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Abstract

The main objective of this proposed work is to probe the structural properties has led

to the discovery of several unexpected features that provide new challenges for nuclear

theory and our current models. Such features include the structural and decay properties

of superheavy nuclei, internal substructure (clustering) of intermediate and light nuclei,

nuclear halos, neutron skins, prediction of new magic number beyond 208Pb, Island of

inversion for few selective region of nuclear chart and the evolution of shell structure

which leads to the changes in the magic numbers away from the region of stability etc.

The discovery of these phenomena has led to the development of the models to describe

these crucial and interesting nuclear properties, which may be a substantial progress have

been made in the areas of low-energy nuclear theory. The recent and most successful

widely used theoretical developments in the field of nuclear many body systems is the self-

consistent mean-field theory (MFT), which provides an elegant and economic framework

for calculation of nuclear system for a widely extrapolated region. The present thesis

based on the structural study of exotic nuclei including superheavy using MFT and their

development. Which will lead to some unique calculations as well as predictions, being

as follows:

1. A brief discussion on the development of these formalisms will be included in the

present work. Addition to these, a short discussion will be covered about the newly

develop microscopic of origin nucleon-nucleon potential from relativistic mean field

theory and its application on the study of cluster radioactivity.

2. The well known and quite successful models such as Relativistic Mean Field Theory,

iii
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Effective Field Theory motivated RMF and Skyrme Hartee-Fock will be used for

the calculation of ground and intrinsic excited state properties of various nuclei

through out the mass table.

3. Special attention will be given for exotic nuclei including super-heavy elements.

A crucial and extensive calculation will be carried out for finding the island of

stability in the super-heavy valley.

4. The internal sub-structure like clusters inside a nuclei will be studied for lighter and

intermediate regions of the nuclear chart. One most important first time attempt

in this calculation is to count the number of nucleons inside the cluster (s) region.

5. The calculated results will be compared with the existing experimental data and

extensive theoretical prediction will be made.

Basically, the whole effort in the present thesis is devoted in the development of

nuclear models, pursuing few new ideas and explaining the structural properties of drip-

line nuclei including super-heavy. In this context, we have applied the well established

as well as widely used non-relativistic Skyrme Hartee-Fock (SHF), relativistic mean field

(RMF), and effective field theory motivated relativistic mean field (E-RMF) to explain

the interesting phenomena such as decay properties of superheavy nuclei, the island

of stability in the superheavy valley, the clustering inside the parent nucleus i.e the

evolution of nuclear sub-structure inside a parent nucleus, and their decay probabilities.

As a large number of experiments are being planned to study the existence and the

decay behavior of superheavy nuclei, our theoretical predictions on the superheavy nuclei

are extremely useful for future analysis and investigation. The prediction of clustering

is most interesting phenomenon in the intermediate and light mass region, our work

corresponding to this study are one step forward in the nuclear structure physics. Based

on these important and interesting works, the thesis brief symmetrization of the thesis

is given bellow.

First of all Chapter 1 represents an introduction, which contains a brief descriptions

of the nuclear models for nuclear structure, which have been developed since the earliest
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days of nuclear physics. The main aim of these models are gaining deeper insights

into the nuclear force and becoming closer to answering some of the most fundamental

questions about the physical world. For example, where are the limits of existence for

nuclei?, what are the heaviest elements that can be made?, how does the ordering of

quantum states change in exotic nuclei and what can our understanding of the nuclear

force tell us about the way the heavy and super-heavy elements are synthesized through

collision processes in stars?. To answer these questions it is essential to develop nuclear

models to be able to accurately describe the structure properties of nuclei across the

full landscape. Based on the fundamental questions, the main focus is directed towards

nuclear interactions and their prospectives. Few models such as macroscopic approach

(Liquid Drop Model), macroscopic-microscopic approach (Finite-Range-Droplet-Model),

quite successful microscopic models (Relativistic mean field, realistic calculations, Shell

model, Gogny, Skryme etc) and most fundamental model (ab initio methods) are included

for discussions. The merit of each models and their limitations are also discussed in this

chapter. Additional correlations beyond mean fields are also looked out in this section,

which are important to achieve higher precision or to describe larger set of data. A

deep look is forwarded towards the recent development in the experimental as well as

corresponding theoretical progress.

In Chapter 2, we have presented both non-relativistic (Skryme-Hartree-Fock) and

relativistic (Relativistic mean field) models in detail. The Skyrme Hartee-Fock (SHF)

model is generated by the interactions between all the constituent nucleons in the nucleus

as described by the nucleon-nucleon force. This leads to the ansatz for the Hartree-Fock

approximation that the ground-state trial wavefunction of a nucleus containing A nucle-

ons is written as a Slater determinant, or antisymmetrised product of occupied states.

The full many-body Hamiltonian, written in terms of an one-body kinetic energy and a

two-body force of nucleons. The expectation value of the total Hamiltonian with respect

to the Hartree-Fock wavefunction gives an approximation to the ground-state energy. In

case of relativistic mean field theory, the interaction between the nucleons introduced

by different mesons. The Lagrangian density that introduces nucleon field ψ, isoscalar
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scalar meson field σ resonance states of π- mesons, isoscalar vector meson field ω (3π-

resonance state), isovector vector meson field ρ (2π p-state) and isovector scalar meson

field δ. The Euler-Lagrange equation reproduced the field equations for different fields

and these are solved self-consistently. The total energy of the nucleus comes from the en-

ergy contribution from nucleons and mesons. The BCS pairing correlation also discussed

in this sections. The fixation of parameters as well as different forces are also discussed in

this chapter. This chapter contains all mathematical derivations and parametrizations,

which are used in the calculation and further predictions in the subsequent chapters.

In Chapter 3, we have discussed microscopic origin of nucleon-nucleon (NN) poten-

tial derived from linear and nonlinear relativistic mean field theory (RMFT). The NN

potential obtained from RMFT is entitled as R3Y (L-R3Y and N-R3Y for linear and

nonlinear, respectively), which could replace the phenomenological M3Y NN-interaction

for most of the calculations of nuclear observables. The R3Y is presented eloquently in

terms of the well-known inbuilt RMF theory parameters. In other word, the potential

can be expressed in terms of meson masses (mσ, mω, mρ and mδ) and their coupling

constants (gσ, gω, gρ and gδ) for different fields. The results obtained from different force

parameters are compared with M3Y potentials. To show the applicability of the R3Y

potential, we have studied the cluster radioactivity. This makes a bridge between R3Y

and the phenomenological M3Y in terms of optical potential and explaining the cluster

decay property the nuclei. At present, the NN-potential derived from linear and non-

linear Lagrangian density, the improvement of the R3Y interaction for use of the E-RMF

Lagrangian is straightforward. The generation of different types of microscopic origin

NN-potential as well as an additional improvement in the present interaction is a moti-

vation in the nuclear structure theory. Exploring such R3Y potential from RMF theory

being considered as a unified formalism for studying a number of nuclear phenomena or,

at least one step forward in our understanding of NN-interaction.

In Chapter 4, we have studied the nuclear structure for ground and intrinsic ex-

cited (or isomeric) states of superheavy nuclei in the frame work of relativistic and

non-relativistic effective interactions. The axially deformed relativistic mean field and
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non-relativistic Skryme-Hartree-Fock theory are employed to investigate the bulk prop-

erties of recently synthesized or planned to be synthesized super-heavy nuclei such as

Z=115, 117, 120 and 122 and their isotopic chains. First of all, the potential energy

surfaces (PES) is calculated by using both the RMF and SHF theories in a constrained

calculation, i.e., instead of minimizing the ground state Hamiltonian H0 , we have mini-

mized H = H0−λQ2 , with λ as a Lagrange multiplier and Q2, the quadrupole moment.

Thus, we get the solution at a given quadrupole deformation and the PES is a function of

quadrupole deformation parameter β2 for a given nucleus. From, the curve, one can find

the ground as well as the intrinsic excited state solution of the nucleus. The gross prop-

erties, such as binding energy (BE), root mean square charge radius rch, proton radius

rp, neutron radius rn, matter radius rm and quadrupole deformation parameter β2 are

calculated using various forces (NL3,NL3* for RMF and SkI4,Sly4 for SHF). From the

calculated binding energy, we also estimated the two-neutron separation energy S2n for

the isotopic chain. The pairing energy Epair and the shape co-existence ∆E are evaluated

for all atomic nuclei. From the binding energy per particle (BE/A) analysis, we found

the most stable isotope correspond to N=172 and 182 or 184, for all the atomic nucleus.

Some shell structure are also observed in the calculated quantities at N = 172 or 184 for

RMF and at N = 182186 for SHF calculations for the various isotopes of the Z = 115,

117, 120 and 122. We found spherical and super-deformed or hyper-deformed ground

state solution for Z=115, 117 and Z=120,122, respectively. The α-decay observables such

as α-decay energy Qα, half-life time Tα and mean-life τ are also estimated for 287,288115,

293,294117, 292,304120 and 292122 series. Our predicted observables for α-decay chains agree

nicely with the FRDM calculations and available experimental data for all the isotopic

series are considered in the thesis. Both SHF and RMF formalisms are employed to see

the force dependence of the results. We found qualitatively similar predictions in both

techniques and independent to the force parameters use.

In Chapter 5, we have extended our calculation in the superheavy valley to found

the next magic nuclei beyond Z=82 and N=126. According to the previous calculation

(Chapter-3), we found a shell structure at N=172, 182 or 184 for all atomic nuclei, which



viii

increase our curiosity to find a suitable combination of neutron and proton number at

superheavy island with magic properties. The main aim of this work is to identify the

next double closed shell nucleus beyond 208Pb, which may be a possible candidate for

the experimentalists to look for. For this, we have used two well established distinct

approaches such as non-relativistic SHF and relativistic mean field formalism for various

force parameters (FITZ, SIII, SkMP, SLy4 for SHF and NL-Z2, NL3, G1, G2 for RMF).

Here we are concentrated on the well understood and settled magic characteristics as

follows:

• The average pairing gap ∆ for nucleon is minimum (∼ 0) at the magic number.

• The binding energy per particle is maximum compared to the neighboring one in

an isotopic chain.

• There must be a sudden decrease (jump) in two nucleon separation energy S2N

(N = n, p) just after the magic number in an isotopic or isotonic chain.

• The shell correction energy Eshell is maximum for magic nuclei.

• A pronounced energy gap in the single-particle levels ǫn,p appears at the magic

number.

Based on the above four important characteristics, first we have tested these observables

for a well known and experimentally verified double closed Pb isotopes. For this, we

have taken the isotonic chain of Z=78-82 with isotopic series N=120-140 and calculate

average pairing gap (for proton ∆p and neutron ∆n), two neutron separation energy S2n

and single-particle energy spectra ǫn,p. And found, all the physical quantities exhibit

the magic properties at Z=82 and N=126, which make a lightening path for our aim

of the present study. In the second phase, we scanned a wide range of nuclei starting

from the proton-rich to the neutron-rich region in the superheavy valley (Z=112-130).

The average pairing gap (∆p and ∆n), S2n, Eshell and △ǫn,p are analyzed for these

nuclei. To our knowledge, this is one of the first such extensive and rigorous calculation

in both SHF and RMF models using a large number of parameter sets. The recently
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developed effective field theory motivated relativistic mean field forces G1 and G2 are

also involved. Although the results depend slightly on the forces used, the general set

of magic numbers beyond 208Pb are Z=120 and N=172, 182/184. The highly discussed

proton magic number Z = 114 in the past (last four decades) is found to be feebly magic

in nature. It is well accepted that the sequence of the magic number for exotic system

is much different from that of the normal nuclei, which is quite normal in superheavy

region.

In Chapter 6, we extend the idea of nuclear structure to sub-structure, i.e. the

internal configuration (clustering) of a nucleus. The aim of this work is to discuss the

possibility of existence (preformation) of cluster (s) inside the parent nucleus and identify

them. It is well known that the clustering phenomena is an interesting and crucial mode

of decay in intermediate region of the nuclear chart. The recently observation GANIL

for the decays of 118,122Ba∗ nuclei produced in 78,82Kr+40Ca reactions at a lower incident

energy, and the recent prediction from cluster-decay-model (DCM) motivate us to study

such interesting clusters for the ground and/ or excited states of Ba nuclei with well

developed and microscopic model. Here, we have taken relativistic mean-field formalism

with successful NL3 force for the present study. First of all, we have calculated the gross

nuclear properties like binding energy, deformation parameter β2, the charge radius rc and

the nucleon density distributions ρn,p for the isotopic chain 112−122Ba using the deformed

relativistic mean field (RMF) theory. The bulk properties obtained from RMF show

qualitative as well as quantitative similarity to the experimental values. The internal

configuration of a nucleus directly influence by the nucleonic density distributions. From

the density analysis, we get the internal sub-structure or clusters in Ba isotopes. The

most important and tedious calculation is directed to identify the cluster (s) of a nucleus.

Here we are using a straight forward method to found the number of nucleons (proton

and neutron separately) for a cluster region. Using this method, we find the prolate

ground and first-excited oblate states of some Ba isotopes, specifically, the 112,114,116Ba

and 118,120,122Ba, respectively, to consist of 12C cluster. The ground-state (g.s.) solutions

also support the cluster configurations of other light and the relatively heavier nuclei such
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as H , N , Cl, Ar and Ca. Some g.s. solutions also contain light particles like 1,2,3H. This

is an interesting result of the RMF(NL3) technique for nuclear structure physics. It is

relevant to mention here that, the above results on clustering are not expected to change

much by changing of the RMF parametrization. For example, the clustering phenomenon

remains almost similar with NL3 and another forces, which shows these results are more

apparent and universal. However, the cluster structure of a nucleus remained unaffected

as long as the solution for that nucleus existed. As already pointed out, clustering is

also important for the decay of excited compound nuclei formed in nuclear reactions.

Todate, the decay of 116,118,122Ba∗ compound nuclei in to only the intermediate mass

fragments (IMFs), and symmetric and near-symmetric fission fragments are measured,

and the fusion-evaporation residues are not yet identified. The 12C as one of the IMFs

measured with the largest yield, is shown in RMF(NL3) calculation to arise from the

interior of Ba nuclei, and not from the outer region. Further going to the lighter mass

region of nuclear landscape, it is observed and well verified that the 12C and 16O nuclei

contains 3− and 4− α particles in their ground state. One can observed, the most

possible decaying clusters are 4He, 8Be, 12C, 16O, 20Ne, 24Mg and 28Si having N = Z,

which are integral multiple of the α-cluster (n ·α). In other word, the possible and most

probable clusters emitted are integral multiple of α-cluster with n = 1, 2, 3.... To see

such interesting phenomena in the lighter mass region, we have chosen Mg isotopes for

our study. It is worth mentioning that, the methods of calculation and the formalism

for this work is similar to the Ba-clustering study. The only difference is that, here we

have used NL3∗ and NL075 force parameters instead of NL3. The results for nuclear

bulk properties from our calculation show qualitative and quantitative similarity with

the experimental datas. We found, the deformed prolate ground states of Mg isotopes,

which are consistent with the experimental data. The ground state solution consists of

16O + 2 · α cluster along with the excess neutrons. To test the pairing effect on the

clustering, we have we have plotted the counter plot of the density profile of 24Mg with

and without pairing. We find almost identical structures in both the cases. This implises,

there is no or a very little effect of pairing on clustering of a nucleus. These confirms
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the power of RMF theory for cluster prediction. These are some of the interesting result

of the RMF (NL3,NL3* and NL075) techniques for nuclear structure and sub-structure

physics. Finally, the present RMF model, used for the calculation of clustering structure

in nuclei, has still some scope to take into account the parity reflection symmetry in the

formalism, which may at present be a limitation.

