
507 Session IX 

BROWN: The path length difference Ζ between an arbitrary 
ray and the central trajectory (to first order) is given by 

Β B Β Β 
Ζ = ∫ x dα = Xo ∫ C x dα + x ∫ S x dα + δ ∫ dx dα A A A A 

hence if 

Β Β Β 
∫ Cx dα = ∫ S x dα = ∫ dx dα = 0, A A A 

then the first order path length of all particles independent 
of their initial conditions or momentum will be the same. 
d α is the differential angle of bend of the central 
trajectory. 
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I. INTRODUCTION 
For the past several years, we have been 

attempting to evolve at Stanford a more systema­
tic procedure for solving beam transport pro­
blems. Two basic techniques have been utilized 
for this purpose. The first, which will be discus­
sed in detail later, is a logical extension of the 
first-order matrix formalism to a matrix forma­
lism which allows one to calculate systematically 
not only the first-order but also the second-order 
optical properties of beam transport systems. The 
second approach is the conventional one of com­
puter ray tracing through a known field to the 
degree of precision demanded for the particular 
problem. 
The advantage of the matrix formalism as we 

have evolved it, as compared to ray tracing, is 
that it provides us with a somewhat better physi­
cal insight into the physics of the problems and, 
as such, permits a more systematic procedure 
for solving problems. Having utilized the matrix 
method for finding a solution, we then use conven­
tional ray-tracing techniques for verification and 
as a means for further refinement of the design 
if required. 
The basic approach to formulating the matrix 

method has been as follows : 
1) The general differential equation describing 

the trajectory of a charged particle in a. static 
magnetic field which possesses «midplane sym­
metry» is derived. 
2) A Taylor's series solution about a central 

trajectory is then assumed; this is substituted 

into the general differential equation and terms 
are retained to second-order. 
3) The first-order coefficients for mono-energetic 

rays satisfy the usual homogeneous 
differential equations characteristic of harmonic 
oscillator theory, and the first-order disper­
sion and the second-order coefficients of the 
Taylor's expansion satisfy second-order differen­
tial equations having "driving terms". 
4) The first-order dispersion and the second-order 

coefficients are then evaluated by a Green's 
function integral containing the characteristic 
driving function of the coefficient being evaluated. 
In other words, the problem is nothing more 

or less than the old problem of the harmonic 
oscillator with driving terms; and as with the 
harmonic oscillator, we may readily draw ge­
neral conclusions about a given second-order 
aberration by studying its characteristic driving 
function. 
The task now is to transform this solution into 

a self-consistent second-order matrix formalism. 
I will demonstrate later how this has been ac­
complished. 
By using the above procedure, we have deri­

ved the complete second-order matrix elements 
for a drift distance, quadrupoles, bending ma­
gnets, and sextupoles, including an impulse ap­
proximation for the input and output fringing 
field boundaries of bending magnets. This in­
cludes rotated input and output faces and curva­
tures on the input and output faces of the bend­
ing magnets. This entire formalism has then 
been programmed for a 7090 computer, which 
enables us to calculate within the above limita-* Work supported by the U.S. Atomic Energy Commission. 



508 Session IX 

tions the complete second-order properties of any 
combination of quadrupoles, sextupoles, bending 
magnets, and drift distances which one might 
choose to utilize. 
Returning briefly now to the formulation of 

the general theory, all of the theory and the sub­
sequent matrix elements have been derived and 
expressed in terms of five characteristic first-or­
der trajectories of the system, Before identifying 
these trajectories, it should be mentioned that 
it is implicitly assumed from the beginning that a 
central trajectory is known and that the posi­
tions of other trajectories are always specified 
relative to this central trajectory. In other words, 
we have made the usual paraxial ray approxi­
mation. 
The five characteristic trajectories are the fol­

lowing (identified by their initial conditions): 

Fig. 1 - The curvilinear coordinate system utilized in 
this system. 

