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Dynamics of an anisotropic universe is studied in𝑓(𝑅, 𝑇) gravity using a rescaled functional𝑓(𝑅, 𝑇), where𝑅 is the Ricci Scalar and
𝑇 is the trace of energy-momentum tensor. Three models have been constructed assuming a power law expansion of the universe.
Physical features of the models are discussed. The model parameters are constrained from a dimensional analysis. It is found from
the work that the anisotropic Bianchi type VIℎ (BVIℎ) model in the modified gravity generally favours a quintessence phase when
the parameter ℎ is either −1 or 0. We may not get viable models in conformity with the present day observation for ℎ = 1.

1. Introduction

In the past decade the idea of modifying gravity on cosmo-
logical scale has attracted a lot of attention. It gains momen-
tum through the theoretical developments involving higher
dimensional theories and in constructing renormalizable
theories of gravity. Modified gravity represents an intriguing
possibility for resolving the theoretical challenge posed by
late time acceleration. However, it turns out to be extremely
difficult to modify general relativity at low energy regime
without violating observational constraints.

Observations from type Ia supernova [1–3], large scale
structures [4–6], and cosmic microwave background [7, 8]
confirm that the cosmic expansion is accelerating. The very
cause behind this acceleration may be a mysterious energy
source called dark energy which accounts for two-thirds of
the total energy budget of the universe.

The role of modified theories to understand the mech-
anism behind the cosmic speed-up is more promising. The
objective behind such theories is to explain the puzzling
late time cosmic dynamics without the need of dark energy
components in the field equations. Several modified theories
of gravity have been proposed in recent times. Of these a
few models such as 𝑓(𝑅) gravity [9–11], 𝑓(𝑇) gravity [12–16],
and 𝑓(𝐺) gravity [17–19] are studied widely. In 𝑓(𝑅) theory, a

more general function of the Ricci Scalar 𝑅 = 𝑔𝜇]𝑅𝜇] is used
in place of 𝑅 whereas 𝑓(𝑇) gravity is a generalized version of
teleparallel gravity. Motivated by the success of cosmological
constant as a simple and good candidate of dark energy, some
matter field is also coupled with the function of 𝑅 in the
geometry side of the action in some modified theories of
gravity (𝑓(𝑅,L𝑚) theory).

Along the line of interest of incorporating some matter
components in the action geometry, 𝑓(𝑅, 𝑇) theory has been
proposed by Harko et al. [20] which, of late, has been an
interesting framework to investigate accelerating models.
Moreover, the reconstruction of arbitrary FRW cosmologies
is possible by an appropriate choice of the functional𝑓(𝑅, 𝑇).
Many authors have investigated the astrophysical and cosmo-
logical implications of the 𝑓(𝑅, 𝑇) gravity [21–24]. Jamil et al.
[25] have reconstructed some cosmological models for some
specific forms of 𝑓(𝑅, 𝑇) in this modified gravity. Shamir et
al. [26] obtained exact solution of anisotropic Bianchi type
I and type V cosmological models whereas Chaubey and
Shukla [27] have obtained a new class of Bianchi cosmological
models using special law of variation of parameter. Using a
decoupled form of 𝑓(𝑅, 𝑇), that is, 𝑓(𝑅, 𝑇) = 𝑓(𝑅) + 𝑓(𝑇)
for Bianchi type V universe, Ahmed and Pradhan [28] have
studied the energy conditions of perfect fluid cosmological
models and Yadav [29] obtained some string solutions.
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Singh and Kumar [30] have investigated the effect of bulk
viscosity in 𝑓(𝑅, 𝑇) theory and suggested that inclusion of
dissipative energy sources like bulk viscosity may be able to
explain the early and late time accelerations of the universe.
Mishra and Sahoo [31] have studied Bianchi type VIℎ cos-
mological models assuming 𝑓(𝑅, 𝑇) = 𝑅 + 2𝑓(𝑇). In that
work, Mishra and Sahoo have obtained exact solutions to the
modified field equations by assuming a specific anisotropic
relation among the metric potential. The models constructed
in [31] are obtained to be accelerating for themodel parameter
ℎ = 1. Samanta [32] has obtained exact solution of 𝑓(𝑅, 𝑇)
gravitational field equations in Kantowski-Sachs space time
and Shamir [33] has constructed some cosmological models
in Bianchi type V space time. In the framework of this mod-
ified gravity, recently, Mishra et al. [34] have presented the
Einstein-Rosen nonstatic cosmological model with quadratic
form of 𝑓(𝑅, 𝑇) gravity. Sahoo et al. [35] have investigated
the background cosmology of power law and exponential law
of volumetric expansion in 𝑓(𝑅, 𝑇) gravity in Kaluza-Klein
model. Recently Yousaf et al. have investigated the irregularity
energy density factor in𝑓(𝑅, 𝑇) theory responsible to disturb
the stability of homogeneous universe [36] and also explored
the evolutionary behaviour of compact objects [37].