In concluding this thesis we would like to say that, the main objective behind the

present effort has been to see how far the effective interaction can account the diverse

properties of nuclei in normal as well as exotic situations. The reasons behind the

choice of the SHF and RMF theory for the study of nuclear properties are manifold.

One of the important reasons, is the simplicity and self-consistent solution involved in

calculations. These approaches become feasible over nuclear chart including superheavy

nuclei. It has been possible to describe successfully many important observables like

binding energy, root mean square charge and matter radius, quadrupole deformation

parameter, single particle energy, pairing energy, average pairing gap for nucleons, the

shell correction energy, single particle energy levels and other related properties with

popular set of forces such as FIT-Z, SIII, SKMP, SKI4, SLY4 (for SHF) and NL-SH,

NL3, NL3*, NL075, G1 and G2 (for RMF).

Future Prospects: The studies of nuclei far from the valley of stability broaden

the opportunities of research in the area of both nuclear structure and reaction physics.

This is also an indirect impact to the atomic physics as well as in astrophysics and

material science. In nuclear physics there are a number of exciting and crucial topics to

be addressed. Some of the topics which we are intending to pursue in immediate future

are as follow:

• The nuclear structure near the drip-line is one of the excited research topics in

present day nuclear physics. A lot of exotic phenomena like halo and skin structure

exhibit due to the large isospin in such nuclei. A detail analysis is needed within the

available nuclear models taking into account the necessity of the problem. This

can also be extended to superheavy nuclei, which is again a virgin area. More

explanations are needed to understand the superdeformed / hyperdeformed (β2 ∼
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0.5) ground state in case of exotic nuclei including superheavy. Further substantial

modification in the method of calculation of half-life tα
1/2

and mean-life τα of nucleus

is needed.

• In the intermediate region, the nuclei far away from the β -stable region or near

to drip-line showing some magicity, i.e. the half-life of these nuclei higher in mag-

nitude than that of the neighbor. This implies, exploring such special features are

important topic at the present status of nuclear physics. Further more explanation

needed for the crucial feature such as Island of Inversion in some specific region of

the nuclear chart.

• The experimental proton drip-line is known up to Z=82. However, to reach the

neutron drip-line experimentally is much more tricky, and the present experimental

status to reach the theoretical prediction of neutron drip-line is up to the Mg-

isotopes. Many interesting physics has been evolved in recent past near the proton

and neutron drip lines. The proton and neutron halo and skin is one among the

exciting discoveries. More work in this direction are needed.

• The application of these models in nucleon-nucleus and nucleus-nucleus reaction

also plays significant roles to understand the observables like differential reaction

cross-section dσ/dΩ, total reaction cross-section σt, analyzing power Ay and the

spin rotation parameter. We have already dedicated some efforts in this directions

but more clarification and deep understanding is essential.

• We have already undertaken some modification in the relativistic mean field La-

grangian i.e. a complete Lagrangian. At present, we have introduced some extra

terms like the cross-coupling of ω and ρ with new coupling constant Λv in effective

field theory motivated relativistic mean field theory (E-RMF) and applied this to

the study of nuclear matter. The extension of this modified Langagian to the study

of finite nuclei under rudimentary stage.
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Here we have mention some work, which are already taken care in our plan for the current

or near future study. Also, there are so many highly interesting and crucial work are

already there to explore in the nuclear structure study. Again, an unified description

both for nuclear matter under extreme conditions and the properties of finite nuclei

starting from the beta stable to drip-line and superheavy nuclei using simple effective

interaction is one step forward in nuclear physics, which already in progress.
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Gupta and Prof. X. Vĩnas for their valuable suggestions and fruitful discussions.

Special thanks go to the Director, Institute of Physics, Bhubaneswar, Chairman,

Sambalpur University, Burla, Director, UGC-DAE CSR, Kolkatta and Council of Scien-

tific & Industrial Research, New Delhi to provide all the facilities and hospitality during

this work. More generally, I would like to express my thanks to the academics and all

staffs of the department, those who have made a truly enjoyable experience for me both

in and out of the campus.

I desire to express my thanks to friends and colleagues, Dr. B. B. Sahu, Dr. B. B.

Singh, Mr. P. Mishra, Mr. S. K. Singh, Mr. S. K. Biswal, Mr. R. N. Panda, Mr. B.

K. Sahu, Ms. S. Mohapata, Mr. N. K. Mohanty, Mr. S. Satpathy, in particular for

many-fold support, love and encouragement during the completion of this work.

I express my deep sense of gratitude to my parents for their great patience to endure

the circumstances for the past four years that led to the completion of this thesis. I owe

my special thanks to my loving brothers Janmejaya and Ashutosh for constant love and

care always encouraged me to face the difficulties and go ahead.

i



Vita

Mrutunjaya Bhuyan was born in September 1986 at Sansidha, Kendrapara, Odisha, In-

dia. After completing his matriculation in 2001 at Sansidha High School, Sansidha,

Kendrapara, Odisha, he entered Pattamundai College, Kendrapara during the summers

of 2001 for his intermediate course in Science. He received the degree of Bachelor of Sci-

ence from Utkal University in May 2006 from same college. In August, 2006, he entered

the Post-Graduate School of Physics at Sambalpur University with Nuclear Physics as

specialisation. After cpmpletation of his Master degree in Science, he joined as a doctoral

fellow under the guidance of Prof. T. R. Routray and Prof. S. K. Patra in March of

2009 in the field of nuclear structure theory.

Mrutunjaya Bhuyan

Permanent Address: Sansidha Batipara Kendrapara Odisha-768019

ii



Publications based on this Thesis

1. The effect of isoscalar-isovector coupling on symmetry energy of infinite nuclear

matter, S. K. Singh, M. Bhuyan, P. K. Panda, and S. K. Patra, J. Phys. G: Nucl.

Part. Phys. (2013) under revision.

2. The oxygen core inside the magnesium isotopes, M. Bhuyan, J. Phys. G: Nucl.

Part. Phys. (2013) communicated.

3. The simple effective interaction: Finite nuclei and Infinite nuclear matter, B. Be-
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Chapter 1

Introduction

The existence of the atomic nucleus was revealed by Rutherford in 1911 by the celebrity

α-particle scattering experiment, i.e. the bombardment of a gold-foil with an α-particles.

The isotopes of an atomic nucleus and their weight or mass was explored by J. J. Thom-

son. The neutron was discovered in 1932 by Chadwick, together with proton appearing

to be the basic constituent of nucleus. It was the first fundamental interest to expose

the essential interaction, which binds the protons and neutrons in a nucleus. Since that

time it has been one of the basic problems and tasks of nuclear physics to understand

its nature and principle, and, consequently, to describe the structure and properties of

atomic nuclei.

Nowadays, it is generally accepted that the fundamental challenges for theoretical

nuclear physics is to understand the properties of finite systems with many degrees of

freedom in terms of their interactions between the individual components. In the case

of self-bound many-body systems governed by non-relativistic quantum mechanics, sig-

nificant simplifications must be incorporated into the theoretical models. As the nucleus

is highly correlated with many-body system, in order to render the many-body problem

[1], which is exactly the case for describing the structure and dynamical properties in

nuclear physics [2, 3, 4]. In case of atomic nucleus, the structure is defined in terms of

the interactions between its constituents (nucleons). The dimension of the mathematical

equations describing these interactions is directly proportional to the system size (i.e.

1
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number of particles). In other word, the dimensions of the mathematical equations grow

rapidly with size of the system, which cannot be solved analytically. To find the exact

solution of the equation, we have to follow the numerical technique, which is applicable

for very simplest nuclei (containing few particles). But in case of higher mass (hundred(s)

of nucleons), it is ideal to take an approximations to the model in such a way that the

microscopic objects behave and interact with each other, based on the underlying nuclear

force [5]. Our understanding of the key components of this force between nucleons, the

residual strong force, has been gained through studying even the most basic properties

of nuclei and has led to the development of a set of theoretical models that successfully

describe the trends and detailed properties of a wide range of systems [6]. However, our

understanding of the underlying many-body interactions is not yet complete.

A land mark progress was achieved in 1937, the muon interpreted as a particle was

found in cosmic radiation proposed by Yukawa and the incorrectness of this assumption

revealed later, it had supported the interest in Yukawas idea. Finally, the real meson,

pion (π −meson) was discovered in cosmic background in 1947 and soon after also in

Berkeley. In this direction, the heavier mesons (ω-meson at Berkeley and ρ-meson at

Brookhaven) are found, which cover the nature of strong interaction. In earlie 1970, a

re-normalizable field theory of baryons and mesons is developed, which is characterized

by finite number of coupling constants and masses [7, 8]. This theory is calibrated to

the nuclear observables and further it is possible to extrapolate in high density and high

temperature regions without any additional parameters. As baryons and mesons are used

as relevant degrees of freedom, the theory has been known as quantum hydrodynamics

(QHD). Here also, relativistic nucleon motion must be considered with increasing density

as well as causal constraints.

The recent advancements both in the theoretical and experimental nuclear physics

and astro-nuclear physics, it is necessary to modify or improve the models describing

such systems. Now-a-days the techniques using radioactive ion beam facilities have pro-

vided significant opportunities for the exploration of the exotic nuclei that populate the

majority of nuclear chart. Again, the new accelerator facilities produce nuclei with high
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isospin asymmetry and nuclear matter at high densities and developing astrophysical ob-

servations of compact objects. The aim of this work is to probe their internal structure

properties, which has led to the discovery of several unexpected features that provide new

challenges for nuclear theory and our current models. Such features include structural

and decay properties of superheavy elements [9, 10, 11, 12], internal substructure (clus-

tering) of intermediate and light nuclei [13, 14], nuclear halos [15], neutron skins [16],

prediction of new magic number beyond 208Pb [17] and the evolution of shell structure

which leads to the changes in the magic numbers away from the region of stability [18].

The discovery of these phenomena has led to the development of the models to describe

these crucial and interesting nuclear properties, which may be a substantial progress that

has been made in the areas of low-energy nuclear theory.

1.1 Nuclear Structure Theories

The aim of the nuclear models to be used in the present thesis is to gain deep perception

to the nuclear forces and attempt to answer some of the fundamental questions about

the nucleus. These includes:

• Whether there is a limit for nucleus that can co-exist either in nature or can be

produced from artificial synthesis by using modern techniques ?

• What is the maximum number of protons and neutrons that of a nucleus ?

• How does the ordering of single particle level / the magic number changes in an

exotic nuclei ?

• What can our understanding of nuclear force to explain the formation of superheavy

nuclei in astrophysical objects ?

• What is the next double shell closure nucleus beyond 208Pb ?

• What is the internal configuration of a nuclei?

• If, clustering is there in the nucleus then what are the constituents of a cluster(s).
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To find the solution of these problems, it is necessary for nuclear models to accurately

describe the structural properties of nuclei across the nuclear landscape. The basic

properties includes nuclear binding energy, shape of the nucleus, root mean square radius,

the precise shell structure and the single-particle spectra with splitting levels, of a nucleus

in its ground as well as in intrinsic excites states. Several models are available for

above defined purpose but the most fundamental is ab initio method, described from the

nucleon-nucleon (NN) scattering data [19] and obtained from low energy QCD [20, 21, 22]

or from diagrammatic techniques [23, 24]. This formalism is used to compute the equation

of state for nuclear matter, or to the description of finite nuclei. This approach can

reproduce the basic properties of nuclei upto a precision of ∼5% (with two-body forces)

and a precision of ∼1% (with three-body forces) for finite nuclei upto mass number A ∼

20 [25, 26]. Although the microscopic origin of this force is not well understood since the

nucleon-nucleon interaction is modified with increasing nucleon number in a complicated

way. Hence, this models is not computationally made for large scale nuclear structure

calculations at present.

In other hand, the usually used nuclear theories are the macroscopic approaches,

which are based on the liquid drop model [27, 28, 29]. The total energy of a nucleus

is expressed in its basic properties such as volume, surface, coulomb, asymmetry and

pairing energy. The constants of these models are called as free parameters and deter-

mined by fitting phenomenologically to the nuclear data [30]. These models are able

to explain the nuclear bulk properties for nuclei on or near β- stable region of the nu-

clear chart. However, some of the crucial finite nucleus observables like shell-correction

energy, single-particle spectra and single-particle potential are generally included to the

model by phenomenological adjustment [31]. The macroscopic-microscopic theory has

been highly successful in described the nuclear properties [32], which constitutes a mi-

croscopic description with added shell correction by hand. The main demerits of these

models are unable to explain the exotic nuclei i.e. the uncertainty arises when ex-

trapolating the prediction to the unknown region of the nuclear landscape. A direct

connection of micro-macroscopic and self-consistent mean-field theory is obtained by
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means of semi-classical approximations. The simplest one is the Thomas-Fermi model or

extended Thomas-Fermi model [33]. In this method, one can reproduce many local fea-

tures of self-consistent mean-field theories. References on many relativistic and extended

Thomas-Fermi works can be found in Ref. [34].

1.2 Recent Developments

The recent theoretical developments in the field of nuclear many body systems can be

grouped into three different approaches: (1) ab initio methods; (2) self-consistent mean-

field (MFT) and shell-model theories; and (3) macroscopic models with microscopic shell

corrections. The ab initio method is started with the aim to explain the nucleon-nucleon

scattering data by using a given nucleon-nucleon potential. The potential characterized

by a strong repulsive core, thus the nuclear matter behaves like a strongly correlated

quantum liquid. To explain such quantized liquid system, we needs a highly sophisticated

many-body theories (for example, Dirac-Brueckner-Hartree-Fock) [8, 35], which results

the direct connection of two-nucleon problem and nuclear matter properties. However,

due to this complexity it is not applicable to finite nuclei calculations at present. For this

incapability to perform full ab initio calculation over the nuclear chart of finite nuclei,

one employs effective interactions.

The intermediate level between ab initio and macroscopic-microscopic approaches

[2, 3, 4] are the microscopic models based on effective interactions. There are mainly two

different microscopically origin approaches: (1) Shell model and (2) the self-consistent

mean-field models. The shell model [36] aims to explain the mean field descriptions

for ground state and intrinsic excited properties of finite nuclei. This model is built

from wave functions of a phenomenological single particle basis, such as the harmonic

oscillator. The many-body states are constructed from the basis states around the Fermi

energy by configuration mixing [37, 38]. However, the dimensions of these calculations

grow rapidly with the size of the system, requiring the use of Monte Carlo methods to

study heavier nuclei [39, 40].
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Due to the present incapability to perform full ab initio and shell model calculation

over the nuclear chart of finite nuclei, one employs effective interactions. In other way,

the mean-field theories (MFT) are based on effective interactions and concentrate on self-

consistent determination of the nuclear mean field. The forces of the MFT consists of few

numbers of parameters and these are adjusted by fitting to the nuclear structure data.