1) The unit sine-like function sx in the plane 
of bend where sx (0) = 0 s' (0) = 1 

2) The unit cosine-like function cx in the 
plane of bend where Cx(0) = 1 c (0) = 0 

3) The dispersion function dx in the plane of 
bend were dx(0) = 0 d'x (0) = 0 

4) The unit sine-like function sy in the non-bend 
plane where sy(0) = 0 sy'(0) = 1, and finally 

5) The unit cosine-like function cy in the 
non-bend plane where cy(0) = 1 cy' (0) = 0 

II. THE FORMULATION OF THE GENERAL THEORY 
W e begin with the usual relativistic equation 

of motion for a charged particle in a static ma­
gnetic field: 

→ 
= 

→ → 
Ρ = e( v Χ Β ) [1] 

and immediately transform this expression to one 
in which time has been eliminated as a variable 
and we are left only with spatial coordinates. 
The curvilinear coordinate system utilized is 
shown in Fig. 1. With a little algebra, the equa­
tion of motion is readily expressed in the fol­
lowing vector forms: 

d-
= 

e ( d × ) 
ds2 

= Ρ ( ds 
× ) [2] 

or 

-
1 d 

(s')2 = 
e 
s' ( × ) -

2 (s')2 dt 
(s')2 = 

Ρ 
s' ( × ) [3] 

where prime means the derivative with respect 
to t (the distance along the central trajectory). 
By utilizing the expression for the differential 

line element in the chosen coordinate system, 
namely, 

ds2 = dx2 + dy2 + (1 + hx)2 dt2 [4] 
and expanding eq. [3] into its component parts, 
retaining only terms through second-order, the 
x and y components of the equation of motion 
become: 

x" - h (1 + hx) - x' (hx' + h'x) = 
e 
s'[y'B, - (1+hx)By] x" - h (1 + hx) - x' (hx' + h'x) = 

Ρ 
s'[y'B, - (1+hx)By] 

[5] 

y" — y' (hx' + h'x) = e s'[(1 +hx)B x - x'Bt] y" — y' (hx' + h'x) = 
Ρ 
s'[(1 +hx)B x - x'Bt] 

The equation of motion for the central trajectory 
is found by taking the limit x = x' = y = y' = 0, 
from which h = (e/po) By (ο, ο, t). 
The field components Βx, Βy and Bt in the 

curvilinear coordinate system may be derived 
from a scalard potential * Ø, yielding the fol­
lowing result to second-order: 

Bx (x, y, t) = 
∂Ø 

= A11 y + A12 xy + ... Bx (x, y, t) = 
∂x 

= A11 y + A12 xy + ... 

By (x, y, t) = 
∂Ø 

= A10 + A11 x + By (x, y, t) = 
∂y 

= A10 + A11 x + 

+ A12 x2 + A30 
y2 + ... + 

2| 
x2 + 

2| 
y2 + ... [6] 

* Midplane symmetry requires that Ø be an odd function 
in y, i.e., Ø (x, y, t) = - Ø (x,-y,t). 
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Β (x, y, t) = 
1 ∂Ø 

= 
1 

Β (x, y, t) = 
(1 + hx) ∂t 

= 
(1 + hx) 

[A10' y + A11' xy + ...] 

where the coefficients Ain of the expansions are 
derivable from the midplane field By(x, ο, t). 

Aln = 
∂nBy | 

= functions of t only Aln = 
∂xn 

| 
= functions of t only 

| 

x = 0 

| 

y = 0 

and 
A30 = — [Α10" + hA11 + A12] [7] 

Studying the expansion for By for the midplane 
only, 

By (x, o, t) = A10 + A11 κ + 
1 
A12 X2 + ... By (x, o, t) = A10 + A11 κ + 

2! 
A12 X2 + ... 

dipole quadrupole sextupole etc. 

= By 
| 

+ ∂By 
| 

X + 
1 ∂2By | 

xz+ ... = By 
| 

+ 
∂x 

| 
X + 

2! ∂x2 
| 

xz+ ... 
| 
x = 0 ∂x 

| 
X = 0 2! ∂x2 

| 
y = 0 

| 

y = 0 

| 

y = 0 

| 

x = 0 [8] 

we can readily identify the various terms appear­
ing in the equations as to whether they are of 
dipole, quadrupole, or sextupole origin and retain 
this identification throughout the remainder of the 
discussion. It is then convenient to define two 
dimensionless quantities n(t) and β(t) in terms 
of their quadrupole and sextupole origins, i.e., 

n(t) = -

[ 

1 
( 
∂By 

) 

