

Source relative uncertainty [%] relative uncertainty [%]

Number ofB± → K± µ+µ− events 65.4 40.7

Number ofB± → J/ψ K± events 2.5 2.7

Efficiency ratioǫNorm/ǫSignal negligible negligible

Total statistical uncertainty 65.4 40.8

Monte Carlo weighting 8.0 5.8

BDT method 12.5 8.3

Muon quality 14.2 12.5

B(J/ψ → µ+ µ−) 1.7 1.7

B(B± → J/ψ K±) 4.0 4.0

Total systematic uncertainty 21.0 16.7

Together with the total of 25 (19) observed events in the 400 MeV/c2 wide signal
region this corresponds to an upper limit ofNlim = 23.6 including a 21.0% systematical
uncertainty (see Table 8.3) for Run IIa andNlim = 24.3 including a 16.7% systematical
uncertainty for Run IIb.

The mass resolution of theB± → J/ψ K± is better due to the mass constraint on the
J/ψ and is found to be 45 MeV/c2. Nnorm is the number of reconstructed events of the
normalization channelB± → J/ψ K±. For the normalization channelB± → J/ψ K±

similar cuts as specified in Table 8.1 were applied and the same MVA was performed. The
background of the invariantJ/ψK mass was described best by a second order polynomial
distribution and for the signal a single Gaussian is added (see Fig. 8.21). The fit to the Run
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IIa data results in 1577±40 (stat) events and that to the Run IIb data in 1614±44 (stat)
events. The number of events from the signal channel in the normalisation channel is
negligible.
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Figure 8.21: ReconstructedB± mass for the decayB± → J/ψ K± in Run IIa (left) and
Run IIb (right) data. The shaded area highlights a±2σ range, whereσ =45MeV/c.

The efficienciesǫSignal andǫNorm for the signal and normalization channel are deter-
mined from Monte Carlo simulated events, including all selection cuts and corrections,
resulting inǫNorm/ǫSignal=2.09±0.17 (syst) for Run IIa and 1.70±0.10 (syst) for Run IIb.
The systematic uncertainty includes the effect of weighting the Monte Carlo data, as de-
scribed in Section 8.2. The statistical uncertainty on the efficiency ratio is negligible.

As a result the upper limit for the branching fraction forB± → K± µ+µ− according
to Equation 8.7 and including the systematic uncertaintieslisted in Table 8.3 is

B(B± → K± µ+µ−) ≤ 18.4 × 10−7 Run IIa (8.8)

B(B± → K± µ+µ−) ≤ 15.0 × 10−7 Run IIb (8.9)

at 95% CL.

In addition, we tried to estimate the actual branching fraction from the number of ob-
served signal events. To calculate the branching fractionNlim in Equation 8.7 is replaced
by the number of signal events from the fit. Including all uncertainties the branching
fraction is

B(B± → K± µ+µ−) = 6.07 ± 3.96 (stat) ± 1.27 (syst) × 10−7 Run IIa (8.10)

B(B± → K± µ+µ−) = 6.63 ± 2.71 (stat) ± 1.11 (syst) × 10−7 Run IIb (8.11)

The combination of Run IIa and Run IIb results in the final branching fraction of

B(B± → K± µ+µ−) = 6.45 ± 2.24 (stat) ± 1.19 (syst) × 10−7 (8.12)

Within the errors this measurement is in agreement with the SM prediction (see Table 2.2)
and previous measurements of other experiments (see Table 2.3).

An overview of all numbers entering the branching fraction calculation is given in
Table 8.4.
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Table 8.4: The values for the different variables of Equation 8.7 for different BDT cut
values without their errors.

Run IIa Run IIb

Variable BDT cut 0.11 BDT cut 0.05

Nlim (Nsig) 7.8 (23.6) 10.7 (24.3)

Nnorm 1577 1614

NMonteCarlo
J/ψ 2369 1014

NMonteCarlo
µµ 1303 721

ǫNorm/ǫSignal 2.09 1.70

Branching fraction 6.07·10−7 6.63·10−7



Chapter 9

The decayB0
d → K∗ µ+µ−

This Chapter describes the search for the rare decay ofB0
d → K∗ µ+µ−. As normalisation

channelB0
d → J/ψ K∗(892) is used withJ/ψ → µ+µ−. The same trigger-conditions as

described in chapter 8 are used and the strategy of the analysis is the same. For the final
selection the BDT method is used.

9.1 Introduction

There are several similarities between the decay channelB0
d → K∗ µ+µ− andB± →

K± µ+µ−.

µ−µ+

Z µ−

µ+

t sb b st

ν
W+

W

γ
W−

d d d d

Figure 9.1: SM diagrams for the decayB0
d → K∗ µ+µ−.