The mean-field potential well of nucleons are computed from the nucleonic wave functions

at Hartree-Fock level. The theories are somewhat inadequate for the description of the

finite nuclear properties of a nuclear system, which are strongly influenced by pairing

correlations. The concept of pairing field is included into the mean-field to take these

correlations into account. Generalization of the mean-field concept with the Hartree-

Fock-Bogoliubov (HFB) equations [41], and the widely used BCS approximation for

time-reversal-invariant systems are two different formalisms for the calculation of pairing

energy in the mean-field theory.

1.2.1 Effective Interactions

Presently, three standard models used in the nuclear mean field are the zero range Skryme

interaction [42], the finite range Gogny [43] and the relativistic mean-field theory [7].

In case of Skryme interaction, the total energy evaluated from Skyrme-Hartree-Fock

approach constitutes the kinetic energy, energy from effective nucleon-nucleon interaction

(the Skyrme energy functional), the Coulomb energy, the pair energy and corrections for

spurious center-of-mass motion. The local approximation in the Skyrme energy func-

tional has several technical advantages. The direct and exchange terms of the Skyrme-

Hartree-Fock have same structure, which significantly reduce the number of integrations

required for solutions of field equations. There are two different methods to evaluate

the Skyrme energy functional. The first technique belongs to the derivation from the

Hartree-Fock expectation value of the zero-range momentum dependent two-body force

introduced by Skyrme. The pairing properties are unrealistic for all the Skyrme forces in

this method. For this reasons, this strict approach is thus rarely used, and the contribu-

tions to the pair energy are dropped. Moreover, it introduces many dependencies among
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the coupling constants that make so many difficulties in finding the solution. Also there

exist a spin instability in the infinite nuclear matter and finite nuclei, because of the

usual parametrization of a three-body force which was used in some early parametriza-

tions and the problem still persists even in recent parametrizations. In other one, the

energy functional is parametrized directly without reference to an effective two-body

force. These free parameters are coupling constants of the energy functional, which are

not fixed by global symmetries. The particle-hole and particle-particle pairing channels of

the interactions are decoupled, which make free from all previous mentioned difficulties.

The only disadvantage is that the additional coupling constants have to be adjusted on

the observed nuclear data. A flexible isospin structure in the spin-orbit interaction is an

interpretation for the energy density functional in the earlier Skryme interactions. The

new forces [44] are constructed to reproduce the shell structure of the exotic nuclei and

are different from the standard Skyrme forces. The importance of the spin-orbit force in

Skryme forces are not only isospin dependence but also density dependence, which is not

the case in standard relativistic mean field theory. The Skyrme Hartree-Fock method

uses strictly point couplings, whereas the standard relativistic mean-field model has fi-

nite range couplings through exchange of mesons. The gradient term with the zero-range

two-body force into a finite-range two-body coupling shows the variant of the Skyrme

force. An alternative concept has been developed [45], where the Skyrme functional can

be viewed as a systematic expansion in derivatives up to second order with usually simple

density dependence. In this alternative method, the functional omits the terms contain-

ing derivatives except for the spin-orbit interaction and employs much more elaborate

density dependence for all remaining terms.

The Gogny force employs a finite range interaction, unlike than that of the Skryme

interaction. However, it is unable to reproduce the binding energies of finite nuclei at

Hartree-Fock level. Thus, the density dependence in the interaction and the spin-orbit

terms are added to the core term of the Gogny force. The divergence of zero-range pairing

is avoided and that enables to use Gogny interaction simultaneously in both mean-field

and pairing channels. The Coulomb energy contribution is exactly calculated from the



CHAPTER 1. INTRODUCTION 8

direct and exchange part of the Coulomb interaction.

The powerful and widely used tool for describing various aspects of many body prob-

lem is the mean-field theory [8, 46]. This approach provides an elegant and economic

framework for calculation of nuclear system for a widely extrapolated region. The first

attempt started with the re-normalized field theory of baryons and mesons, calibrated

over the observed nuclear properties and characterized by finite number of coupling con-

stants and masses [7, 8]. Then it is possible to extrapolate to high density and high

temperature regions without any additional parameters. It is empirically proved that

there exist a large scalar and vector fields in nucleon-nucleon interaction, which is com-

parable with the nucleon mass. So it is important and necessity to take the relativistic

effects into account. Relativistic treatments have several advantages:

• The natural incorporation of the spin-orbit force [8].

• The shift of the saturation curve, so-called Coester band towards the empirical

values [35].

• The successful description of finite nuclei on the β-stable and drip line regions

including superheavy nuclei of the nuclear chart [46, 47, 48, 9, 10, 12].

Now a days, the properties of exotic nuclei with high isospin asymmetry are possi-

ble to measure by the new experimental facility like particle accelerators. Additionally,

the more precise observations and measurements of properties of neutron stars and su-

pernovae have been carried out. Which need a better description of isospin degree of

freedom and can be possible by enhancing the relativistic Lagrangian corresponding to

the isovector meson fields. The cross interactions between isovector and isoscalar fields

are also important, which have been introduced [49] and used in this work.

The basic assumption of the relativistic-mean-field theory (RMFT) is the ladder of

many-body state, which is an independent quasi-particle state from single-particle wave

functions with four-component Dirac spinors. The interaction through meson fields is

considered to be an effective one. The main concept behind RMFT are the interacting
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nucleons and mesons (self interaction and with other mesons) inside the nucleus, which

is an effective interaction and introduced through Klein-Gordon equations for the meson

fields. These field equations are solved self consistently by taking several approximations.

One can use the density dependence of the coupling constants and make model as density

dependence. More detailed information about mean-field framework will be given in

Chapter-2 of the this thesis work.

1.2.2 Beyond Mean-Field

The static mean-field approach is able to describe the bulk properties of many nuclei over

nuclear chart. To achieve higher precision or to describe larger set of data, one has to

consider additional correlations. Various attempt have been made in this direction and

explained so many concepts related to these areas. For example, the generator coordinate

method, which is closely related to multi-configurational Hartree-Fock method. These

are used in atomic physics and similar application like Monte Carlo shell model in nuclear

physics. There are other two different methods, first one is the path integral method,

which deals with the large-amplitude collective motions that appear to be the most

important correlation effect. And second one is diagrammatic method which is also

useful for collective motion study.

The relations between the single-particle wave functions through symmetries is a

characteristic feature of the many-body problem. But in case of self-consistent mean-

field theory, wave functions are often constructed in a superposition manner. They break

symmetries of nuclear Hamiltonian and these symmetries associated with zero excitation

energy and large-amplitude motion have to be restored. The angular momentum pro-

jection is used [50] together with several additional approximations [51] satisfactorily

describing properties of deformed nuclei. The last, but important restoration procedure

is center-of-mass projection [52], induced by broken translational invariance following

from localization of mean field in space. The relative contribution of center-of-mass cor-

rection to the total binding energy is largest for light nuclei since its value decreases with

increasing nucleon number and vanishes for infinite nuclear matter.
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The straight forward extension of static mean-field models is represented by the time-

dependent mean-field method. There are various approaches such as time-dependent

density-functional theory [53], in the nuclear dynamics known as the time-dependent

Hartree-Fock (TDHF), and the time-dependent Hartree-Fock-Bogoliubov (TDHFB) in

the case of pairing. These methods are applicable to explain some features in nuclear

and heavy-ion dynamics [54]. For example, the low-energy region of surface vibrations

and fission is reached by adiabatic TDHF. As it is the first derivation with diagram-

matic techniques [55], one can say that the TDHFB is a starting point for quasi-particle

Random-Phase Approximation (QRPA). It is also a basic theory of nuclear excitations

in the regime of giant resonances. There exists many different notations for the Random-

Phase Approximation RPA equations and techniques for their solution.

1.3 Scope of this work

In this section, we briefly reported the contents of subsequent chapters. Basically, the

whole effort devoted for the development of new ideas and explaining the structural

properties of drip-line nuclei including superheavy. The thesis is organized as follows:

In Chapter 2, we introduced and develop the theoretical formalisms of the relativis-

tic mean field (RMF) and Skryme-Hartree-Fock (SHF) approaches. We start with the

basic concept of standard RMF & SHF, and outlined their importance over the nuclear

structure study, which includes the comparison between different models. In case of

RMF, the field equations are derived for different fields ψ, σ, ω, ρ and electromagnetic

fields. For SHF, the density functionals are obtained from the effective interaction. The

pairing correlation, which is important for the open shell nuclei also included in this

section. A schematic diagram is given for reader to determine the importance of pairing

in finite nuclei. The compilation of various observables for fitting of different forces for

RMF & SHF along with other mean-field models are briefly presented in this chapter.

First of all, a microscopic nucleon-nucleon (NN) interaction potential is derived from

the popular relativistic-mean-field Lagrangian. This NN potential is entitled as R3Y,
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which could replace the phenomenological M3Y NN-interaction for most of the calcula-

tions of nuclear observables. The R3Y is presented eloquently in terms of the well-known

inbuilt RMF theory parameters. In other word, the potential can be expressed in terms

of meson masses (mσ, mω, mρ and mδ) and their coupling constants (gσ, gω, gρ and gδ)

for different fields. The results obtained from different force parameters are compared

with M3Y potentials. Further, we used the microscopic origin NN-potential to the ex-

otic cluster radioactive decays and α+α scattering to determined the applicability. The

details of the derivation along with the results with suitable comparisons are given in

Chapter 3 of this thesis work.

In Chapter 4, we applied RMF and SHF formalisms to study the ground state

properties of Z= 115,117,120 and 122 isotopes. First of all, the potential energy surfaces

(PES) is calculated by using both the RMF and SHF theories in a constrained calculation,

i.e., instead of minimizing theH0, we have minimizedH = H0−λQ2, with λ as a Lagrange

multiplier and Q2 is the quadrupole moment. From that curve, we found shape of the

ground and intrinsic excited states of the nuclei for various force parameters. The gross

properties, such as binding energy (BE), root mean square charge radius rch, proton

radius rp, neutron radius rn, matter radius rm and quadrupole deformation parameter

β2 are calculated. From the calculated binding energy, we also estimated the two-neutron

separation energy S2n and the decay energy Qα values for the decay chains. The alpha

decay properties such as half-life tα1/2 and mean-life τα for these atomic nucleus also

studied. The results obtained from our calculations compared with other theoretical

models and experimental data.

In Chapter 5, we have extended our calculation to the superheavy valley to find the

next magic nuclei beyond Z = 82 and N = 126. According to the previous calculation

(Chapter-3), we get a little shell structure at N=172, 182 or 184 in the isotopic chain of

all atomic studied nuclei, which increase our curiosity to found a suitable combination

of neutron and proton number at superheavy island with magic properties. For this we

scanned a wide range of elements Z = 112-130 and their isotopes using spherical RMF

and SHF models for various force parameters. Based on the calculated observables like



CHAPTER 1. INTRODUCTION 12

pairing gap ∆, two neutron separation energy S2n, single particle energy levels εn,p (for

neutron and proton) and the shell correction energy Eshell, we predict Z =120 as the

next proton magic and N=182/184 the subsequent neutron magic numbers. The highly

discussed proton magic number Z = 114 in the recent past (last four decades) is found

to be feebly magic in nature. It is well accepted that the sequence of the magic number

for exotic system is much different from that of the normal nuclei, which is quite normal

in superheavy region.

As we know, the clustering is a novel phenomenon from few decades in the light

and intermediate mass region. In Chapter 6, we include such clustering structure (nu-

clear sub-structure) of Ba (in intermediate) and Mg (in light mass region) isotopes in

an axially deformed cylindrical coordinate. The clustering configurations inside the nu-

cleus determined from the total (neutrons-plus-protons) density distributions for both

the ground and excited states. The important steps, carried out here for first time

is the counting of number of protons and neutrons present in the clustering region(s).

Presence of 12C along with other lighter clusters such as 2H, 3H and nuclei in the neigh-

borhood of N = Z are the constitute the clusters in prolate-deformed ground-states

of 112116Ba and oblate-deformed first excited states of 118122Ba nuclei. Further, in light

mass region, we have found the oxygen (16O) as a core and bubble like α along with

some excess neutron(s) in magnesium isotopes. All these results are of interest for the

observed intermediate-mass-fragments and fusion-fission processes, and the so far unob-

served evaporation residues from the decaying Ba compound nuclei formed in heavy ion

reactions.



Chapter 2

Theoretical Formalisms

The effective interactions or effective energy-density functional are employed at the in-

termediate level of nuclear models. The self-consistent mean-field, is one of the approach

belongs to the effective interaction, proved as a powerful and versatile tool for providing

a microscopic quantum mechanical understanding of matter. The main objective of this

approach to get a prejudice free, self-consistent determination of the nuclear ground state

and low-energy collective dynamics. One can say, the self-consistent mean-field models

are one big forward step towards the microscopic description of nuclei as compare to the

macroscopic-microscopic (in short mic-mic) method. The genuine nuclear interaction

induces huge short-range correlations that are not naturally included in this method,

because of that we cannot be regarded these as an ab initio treatment. They produce

the appropriate single-particle potential corresponding to the actual density distribution

for a given nucleus [56, 26, 27].

There are three most prominent and quite successful mean-field approaches are as:

(1) the Skyrme energy functional, traditionally called Skyrme-Hartree-Fock (SHF), (2)

the finite range Gogny model, and (3) the relativistic mean field model (RMF) [for

a recent review see Ref. [28]]. We have already mentioned that the self-consistent

mean-field models lie between ab initio theories and the mac-mic method. It is worth

mentioning that the relation between ab initio and mean-field is still under development

[56, 28], which is not the case in connection between mean-field and the mac-mic approach

13
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[26, 27]. For example, the extended Thomas-Fermi Skyrme interaction scheme (ETFSI)

starts from SHF and derives an effective mac-mic model by semi-classical expansion

[29, 30]. On the other hand, there is an attempt to include more self-consistency by

virtue of a Thomas-Fermi approach [31, 32], which turns out to be useful to gain more

insight into the crucial constituents of models. The uncertainty in the phenomenological

determination of the free parameters in the effective energy functional [36] is one of the

burden in applying mean-field models. There are more than hundred forces (or sets of

parameter) are already developed within few decades. Still, the main problem is not

yet solved, i.e. one does not find the correspondence between individual parameter and

link for the experimental informations. The method for determining the parameter are

almost same for all fitting i.e. the parameter sets which would fit the experiment with a

comparable degree of accuracy. One of the crucial tasks in the development of the mean-

field models to converge the free parameters used in the interaction and reproduced the

new data for exotic regions of the nuclear chart. The role of the mean-field models

(relativistic mean field and Skryme-Hartree-Fock theory) in providing such input to

finite nucleus properties and its implication is discussed in this work. In this chapter,

we discussed the present status of the mean-field models mainly relativistic mean field

(RMF) and Skryme-Hartree-Fock (SHF) and their application to finite nuclei throughout

the nuclear landscape. This also included the adjustment of the force parameters and

resultant observables.

2.1 Relativistic Mean Field Theory

The concept of relativistic description of nuclear system raised in early 1960, by Schiff

[57], Teller and Dũrr [58, 59], which was forgotten for nearly twenty years till 1970’s. The

idea come to a glory, when Miller and Green and just after by Walecka [7] pointed out the

power, the simplicity form of the interaction of nucleon through meson with few degrees

of freedom [8]. Simple Walecka model is not able to describe the surface properties of a

nucleus to a large extent or properly. The inclusion or acquaint of non-linear coupling
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Table 2.1: The mesons are classifies into different groups according to their quantum
number.