] 
n(t) = -

[ 
hBy ( ∂x ) 

] 

Χ = 0 

n(t) = -

[ 

] 

y = 0 
and 

β(t) = 
[ 1 

( 
∂2By 

) 
] 

β(t) = 
[ 

2! h2By ( ∂x2 ) 
] 

x = 0 

[ ] 

y = 0 
[9] 

Making use of the equation of motion for the 
central trajectory, we may eliminate By in the 
expressions and rewrite them as follows: 

— nh2 ( P o 

)= 
∂By | 

and βh3 ( 
P o 

) = 
1 ∂2By | — nh2 ( 

e )= ∂x 

| 
x = 0 

and βh3 ( e ) = 2! ∂x2 
| 
x = 0 

| 

y = 0 

| 

y = 0 
[9a] 

For a pure quadrupole field 

By = 
Box 

By = 
a 

where Bo is the field at the pole and a is the ra­
dius of the aperture; hence, we obtain the iden­
tity 

— nh2 ≡ 
( 
B o )( e 

) 
= kq2 — nh2 ≡ 

( a )( P o ) 
= kq2 [9b] 

and for a pure sextupole field 

By = 
B o 

(x2-y2) By = 
a2 
(x2-y2) 

from which 

βh3 = ( Bo 

) ( 

e ) = kB
2 βh3 = ( 

a2 ) ( Po ) = kB
2 

[9c] 

Using these definitions, the equations of motion 
for χ and y may, after a little algebra, be evolved 
into the following convenient forms: 

x" + (1 - n) h2x = hδ + (2n - 1 - β) h3x2 + 

+ h'xx' + 
1 
hx'2 + (2 - n) h2 xδ + + h'xx' + 

2 
hx'2 + (2 - n) h2 xδ + 

+ 1 (h" - nh3 + 2βh3) y2 + + 
2 

(h" - nh3 + 2βh3) y2 + 

+ h'yy' -
1 
hy'2 — hδ2 + higher-order terms [10] + h'yy' -

2 
hy'2 — hδ2 + higher-order terms [10] 

y" + nh2y = 2 (β - n) h3xy + h'xy' - h'x'y + hx'y' + 
+nh2yδ + higher-order terms [11] 

where δ ≡ (Ρ-Ρo)/pο and the constant e has been 
eliminated by incorporating the equation of mo­
tion for the central trajectory. 
If now we assume a Taylor's expansion about 

the central orbit for x and y at the exit of a 
system, describing the position of an arbitrary 
trajectory with respect to the central trajectory 
as a function of the initial coordinates of the 
arbitrary trajectory, we hawe 

c
x sx dx 

X = (x|xo)xo + (x|xo')xo' + (x|δ)δ 

+ (x|xo2)xo2 + (x|xoxo')xoxo' + (x|xοδ)xοδ 

+ (x|xο2)xο2 + (x|xο'δ)xο'δ + (x|δ2)δ2 

+ (x|yo2)yo2 + (x|yoyo')yoyo' + (x|yo2)yo2 

[12] 
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and 

cy s
y 

y = (y|yo)yo + (y|yo')yo' 

+ (y|xoyo)xoyo + (y|xoyo)xoyo + (y|xo'yo')xo'yo' [13] 
+ (y|xo'yo')xo'yo' + (y|yoδ)yoδ + (y|yo'δ)yo'δ 

Substituting these expansions into eqs. [10] and 
[11], we derive a differential equation for each 
of the first and second-order coefficients con-

i ∫ sx dα α 
ψ = ~ ψ = 

(x1|x) (1 + Mx) 

Fig. 2 

TABLE I 
The Driving Terms for the Coefficients 

Listed in the first column are the coefficients in the expansions for the coordinates x and y; they are indicated by means of the notation 
introduced in eqs. [12] and [18]. For general considerations, q has been used to represent any one of these coefficients. Listed in the 
second column are the corresponding driving functions f, which are related to the coefficients as shown by eq. [17]. This list includes all 
those functions f for the linear and quadratic coefficients which do not vanish identically. 