In this work, we have constructed some cosmological
models in𝑓(𝑅, 𝑇) theory for general Bianchi type VIℎ (BVIℎ)
universe. The present work differs from the work of Mishra
and Sahoo [31] in the sense that here we have used a rescaled
functional 𝑓(𝑅, 𝑇) instead of the one used in [31]. We have
reconstructed some viable accelerating models in conformity
with the recent observations from some physical basis. Our
work is organised as follows. In Section 2, the basic formalism
of the 𝑓(𝑅, 𝑇) theory has been presented. The dynamics of
anisotropic VIℎ model has been presented in a general form.
In Section 3, some specific models have been constructed
to study the dynamics. We presented the conclusions of the
works at the end in Section 4.

2. Basic Formalism

The modified four-dimensional Einstein-Hilbert action in
𝑓(𝑅, 𝑇) gravity theory with a specific choice of matter
Lagrangian can be considered as

𝑆 =
1

16𝜋
∫𝑓 (𝑅, 𝑇)√−𝑔𝑑

4𝑥 + ∫L𝑚√−𝑔𝑑
4𝑥. (1)

Here, 𝑓(𝑅, 𝑇) is an arbitrary function of 𝑅 and 𝑇. Following
the work of Harko et al. [20], we have considered the matter
Lagrangian asL𝑚 = −𝑝, where𝑝 is the pressure of the perfect
cosmic fluid. The trace 𝑇 = 𝑔𝑖𝑗𝑇𝑖𝑗 of the energy-momentum
tensor is obtained from 𝑇𝑖𝑗 = (𝜌 + 𝑝)𝑢𝑖𝑢𝑗 − 𝑝𝑔𝑖𝑗. 𝜌 is the rest
energy density and 𝑢𝑖 = 𝛿𝑖

0
is the four velocity vectors.

The field equations can be obtained from the action in (1)
for the choice of the functional𝑓(𝑅, 𝑇) = 𝑓(𝑅)+𝑓(𝑇) as [20]

𝑓𝑅𝑅𝑖𝑗 −
1

2
𝑓 (𝑅) 𝑔𝑖𝑗 + (𝑔𝑖𝑗◻ − ∇𝑖∇𝑗) 𝑓𝑅 (𝑅)

= 8𝜋𝑇𝑖𝑗 + 𝑓𝑇 (𝑇) 𝑇𝑖𝑗 + [𝑝𝑓𝑇 (𝑇) +
1

2
𝑓 (𝑇)] 𝑔𝑖𝑗.

(2)

𝑓𝑅 = 𝜕𝑓(𝑅)/𝜕𝑅 and 𝑓𝑇 = 𝜕𝑓(𝑇)/𝜕𝑇 are the partial differ-
entiation of the respective functional with respect to their
arguments. The functional 𝑓(𝑅, 𝑇) can be chosen arbitrarily
to get viable cosmological models. Here we chose the func-
tional 𝑓(𝑅) and 𝑓(𝑇) to be linear in their arguments, 𝑓(𝑅) =
𝜆𝑅 and𝑓(𝑇) = 𝜆𝑇, so that𝑓(𝑅, 𝑇) = 𝜆(𝑅+𝑇). 𝜆 is a constant
scaling factor.