Type Spin Orbital angular moment Parity Total angular moment

S L P J

Pseudoscalar 0 0 − 0

Pseudovector 0 1 + 1

Vector 1 0 − 1

Scalar 1 1 + 0

Tensor 1 1 + 2

terms among the mesons by [60] and further development by other [61] in the effective

Lagrangian break through the situation. This non-linear model is entitled by Relativistic

Mean Field (RMF) theory. This model is developed within the framework of quantum

hadrodynamics (QHD). The spin-orbit splitting and the nucleon-nucleon potential are

initially there in the effective density, which is not the case in Skryme and Gogny types.

In this context, one may say that the model is more reliable than the non-relativistic one

in predicting yet unknown properties of nuclei far from stability line, which are important

in astrophysical situations. The details of the model is discussed in the section below.

2.1.1 Basic concepts of relativistic mean field theory

The microscopic description of ground state and excitation properties of finite nuclei

has been attempted using relativistic field theory from past few years. It starts from

an effective Lagrangian containing the nucleonic and mesonic degrees of freedom, is

a phenomenological theory of the nuclear many-body problem. There are four basic

assumptions behind this theory as:

• The nucleons are treated like point particles.

• Nucleons are the efficient degrees of freedom at low energy and they are included
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as Dirac spinor ψi. Further, their compositeness retain at the tree level through

the inclusion of non-renormalizable interaction terms.

• These particles obey strictly the rules of relativity and causality.

• The theory is fully Lorentz invariant.

• The particles move independently in mean fields which originate from nucleon-

nucleon interaction.

• The other degrees of freedom are non-Goldsten bosons or mesons such as σ, ω, ρ and

δ. These are responsible for the intermediate range interactions and conveniently

describe the non-vanishing expectation values of nuclear bilinears.

• Finally, the QHD constraints are imposed through symmetry i.e. all allowed (non-

redundant) terms must be included.

The exchange of effective mesons, which couple to the nucleons at local vertices, obey

the conditions of causality and Lorentz invariance. Based on these assumptions the

nucleons are treated as Dirac particles described by Dirac spinor ψi. The point-like

particles are called mesons, φj, where j stands for σ, ω, ρ, δ and photon fields. They are

characterized by their quantum numbers such as spin (S), orbital angular momentum

(L), total angular momentum (J), parity (P). Here we have listed different types of meson

with their fundamental quantum number for their identity in Table (2.1). The mesons

dynamics can be determined through the Lagrangian density L(φ, ∂µφ, t) and variational

principle:

δ
∫
dtL = δ

∫
d4xL(φ, ∂µφ, t) = 0, (2.1)

in classical level, the Euler-Lagrange equations of motion:

∂µ(
∂L

∂(∂µφj)
)− ∂L

∂φj
= 0. (2.2)
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The energy momentum tensor [8, 60] is given by

T µν = −gµνL+
∂L

∂(∂µφj)
∂νφj. (2.3)

The Euler-Lagrange equation ensures that this quality is conserved and the continuity

equation is given by

∂µT
µν = 0, (2.4)

if L has no explicit space dependence then the four-momentum is defined by P ν =∫
d3rT 0ν and the 0th component of the four-momentum is expressed as P 0 = E =∫
d3rH(r). Now the Hamiltonian density is given by

H(r) = T 00 =
∂L
∂qj

φj − L. (2.5)

From this Hamiltonian density, the binding energy of the nucleus can calculated by using

the relation:

E =
∫
d3rH(r) =

∫
T 00d3r. (2.6)

The mesons are characterized by the quantum numbers spin (S), parity (P) and isospin

(T), which are already listed in Table 2.1. But, in case of π-meson (Pseudoscalar in

nature) with −ve parity, the corresponding mean-field breaks on Hartree level and its

contribution is zero, which is not the case in real nuclei [8, 62]. In mean-field level, the

parity is conserving to a very high degree of accuracy, i.e. assumed to be well defined

parity. Therefore, the effects of π−mesons average essentially to zero in the description

of bulk properties of nuclei [8, 62]. It is well known that, two or any even number of

pions contributes positive parity, therefore one includes the phenomenological σ-meson

(resonance states of two π-mesons), have treated beyond mean field. The exchange of

σ-meson leads to attractive nuclear force among the nucleons and the corresponding field

is scalar field φ (r). The exchange of vector mesons generating the repulsive component
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to the nuclear potential. The most important one is the ω-meson (3π-resonance state),

which is experimentally found. The field generated from this meson called as W (r)

and the time-like component is responsible for repulsive force. The isospin dependence

of nuclear force is taken care by the exchange of ρ-mesons. The ρ-field (R(r) is the 2π

(p-state) and is taken care by phenomenological aspect. The electromagnetic field of

photon is described by vector potential Aµ (r) and its time-like component represents

Coulomb repulsion. The ρ-mesons have the same quark composition as that of π, but the

mass is about five and one half times the π-mesons, therefore, ρ-mesons are considered

to be the excited state of π-mesons. There are other mesons, which play a little role

in the quantitative description of bare nucleon-nucleon interaction by meson exchange

[62]. For example δ-meson leads to scalar nuclear potential slightly different for protons

and neutrons. The contribution of this meson is small for finite nuclei and the effect

of which can be achieved by a suitable adjustment of parameters in Lagrangian for the

other mesons. Therefore, neglecting the other mesons; only φ (r), W (r), R (r) and

the photon Aµ fields are considered. The masses of other mesons are more than the

mass of nucleons, and the contribution of heavy mass mesons can be neglected to a good

approximation. The assumption of naturalness and the observation shows that the mean

fields and their derivatives are small compared to mass of the nucleon M upto moderate

density. Which allows us to organize the Lagrangian in powers of the fields and their

derivatives. This is one of the advantage to redefine the fields simplify the interaction

terms between the nucleons and the non-Goldstone bosons, where the scalar and vector

meson parts of the Lagrangian can contain powers of ∂2 in addition to the kinetic terms

[63, 64]. It is important to note that, the key observation at normal nuclear matter

density (or in the central part of a nucleus), the scalar gsφ and vector gωW0 mean fields

are ≤ 0.25M and 0.4M, respectively.

2.1.2 Relativistic mean field Lagrangian density

Based on the above discussion, the non-linear effective Lagrangian density here used

to investigate the ground state properties of nuclei in the nuclear chart describing the
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contribution of all mesons and nucleon as:

L = LN + LM. (2.7)

Here LN and LM are the nucleonic and mesonic part of the effective Lagrangian, respec-

tively. Each terms are truncated upto the order, ν=4, which is sufficient for the finite

nuclei and infinite nuclear matter calculation [63, 64]. The quantity ν is an index, assign

to each interaction terms and is defined as:

ν = d+
n

2
+ b, (2.8)

where, ′d′ is the number of derivatives, ′n′ is the number of nucleon fields and ′b′ is the

number of non-Goldstone boson fields in the interactions. The term ′d′ does not contain

the derivatives on the nucleon fields because of the power of the nucleon mass, which

lead to a higher values in the expansion parameters. Again the term ′b′ arises due to

non-Goldstone boson couples with two nucleon fields. The details of these terms are

given in Ref. [65]. The first term of the effective Lagrangian involves nucleon with ν =4

and is given by [63, 64]

LN = ψi [iγ
µDµ + gAγ

µγ5aµ −M + gsφ]ψi

−fρgρ
4M

ψiρµνσ
µνψi −

fωgω
4M

ψiVµνσ
µνψi

−κπ
M
ψiωµνσ

µνψi −
e

2M
Fµνψiλσ

µνψi

− e

2M2
ψiγµ (βs + βvτ3)ψi∂νFµν , (2.9)

whereM is the mass of nucleon and ψi is Dirac spinor. TheDµ is the covariant derivatives

and is given by

Dµ = ∂µ + iωµ + igρρµ + igωVµ +
ieAµ(1 + τ3)

2
. (2.10)
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The mesonic part (second term of Eqn. (2.7)) of the Lagrangian can also organized in

terms of the fields and their derivatives, as:

LM =
1

2

[
1 + α1

gsφ

M

]
∂µφ∂

µφ+
f 2
π

4
tr(∂µU∂µU †)

−1

2
tr(ρµνρ

µν)− 1

4

[
1 + α2

gsφ

M

]
VµνV

µν − gρππ
2f 2

π

m2
ρ

tr(ρµνρ
µν)

+
1

2

[
1 + η1

gsφ

M
+
η2

2

g2
sφ

2

M2

]
m2
ωVµV

µ +
1

4!
ζ0g

2
ω(VµV

µ)2

+

[
1 + ηρ

gsφ

M

]
m2
ρ(ρµρ

µ)−m2
sφ

2

[
1 +

κ3

3!

gsφ

M
+
κ4

4!

g2
sφ

2

M2

]

−2ef 2
πA

µtr(ωµτ3)−
e

2gγ
Fµν

[
tr(τ3ρ

µν) +
1

3
V µν

]
, (2.11)

here, the coupling constants in the above equations, gs, gω, gρ and e
4π

= 1
137

are for

σ−, ω−, ρ−mesons and photon, respectively. The Pauli isospin matrix ~τ (~τ3) (~τ3 is the

third component of τ) for the nucleon spinor. The value of τ3 is −1 and +1 for neutron

and proton, respectively. The coupling constant η1, η2, ηρ and ζ0 are induced for the

non-linear terms of meson fields. The field tensors V µν , ρµν and Fµν corresponding to the

ω-, ρ-mesons and the electromagnetic field. The α1 and α2 are the terms correspond to

the derivatives of the meson field and with ν=5. However, we have retain them because

of the same contributions in magnitude to the surface energy as the quartic scalar term.

The numerical factor 1/n! determines the important of the term in contribution in the

energy.

2.1.3 Relativistic mean field equation

The variational principle is used here to generate the equations of motion for the nucleons

and mesons. Instead of quantize the fields, the mean field approximation is introduced,

in which the meson field operators are replaced by their expectation values (classical

fields) and hence removing the quantum fluctuations. The other approximation is the

”no sea” approximation, in which the different densities and currents for the sources

of meson fields are obtained by summing over all occupied states in Slater determinant
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of baryons. This means that the contribution of anti-particles is neglected. In other

word, the negative energy solutions of Dirac equation is not included i.e. the vacuum

polarization effects are not taken into account. However, one can not say that the

vacuum polarization is neglected completely. It is taken care in a global way by the

phenomenological adjustment of the parameters. The negative and positive energy states

in Dirac equation (neglecting Dirac sea using ”no sea” approximation) is shown in Fig.

2.1.

Figure 2.1: The qualitative structure of the scalar field S and vector field V in finite
nuclei. Dirac positive energy (V+S) and negative energy (V-S) states are shown.

The nucleon spinor for the single particle contains spatial and time-like components.

Here, the space-like components of the vector fields is neglected, i.e. we neglecting the

nuclear magnetism [66]. We need the static state solutions of the equations to determine

the ground state properties of the nuclei. The vector potential [W0(r), W(r)], [R0(r),
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R(r)] and the electromagnetic potential [A0(r), A(r)] are four-vectors under Lorentz

transformations. The component with subscript 0 stands for time-like components and

the bold front for the space-like components of the vector fields, respectively. The single-

particle wave function ψi is four-dimensional spinor. The subscript i denotes the quantum

numbers that specify the single-particle state and Ei is the corresponding energy. In

static case the time derivative of the meson fields vanish i.e.

∂φ

∂t
= φ̇ = 0;

∂W

∂t
= ω̇ = 0;

∂R

∂t
= ρ̇ = 0. (2.12)

The time-reversal symmetry is broken for a nucleus contains odd number of nucleon.

But, it is well known that, the odd particle responsible for the polarization currents

and time-odd components in the mean fields. The time-odd components are essential

for the description of magnetic moments [67] and moments of inertia in rotating nuclei

[68, 69]. Again, the bulk properties of a nucleus like binding energies and deformation β2

also effected with odd nucleons, however, is very small and can be neglected to a good

approximation [66]. To take care of odd− odd and even− odd nuclei, one has to violate

time-reversal symmetry in the mean field. To avoid such difficulty in our calculations of

odd-nuclei we employ the well known Pauli blocking approximation, which restores the

time-reversal symmetry. In this approach one pair of conjugate states ±m is taken out of

the pairing scheme. The odd-nucleon stays in one of these states and its corresponding

conjugate state remains empty. In general, one has to block different states around

Fermi level to find the one which gives the maximum binding energy of the nucleus.

For odd − odd nuclei we block both neutron and proton [70]. In case of even − even

system, the nucleus (Slater determinant) has time reversal symmetry. This means if

the state i is occupied then its time reversed partner must there. In other words if an

angular momentum state j (m) is occupied then its time reversed partner j(-m) is also

occupied. This implies that there are no spatial currents in the nucleus. Therefore, the

spatial vector components of the fields vanish and we are left with time-like components

of Lorentz vector and corresponds to Coulomb field in electrodynamics and a scalar
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potential, which contributes to effective mass M∗ (r). The M∗ (r) is the shift in the

mass of nucleons M due to the strong scalar field [71], which is expected to be 1
2
M at

center of the nucleus and rises back to M on the surface. Now the single-particle Dirac

Hamiltonian for finite nuclei for Eqn. (2.7) can be written as [72],

h(r) = −iα · ∇+W (r) +
1

2
τ3R(r) + β(M − φ(r))

+
1 + τ3

2
A(r)− iβα2M

(
1

2
fρτ3∇R + fv∇W

)
+

1

2M2
(βs + βvτ3)∇2A− i

2M
λβα · ∇A, (2.13)

where, W (r) = gωV0(r), φ(r) = gsφ0(r), R(r) = gρρ0(r) and A(r) = eA0(r) are the

scaled mean-fields with coupling [48] and β = γ0 and α = γ0γ are the Dirac matrices.

The terms with λ, βs and βv takes care for the effect of electromagnetic structure of the

nucleons. The constant λ needed to reproduce magnetic moments of the nucleons and it

is given by,

λ =
1

2
λp(1 + τ3) +

1

2
λn(1− τ3), (2.14)

here, the value of λp and λn are 1.793 and -1.913, the anomalous magnetic moments

of the proton and neutron, respectively. The quantities βs and βv are important for

the charge radii of the nucleon. The Dirac equation with the eigen values Ei and eigen

function Ψi(r) are given by [8, 73],

hΨi(r) = EiΨi(r), (2.15)

with the normalization condition,

∫
d3rΨ†i (r)Ψi(r) = 1. (2.16)

The eigen functions and its components (upper and lower) along with the single-particle

potentials are given in Appendix-A. The equations of motions for various mesons and
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photon fields are:

−∇2φ+m2
sφ = g2

sρs(r)−
(
κ3

2
+
κ4

3!