q f 
d = (x | δ) + h 

(x | x02 + (2n - 1 - β) h3cr2 + h'cx.cx' + ½ hcx'2 

(x | x0x0') + 2(2n — 1 — β) h3cxsx + h'(cxsx, + cx'sx) + hcX'sx, 

(x | δx0) — (n — 2)h2cx + 2(2n — 1 — β) h3cxd + h'(cxd'+cx'd) + hcx'd' 

(x | x0'2) + <2n — 1 — β) h3sx2 + h'sxsx' + ½ hsx'2 

(x | δx0) — (n — 2)h2sx + 2(2n — 1 — β) h3sxd + Κ (sxd' + sx'd) + hsx'd 

(x | δ22) — h — (n — 2)h2d + (2n — 1 — β)h3d2 + h'dd' + ½hd'2 

(x | y02 +½(h" —nh 3 + 2βh3)cy2 +h'cycy' — ½h 

(x | y0y0') + (h" — nh3 + 2βh3) cySy + h'cycy'+ cy'cy) -hcy'cy' 

(x | y02.) + ½(h" —nh 3 + 2βh3)sy2 + h'sysy' — ½hsy'2 

(y | xoyo) - 2(n-β)h3cxcy + h' (cxcy' — cx'cy) + hcx'cy' 

(y | x0y0') -2(n-β)h3cxsy + h' (cxsy' — cx'cy) + hcx'cy' 

(y | x0'y0') -2(n-β)h3sxcy + h' (sxcy' — sx'cy) + hsx'cy' 

(y | x0'y0' -2(n-β)h3sxsy + h' (sxsy' — sx'sy + 

(y | δy0) + nh2Cy — 2(n—β)h3cyd —h'(cyd'-cy'd) + hc'yd' 

(y | δy0') + nh2sy — 2(n—β)h3sy,d —h'(cyd'-cy'd) + hc'yd 
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tained in the Taylor's expansions. When this is 
done, a systematic pattern evolves in the fol­
lowing way: 

ο" + k2c = ο 
s" + k2s = ο 
q" + k2q = f 

[14] 

where ky2 = (1 - n) h2 and ky2, = nh2 for the x and 
y motions, respectively. The first two of these 
equations represent the equations of motion for 
the monoenergetic solution to the first-order part 
of the problem. The fact that there are two 
solutions, one for c and one for s, is a manifesta­
tion of the fact that the differential equation is 
second-order; hence, the two solutions differ only 
by the initial conditions of the characteristic s 
and c functions. The third differential equation 
is a type form which represents the solution for 
the first-order dispersion dx and for the coeffi­
cients of the second-order aberrations in the 
system where the driving term f has a characte­
ristic form for each of these coefficients. The 
third differential equation is solved by the Green's 
function integral 

t 
q = ∫ f(τ) G(t—τ) dτ [15] 

0 
It can be readily verified by substitution into the 
third equation that the correct Green's function 
is 

G(t—τ) = s(t)c(τ) - s(τ)c(t) [16] 
Thus, eq. [15] becomes 

t t 
q = s(t) ∫ f (τ) c(τ) dτ — c(t) ∫ f(τ) s(τ) dτ 0 0 

[17] 

The problem is then, in principle, solved if 
we know the driving term f and if we are able 
to evaluate the integrals contained in eq. [17]. 
The driving function f is readily obtained from 
substitution of the Taylor's expansions into the 
general differential eqs. [10] and [11]. The results 
of this substitution are expressed in Table I for 
the first-order dispersion and for all of the se­
cond-order coefficients which will occur for a 
system having midplane symmetry. All of the 
driving terms have been expressed in terms of 
the five characteristic first-order functions sx, cx, 
dx, sy, and cy mentioned in the introduction. Also 
contained in the expressions are the parameters 
which characterize the expansion of the magnetic 
field to second-order, i.e., h, n, and β. 
Going back to the definitions for η and β, it is 

possible to identify immediately the origin of the 
various terms contained in these driving terms. 
For example, any term containing the quantity 
nh2 as a coefficient is of quadrupole origin, and 

TABLE II 
Applying the Greens' function solution, eq. [22], in the high-energy 
limit as defined above for point-to-point imaging in the x (bend) 
plane, the second-order» matrix elements reduce to: 