Equation (2) now reduces to

𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 = (

8𝜋 + 𝜆

𝜆
)𝑇𝑖𝑗 + Λ (𝑇) 𝑔𝑖𝑗. (3)

Equation (3) can now be recast as the usual Einstein Field
Equation where Λ(𝑇) = 𝑝 + (1/2)𝑇 can be identified with
the cosmological constant that evolves with cosmic time.The
role of the particular choice of the functional 𝑓(𝑅, 𝑇) =
𝜆(𝑅 + 𝑇) can be well understood in getting such a simplified
approach to a modified theory which does not contain any
dark sector component but can be instrumental in providing
viable accelerating models.

For a spatially homogeneous and anisotropic Bianchi type
VIℎ (BVIℎ) space time considered in the form

𝑑𝑠2 = 𝑑𝑡2 − 𝐴2𝑑𝑥2 − 𝐵2𝑒2𝑥𝑑𝑦2 − 𝐶2𝑒2ℎ𝑥𝑑𝑧2, (4)

(3) can be explicitly written as

�̈�

𝐵
+
�̈�

𝐶
+
�̇��̇�

𝐵𝐶
−

ℎ

𝐴2
= (

16𝜋 + 3𝜆

2𝜆
)𝑝 −

𝜌

2
,

�̈�

𝐴
+
�̈�

𝐶
+
�̇��̇�

𝐴𝐶
−
ℎ2

𝐴2
= (
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2𝜆
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𝜌

2
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−

1
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𝜌

2
,

−
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𝐴𝐵
−
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𝐵𝐶
−
�̇��̇�

𝐶𝐴
+
1 + ℎ + ℎ2

𝐴2

= (
16𝜋 + 3𝜆

2𝜆
) 𝜌 −

𝑝

2
,

�̇�

𝐵
+ ℎ

�̇�

𝐶
− (1 + ℎ)

�̇�

𝐴
= 0,

(5)

where the metric potentials 𝐴, 𝐵, and 𝐶 are functions of
cosmic time 𝑡.The constant exponent ℎ decides the behaviour
of the model and can take integral values such as −1, 0,
and 1. An overdot on a field variable denotes differentiation
with respect to time 𝑡. We define the directional Hubble
parameters along different directions as 𝐻𝑥 = �̇�/𝐴, 𝐻𝑦 =
�̇�/𝐵, and 𝐻𝑧 = �̇�/𝐶. The mean Hubble parameter becomes
𝐻 = (1/3)(𝐻𝑥 +𝐻𝑦 +𝐻𝑧). The field equations (5) can now be
expressed as

�̇�𝑦 + �̇�𝑧 + 𝐻
2

𝑦
+ 𝐻2
𝑧
+ 𝐻𝑦H𝑧 −

ℎ

𝐴2
= 𝛼𝑝 −

𝜌

2
, (6)

�̇�𝑥 + �̇�𝑧 + 𝐻
2

𝑥
+ 𝐻2
𝑧
+ 𝐻𝑥𝐻𝑧 −

ℎ2

𝐴2
= 𝛼𝑝 −

𝜌

2
, (7)
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�̇�𝑥 + �̇�𝑦 + 𝐻
2

𝑥
+ 𝐻2
𝑦
+ 𝐻𝑥𝐻𝑦 −

1

𝐴2
= 𝛼𝑝 −

𝜌

2
, (8)

−𝐻𝑥𝐻𝑦 − 𝐻𝑦𝐻𝑧 − 𝐻𝑧𝐻𝑥 +
1 + ℎ + ℎ2

𝐴2
= 𝛼𝜌 −

𝑝

2
, (9)