φ

M

)
m2
sφ

2

M
+

ηρ
2M

g2
s

g2
ρ

m2
ρR

2 +
α2

2M

g2
s

g2
v

(∇W )2

+
g2
s

2M

(
η1 + η2

φ

M

)
m2
v

g2
v

W 2 +
α1

2M
[(∇φ)2 + 2φ∇2φ], (2.17)

−∇2W +m2
vW = g2

v

(
ρs(r) +

fv
2
ρT (r)

)
− φ

M
m2
vW

(
η1 +

η2

2

φ

M

)

− 1

3!
ζ0W

3 +
α2

M

(
∇φ · ∇W + φ∇2W

)
, (2.18)

−∇2R +m2
ρR =

1

2
g2
ρ

(
ρ3(r) +

fρ
2
ρT,3(r)

)
− ηρ

φ

M
m2
ρR, (2.19)

−∇2A = e2ρp(r). (2.20)

Here, φ, W , R and A stands for the field of σ-, ω-, ρ-meson and the electromagnetic

field, respectively. The masses of the σ, ω and ρ-mesons are denoted as ms, mω and

mρ, respectively. The relativistic mean field equations are coupled equations of unknown

fields (mesons and nucleons) and each field correspond to a density and are given below:

ρs(r) =
A∑
i=1

ψi(r)ψi(r) =
A∑
i=1

2ja + 1

4πr2

(
G2
a(r)− F 2

a (r)
)

(2.21)

The ρs(r) is the scalar density contains difference of the squares of large and small

components and is not normalized,

ρv(r) =
A∑
i=1

ψ†i (r)ψi(r) =
A∑
i=1

2ja + 1

4πr2

(
G2
a(r) + F 2

a (r)
)
, (2.22)

It is baryon density (vector density) the sum of squares of large and small components

of Dirac spinor which are normalized to unity.

ρ3(r) =
A∑
i=1

ψ†i (r)τ3ψi(r) =
A∑
i=1

2ja + 1

4πr2
2ta

(
G2
a(r) + F 2

a (r)
)
, (2.23)
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The ρ3 (r) is called as isovector density and the tensor densities are expressed as:

ρTv (r) =
A∑
i=1

ψ†i (r)iβα · r̂ψi(r) =
A∑
i=1

2ja + 1

4πr2
2 (Ga(r)Fa(r)) , (2.24)

ρT3 (r) =
A∑
i=1

ψ†i (r)iτ3βα · r̂ψi(r) =
A∑
i=1

2ja + 1

4πr2
2ta (2Ga(r)Fa(r)) . (2.25)

Now the proton density or the charge density can be expressed as

ρch(r) =
A∑
i=1

ψ†i (r)
(1 + τ3)

2
ψi(r) =

1

2
(ρv(r) + ρ3(r)) . (2.26)

The sum extends over the occupied shell model states of the positive energy (no sea

approximation). The Eqns. (2.21-2.26) for densities serve as the sources in meson equa-

tions, which are ingredient to determine the meson fields. Finally, the meson-fields enters

the Dirac equation and determine the motion of nucleons in a self-consistent way. The

whole system of equations are solved iteratively. Since the nuclear force does not depend

on the charge, so neutron and proton are considered to be separate manifestations of

the same particle, the nucleon. The isotopic spin entitled as isospin (τ) is an additional

quantum number to label neutron and proton. The values of the third component of

isospin (τ3) is +1 (−1) for proton (neutron). Finally, the energy density for finite nuclei

can given by [64],

E(r) =
∑
α

ϕ†α

{
− iα·∇+ β(M − φ) +W +

1

2
τ3R +

1 + τ3
2

A

− i

2M
βα·

(
fv∇W +

1

2
fρτ3∇R + λ∇A

)
+

1

2M2
(βs + βvτ3) ∆A

}
ϕα

+

(
1

2
+
κ3

3!

φ

M
+
κ4

4!

φ2

M2

)
m2
s

g2
s

φ2 − ζ0
4!

1

g2
v

W 4 +
1

2g2
s

(
1 + α1

φ

M

)
(∇φ)2

− 1

2g2
v

(
1 + α2

φ

M

)
(∇W )2 − 1

2

(
1 + η1

φ

M
+
η2

2

φ2

M2

)
mv

2

gv2
W 2

− 1

2g2
ρ

(∇R)2 − 1

2

(
1 + ηρ

φ

M

)
m2
ρ

g2
ρ

R2 − 1

2e2
(∇A)2 . (2.27)
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The center-of-mass (c.m.) correction to the nuclear binding energy can generated non-

relativistically using the simple relation [74] as:

Ec.m. =
〈P 2

c.m.〉
2MA

, (2.28)

here, A is the mass number and A= Z + N for a given nucleus. And the momentum of

the given system can be expressed as:

〈P 2
c.m.〉 ≡ −

A∑
i=1

〈α|∇2|α〉+
A∑

i,j=1

|〈α|∇2|β〉|2, (2.29)

with

〈α|Ô|β〉 ≡
∫
d3xψ†i (r)Ôψi(r). (2.30)

Here, we used the same procedure to estimate the center-of-mass correction, which is an

empirical method given by [75] :

Ec.m. =
17.2

A
1
5

MeV, (2.31)

which determines the expectation value of 〈P 2
c.m.〉 from Eqn. (2.29). The binding energy

of a nucleus is given by,

ε = A ·M − E + Ec.m., (2.32)

where, A is the mass number of the nucleus and M is the mass of the nucleon. Here we

have taken mp = mn = M , in case of mn 6= mp, one can use Z ·mp +N ·mn for A ·M .

The c.m. correction for the root-mean-square charge radius is given by

〈r2〉ch = 〈r2〉 − 3

8M · AEc.m.
, (2.33)
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where

〈r2〉 =
1

Z

∫
d3xx2ρch(r). (2.34)

Now the above expressions are sufficient for the determination of the structural properties

of finite nuclei.

2.2 The Skryme-Hartree-Fock Formalism

The central assumption of the Hartree-Fock approach is the force felt by each nucleon

moving independently in an average potential (or mean field) [5]. And this mean field

described by nucleon-nucleon force, which is generated from the interactions between all

the constituent nucleons inside the nucleus. As we know, the nucleus is a many-body

system (few number of fermions), it implies that the constituents must obey the Pauli

exclusion principle and the wave-function of the collective state must be antisymmetric

under the interchange of the coordinates of any two nucleons. Hence, the Hartree-Fock

approximation for the ground-state trial wave-function of a nucleus with A particles can

be written as a Slater determinant or an antisymmetrised product of occupied states.

The Slater determinant is built from a complete orthonormal set of single-particle wave-

functions φi (rj) (the Hartree-Fock basis). Here rj stands for all coordinates (spatial,

spin and isospin) of the jth nucleon.

Φ(r1, ..., rA) −→ ΦHF (r1, ..., rA) =
1√
A!



φ1(r1) φ2(r1) φ3(r1) · · · φA(r1)

φ1(r2) φ2(r2) φ3(r2) · · · φA(r2)

φ1(r3) φ2(r3) φ3(r3) · · · φA(r3)
...

...
... · · · ...

...
...

...
. . .

...

φ1(rA) φ2(rA) φ3(rA) · · · φA(rA)


.(2.35)
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Initially, the exact spatial form of the single-particle wave-functions are unknown, they

may be approximated by oscillator wave-functions [76, 77], with the total number of

nucleons in the nucleus, unless pairing correlations are considered. Starting with the full

many-body Hamiltonian, which can be written in terms of a one-body kinetic energy

term and a two-body force for a system of A particles as:

H =
A∑
i=1

p2
i

2mi

+
1

2

A∑
i 6=j

V (ri, rj), (2.36)

where V (ri, rj) contains all parts of the nucleon-nucleon force, including the Coulomb

interaction. The main aim of mean-field to simplify the two-body potential in terms of

a one-body mean-field, U(ri), that incorporates as much of the physics of V (ri, rj) as

possible. In the Hartree-Fock approach the expectation value of the total Hamiltonian

with respect to the Hartree-Fock wave-function gives the approximated ground-state

energy, which can written as:

E0
HF = 〈ΦHF |H|ΦHF 〉

= − h̄2

2m

A∑
i 6=j

∫
φ∗i (r)∇2φi(r)dr

+
1

2

A∑
i 6=j

∫ ∫
φ∗i (r)φ∗j(r

′)V (ri, rj)φi(r)φ
(
jr
′)drdr′

−1

2

A∑
i 6=j

∫ ∫
φ∗i (r)φ∗j(r

′)V (ri, rj)φi(r)φ
(
jr
′)drdr′, (2.37)

here the notation
∫
dr =

∑A
i 6=j d

3r is used throughout the section. The final term in Eqn.

(2.37) plays the role of industrialization under the interchange of any two particles. The

ground-state of the system is one that minimizes the expectation value in Slater level i.e.

the generation of lowest energy. Which requires the first derivative of the expectation

value with respect to small changes in all of the single-particle wave-function must be

zero by variational principle. This can be expressed in terms of Hartree-Fock ground
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state energy E0
HF and Lagrange multiplier εi,

δ

δφ∗a(r)

[
E0
HF −

A∑
i

εi

∫
|φi(r)|2dr

]
= 0, (2.38)

with δ
δφ∗a(r)

φ∗a(r) = δiaδ(r− r′). Here, εi ensure the correct normalization of the wave-

functions throughout the variation and include the constraint for the conservation of

particle number within the system. Now the normalization condition for a system of A

particle can be given as:

A∑
i=1

∫
|φi(r)|2dr = A, (2.39)

which is nothing but the the single-particle energies calculated from solution of the

Schrodinger equation for the single-particle Hamiltonian, and is given by,

h|φi(r)〉 = εi|φi(r)〉. (2.40)

This leads to a simplified form for the Hartree-Fock equation and is given as:

εi = − h̄2

2m
+ U

(i)
H (r)φi(r)−

∫
U

(i)
F (r, r′)φi(r

′)dr′, (2.41)

where, U
(i)
H and U

(i)
F are known as the direct or Hartree and exchange or Fock potential

term, respectively. The detail expressions for Hartree-Fock equations as well as the

direct and exchange potential are given in Appendix-B.This equation look like the

regular one-body Schrõdinger equation with extra non-local term. The solution of this

equation yield a set of single-particle wave-functions that form the ground-state Slater

determinant, which needs a self-consistent, or iterative solution [78, 79, 80]. In practical,

the terms starting with the trial single-particle wave-functions, then using the chosen

interaction to construct the potential, solving the Schrodinger equation. In the presence

of this potential to calculate new values for the single-particle energies and corresponding

wave-functions until convergence is reached according to the set criteria.
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2.2.1 The Skryme effective interaction

The basic idea of the Skyrme interaction for nuclear structure calculations to develop an

energy functional, which could be expressed in terms of a zero-range expansion, leading

to a simple derivation of the Hartree-Fock equations. The energy functional containing

two parts such as the direct and exchange terms, having same mathematical structure.

The Skyrme effective interaction that leads to a two-body density-dependent interaction

that models the strong force in the particle-hole channel and contains central, spin-orbit

and tensor contributions in coordinate space and called the standard analytical form,

given by [78, 4],

v(r1, r2) = t0(1 + x0Pσ)δ(r)

+
1

2
t1(1 + x1Pσ)

[
P
′2δ(r) + δ(r)P2

]
+t2(1 + x2Pσ)P

′ · δ(r)P

+
1

6
t3(1 + x3Pσ) [ρ(R)]σ δ(r)

+iW0σ ·
[
P
′ × δ(r)P

]
. (2.42)

In the given effective interaction, the 1st term correspond to central part, 2nd & 3rd

term are the non-local terms, 4th for density-dependent and last one for the spin-orbit

interaction. Again, R = 1
2
(r1 + r2) and r = 1

2
(r1 − r2) are center-of-mass (c.m.) and

relative co-ordinate respectively. The operators P and P
′

are acting on left with the

expression, P = 1
2i

(∇1 −∇2). The spin operator σ = σ1 + σ2 and the Pσ = (1+σ1·σ2)
2

.

From this standard form of Eqn. (2.42), the total binding energy of a nucleus can be

expressed as [78]:

〈|H|〉 =
∫
H(r)dr, (2.43)

here, H, is the total Hamiltonian density functional, and is given by,

H = K +H0 +H3 +Heff +Hfin +Hso +Hsg +HCoul, (2.44)
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where, K is the kinetic term and is expressed as:

K =
h̄2

2m
τ =

h̄2

2m
(τn + τp), (2.45)

with τ = τn+τp, called the total (sum of proton and neutron) kinetic energy density. The

terms, H0, H3, Heff , Hfin, Hso, Hsg and HCoul are the density functional for zero-range,

density-dependent, effective-mass, finite-range, spin-orbit, tensor-coupling and Coulomb

correction, respectively. The corresponding expression for these terms are as follow:

H0 =
1

4
t0
[
(2 + x0)ρ

2 − (2x0 + 1)(ρ2
p + ρ2

n)
]
,

H3 =
1

24
t3ρ

η
[
(2 + x3)ρ

2 − (2x3 + 1)(ρ2
p + ρ2

n)
]
,

Heff =
1

8
[t1(2 + x1) + t2(2 + x2)] τρ

+
1

8
[t2(2x2 + 1)− t1(2x1 + 1)] (τpρp + τnρn).

Hfin =
1

32
[3t1(2 + x1)− t2(2 + x2)] (∇ρ)2

− 1

32
[3t1(2x1 + 1) + t2(2x2 + 1)]×

[
(∇ρn)2 + (∇ρp)2

]

Hso =
1

2
W0 [J · ∇ρ+ Jp · ∇ρp + Jn · ∇ρn]

Hsg = − 1

16

[
(t1x1 + t2x2) J2 − (t1 − t2) (J2

p + J2
n)
]

and

HCoul = =
1

2

∫ ρp(r2)

|r1 − r2|
d3r2 −

3

4

(
3

π

)1/3

ρ4/3
p (r1). (2.46)
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The term HCoul, containing two parts correspond to direct and exchange at Slater level

[78]. The total density ρ = ρp + ρn, kinetic density τ = τn + τp and the spin density

J = Jn + Jp. The corresponding expressions for these density are as follow:

ρq(r) =
Aq∑
i=1

∑
σ

|φi(r, σ, q)|2, (2.47)

τq(r) =
Aq∑
i=1

∑
σ

|∇φi(r, σ, q)|2, (2.48)

and

Jq(r) = i
Aq∑
i=1

∑
σ,σ′

φ∗i (r, σ, q) [(σ)σ,σ′ ×∇]φi(r, σ, q), (2.49)

where, φi is the single-particle wave function with orbital, spin and isospin quantum

numbers. The total binding energy (BE) of a nucleus is the integral of the energy

density functional H. At least more than one-hundred parameterizations of the Skyrme

interaction are published since 2012 (see, e.g., [81]). This parameter sets are designed

for considerations of proper experimental data for finite nuclei and saturation properties

of infinite nuclear matter [78, 82, 83, 79, 84]. The details of the analytical expression

and method of calculations are given in Refs. [78, 79, 84].