2 1 i 
(x|Xo) = -

1 
cx(i) ∫ cx12 sxdα (x|Xo) = -

2 
cx(i) J cx

12 sxdα 
2 ο 

+ cx(i) Σ Sjcx2sx i 

i (x|xoxo) = — cx(i) ∫ Cx' sx'sx'dα 
Ο 

+ 2cx(i) Σ SjCxsx2 j 

1 
(x|xοδ) — Cx(i) ∫ cx'dx'Sxdα 

° 
+ 2cx(i) Σ Sjcxsxdx-cx(i) Σ 

CxSx + 2cx(i) Σ Sjcxsxdx-cx(i) Σ fq j q fq 
1 i 

(x|xo2) -
1 

Cx(i) ∫ sx' Sx2dα (x|xo2) - 2 
Cx(i) ∫ sx' Sx2dα 

2 ο 
+ c=(i) Σ Sjsx

2 

j 

i 
(x|xo'δ) - cx(i) ∫ sx'dx'Sxdα 

ο 
+ 2cx(i) Σ Sjsx2dx-cx(i) Σ 

Sx2 + 2cx(i) Σ Sjsx2dx-cx(i) Σ 
Sx2 

j q fq 
2 cx(i) i 2 

(x|δ) -
cx(i) ∫ (dx') Sxdα (x|δ) -
2 

∫ (dx') Sxdα 2 ο 

2 Sxdx 
+ 2cx(i) Σ SjSxdx-Cx(i) Σ 

Sxdx 
+ 2cx(i) Σ SjSxdx-Cx(i) Σ fq j q fq 

(x/yo
2) . 

1 
cx(i) 

j 

cy
'2sx'dα (x/yo

2) . 
1 

cx(i) ∫ cy
'2sx'dα (x/yo

2) . 
2 

cx(i) ∫ cy
'2sx'dα (x/yo

2) . 
2 

cx(i) 
ο 

cy
'2sx'dα - Cx(i) Σ SjCy2sx 

j 

i 
(x|yoyo') Cx(i) ∫ cy'sy'sxdα 

ο 
- 2cx(i) Σ sjCysySx 

j 

(x|yo'2) 
1 i 

(x|yo'2) 
1 

Cx(i) ∫ sy'2Sxdα (x|yo'2) 2 
Cx(i) ∫ sy'2Sxdα (x|yo'2) 2 Ο 

- Cx(i) Σ Sjsy2sx 
J 

TABLE III 
For point-to-point imaging in the y (non-bend) plane, eq. [23], 
the high-energy limit yields: 

i 
(y|xoyo) - cy (i) ∫ Cx'Cy'Sydα 

ο 
- 2Cy(i) Σ SjCxCySy 

j 

i 
(y|xoyo') - cy (i) ∫ Cx'Sy'Sydα 

ο 

2 
- 2Cy(i) Σ SjCxSy 

j 

i 
(y|xo'yo) - cy (i) ∫α Sx'CySydα 

ο 
-2Cy(i) Σ SjSxCySy 

J 

i 
(y|xo'yo') - cy (i) ∫ Sx'Sy'Sydα 

ο 
-2C y(i) Σ SjSxsy'2 

j 

i (y|yoδ) - cy (i) ∫ CydxSydα 
0 

-2C y(i) Σ SjCydxSy + Cy(i) Σ 
CySy 

-2C y(i) Σ SjCydxSy + Cy(i) Σ fq j q fq 
i 

(y|yo'δ) - Cy (i) ∫ SydxSydα 
ο 

Sy2 
- 2Cy(i) Σ SjdxSy

2 + Cy(i) Σ 
Sy2 

- 2Cy(i) Σ SjdxSy
2 + Cy(i) Σ fq j q fq 
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any term containing the quantity βh3 is of sextu-
pole origin. The other term's are either of dipole 
origin or they result from cross product terms 
between the dipole and quadrupole elements of 
the system. The driving term expressions hare 
completely rigorous to second-order for any ma­
gnetic field configuration possessing midplane 
symmetry; no assumptions have been made re­
garding the details if the fringing field or boun­
dary shapes. 