𝐻𝑦 + ℎ𝐻𝑧 − (1 + ℎ)𝐻𝑥 = 0, (10)

where 𝛼 = ((16𝜋 + 3𝜆)/2𝜆).
The pressure 𝑝 and rest energy density 𝜌 can be obtained

from (8) and (9) in general forms as

𝑝 =
2

(4𝛼2 − 1)
[2𝛼𝜒 (𝐻𝑥, 𝐻𝑦) − 𝜉 (𝐻𝑥, 𝐻𝑦, 𝐻𝑧, ℎ)] , (11)

𝜌 =
2

(4𝛼2 − 1)
[𝜒 (𝐻𝑥, 𝐻𝑦) − 2𝛼𝜉 (𝐻𝑥, 𝐻𝑦, 𝐻𝑧, ℎ)] , (12)

where 𝜒(𝐻𝑥, 𝐻𝑦) = �̇�𝑥 + �̇�𝑦 +𝐻
2

x +𝐻
2

𝑦
+𝐻𝑥𝐻𝑦 − 1/𝐴

2 and
𝜉(𝐻𝑥, 𝐻𝑦, 𝐻𝑧, ℎ) = 𝐻𝑥𝐻𝑦 +𝐻𝑦𝐻𝑧 +𝐻𝑧𝐻𝑥 − (1 + ℎ + ℎ

2)/𝐴2.
From (11) and (12), we obtain the equation of state

parameter 𝜔 = 𝑝/𝜌 and the effective cosmological constant
Λ as

𝜔 = 2𝛼 +
(4𝛼2 − 1) 𝜉 (𝐻𝑥, 𝐻𝑦, 𝐻𝑧, ℎ)

𝜒 (𝐻𝑥, 𝐻𝑦) − 2𝛼𝜉 (𝐻𝑥, 𝐻𝑦, 𝐻𝑧, ℎ)
,

Λ = −
𝜒 (𝐻𝑥, 𝐻𝑦) + 𝜉 (𝐻𝑥, 𝐻𝑦, 𝐻𝑧, ℎ)

(2𝛼 + 1)
.

(13)

Equations (11)–(13) provide the dynamical behaviour of
the universe. However, the dynamics can only be assessed if
the behaviour of these properties is known in terms of the
directional Hubble rates for a given value of the exponent ℎ.
In other words, the formalism as described above can help us
to study a background cosmology for an assumed dynamics
of the universe. In this context, we can consider the power law
cosmology, where the cosmic expansion is governed through
a volume scale factor of the form V = 𝑡𝑚. 𝑚 is an arbitrary
positive constant usually determined from the background
cosmology. Power law cosmology has been widely studied in
recent times because of its functional simplicity and ability
to provide a first-hand information about the dynamics of
the universe. For such an assumption, the radius scale factor
can be 𝑎 = (𝐴𝐵𝐶)1/3 = 𝑡𝑚/3. The deceleration parameter for
power law expansion of the universe is a constant quantity:
𝑞 = −1 + 3/𝑚, which can be negative for 𝑚 > 3 and positive
for 𝑚 < 3. It is worth mentioning here that a positive 𝑞
describes a decelerating universe whereas a negative 𝑞
describes an accelerating universe. In order to keep a pace
with the recent observational data favouring an accelerating
universe,𝑚 should be greater than 3.

Some other kinematical parameters of the universe are
the scalar expansion 𝜃, shear scalar 𝜎2, and the average
anisotropy parameterA defined, respectively, as

𝜃 = Σ𝐻𝑖,

𝜎2 =
1

2
𝜎𝑖𝑗𝜎
𝑖𝑗 =

1

2
(Σ𝐻2
𝑖
−
1

3
𝜃2) ,

A =
1

3
Σ (

Δ𝐻𝑖
𝐻

)
2

,

(14)

where Δ𝐻𝑖 = 𝐻𝑖 − 𝐻 with 𝑖 = 𝑥, 𝑦, 𝑧. A is a measure of
deviation from isotropic expansion. One can get the isotropic
behaviour of the model for A = 0. For the power law cos-
mology with V = 𝑡𝑚, the scalar expansion becomes 𝜃 = 𝑚/𝑡
and consequently the mean Hubble rate becomes𝐻 = 𝑚/3𝑡.