2.3 Pairing Correlations

The pairing effect plays an important role in the correct description of nuclear structure

phenomena in open-shell and deformed nuclei. We know that the mean-field calculations

are only taken care to the long-range part of the nucleon-nucleon interaction, the short-

range pairing correlations have to be incorporated in addition. It is an attractive force

that occurs between identical nucleons in the same j-orbit. For examples the ground-

state spin of all even-even nuclei is 0h̄, which implies that there is an induction of force
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that couples the nucleons pair such that their angular momenta cancel out. According to

extreme particle model, the ground-state spin is determined by the spin of last nucleon,

which plays for an important contribution to the ground state energy of that nucleus. In

general, the masses of even−even nuclei are much larger than the neighboring even−odd

or odd− odd mass nuclei which suggests that the binding energy is much larger when a

nucleon is added to an odd-mass than to an even-mass nuclei.The pairing not only couples

nucleons in states j to Jπ = 0+ but also to J ′π = 0+ composed from two nucleons in

different states j and j′. The nucleons of an orbit scatter to another orbit by the effect

of pairing. This phenomenon is not the case for the nucleons far below the Fermi surface

but near the Fermi surface, there is some probability that orbits are not fully occupied,

may cause this scattering to take place, which causes the smearing of Fermi surface. The

smearing of the surface leads to the concept of quasi-particles which can be considered

as the linear combination of hole and particle wave functions.

The Lagrangian density of the RMF and the effective interaction in the SHF used

here, does not contain any term to includes pairing correlations to the interaction. The

pairing correlations can only be described in a generalized single-particle theory by field

operators ψ†ψ† or ψψ and two-body interaction of the type ψ†ψ†ψψ on the classical

level, which do not conserve the particle number. Therefore, the pairing correlations are

often included in a phenomenological way with the simple BCS [85] approximation. It

is worth mentioning that the BCS approach provides a reasonably good description of

the pairing properties for known nuclei, close to or not too far from the stability line.

However, for the nuclei in the vicinity of the drip-lines or to the super-heavy region the

coupling to the continuum becomes important. It has been shown that the self-consistent

treatment of the BCS approximation breaks down when coupling between bound states

and states in the continuum takes place [86]. The derivation of these correlations on

quantum level would be possible by deducing the nucleon-nucleon interaction resulting

after the quantization of meson fields from exchange of mesons. However, we are not

taking that aspect here and adopted a simpler approach incorporating the effects in

a constant gap approximation in the above mentioned scheme introducing occupation
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numbers (ni). The occupation number (ni) for pure Hartree approximation is:

ni =

 1 for occupied levels

0 for non-occupied levels.
(2.50)

We have already mentioned that the smearing of the Fermi surface is due to the unoc-

cupied (not completely occupied) orbit near to the Fermi and causes scattering. In case

of without pairing, the orbits would simply be filled sequentially in accordance with the

Pauli principle until all A nucleons had been placed in the lowest orbits, giving sharply

defined surface, which clearly reflect in the schematic diagram (Fig. 2.2). The effect of

pairing causes the smearing of Fermi surface which leads to the concept of quasi-particle,

and can be considered as a linear combination of particle and hole wave functions. The

occupation probability of ith state can expressed in terms of a particle v2
i and a hole

u2
i (see Eqns. 2.53-2.54). One can say, the RMF and SHF approaches without pairing

interaction can be applied to doubly magic nuclei and the nuclei at very large angular

momenta where the pairing is considerably quenched. The variation with the occupation

number v2
i gives the BCS-equations:

2εiuivi −∆(u2
i − v2

i ) = 0 (2.51)

with

∆ = G
∑
i=1

uivi, (2.52)

here, G and ∆ are the pairing strength and constant pairing gap parameter, respectively.

The ∆ is basically of the order of spacing between single-particle energies in the neigh-

borhood of Fermi energy. This equation has well known solution v2
i , the occupation and

u2
i (v2

i + u2
i = 1), the non-occupation probabilities are given by [87, 88],

v2
i =

1

2
{1− εi − λ√

(εi − λ)2 + ∆2
} (2.53)
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Figure 2.2: The schematic diagram for the smearing of the Fermi surface due to the
pairing interaction, which is understood in terms of the scattering of pairs of particles in
a time reversed orbit, j to another, j′.

and

u2
i =

1

2
{1 +

εi − λ√
(εi − λ)2 + ∆2

}, (2.54)

where εi is the single particle energy of ith nucleon, λ is the chemical potential. The

pairing gap for protons and neutrons, as given in Ref. [87, 88], which is valid for the

nuclei on or away from the β-stability line and are as follows:

4p = RBse
sI−tI2/Z1/3 and (2.55)
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4n = RBse
−sI−tI2/A1/3, (2.56)

with R = 5.72, s = 0.118, t = 8.12, Bs = 1, and I = (N−Z)/(N+Z). The pairing force

constant G is not calculated explicitly in solving the RMF equations. Using the above

gap parameter, we calculate directly the occupation probability. The chemical potentials

λn and λp are determined by the particle numbers for protons and neutrons.Using these

above equations, the pairing energy is:

Epair = −∆
A∑
i=1

uivi. (2.57)

The above prescription for pairing effects, both in relativistic mean field and Skryme-

Hartree-Fock, has already been used by us and many other authors [70, 89, 90]. For this

pairing approach, it is shown [70, 89, 66, 91] that the results for binding energies and

quadruple deformations are almost identical with the predictions of relativistic Hartree-

Bogoliubov (RHB) approach.

2.3.1 Pauli Blocking

The bulk properties of odd-even, even-odd or odd-odd nuclei in mean-field approach is not

conventional, because of the violation in the time reversal symmetry. To deal such nuclei,

one needs to include some additional time-odd term, as is done in the SHF Hamiltonian

[4], or has to include empirically the pairing force in order to take care the effect of odd-n

or odd-p [92]. In case of RMF, the space component of the vector fields, which are odd

under time reversal and parity, are neglected. These are important in the determination

of magnetic moments [67], but have a very small effect on bulk properties like binding

energies or quadrupole deformations, and can be neglected [66] in the present context.

Here, for the odd-A calculations, we employ the blocking approximation, which restores

the time-reversal symmetry.

In this approach one pair of conjugate states, ±m, is taken out from the pairing

scheme. The odd particle stays in one of these states and its corresponding conjugate
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state remains empty. In principle, one has to block in turn different states around the

Fermi level to find the one which gives the lowest energy configuration of the odd nucleus.

For odd-odd nuclei, one needed to block both the odd-n and odd-p. Similar procedure is

carried for odd-A calculations in the SHF formalism. For details we refer the readers to

see Ref. [70].

2.4 Parametrizations

Based on the bulk properties of finite nuclei and key features of nuclear matter at satura-

tion density are used as a phenomenological input for adjustment of the effective forces.

The most paramount one is the total binging energy of nucleus which can be obtained by

numerical solutions of the mean-field equations, corrected also for spurious motion. The

nuclear charge density also provides some structure information like nuclear shape and is

determined by elastic electron scattering. It is important to take separately the density

for proton and neutron in a nucleus to determine the intrinsic electromagnetic structure

of the nucleons. The diffraction radius, root-mean-square radius and surface thickness

are the responsible against for the determination of the charge form factor at low mo-

mentum. For this region, the calculation of charge radius from full charge form factor is

difficult, approximations are often used for simplification [93]. Again, the isotopic shift

of charge mean-square radii also an observable can directly accessible from experiments.

In case of charge radius, the most useful information comes from proton distribution

than that of a neutron, since some information also related to neutron distribution.

The effective interactions are also widely characterized by infinite nuclear matter

properties at saturation density. The most important and common features are energy

per particle (often called energy density) with its minimum value at saturation density.

The symmetry energy and compressibility of nuclear matter corresponding to the curva-

ture around saturation point and related to, e.g., giant monopole resonance. Isovector

curvature at saturation point determines the symmetry energy, and due to quasi-particle

nature of mean-field models, an important quantity is also nucleon effective mass. The
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Table 2.2: The nuclear matter properties at saturation density for different force pa-
rameters. Here, ρ0 is the saturation density, e(ρ) stands for binding energy per particle,
Esym is the symmetry energy, K0 is the incompressibility and the nucleon effective mass
m∗/m, all at saturation density ρ0.

Force Ref. ρ0 e(ρ) Esym K0

(fm−3) MeV ) (MeV ) (MeV )

Simple effective Interaction

SEI-I [95] 0.157 -16.0 34.0 245.0

SEI-II [95] 0.161 -15.9 33.0 247.0

SEI-III [95] 0.161 -15.8 32.0 242.0

Gogny effective interaction

D1 [43] 1.35 -16.02 29.04 228.0

D1S [96] 0.35 -16.32 27.39 209.0

D1M [92] 0.165 -16.03 28.55 225.0

Skryme effective interaction

SIII [97] 0.145 -15.85 28.16 355.4

SkI4 [44] 0.160 -15.95 29.50 247.9

SkMP [98] 0.157 -15.56 29.89 230.9

SLy4 [79] 0.160 -15.97 32.0 229.9

Relativistiv mean field

NL-Z2 [53] 0.151 -16.07 30.03 172.0

NL-BA [100] 0.150 -16.19 34.73 248.0

NL3 [101] 0.148 -16.24 37.40 272.0

NL3* [99] 0.150 -16.31 38.68 258.3

G2 [70] 0.153 -16.07 36.40 215.0
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Table 2.3: The compilation of various observables considered for different forces, taken
from Ref. [3]. Here, E = binding energy, rch = charge radius, Rch = charge diffraction
radius, σch = charge surface thickness, δr2

ch = isotopic shift in charge radius, rn = neutron
root-mean-square radius and W0 for spin-orbit strength parameter for finite nuclei and
the quantity such as e(ρ) = binding energy per particle, Esym = symmetry energy, K0

= incompressibility moduli m∗/m = nucleon effective mass for infinite nuclear matter at
saturation density ρ0.

Simple effective Interaction (SEI-I-III [95])

E 16O, 40Ca, 208Pb

rch
16O, 40Ca, 208Pb

W0
16O (1p3/2; 1p1/2)

Pairing even− odd energy in Sn isotopes

INM e(ρ), Esym, m∗/m, K0

Gogny effective interaction (D1 and D1S [43, 96])

E 16O, 40Ca, 90Zr

rch
16O, 40Ca, 90Zr

W0
16O (1p3/2; 1p1/2)

Pairing even− odd energy in Sn isotopes

INM e(ρ), Esym, m∗/m, K0

Skryme effective interaction (SkI1-5 [44])

E 16O, 40,48Ca, 56,78Ni, 132Sn, 208Pb

rch
16O, 40,48Ca, 56Ni, 208Pb

W0
208Pb (3p3/2; 3p1/2)

INM e(ρ), Esym, m∗/m, K0, EOSns

Relativistic mean field (NL3 & NL3* [101, 99])

E 16O, 40,48Ca, more...208Pb, 214Pb

rch
16O, 40,48Ca, more...208Pb, 214Pb

rn
40,48Ca, 58Ni, 116Sn, 208Pb

INM e(ρ), Esym, m∗/m, K0
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nucleon effective mass is the key quantity for determining the splitting of level in finite

nuclear properties. For more detailed information and definition of these quantities see

Refs.[3, 81]. The actual values these infinite nuclear matter observables saturation den-

sity for different forces are listed in Table. 2.2 [43, 79, 92, 94, 95, 96, 97, 98, 99, 100, 101].

In relativistic mean-field and Skryme-Hartree-Fock, the extension have been made

to study of surface properties (key observables) like asymmetry coefficients and the sur-

face thickness, in case of semi-infinite nuclear matter. A special attention or effort has

been paid to deal open shell nuclei i.e. the the pairing gap and odd-even staggering

of masses. The most general thing is that, in case a unpaired nucleon, the contribu-

tion is not half of a full pair, and it also break the intrinsic time-reversal invariance.

Which cause, all other nucleons to rearrange themselves, that adds a contribution from

the mean-field to odd-even staggering [94]. Which cause bail one out situation to deal

both mean-field and pairing contributions at one. So, inclusion of pairing correlations

give significant corrections to several observables which can be used to determine the

parameters of more complicated pairing interactions. There are many possibilities or

different way for a choice of phenomenological input for an effective force. Some of the

popular and mostly used parametrizations with these inputs are listed in Tables. 2.2-2-3

[43, 79, 92, 94, 95, 96, 97, 98, 99, 100, 101]. One can find, there are some differences

between relativistic and non-relativistic models in their kinematics such as the energy

per baryon, saturation density, effective mass ratio and also incompressibility modulus.

Still, the Gogny force, the Skyrme energy functional as well as the relativistic mean-

field parametrizations are able to describe nuclear bulk properties of nuclear matter and

finite nuclei very satisfactorily. Addition to these, the excitation properties such as fis-

sion, vibrational states, rotations and giant resonances also be very well accommodated.

However, some problems arise in these models in some observables for extrapolate region

or exotic regions. For more detailed information about weaknesses and open problems

in description of finite nuclei and nuclear matter for these effective model, see the review

of Ref. [3].



Chapter 3

Microscopic origin of NN- Potential

3.1 Introduction

In the preceding half century, the work had been devoted to the nucleon-nucleon (NN)

interaction problem than to any other question in nuclear physics [102]. This field of

research is born since 1932, the discovery of neutron by Chadwick as the heart of nucleus.

In fact, during the first few decades, the term ”Nuclear Force” was usually used as

synonymous for the force as a whole. At that time, the exact form of inter-nucleon

force is not known as explicitly than that of the Coulomb force. In its simplest form

the nucleon-nucleon (NN) potential is considered as central and to have square-well,

Gaussian or Yukawa potential form. Usually a finite sum of Yukawa potentials of various

ranges and strengths are able to obtain agreement with the observed phase shifts in

elastic-scattering processes for the NN potential. Still, this form of the potential is one

obtained by fitting to the experimental data. The traditional goal of nuclear physics is

to understand properties of atomic nuclei in terms of the ’bare’ interaction between pairs

of nucleons. Though substantial progress has taken place to understand it in a number

of theoretical (and experimental) attempts, it still remains an open problem. A large

number of interactions have been constructed via studying NN scattering, but extensive

modifications in the scattering behaviour due to the presence of many other nucleons

inside the nucleus. The phenomenological effective effective or averaged interactions

41
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having appropriate form to use, which typically depend on the local density of nuclear

matter.

In the intermediate stage, H. Yukawa suggested that the interaction between two

nucleons is affected by the exchange of a particle, like the interaction between the elec-

tric charges by the exchange of a photon. As the nucleon interactions is short-range in

nature, this implies the intermediate particle must be finite mass. From quantum uncer-

tainty principle, one can correlate the range and mass roughly as r ∼ 1
m

, therefore, the

mass of one unit (quanta) exchanged is about fm−1, which is around 200 MeV. Almost

after 20 years, the particle was identified as π-meson (and mass 140 MeV). This is one

of the most significant aspect of the Yukawa theory is generalizing the relation between

particles and forces. The existence of strong interactions implies the existence of a new

particle, was considered a novel and radical idea at that time. The modern theory of NN

potential through particle exchanges is made possible by the development of quantum

field theory. However, at low-energy, one can assume that the interactions is instanta-

neous and therefore the concept of interaction potential becomes useful. The derivation

of a potential through particle exchange, is important to understand the nuclear force

as well as structural properties. For example, the effective NN interaction is remark-

ably related to the nucleus-nucleus optical potential [103] for the study of radioactivity.

The present chapter is organized as follows. Section II includes the details of derivation

of NN-potential through meson exchange from linear and non-liner relativistic mean

field Lagrangian. The obtained results and their application in nuclear radioactivity are

discussed in section III. A summary of the results obtained, together with concluding

remarks, is given in Section IV.