III. EVALUATION OF THE MATRIX ELEMENTS 
FOR HIGH-ENERGY PARTICLES 

A considerable simplification results for the 
high-energy limit where the dipole, quadrupole 
and sextupole functions are physically separated, 
such that the cross product terms do not appear 
and such that the fringing field effects are small 
compared to the other dominant effects generated 
by the dipole, quadrupole, and sextupole ele­
ments of the system. 
Fig. 3 

For the purpose of this discussion, the x plane 
is defined as the bend plane in which the particles 
are dispersed in momentum. 
The focusing conditions imposed upon the sys­

tem at the image planes are: 
at the x (bend-plane) image sx(i) = 0, i.e., we 
assume point-to-point imaging; 
at the y (non-bend))image plane, we consider 
two cases: 

a) Point-to-point imaging, i.e., sy(i) = 0, and 
b) Parallel-(line)-to-point imaging, i.e., cy(i) = 

= 0 . 
In the high-energy limit, the bending radius ρo = 
= 1/h » 1; the first-order focusing is accomplished 
predominately by quadrupole elements; and only 
n = 0 uniform-field bending magnets are consi­
dered. 
In this limit, the following definitions are used 

for convenience: 

— nh2 = kq2 = 
Bq or k2| = 

1 
= the quadrupole 
strength in the 
x(bend) plane 

— nh2 = kq2 = aq (Hρo) 
or k2| = 

fq 
= the quadrupole 
strength in the 
x(bend) plane 

[18] 
and 
βh3 =ks2 = 

Bs or ks2|s = S = the sextupole strength in the x(bend) plane 
βh3 =ks2 = 

as2(Hρo) 
or ks2|s = S = the sextupole strength in the x(bend) plane 

as2(Hρo) [19] 

where Bq and Bs are the field strengths at the 
poles of the quadrupole and sextupole, respecti­
vely, aq and as are the radii of the apertures of the 
quadrupole and sextupole, and lq and ls are the 
equivalent magnetic lengths of the quadrupole 
and sextupole elements. 
Using the Green's function solution, the equa­

tions for the first-order dispersion dx and mo­
mentum resolution Rx reduce to the simple 
forms: 

dx = - cx(i) i Sxhdτ = - cx(i) 
i 
Sxdα dx = - cx(i) ∫ Sxhdτ = - cx(i) ∫ Sxdα dx = - cx(i) 

ο 
Sxhdτ = - cx(i) 

° 
Sxdα [20] 

and 
R x X o = -

dx = ∫01Sxdα R x X o = -

cx(i) 
= ∫01Sxdα [21] 

where dα is the differential angle of bend of the 
central trajectory of the system and Xo is the 
source size. 
It follows from the general theory of Section II 

and the above focusing conditions that we obtain 
for the second-order x (bend) plane aberrations 

i 
qx = — Cx(i) ∫ fsxdτ 

ο 
[22] 

for point-to-point imaging; for the second-order 
y (non-bend) plane aberrations 

qy = - Cy(i) i fsydτ qy = - Cy(i) ∫ fsydτ qy = - Cy(i) 
Ο 
fsydτ [23] 

for point-to-point imaging (case a), and equal 
qy = sy(i) i fcydτ qy = sy(i) ∫ fcydτ qy = sy(i) 

Ο 
fcydτ [24] 

for parallel-(line)-to-point imaging (case b). 

IV. APPLICATIONS OF THE GENERAL THEORY 
TO HIGH-ENERGY SPECTROMETER DESIGN 

In high-energy spectrometers or beam trans­
port systems where quadrupoles essentially con-

TABLE IV 
For parallel-(line)-to-point imaging in the y (non-bend) plane, 
eq. [24], the high energy limit yields: 