Geometrical analysis of dark energy models is usually
performed through the statefinder pair 𝑗 and 𝑠 given by 𝑗 =
...
𝑎/𝑎𝐻3 and 𝑠 = (𝑗 − 1)/3(𝑞 − 1/2). In the present model,
we obtain these parameters as 𝑗 = (9/𝑚)(2/𝑚 − 1) + 1 and
𝑠 = 2/𝑚. These parameters are constants of cosmic time and
depend only on the exponent 𝑚. It can be emphasized
here that exact determination of these parameters from
different observational bounds can constrain the exponent𝑚
in narrow ranges.

3. Dynamics of Anisotropic 𝐵𝑉𝐼ℎ Universe

Once the cosmic expansion behaviour is known, it becomes
simpler to study the background cosmology of the diagonal
BVIℎ universe. However, the exponent ℎ in the metric can
assume integral values such as −1, 0, and 1. Each value of ℎ
corresponds to a different cosmological model with different
dynamical behaviour. In view of this, in the following, we
discuss the dynamical features of the three possible models
in the framework of 𝑓(𝑅, 𝑇) theory.

3.1. Model-I (ℎ = −1). A substitution of ℎ = −1 in (10) yields
𝐻𝑦 = 𝐻𝑧, where the integration constant has been rescaled
to unity. Assuming an anisotropic relationship𝐻𝑥 = 𝑘𝐻𝑦, we
can write the functionals 𝜒(𝐻𝑥, 𝐻𝑦) and 𝜉(𝐻𝑥, 𝐻𝑦, 𝐻𝑧, ℎ) as

𝜒 = (𝑘 + 1) �̇�𝑦 + (𝑘
2 + 𝑘 + 1)𝐻2

𝑦
−

1

𝐴2
,

𝜉 = (2𝑘 + 1)𝐻
2

𝑦
−

1

𝐴2
,

(15)

where 𝑘 is an arbitrary positive constant. For a power law
cosmology, we have 𝐻𝑥 = (𝑘𝑚/(𝑘 + 2))(1/𝑡), 𝐻𝑦 = 𝐻𝑧 =
(𝑚/(𝑘 + 2))(1/𝑡). Consequently the directional scale factors
are 𝐴 = 𝑡𝑘𝑚/(𝑘+2) and 𝐵 = 𝐶 = 𝑡𝑚/(𝑘+2). Thus we can have

𝜒 = [
𝑚2 (𝑘2 + 𝑘 + 1) − 𝑚 (𝑘 + 1) (𝑘 + 2)

(𝑘 + 2)2
]
1

𝑡2

−
1

𝑡2𝑚𝑘/(𝑘+2)
,

𝜉 = [
(2𝑘 + 1)𝑚2

(𝑘 + 2)2
]
1

𝑡2
−

1

𝑡2𝑚𝑘/(𝑘+2)
.

(16)

The dynamical behaviour of the model is decided from
the behaviour of the equation of state parameter 𝜔 and



4 Advances in High Energy Physics

the effective cosmological constant Λ. However, these two
parameters depend on the time varying nature of functionals
𝜒(𝑡) and 𝜉(𝑡) which in turn depend on the parameters𝑚 and
𝑘. If𝑚𝑘 > 𝑘 + 2, the terms within the square brackets in (16)
dominate at late times of cosmic evolution whereas the terms
containing 𝑡−2𝑚𝑘/(𝑘+2) dominate at early phase of cosmic
evolution. Here we wish to adopt a dimensional analysis to
get some idea into the general behaviour of these functionals.
Since𝑚 and 𝑘 are two dimensionless constants, it appears that
the dimensionality of the time dependent factors for a given
functional should remain the same. In other words, we can
have𝑚 = 1 + 2/𝑘 so that 𝜒(𝑡) and 𝜉(𝑡) become

𝜒 (𝑡) = (
1 − 𝑘2

𝑘2
)
1

𝑡2
,

𝜉 (𝑡) = (
1 + 2𝑘 − 𝑘2

𝑘2
)
1

𝑡2
.