3.2 Mathematical formulation

3.2.1 Linear case

The present study is motivated toward the derivation of the microscopic origin of nucleon-

nucleon interaction from the relativistic mean field (RMF) Lagrangian density [104, 105].
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In the earlier discussion (see Chapter 2), the nucleons fields in RMF are given by the

wave-function of the nucleons, several mesons and electromagnetic fields. Here, the

nucleons are not interact to each other directly, but the interaction only possible via

meson fields. Hence, the linear relativistic mean field (L-RMF) Lagrangian density for a

nucleon-meson many-body system [104, 105], is given as:

L = ψi{iγµ∂µ −M}ψi +
1

2
∂µσ∂µσ −

1

2
m2
σσ

2

−gσψiψiσ −
1

4
ΩµνΩµν +

1

2
m2
wV

µVµ

−gwψiγµψiVµ −
1

4
~Bµν . ~Bµν +

1

2
m2
ρ
~Rµ. ~Rµ

−gρψiγµ~τψi. ~Rµ −
1

2
m2
δδ

2 + gδψiδ~τψi, (3.1)

where, the field for σ meson is denoted by σ, for ω meson by Vµ, and for the iso-vector ρ

and δ mesons by ~Rµ and δ, respectively. The ψi are the Dirac spinors for the nucleons.

The iso-spin and the third component of the iso-spin are denoted by τ and τ3, respectively.

Here gσ, gω, gρ and gδ are the coupling constants for σ, ω, ρ and δ mesons, respectively.

The masses of nucleons, σ, ω, ρ and δ mesons are denoted by M , mσ, mω, mρ and mδ,

respectively. Ωµν and ~Bµν are the field tensors for the V µ and ~Rµ, respectively. If, we

neglect the ρ− and δ meson, it correspond to Walecka model in its original form [7, 8].

From the above relativistic Lagrangian, we obtain the field equations for the nucleons

and mesons as,

(
−iα.5+β(M + gσσ) + gωω + gρτ3ρ3 + gδδτ

)
ψi = εiψi, (3.2)

(−52 +m2
σ)σ(r) = −gσρs(r), (3.3)

(−52 +m2
ω)V (r) = gωρ(r), (3.4)

(−52 +m2
ρ)ρ(r) = gρρ3(r), (3.5)

(−52 +m2
δ)δ(r) = −gδρ3(r), (3.6)
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for Dirac nucleons, σ, ω, ρ, δ mesons, respectively. In the limit of one-meson exchange,

for a heavy and static baryonic medium, the solution of single nucleon-nucleon potential

for scalar (σ, δ) and vector (ω, ρ) fields are given by,

Vσ(r) = − g
2
σ

4π

e−mσr

r
, Vδ(r) = − g

2
δ

4π

e−mδr

r

and

Vω(r) = +
g2
ω

4π

e−mωr

r
, Vρ(r) = +

g2
ρ

4π

e−mρr

r
. (3.7)

The total effective nucleon-nucleon potential is obtained from the scalar and vector parts

of the meson fields. This can be expressed as [104],

veff (r) = Vω + Vρ + Vσ + Vδ

=
g2
ω

4π

e−mωr

r
+
g2
ρ

4π

e−mρr

r
− g2

σ

4π

e−mσr

r
− g2

δ

4π

e−mδr

r
. (3.8)

For a normal nuclear medium, the contribution of δ-meson to the potential , Vδ can be

neglected, compared to the magnitudes of both Vω and Vσ. It is important to include the

contribution of single-nucleon exchange effects to the effective interaction [103]. Hence,

Eqn. (3.8) becomes

veff (r) =
g2
ω

4π

e−mωr

r
+
g2
ρ

4π

e−mρr

r
− g2

σ

4π

e−mσr

r
+ J00(E)δ(s), (3.9)

with J00(E)δ(s) = −276(1− 0.005E/Ac(α))MeV fm3 as the zero-range pseudo-potential

representing the exchange contribution.

3.2.2 Non-linear case

The Lagrangian density in the above Eqn. (3.1) contains only linear coupling terms,

which is able to give a qualitative description of the nuclei [7, 8]. The essential nuclear

matter properties like incompressibility and the surface properties of the finite nuclei can-

not be reproduced quantitatively within this Lagrangian density. Again the interaction
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between a pair of nucleons when they are embedded in a heavy nucleus is less than when

they are in empty space. This suppression of the two-body interactions within a nucleus

in favour of the interaction of each nucleon with the average nucleon density, means that

the non-linearity acts as a smoothing mechanism and hence leads in the direction of the

one-body potential and shell structure [60, 57]. The replacement of mass term 1
2
m2
σ of σ

field by U(σ), which is nothing but the non-linear self coupling amongst the σ mesons

and the form as [60, 57]:

U(σ) =
1

2
m2
σ +

1

3
g2σ

3 +
1

4
g3σ

4. (3.10)

Here, the non-linear parameter g2 and g3 are adjusted to the surface properties of finite

nuclei. The most successful fits yield, the +ve and −ve signs for g2 and g3, respectively.

The negative value of g3 is a serious problem in quantum field theory. As, we are dealing

within the mean field level and with normal nuclear matter density, the corresponding

σ field is very small and the −ve value of g3 is still allowed [57]. Now the field equation

for for σ- field (in Eqn. (3.2)) is modified with the form,

(−52 +m2
σ)σ(r) = −gσρs(r)− g2σ

2(r)− g3σ
3(r). (3.11)

Because of the great difficulty in solving the above nonlinear differential equations, it

is essential to have a variation principle available for the estimation of the energies

associated with various source distributions. In the static case, the negative sign of

the third term in the Lagrangian is computed with the correct source function and an

arbitrary trial wave function. The limit on the energy has a stationary value equal to the

correct energy when the trial function is in the infinitesimal neighborhood of the correct

wave function. Now, the solution for the modified σ field is given as [57]

Vσ = − g
2
σ

4π

e−mσr

r
+
g2
2

4π

e−2mσr

r2
+
g2
3

4π

e−3mσr

r3
, (3.12)
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Table 3.1: The values of mσ, mω, mρ (in MeV) and gσ, gω, gρ for different RMF forces,

along with g2σ
π

, g2ω
π

,
g2ρ
π

(in MeV) [104, 105]. The values for the non-linear self-coupling
constant for RMF (NL3) such as g2 and g3 are not listed.

Set mσ mω mρ gσ gω gρ
g2σ
π

g2ω
π

g2ρ
π

HS 520 783 770 10.47 13.80 08.08 6882.64 11956.94 4099.06

Z 551.31 780 763 11.19 13.83 10.89 7861.80 12008.98 7445.91

W 550 783 − 09.57 11.67 − 5750.24 8550.74 −

L1 550 783 − 10.30 12.60 − 6660.95 9967.88 −

NL3 508.194 782.5 763.0 08.31 13.18 6.37 6554.34 10395.78 1257.92

The new NN-interaction analogous to M3Y form and is able to improve the incompress-

ibility and deformation of the finite nuclei results [42]. In addition to this, the non-linear

self coupling of the σ-meson helps to generate the repulsive part of the NN potential

at long distance to satisfy the saturation properties (Coester-band problem) [35]. The

modified effective nucleon-nucleon interaction is defined as [104, 105]:

veff (r) = Vω + Vρ + Vσ + Vδ

=
g2
ω

4π

e−mωr

r
+
g2
ρ

4π

e−mρr

r
− g2

σ

4π

e−mσr

r

+
g2
2

4π

e−2mσr

r2
+
g2
3

4π

e−3mσr

r3
− g2

δ

4π

e−mδr

r
. (3.13)

Neglecting the contribution Vδ of δ-meson and the introduction of the single-nucleon

exchange effects [103], becomes

veff (r) =
g2
ω

4π

e−mωr

r
+
g2
ρ

4π

e−mρr

r
− g2

σ

4π

e−mσr

r

+
g2
2

4π

e−2mσr

r2
+
g2
3

4π

e−3mσr

r3
+ J00(E)δ(s). (3.14)
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3.3 Results and Discussion

From the above expression in Eqns. (3.9, 3.14), the effective nucleon-nucleon potential

entitled as R3Y is presented eloquently in terms of the well known inbuilt RMF theory

parameters of σ, ω and ρ meson fields, i.e., their masses (mσ, mω, mρ) and coupling

constants (gσ, gω, gρ). The values of these constants are different from each other for

various forces of RMFT. Here we have taken few forces and their constants, the estimate

values of g2ω
π

,
g2ρ
π

and g2σ
π

are also listed in Table 3.1 [104, 105]. For the W and L1 sets, only

g2ω
π

and g2σ
π

are given since the contribution of ρ meson is ignored for these two parameter

sets. Except, NL3 force in the table, all other are applicable to linear Lagrangian density.

As an illustrative case, the veff (r) for HS parameter (see Table 3.1) by using in Eqn.

(3.9) is given as:

veff (r) = 11957
e−3.97r

4r
+ 4099

e−3.90r

4r
− 6883

e−2.64r

4r
, (3.15)

and for the L1 parameters, Eqn. (3.1) becomes

veff (r) = 9968
e−3.97r

4r
− 6661

e−2.79r

4r
. (3.16)

The corresponding effective NN-interaction potentials, denoted by L-R3Y (HS) and L-

R3Y (L1), etc. with L at the initial of R3Y stands for linear case. Similarly for non-linear

case using NL3 parameter, Eqn. (3.14) becomes,

veff (r) = 10395
e−3.97r

4r
+ 1257

e−3.87r

4r
− 6554

e−2.58r

4r
+ 6830

e−5.15r

4r2

+52384
e−7.73r

4r3
+ J00(E)δ(s). (3.17)

The corresponding NN-interaction denoted by N-R3Y (NL3) with N at the initial of

R3Y stands for non-linear case. The well known effective NN-interaction potentials, like

M3Y [Eqn. (3.18) below] and other R3Y’s based on Eqn. (3.15-3.17. The M3Y effective
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interaction, obtained from a fit of the G −matrix elements based on Reid-Elliott soft-

core NN interaction [103], in an oscillator basis, is the sum of three Yukawa’s with ranges

0.25 fm for a medium-range attractive part, 0.4 fm for a short-range repulsive part and

1.414 fm to ensure a long-range tail of the one-pion exchange potential (OPEP). The

widely used M3Y effective interaction veff (r) without the OPEP term is given by

veff (r) = 7999
e−4r

4r
− 2134

e−2.5r

2.5r
, (3.18)

where ranges are in fm and the strength is inMeV . Note that Eqns. (3.9,3.18) represents

the spin- and isospin-independent parts of the central component of the effective NN

interaction, and that the OPEP contribution is absent here. The results obtained for the

NN-potential from Eqns. (3.9) and (3.14) for these forces (see. Table 3.1) are shown in

Fig. 3.1 along with the M3Y−interaction. Comparing Eqns.(3.9) and (3.14) with (3.18),

we find very good similarity in behaviour of the NN-interactions, which makes us believe

that Eqns. (3.9, 3.14) can be used to obtain the nucleus-nucleus optical potential. Using

the NN-potentials so obtained, the optical potential for the study of cluster radioactivity

is demonstrated in the next sub-section. Which is the one of the best applications of

Eqns. (3.9) and (3.14).

3.3.1 R3Y on cluster radioactivity

The optical potential Vn(R) between the cluster (c) and daughter (d) nuclei is deter-

mined from the well known double folding and by single folding procedure [103] with the

respective RMF density of the nuclei ρc and ρd. If the cluster is a nucleon, then double

folding gives the form of single folding. The form of the potential are given as [104, 105]:

Vn(~R) =
∫
ρc(~rc)ρd(~rd)veff (|~rc − ~rd + ~R|≡r)d3rcd

3rd

or

Vn(~R) =
∫
ρd(~r)v(|~r − ~R|)d3r. (3.19)
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Figure 3.1: The L-R3Y (for HS, Z, W and L1), N-R3Y for NL3 parameter set (see Table
3.1) and the M3Y effective NN interaction potentials as a function of r [104, 105].

Adding Coulomb potential VC(R) (=ZdZce
2/R) results in cluster-daughter scattering

potential V (R) [= Vn(R) + VC(R)], used in the following for calculating the WKB pen-

etrability P , representing the relative motion R. The decay constant λ or half-life time

T1/2 in the preformed cluster model (PCM) is defined as

λPCM =
ln 2

T1/2

= ν0P0P, (3.20)
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with the ’assault frequency’ ν0, i.e., the frequency with which the cluster hits the barrier,

given by

ν0 =
velocity

R0

=
(2Ec/µ)1/2

R0

. (3.21)

Here R0 is the radius of parent nucleus and Ec is the kinetic energy of the emitted cluster.

The impinging frequency ν0 is nearly constant ∼ 1021 s−1 for all the observed cluster-

decays [106]. Since both the emitted cluster and daughter nuclei are produced in ground

state, the entire positive Q-value of decay is the total kinetic energy (Q = Ed + Ec),

available for the decay process, which is shared between the two fragments, such that for

the emitted cluster Ec = AdQ/A, and Ed (=Q−Ec) is the recoil energy of the daughter

nucleus. The WKB penetration probability P is determined from the cluster tunneling

through the interaction potential V (R), as shown in Fig. 3.2, having energy equal to the

Q-value of the decay. Fig. 3.2 illustrates the total interaction potentials V (R) for 14C

decay of 222Ra, obtained for both the M3Y+EX and R3Y+EX NN-interactions using

RMF-HS densities. The penetration path with an energy equal to the Q-value of decay

is also shown here (marked P , with an arrow). This is given by the WKB integral

P = exp[−2

h̄

Rb∫
Ra

{2µ[V (R)−Q]}1/2dR], (3.22)

with Ra and Rb as the first and second turning points, satisfying V (Ra) = V (Rb) = Q.

The kinetic energy Q = BEp − (BEd + BEc), where BEp, BEc and BEd are the

experimental ground-state (g.s.) binding energies of the parent, cluster and daughter

nuclei, taken from Audi and Wapstra [107]. The reduced mass of the system is given

as µ = AdAc/(Ad + Ac). From the figure, one can notice that the two potentials (M3Y

and R3Y) are very different, particularly in the inner part. Compared to the M3Y NN-

interaction, the barrier for the R3Y case is a bit lowered (shown more clearly in the inset

of Fig. 3.2) and hence P is increased by a few orders of magnitude, as is shown in Table

2 for some decays. Another point is to note that cluster decay probes only the potential

near the surface, and it will be an interesting study to explore the inner part of potential

through, say, the alpha-alpha (α − α) potential in future. In this connection, however,
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we remind the following two works: (i) Kelkar and Castaneda [108] have shown that,

within the WKB approximation, the contribution of inner part of the potential between

R → 0 and Ra is nearly same as the ’assault frequency’ ν0 in both alpha and cluster

radioactive decay studies, obtaining ν0 ∼ 1021 s−1 for alpha decays. (ii) In another study

[109], the S-matrix approach, which should depend on the entire potential, give alpha

decay widths that compare very closely with the WKB result. In other words, the inner

part of the potential for α decays does not seem to play much significant role in S-Matrix

calculations, and play the role of ν0 in WKB calculations.

Figure 3.2: The total nucleus-nucleus optical potential V (R) and the individual contri-
butions [the nuclear Vn(R)(M3Y + EX) and Vn(R)(R3Y + EX) for the HS parameter
set, and the Coulomb VC(R) potential] as a function of radial separation R. The inset
shows the barrier height and position on a magnified scale. In the main figure as well
as the inset, P simply denotes the penetration path between the two turning points Ra

and Rb of the integral for calculating the WKB penetration probability P .