(y|xoyo) Sy(i) i cx'Cy'Cydα + 2sy(i) Sjcxcy2 (y|xoyo) Sy(i) ∫ cx'Cy'Cydα + 2sy(i) Σ Sjcxcy2 (y|xoyo) Sy(i) 
ο 
cx'Cy'Cydα + 2sy(i) 

j 
Sjcxcy2 

(y|xoyo') sy(i). 
i 

cx'Cy'Cydα + 2sy(i) SjCxSyCy (y|xoyo') sy(i). ∫ cx'Cy'Cydα + 2sy(i) Σ SjCxSyCy (y|xoyo') sy(i). 
ο 
cx'Cy'Cydα + 2sy(i) 

j 
SjCxSyCy 

(y|xo'yo) sy(i) i sx'Cy'Cydα + 2sy(i) SjSxcy2 (y|xo'yo) sy(i) ∫ sx'Cy'Cydα + 2sy(i) Σ SjSxcy2 (y|xo'yo) sy(i) ο sx
'Cy'Cydα + 2sy(i) 

j 
SjSxcy2 

(y|xo'yo') sy(i) 
i 

sx'sy'Cydα + 2sy(i) SjSxsycy2 (y|xo'yo') sy(i) ∫ sx'sy'Cydα + 2sy(i) Σ SjSxsycy2 (y|xo'yo') sy(i) ο 
sx'sy'Cydα + 2sy(i) 

j 
SjSxsycy2 

(y|yoδ) + sy(i) ∫ cy'd'cydα + 2sy(i) Σ Sjcy2dx —sy(i) Σ 
cy2 (y|yoδ) + sy(i) ∫ cy'd'cydα + 2sy(i) Σ Sjcy2dx —sy(i) Σ 
cy2 (y|yoδ) + sy(i) ∫ cy'd'cydα + 2sy(i) 

j 
Sjcy2dx —sy(i) 

q fq 
<y|yo'δ) + sy(i) ∫ sy'd'cydα + 2sy(i) Σ SjSycydx - sy(i) Σ 

SyCy <y|yo'δ) + sy(i) ∫ sy'd'cydα + 2sy(i) SjSycydx - sy(i) Σ fq 
<y|yo'δ) + sy(i) ∫ sy'd'cydα + 2sy(i) j SjSycydx - sy(i) q fq 
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trol the first-order optics of the system, the se 
cond-order chromatic aberrations introduced 
by the quadrupoles are usually the dominant 
aberrations limiting the performance of the sy­
stem. As an example of the use of the theory 
developed here, we shall calculate for some re­
presentative examples the angle Ψ that the mo­
mentum focal plane makes with respect to the 
central trajectory. 
For point-to-point imaging, it may be readily 

verified that 

tan ψ = —( 
dx(i) 

) 
1 

= 
Sxdα 

[25] tan ψ = —( 
cx(i) ) (x xo'δ) 

= 
(x xo'δ) 

[25] 

Let us now consider some representative quadrupole 
configurations and assume that the ben-

tan Ψ - - α/2 [ 1 + ( ) ] 

Fig. 4 
ding magnets are placed in a regione having a 
large amplitude of the unit sine-like function sx 
(to optimize the first-order momentum resolu­
tion). 
Case I 
Consider the simple quadrupole configuration 

shown in Fig. 2 with the bending magnets lo­
cated in the region between the quadrupoles and 
s' 0 in this region. For these conditions, f1 = 
= l1, sx = l1 at the quadrupoles and f2 = l3. 
From Table II, we have: 

(xi | δ) = - cx(i) Σ 
S 

= -cx(i)l1 (1 + 
l1 

) 
= l1. (1 + Mx (xi | δ) = - cx(i) Σ 

fq 

= -cx(i)l1 (1 + 
l3 ) 

= l1. (1 + Mx (xi | δ) = - cx(i) 
j fq 

= -cx(i)l1 (1 + 
l3 ) 

[26] 

where we make use of the fact that (l3/1) = Mx = 
= — cx(i) . Mx is the first-order magnification of 
the system. 
Hence, 

i 
∫ Sxdα α 

tan ψ = ο 
Sxdα 

= 
α 

tan ψ = 
(xj.|x.δ) 