(17)

The equation of state parameter and the effective time
varying cosmological constant are obtained from (13) as

𝜔 = 2𝛼 + (4𝛼2 − 1) [
1 + 2𝑘 − 𝑘2

(1 − 2𝛼) (1 − 𝑘2) + 4𝛼𝑘
] ,

Λ (𝑡) =
2

2𝛼 + 1
[
𝑘2 − 𝑘 − 1

𝑘2
]
1

𝑡2
.

(18)

It is obvious from the above expressions that the equation
of state parameter 𝜔 is a constant quantity for a given value of
scaling constant 𝜆 and the anisotropic parameter 𝑘. However,
the effective cosmological constant decreases quadratically
with cosmic time. In order to get viable cosmological models
in conformity with recent observations, the cosmological
constant should be dynamically varying from large positive
values at an initial epoch to vanishingly null values at late
times of cosmic evolution. Similarly, the equation of state
parameter should be negative with values less than −1/3 at
late times. This behaviour will enable us to constrain the
parameter 𝑘. In Figure 1, we have shown the variation of 𝜔
as a function of 𝑘. Here we chose a negative value of the
scaling constant 𝜆; that is, 𝜆 = −8𝜋/(8𝜋 + 1). Accordingly
the model parameter 𝛼 is decided from the relation 𝛼 =
((16𝜋 + 3𝜆)/2𝜆). The reason behind this particular choice
is to look at the present problem from the backdrop of
general relativity where the modified gravity field equation
(3) appears as the Einstein Field Equation with a time varying
effective cosmological constant Λ. It can be inferred from
the figure that the equation of state parameter 𝜔 increases
almost linearly from a negative value for lower 𝑘 to zero at
higher 𝑘. One can note that the present model will collapse
at 𝑘 = 1 and therefore we restrict the values of 𝑘 below 1. For
𝑘 ≤ 0.64, 𝜔 remains in the quintessence region. One can note
that the resultsmay be sensitive to the choice of the parameter
𝛼. In Figure 2, we have shown the dynamical variation of
the effective cosmological constant for some representative
values of 𝑘. As is required for an explanation to the late time
cosmic acceleration, Λ varies from large positive values in
the beginning to vanishingly small values at late times. In

Quintessence region

h = −1

0.4 0.5 0.6 0.7 0.8 0.90.3
k

−0.6

𝜔

−0.4

−0.2

0.0

Figure 1: Variation of the equation of state parameter 𝜔 with the
parameter 𝑘 for ℎ = −1.

Figure 2(a), the evolution of Λ is shown as a function of
cosmic time where as in Figure 2(b) its evolution is shown
as function of redshift 𝑧 = 1/𝑎 − 1 with the scale factor at
present epoch being unity. As it appears from the figure, the
evolutionary behaviour of Λ is affected by the choice of the
values of 𝑘. At remote past, curves of Λ with low values of 𝑘
remain below the curves with higher values of 𝑘. However,
at certain point of cosmic time corresponding to a redshift
of 𝑧 = 6.2, there occurs a reversal of the behaviour; that is,
curves of Λ with higher values of 𝑘 remain below the curves
with lower values of 𝑘. The choice of the model parameter 𝛼
does not affect the general time varying trend of the effective
cosmological constant.