The dimuon spectra is very similar and in the data there are the same resonances of
J/ψ or aψ as for the decayB± → K± µ+µ−. The main difference is that the final state
consists of four tracks. TheK∗ decays into a kaon and a pion. As the DØ detector does

87
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not provide a particle identification one has to find correct assignments for the third and
fourth particle. For each event exists a list of all the particles ordered by theirpt. In the
reconstruction theK∗ candidates are built of the combination of all the particlesin the
particle list except the muons. Then the masses of the kaon and the pion are assigned to
the two decay particles of theK∗ to calculate the invariant mass of theK∗. The mass of
the K∗ tends to be shifted if the kaon mass is assigned to the pion andvice versa (see
Fig. 9.2). K∗ → πK is used when the pion has the higher momenta then the kaon and
K∗ → Kπ is used when the kaon has the higherpt than the pion. The effect of assigning
the wrong mass to the particle with the higherpt is smaller than for the lowpt particle.
By assigning a smaller mass to the lowpt particle, the final mass will be shifted to lower
values what can be seen in the left plot of Fig. 9.2.
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Figure 9.2: Invariant mass distributions of the (K π)) pair. The plot on the left is for
the case that the higher momentum particle is the pion, the plot on the right is for the
case where the higher momentum particle is the kaon. The truecombination is the filled
distribution and if the wrong masses assigned to the decay products (shaded). On the right
side the same is shown for the channelK∗ → Kπ.

9.2 Pre-selection

The pre-selection cuts for the decayB0
d → K∗ µ+µ− were very similar to those

used for theB± → K± µ+µ− analysis. For the two muons the same cuts were ap-
plied as described in section 8.2. TheK∗ decays into aK± and aπ∓ and it is re-
quired that both particles have apt > 0.5 GeV/c and at least one hit in the SMT de-
tector. TheK∗ resolution in Monte Carlo is about 25 MeV/c2 as shown in Fig. 9.3.
The J/ψ and theψ(2s) resonances were cut out from the dimuon mass spectrum
(2.5 GeV/c2 < mµ+ µ− < 4.04 GeV/c2). To further reduce background, a cut on the re-
constructedK∗ mass of 0.812 GeV/c2 < mK∗ < 0.967 GeV/c2 was applied corresponding
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Figure 9.3:K∗mass resolution (left) and theBd mass resolution (right) determined by
Monte Carlo.

to±3σ. In case of multipleB0
d candidates, the one with highest transverse momentum of

theK∗was selected. The list of all pre-selection cuts is shown in Table 9.1.

Table 9.1: Preselection cuts for theB0
d → K∗ µ+µ− candidates. For the calibration

channelB0
d → J/ψ K∗(892) the same cuts are applied except for the invariantµµ mass

where the range 2.84 GeV/c2 < mµ+ µ− < 3.35 GeV/c2 is selected.

Cuts value

muon quality medium (2)

sum of muon charge 0

muonpµ
t pµ

t ≥2.5 GeV/c

pseudo rapidity of muons |ηµ| ≤2.0

muon tracking hits 2 SMT, 2 CFT

third and fourth particle pt >0.5 GeV/c; 1 SMT hit

excluded mass window 2.50 GeV/c2 < Mµµ < 4.04 GeV/c2

mass window ofK∗ 0.816 GeV/c2 < mK∗ < 0.966 GeV/c2

Vertexχ2 χ2 < 35

best candidate highestpK∗

t

As the same trigger was applied as forB± → K± µ+µ− the values for the Monte
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Carlo trigger simulation were taken from section 8.3 and justthe weight depending on
thepB

t was newly determined and can be seen in Fig. 9.4. ThepB
t spectrum before and

after applying thepB
t weights can be seen in Fig. 9.5. Fig. 9.6 shows thept distributions

of the muons in Monte Carlo and data after applying the weight-functions. Due to this
reweighting procedure a satisfactory agreement between data and Monte Carlo could be
obtained.
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Figure 9.4: Weighting function determined from the ratio from pB
t data (Run IIb) over

p20 Monte Carlo for the calibration channelB0
d → J/ψ K∗(892).

For the further analysis theB0
d mass resolution in data has to be determined. Equa-

tion 8.1 was used and a mass resolution of about 93 MeV/c2 was obtained for the decay
B0

d → K∗ µ+µ−.