= 
(1 + Mx 

Case II 
For a single quadrupole, Fig. 3, the result is 

similar 
tan ψ = 

Κα 
tan ψ = 

(1 + Mx 

33 

except for the factor Κ < 1 resulting from 
the fact that sx cannot have the same amplitude 
in the bending magnets as it does in the qua­
drupole. Therefore 

i 

∫ Sxdα = Kl1α o 
Case III 
Now let us consider a symmetric four-quadrupole 

array, Fig. 4, such that we have an inter­
mediate image. Then 
(x |xo' δ) = — 2cx(i) l1 [1 + (l1/l3) ] = twice that for Case I. 
Because of symmetry, cx(i) = Mx = 1 . Thus, we 
conclude 

tan ψ = - α/2 [1 + (l1/l3)] 
In other words, the intermediate image has 
introduced a factor of two in the denominator 
and has changed the sign of ψ. 
Conclusions 
It is clear from these three examples that for 

high-energy systems where the total angle of 
bend α is a small quantity, ψ will be even smaller. 
It is for this reason that we have added sextu-
poles to the SLAC 20 GeV Spectrometer. 

V. SECOND-ORDER MATRIX FORMALISM 
The method for formulating the individual se­

cond-order matrix for a given element in a system 
is illustrated in Table V for the x plane case. 
The technique is similar for the y plane. The 
first three rows are derived directly from the 
general theory using the driving functions in 
Table I. However, in order to facilitate matching 
boundary conditions, the matrix is expressed in 
terms of a rectangular coordinate system x; y 
and z (see Fig. 1). The distinction is the intro­
duction of θ and Ø defined as follows: 

TABLE V 

An illustration of hou to formulate the second-order matrices discussed in this article. 
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θ = 
dx 

= 
x' 
= 

x' 
θ = 

dz = z' 
= 1 + hx 

Ø = 
dy 

= 
y' 
= 

y' 
Ø = dz = z' 

= 1 + hx 
Having formulated the second-order matri­

ces for each element of a system, the total sys­
tem optics is solved in the usual way by multi­
plying the individual matrices in the same man­
ner as for a first-order problem. For further 
details, see (4). 
Second-order matrix elements for drift distan­

ces, quadrupoles, sextupoles, bending magnets, 
and for fringing fields of bending magnets 
(using an impulse approximation) including ro­
tated and curved entrance and exit boundaries 
of the bending magnets, have been derived. * 
These matrix elements have been incorporated 
into an IBM 7090 program called "TRANS­
PORT "(8) by S. K. Howry, C. H. Moore and H. S. 
Butler at the Stanford Linear Accelerator Center. 
We have used this program to finalize the design 
of all of the beam transport systems and high-energy 
spectrometers to be utilized at SLAC. 
* See the list of references. 
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CHROMATIC ABERRATIONS IN MAGNETIC OPTICS 

V. P. Cartashev and V. I. Kotov 

High Energy Physics Institute, Serpukhov (USSR) 
(Presented by V. I. Kotov) 

Under constructing magnet channels it is ne­
cessary to consider the chromatic aberrations. 
A number of works (1-4), (6) were devoted to 
this problem. In this article multi-dimensional 
matrices for quadrupole lens without using ap­
proximation of the thin lenses and bending ma­
gnet with an axial-symmetrical field are deter 
mined; the chromatic aberrations in a doublet, 
symmetrical quartet and achromatic system for 
90° deflection of a parallel beam are considered. 

1. CHROMATIC ABERRATIONS IN THE DOUBLET 
OF THE QUADRUPOLE LENSES AND IN THE 
SYMMETRICAL QUARTET 
In consideration of the chromatic aberrations 

in the quadrupole lens it is necessary to restrict 
oneself with second order terms in the equation 

of motion ο fa particle with momentum p + Δp. 
The solution will be linear with respect to the 
initial particle displacement from the lens axis 
Xo(yo), angle θ„(ηo) and combinations Χογ(yoγ), 
θογ(ηογ) where γ = Δp/p. Thus the solution can 
be represented in matrix form: 
| 

X 
| f—1/δ | 

1/2 
1 
(f+ 

1 
) 

| 
Xo 

| | 

θ 

| | 
1/2 

2 (f+ 8 ) 

| 

θo 

| | 

Χγ 

| 

= λ — 1 f 

| 

½ (1 - δf) 1/2 

| 

Χογ 

| | 

Λ ι 

| 

= λ 0 

| 

f — 1/δ 

| | | 

θγ 

| | 

— 1 f 

| 

θογ 

| | | | | 

[1] 

where 1 - the length of the lens and the rest 
quantities for the focusing and defocusing planes 
are equal respectively: 