3.2. Model-II (ℎ = 0). In the present case with ℎ = 0, (10)
reduces to 𝐻𝑥 = 𝐻𝑦. An anisotropic relation 𝐻𝑧 = 𝑛𝐻𝑦
among the respective directional Hubble rates in the power
law expansion of volume scale factor yields 𝐻𝑥 = 𝐻𝑦 =
(𝑚/(𝑛 + 2))(1/𝑡) and𝐻𝑧 = (𝑚𝑛/(𝑛 + 2))(1/𝑡). The directional
scale factors become𝐴 = 𝐵 = 𝑡𝑚/(𝑛+2) and𝐶 = 𝑡𝑚𝑛/(𝑛+2). Here
𝑛 is a constant parameter. If 𝑛 = 1, the model reduces to be
isotropic.

The functionals 𝜒(𝑡) and 𝜉(𝑡) for this model are obtained
as

𝜒 (𝑡) = [
3𝑚2 − 2𝑚 (𝑛 + 2)

(𝑛 + 2)2
]
1

𝑡2
−

1

𝑡2𝑚/(𝑛+2)
,

𝜉 (𝑡) = [
(2𝑛 + 1)𝑚2

(𝑛 + 2)2
]
1

𝑡2
−

1

𝑡2𝑚/(𝑛+2)
.

(19)

The dimensional consistency of terms involved in the
expressions of 𝜒(𝑡) and 𝜉(𝑡) constrains the exponent 𝑚 to
be 𝑚 = 𝑛 + 2. With this constraint, the equation of state
parameter and the effective cosmological constant become

𝜔 =
1

2𝛼
, (20)

Λ (𝑡) = −
2𝑛

(2𝛼 + 1) 𝑡2
. (21)
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Figure 2: Evolution of the effective cosmological constant for three representative values of 𝑘 in themodel ℎ = −1. (a)Λ is shown as a function
of time. (b) Evolution of Λ shown as a function of redshift.
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Figure 3: Variation of the equation of state parameter 𝜔 with the
parameter 𝛼 for ℎ = 0. The shaded portion denotes the quintessence
region.

As in the previous model, the equation of state parameter
in the present model is also a constant quantity that depends
on the scaling constant 𝜆 through 𝛼. In the present work,
we chose 𝜆 to assume a negative value so that 𝛼 becomes
negative. This puts 𝜔 in the negative domain. It is interesting
to note here that the equation of state parameter is, in general,

not affected by the choice of anisotropy in the model. In
Figure 3, we have plotted 𝜔 as a function of 𝛼 in its negative
domain. It is clear that 𝜔 lies in the quintessence region
(shaded portion in the plot) for the range −1.5 ≤ 𝛼 ≤ −0.5.
For 𝛼 > −0.5, the equation of state parameter enters into
the phantom region. It is certain from (21) that the effective
cosmological constant can be positive for 𝛼 < −0.5. In other
words, an accelerated expansion with positive cosmological
constant in thismodel favours a quintessence phase.The time
evolution of the effective cosmological constant is shown for
different values of the anisotropic parameter 𝑛 in Figure 4.
Here, the parameter 𝛼 is chosen to be −1. A change in this
value within the quintessence bound will result in a change
in Λ without changing its general behaviour. Within the
quintessence bound, higher value of 𝛼 will yield higher Λ.
The values of 𝑛 in Figure 4 are chosen so as to get negative
deceleration parameter. In order to satisfy this condition, 𝑛
has to be constrained in the range 𝑛 > 1. It is clear from
the figure thatΛ decreases from large positive values to small
positive values during the cosmic evolution and vanishes at
late times. One interesting thing in the present model is that
even if themodel favours a quintessence phase, the decrement
inΛ is bit slower than that of the previousmodel with ℎ = −1.
As in the previous model, the behaviour of Λ is affected by
the choice of the anisotropic parameter 𝑛. In order to assess
the behaviour of the anisotropy dependence of Λ, we have
shown its variation as a function of redshift 𝑧 in Figure 4(b).
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Figure 4: Evolution of the effective cosmological constant for three representative values of 𝑘 in the model ℎ = 0. (a)Λ is shown as a function
of time. (b) Evolution of Λ shown as a function of redshift. Here we have considered a representative value 𝛼 = −1 so as to get positive values
of the effective cosmological constant. See text for details.