9.3 Final selection - TMVA

To obtain the best possible distinction between signal and background a similar analysis
as in section 8.4 was performed. In addition to the variablesdescribed in section 7.4 the
impact parameter of the additional particle was included. The following variables are
used in the MVA:

• Transverse decay length significance(see Fig. 9.7)

• Isolation variable(see Fig. 9.7)
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Figure 9.5:pB
t distributions for theB0

d → J/ψ K∗(892) calibration channel. The Monte
Carlo distribution (line) is compared to the preselected data of Run IIb (crosses) before
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• Opening angle(see Fig. 9.8)

• Vertex quality(see Fig. 9.8)

• Muon impact parameter(see Fig. 9.9)
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• Kaon impact parameter(see Fig. 9.9)

• Pion impact parameter(see Fig. 9.10)
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Figure 9.7: The transverse decay length significance is shown on the left. On the right the
isolation variable can be seen. The filled histogram is thesignaland the shaded histogram
is thebackground.
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Figure 9.8: The opening angle between the decay length and the momentum of the B is
shown on the left. On the right the vertexχ2 can be seen. The filled histogram is the
signaland the shaded histogram is thebackground.

The sidebands for theµµK∗ mass distribution were defined from 4.379 GeV/c2 to
4.979 GeV/c2 for the upper and 5.579 GeV/c2 to 6.179 GeV/c2) for the lower sideband.
The signal region was defined between 5.093 GeV/c2 and 5.465 GeV/c2. The BDT re-
sponse for the Monte Carlo and the sidebands is shown in Fig. 9.11. The optimization
criterion of Punzi (Equation 8.5) gives best cut values of−0.02 for Run IIa and0.10 for
Run IIb.
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Figure 9.9: The discriminating variable minimal muon impact parameter is shown on the
left and the kaon impact parameter significance on the right.The filled histogram is the
signaland the shaded histogram is thebackground.
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Figure 9.10: Pion impact parameter significance. The filled histogram is thesignaland
the shaded histogram is thebackground.

9.4 Results

The invariant mass of the reconstructedµµK∗ candidates after applying the BDT-cut at
−0.02 for Run IIa, respectively at0.10 for Run IIb, is shown in the Fig. 9.12 and 9.13. In
total 12 (Run IIa) and 19 (Run IIb) events are observed in the 372MeV/c2 signal window,
corresponding to 2 standard deviations of theB0

d mass resolution.

As described in section 8.5 the data is fitted with an exponential describing the back-
ground and a Gaussian describing the signal.

f(x) = exp(a + b · x) + c · exp

(

−(x − 5.279 GeV/c2)2

(0.093 GeV/c2)2

)

(9.1)

The sidebands of the measured mass distributions were fittedwith an exponential which
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Figure 9.11: Distribution of the Boosted Decision Tree forsignal(filled) andbackground
(shaded). The plot on the left is for Run IIa and p17 Monte Carlo and the plot on the right
is Run IIb data and p20 Monte Carlo.
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Figure 9.12: Reconstructed Bd mass for the decayB0
d → K∗ µ+µ− in Run IIa data. The

±2σ range corresponds to the shaded area.

then was interpolated to the signal region. The integral of this exponential over the signal
region was used to estimate the number of expected background events. This results in
3.5±1.9(stat) events for Run IIa and in 4.2±2.0(stat) events for Run IIb. To obtain the
number of signal events of the decayB0

d → K∗ µ+µ−, the mass of theB0
d was fixed to

the PDG value ofMBd
= 5.279 GeV/c2 and the width to the expected mass resolution of

σm = 93 MeV/c2. The number of signal events was determined by integrating over the
Gaussian in the signal region. This resulted in 7.1±3.5(stat) signal events for Run IIa and
13.8±4.4(stat) signal events for Run IIb.

Since the number of signal events is small, we attempt to derive an upper limit for
the branching fractionB(B0

d → K∗ µ+µ−) according to Equation 2.16 replacingNsig, the
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Figure 9.13: Reconstructed Bd mass for the decayB0
d → K∗ µ+µ− in Run IIb data. The

±2σ range corresponds to the shaded area.

number of signal events, byNlim, the upper limit.

B(B0
d → K∗ µ+µ−) =

Nlim

NNorm

· ǫNorm

ǫSignal

· B(B0
d → J/ψ K∗(892)) · B(J/ψ → µ+ µ−)

(9.2)

Table 9.2 shows all sources of relative uncertainties on thecalculation of the branching
fractionB(B0

d → K∗ µ+µ−). Due to the small number of signal events the statistical error
is the dominating error contribution. The systematic uncertainty on the BDT method was
estimated by choosing different BDT-cutvalues and observing the resulting variation of
the branching fraction. The uncertainty of the Monte Carlo weighting was determined
by measuring the branching fraction with and without the Monte Carlo weighting. The
systematic error of the muon quality was assumed to be the same as forB± → K± µ+µ−.
The errors on the branching fractionB(J/ψ → µ+ µ−) andB(B0

d → J/ψ K∗(892)) were
taken from the PDG [14].

Fig. 9.14 shows the invariant mass for the normalisation channel. The background
was described by a second order polynomial and the signal by aGaussian. The fit to the
Run IIa data results in 1253±35 (stat) events, the fit for the Run IIb data in 1854±47 (stat)
events.

The same approach as described in section 8.5 is used to calculate Nlim using the
program pole [102, 103, 104]. The upper limit ofNlim = 19.3 including the systematic
uncertainty of 18.9% for Run IIa andNlim = 28.3 including the systematic uncertainty
of 16.6% for Run IIb were calculated. This results in the upper limits for the decay
B0

d → K∗ µ+µ− including the systematic uncertainties of:

B(B0
d → K∗ µ+µ−) ≤ 24.4 × 10−7 Run IIa (9.3)

B(B0
d → K∗ µ+µ−) ≤ 26.8 × 10−7 Run IIb (9.4)
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Table 9.2: The sources of the relative uncertainties of the branching fraction calculation.

Data Run IIa Run IIb

Source relative uncertainty [%] relative uncertainty [%]

Number ofB0
d → K∗ µ+µ− events 49.3 31.9

Number ofB0
d → J/ψ K∗(892) events 2.8 2.5

Efficiency ratioǫNorm/ǫSignal negligible negligible

Total statistical uncertainty 49.4 32.0

Monte Carlo weighting 5.7 3.3

BDT method 9.9 9.3

Muon quality 14.2 12.5

B(J/ψ → µ+ µ−) 1.7 1.7

B(B0
d → J/ψ K∗(892)) 4.5 4.5

Total systematic uncertainty 18.9 16.6
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Figure 9.14: Reconstructed Bd mass for the decayB0
d → J/ψ K∗(892) in Run IIa (left)

and Run IIb (right) data. The shaded area highlights a±2σ range, whereσ =45MeV/c.

at a 95% CL.

By replacingNlim with the number of signal events obtained from the fit (Equa-
tion 9.1) and with Equation 9.2 the branching fraction is determined:

B(B0
d → K∗ µ+µ−) = 8.98 ± 4.44 (stat) ± 1.70 (syst) × 10−7 Run IIa (9.5)

B(B0
d → K∗ µ+µ−) = 13.08 ± 4.19 (stat) ± 2.17 (syst) × 10−7 Run IIb (9.6)

The combination of Run IIa and Run IIb results in the final branching fraction of

B(B0
d → K∗ µ+µ−) = 11.15 ± 3.05 (stat) ± 1.94 (syst) × 10−7 (9.7)



The decayB0
d → K∗ µ+µ− 97

Within the errors this measurements is in agreement with theSM prediction (see Ta-
ble 2.2) and previous measurements of other experiments (see Table 2.3).
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Chapter 10

Conclusion

The data used for these analysis was collected during the August 2002 and August 2008
with a total luminosity of 4.1 fb−1. In the spring 2006 a new silicon layer was installed.
The data before the Layer 0 installation is know as Run IIa a luminosity of about 1.4 fb−1.
After the Layer 0 installation Run IIb started with a luminosity of about 2.7 fb−1. Due to
the different detector layouts these two dataset are analyzed separately.

For all physics analysis a well aligned detector is required. Stability studies of the
software alignment algorithm were performed. It was found that the systematic uncer-
tainties for the CFTaxial andradial alignment are 25µm. The position resolution for
the CFT is of about 100µm. For the SMT theaxial alignment precision is 5µm, the
radial precision 7µm and thez precision is 15µm, where the position resolution of the
SMT is about 20µm.

A search for the rare decayB± → K± µ+µ− was performed. By fitting a Gaussian
with a fixed meanµ = 5.279 GeV/c2 and widthσ = 100 MeV/c2 and an exponential to
the same datasets 7.8±5.0 (stat) signal and 16.0±4.0 (stat) background events were found
for Run IIa and 10.7±4.4 (stat) signal and 4.2±2.0 (stat) background events were found
for Run IIb. This results in the branching fraction of

B(B± → K± µ+µ−) = 6.45 ± 2.24 (stat) ± 1.19 (syst) × 10−7 (10.1)

This result is in agreement with the SM predictions and with previous measurements.

The similar analysis was performed for the rare decayB0
d → K∗ µ+µ−. By performig

a fit of a Gaussian with a different widthσ = 93 MeV/c2 to the two datasets, 7.1±3.9(stat)
signal events were found for Run IIa and 13.8±4.4(stat) signal events have been found
for Run IIb. The branching fraction of

B(B0
d → K∗ µ+µ−) = 11.15 ± 3.05 (stat) ± 1.94 (syst) × 10−7 (10.2)

was calculated. The branching fraction agrees with the SM prediction.

99



100 Conclusion

The Tevatron accelerator is scheduled to run until 2009, with a projected integrated
luminosity of 8 fb−1 - 9 fb−1. With such a large data sample the Tevatron experiments will
be able to further investigations on rare decays.
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2003–2004 Diploma Thesis, ETH Zürich
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