In the remote past, the curves of Λ with higher values of 𝑛
remain below the curves with lower values of 𝑛. However,
there occurs a reversal in this behaviour at a redshift 𝑧 = 2.9.

3.3. Model-III (ℎ = 1). In this model with ℎ = 1, we obtain
from (6) and (7)

�̇�𝑥 − �̇�𝑦

𝐻𝑥 − 𝐻𝑦
+ 𝜃 = 0, (22)

which can be integrated for the power law cosmology to get

𝐻𝑥 = 𝐻𝑦 +
𝜖

𝑡𝑚
. (23)

Here the integration constant 𝜖 is related to the present day
value of the directional Hubble parameters as 𝜖 = 𝐻𝑥0 −𝐻𝑦0.

Equation (10) becomes 2𝐻𝑥 = 𝐻𝑦 + 𝐻𝑧 which implies
𝐻𝑥 = 𝐻 and consequently

𝐻𝑦 = 𝐻 −
𝜖

𝑡𝑚
,

𝐻𝑧 = 𝐻 +
𝜖

𝑡𝑚
.

(24)

One can note that since the dimension of 𝐻 is that of 𝑡−1, 𝜖
has a dimension of 𝑡𝑚−1.

The functionals 𝜒(𝑡) and 𝜉(𝑡) are obtained as

𝜒 (𝑡) = 2�̇� + 3𝐻2 +
𝜖2

𝑡2𝑚
−

1

𝑡2𝑚/3
,

𝜉 (𝑡) = 3𝐻
2 −

𝜖2

𝑡2𝑚
−

3

𝑡2𝑚/3
.

(25)

From dimensional consistency, the parameter 𝑚 can be
constrained as𝑚 = 3. In order to get accelerating models, the
deceleration parameter 𝑞 should be negative which requires
that 𝑚 should be greater than 3. However, the dimensional
analysis yields 𝑞 = 0 for the present model. Also, interestingly
the equation of state parameter and the effective cosmological
constant are obtained to be 𝜔 = 1 and Λ = 0. Even though
a vanishing cosmological constant is acceptable, 𝜔 = 1 may
not be acceptable in the context of dark energy driven cosmic
acceleration. In view of this, the BVI1 model may not be in
conformity with the present day observations.

4. Conclusion

In view of the recent interest in modified theories of gravity,
we have studied the dynamics of some Bianchi type VIℎmod-
els in𝑓(𝑅, 𝑇) theory.We choose𝑓(𝑅, 𝑇) = 𝑓(𝑅)+𝑓(𝑇), where
𝑓(𝑅) = 𝜆𝑅 and 𝑓(𝑇) = 𝜆𝑇. These linear functions 𝑓(𝑅)
and 𝑓(𝑇) rescale the modified gravity theory and generate
the concept of a time varying effective cosmological constant.
We have investigated three differentmodels corresponding to
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three values of the metric parameter ℎ, that is, −1, 0, and 1.
Thedynamics of themodels are studied for a presumed power
law expansion of the volume scale factor. We have adopted
dimensional analysis method to constrain some of the model
parameters. In the anisotropic models with ℎ = −1 and ℎ = 0,
the effective cosmological constant is found to evolve from
large positive values at the beginning to small values at late
times. This result is in accordance with the observations
concerning the dark energy driven cosmic acceleration. The
equation of state parameter for these two models becomes
negative. With suitable choice of the model parameters both
themodels (ℎ = −1 and ℎ = 0) favour the quintessence phase.
However, for the third model with ℎ = 1, viable cosmological
models could not be obtained. Anisotropy, in general, affects
the dynamics of the universe. Of course, in the second model
with ℎ = 0, the present analysis shows that the effective
equation of state parameter is not affected by the anisotropy
rather it depends on the scaling factor 𝜆.
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