From the calculated ν0P , an empirical estimate of the preformation factor P0 can be
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Figure 3.3: The P0
c(emp) for the cluster-decays, respectively, from various parents eval-

uated with the use of R3Y+EX and M3Y+EX effective NN interaction compared with
the phenomenological model of Blendowske and Walliser [112].

obtained from the experimental λExpt values [106] by defining [104, 105, 106]

P0
emp =

λExpt
ν0P

. (3.23)

It is relevant to mention here that some authors [110, 111], working within the mean

field based folding procedure using the Skyrme or M3Y force, assumes the preformation

factor P0=1, whereas we show in the following (Table 3.2) that empirical value, P0
emp, is

much smaller, ∼ 10−8− 10−23, for cluster decays. The values of P0
emp for cluster decays,

P0
c(emp), are deduced by using the optical potentials based on the R3Y and M3Y NN-

interactions, supplemented by the zero-range pseudo-potential J00(E)δ(s) representing
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Table 3.2: P and P0
c(emp) for cluster-decays of some parents with 208Pb as the daughter

nucleus, calculated for the R3Y+EX and compared with the M3Y+EX NN interaction
potential, for RMF-HS densities. The experimental data on cluster-decay constant λcExpt
are from [106], and the Q-values are calculated by using the experimental ground-state
binding energies [107].

Parent Cluster Q P λcExpt P0
c(emp)

(MeV) (M3Y + EX) (R3Y + EX) (s−1) (M3Y + EX) (R3Y + EX)

222Ra 14C 33.050 1.728× 10−25 2.277× 10−24 6.749× 10−12 1.044× 10−08 7.921× 10−10

230U 22Ne 61.388 1.378× 10−29 7.615× 10−27 4.243× 10−19 7.664× 10−12 1.387× 10−14

231Pa 23F 51.844 6.613× 10−33 1.593× 10−30 1.682× 10−25 7.062× 10−15 2.932× 10−17

232U 24Ne 62.311 1.047× 10−28 1.753× 10−26 2.720× 10−21 6.731× 10−15 4.019× 10−17

236Pu 28Mg 79.670 5.710× 10−27 3.815× 10−23 1.469× 10−22 6.401× 10−18 9.580× 10−22

238Pu 30Mg 76.824 1.873× 10−30 1.185× 10−25 1.412× 10−26 1.984× 10−18 3.136× 10−23

the single-nucleon exchange (EX) effects, which defined in above subsection [106, 104,

105].

Calculations are made for a few exotic cluster radioactive (CR) decays in the trans-

lead region having doubly magic 208Pb as daughters, using the HS parameter set based

spherical relativistic mean field (RMF-HS) densities. As a consequence of the above

result for P , the deduced P0
c(emp)(R3Y +EX) are also affected. However, interestingly,

in Fig. 3.3, we find that the values of P0
c(emp)(R3Y +EX) are closer to the well accepted

phenomenological formula of Blendowske and Walliser (BW) [112] whereas the same for

P0
c(emp)(M3Y +EX) are within two to three orders of magnitude with the BW results.

Evidently, the effective NN-interaction obtained from the RMF Lagrangian, the R3Y, is

applicable to study the exotic cluster radioactive decays within a satisfactory precision.

Further, we have shown the applicability of L − R3Y and N − R3Y (linear and

non-linear) on proton radioactivity. The region of nuclides just above 100Sn is of special

interest for such studies since it includes the heaviest Z ∼= N known nuclei, stable to the

proton emission, and offers an unexpected richness and diversity of nuclear structures

and new decay modes [105]. Nevertheless our present formalism with the inclusion of
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Table 3.3: The calculated half-lives of proton emitters are presented using M3Y+EX
and N-R3Y+EX NN interactions. The results of the present calculations have been
compared with the experimental values. The asterisk symbol (?) denotes the isomeric
state. [105]

Nuclei Q L Expt. (M3Y + EX) (LR3Y + EX) (M3Y + EX) (NR3Y + EX)
HS HS NL3 NL3

nuclei (MeV) log10T log10T log10T log10T log10T (s)

105Sb 0.491 2 2.049 3.07 2.436 3.1 1.113
109I 0.819 0 -3.987 -5.627 -5.897 -5.593 -6.941

112Cs 0.814 2 -3.301 -2.857 -3.555 -2.835 -4.705
113Cs 0.973 2 -4.777 -5.236 -5.803 -5.204 -7.017
117La 0.803 2 -1.628 -1.943 -2.504 -1.922 -3.878
117La∗ 0.954 5 -2.0 2.794 1.203 – -1.241
131Eu 0.940 2 -1.749 -2.097 -2.764 -2.085 -4.256
140Ho 1.094 3 -2.221 -1.374 -2.132 -1.376 -4.007
141Ho 1.177 3 -2.387 -2.487 -3.298 -2.468 -5.038
141Ho∗ 1.256 0 -5.180 -6.374 -6.846 -6.366 -8.047
145Tm 1.753 5 -5.409 -3.415 -4.698 -3.278 -6.962
146Tm 1.127 5 -1.096 3.384 1.945 3.51 -0.547
146Tm∗ 1.307 5 -0.698 0.919 -0.484 1.043 -2.870

R3Y (for linear (NL-HS) and non-linear (NL3)) in predictions of half-life of proton

emitter shows a good agreement with the experimental. The results are listed in Table

3.3. From table, one can find that, in many cases the N − R3Y+EX is more closure to

experimental value and in few of the cases the L−R3Y+EX gives the Superior results.

This implies the cluster decay property is little sensitive to the non-linear complying

in the Lagrangian density. Also, perhaps this value is indifferent to the detail nuclear

structure inherit by the density while calculating the cluster decay property (mostly

a surface phenomena). However, if one apply these folding potential to some other

nuclear phenomena where structural property of the nuclei is important in that case the

N − R3Y+EX may work better. This is because of the high quality predictive power

of NL3 over NL-HS through out the periodic table [105]. We also study the sensitivity

of half-lives to the orbital angular momentum L in Table 3.3 [105]. It is seen that

L−R3Y+EX NN and N −R3Y+EX interaction gives remarkable good result with the

experiment, in fact the Q−value is very compatible with the half-life.
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3.4 Summary and Conclusion

In this work, we have shown the microscopic origin effective NN interaction, denoted

here as R3Y , could be derived from the simple RMF Lagrangian. This could replace the

phenomenological M3Y NN-interaction for most of the calculations of nuclear observ-

ables like cluster (proton) radioactivity etc. The R3Y is presented eloquently in terms

of the well known inbuilt RMF theory parameters of σ, ω and ρ meson fields, i.e., their

masses (mσ, mω, mρ) and coupling constants (gσ, gω, gρ). It is worth mentioning that

the R3Y , basically depend on the mass and coupling constant for a particular force of

RMFT, which varies for different parameter sets. Furthermore, in terms of the nucleus-

nucleus (nucleon-nucleus) folding optical potential, we have generated a bridge between

the R3Y and M3Y which can be considered as a unification of the RMF model to pre-

dict the nuclear cluster (proton) decay property, i.e., we can explain the cluster (proton)

decay properties of the cluster (proton) decaying nuclei by using the RMF-derived R3Y

potential instead of the phenomenological M3Y potential. The improvement of the R3Y

interaction is also derived from the most successful non-linear RMF. The obtained re-

sults for linear and non-linear cases are compared with M3Y potential. Also, the present

work could be considered as the motivation for other similar models for the generation

of different types of NN-interactions, as well as an additional feather to the RMF theory

for its being considered as a unified formalism for studying a number of nuclear phenom-

ena or, at least one step forward in our understanding the NN interaction within a well

established theoretical formalism.



Chapter 4

Structure of Superheavy Elements

4.1 Introduction

There are about 300 nuclei occur in nature, representing isotopes of elements starting

from Z = 1 to at most 94. Around 3000 additional nuclei have been made artificially

during last seven decades. To make or synthesize heavier nuclei, it becomes increase

in difficulty because of the disruptive electrostatic forces between the positively charged

protons grow faster than the cohesive nuclear forces that hold the nucleons (protons and

neutrons) together. This cause the superheavy nuclei to decay rapidly by the emission of

alpha (α−) particles (Helium nucleus) and by spontaneous fission. Nuclei with increased

stability beyond the β− stable region of the nuclear chart can exist because of the closing

proton and neutron shells. One can say that the necessary balance between the nuclear

and Coulomb force through shell stabilization effects can survive the nuclei beyond the

macroscopic limit, far away from the trans-uranium region [113, 114, 115, 116]. For more

detail information, one can see the historical review on theoretical predictions and new

experimental possibilities is available in Ref. [117]. The half-lives of nuclei near the

shell closures must be long enough and possible to synthesize in laboratory is predicted

by Myers and Swiatecki [118]. In other words, nuclei without shell effects would not be

stable and would decay immediately, as was predicted by macroscopic liquid drop models

for Z > 100 includes. Recently, the microscopic studies of the nuclei beyond Z = 100 is

56
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possible [119], and the heaviest nucleus studied so far in this series of experiments [120]

is 254No (Z = 102 and N = 152). Similarly, the electronic configurations for nuclei with

Z < 112 are well studied due to their relatively longer lifetimes (> 1s) [121].

Experimentally, till now, the quest for superheavy nuclei has been dramatically re-

juvenated in recent years owing to the emergence of hot and cold fusion reactions. In

cold fusion reactions involving a doubly magic spherical target and a deformed projectile

were used at GSI [122, 123, 124, 125, 126] to produce heavy elements upto Z = 110-112.

In hot fusion evaporation reactions with a deformed trans-uranium target and a doubly

magic spherical projectile were used in the synthesis of superheavy nuclei Z = 112-118 at

Dubna [127, 128, 129, 130, 131, 132, 133]. The half-lives of these newly synthesized nuclei

ranging from a few minutes to about a millisecond. However, the data for these nuclei

are scarce since the production cross-sections decrease rapidly with increasing proton

number, down to 1pb for Z=112 [125, 126]. This is a major challenge for experimental

investigations of new nuclei to isotopes that are richer in protons than the expected most

stable superheavy elements. More detailed spectroscopic studies are becoming promising

around the trans-fermium region towards the island of stability [119, 134].

The emergence of a region of long-lived elements beyond the actinides has been pre-

dicted since the earliest nuclear models [31, 116]. It is well verified that the nuclei

with Z > 104 should not exist, without the shell effects and large spin-orbit splitting

of single-particle levels at magic numbers. These effects overcome to the long-range

Coulomb repulsion between protons and stabilize the nuclei from induced fission. To de-

termine and well understanding of these special characteristic or features of a closed shell

nuclei is also a considerable challenges from theoretical perspective. Generally, the forces

(parameters) from different models are capabled to reproduce the bulk properties of the

established superheavy elements, indicating that their features could be an essential in-

gredient to describe the distribution of levels of these superheavy nuclei [135]. It is well

known that, the single-particle level density is large for the superheavy nuclei. Which

need an accuracy of describing the single-particle energies and the spin-orbit interac-

tions. In other word, the position of the shell gaps is quite sensitive to the single-particle
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energies and the spin-orbit interaction. For example, the small shifts in the position of

the single-particle levels will lead to gaps at different particle numbers. This is one of

the cause for the discrepancies between the different parameterisations of self-consistent

mean-field models. Hence, it is important to see these superheavy region with newly

developed advance forces of different formalism such as the non-linear relativistic mean

field, Gogny and modified Skyrme-Hartree-Fock. Again, the progress in experimental

techniques has drawn our attention and opened up the field once again for further theo-

retical investigations in structure physics of nuclei in the superheavy mass region. Based

on the present experimental status and theoretical predictions, we have considered few

atomic nucleus such as Z = 115, 117, 120 and 122 and their isotopic chain in this present

study. The schematic chart for these nuclei and the experimental findings are given in

Fig. 4.1.

The chapter is organized as follows. Section II includes the details of the calculations

and results. Some special properties like effects of pairing for open shell nuclei, the

ground and excited state configuration and the shape co-existence are included in this

section. The decay properties of these sperheavy nuclei are discussed in section III. A

summary of the results obtained, together with concluding remarks, is given in Section

IV.

4.2 Method of calculation and results

There exist a number of parameter sets for solving the standard SHF Hamiltonians and

RMF Lagrangians. In many of our previous works, the ground state properties, like the

binding energies (BE), quadrupole deformation parameters β2, root mean square charge

radii (rch), and other bulk properties, are evaluated by using the various non-relativistic

and relativistic parameter sets. It is found that, most of the recent parameter sets

reproduce well the ground state properties not only of stable normal nuclei but also of

exotic nuclei that far away from the valley of β- stability. This means that if one uses

a reasonably acceptable parameter set, the predictions of the model will remain nearly
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Figure 4.1: The schematic diagram for the experimentally synthesized superheavy nuclei.
The shaded box with corresponding mass number are denoted as experimental findings.

force independent. In case of RMF, the mean-field equations are solved self-consistently

by taking different inputs of the initial deformation β0. For a normal ground state

(g.s.) solution, in the considered mass region, the number of major shells for boson

and Fermions needed are NB = NF = 12 to reproduce a reasonable converge solution.

However, in the present paper, we deal with a rather large deformed state with deformed

harmonic oscillator basis with NB = NF = 20 shells. The number of mesh points

for Gauss-Hermite and Gauss-Lagueree integration are 20 and 24, respectively. On the

other hand, the starting point for a numerical solution of the Hartree-Fock equations is

a single-particle wave-functions. The trial states are assumed to be a set of harmonic

oscillator wave-functions within a cartesian grid [136] with user-specified parameters that
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determine the shape and depth of the potential in all coordinates. The ground-state for

a certain nucleus is calculated for a given set of input data including the proton and

neutron number, pairing and spatial discrimination options using a damped gradient

iteration scheme and Gram-Schmidt orthonormalisation [137, 138] to calculate the new

wave-functions until convergence is reached. There is no mixing between proton and

neutron states, although the single-particle wave-functions are a mixture of spin up

and spin down solutions. The derivatives of the densities in the energy functional are

calculated by the seven point method for first derivatives and nine points for second-order

derivatives. The effects of pairing interaction in odd-even and odd-odd nuclei are taken

in the present investigation by using BCS formalism with constant pairing strength,

this contributes a little to the total binding. The results remain unchanged unless the

pairing gap is varied considerably. This type of prescription has already been adopted in

the past [139, 32, 29]. The axially deformed relativistic mean field (RMF) method and

Skryme-Hartree-Fock (SHF) methods are used for considered complete isotopic chain

from proton to neutron drip line of these atomic nucleus (Z = 115,117,120,122). These

isotopes carry a special place due to its unknown chemistry, because of their shorter

life times. Thus, a thorough analysis of these isotopes with suitable models are quite

instructive for the chemistry of the superheavy elements.

4.2.1 The potential energy surface

In this calculation, we employed the most successful NL3, NL3∗ forces in RMF and SLy4

and SkI4 in SHF [9, 10, 12, 13, 17]. The existence of a superheavy nuclei is governed

from the magnitude of shell correction energy, which play a crucial role in their half-life.

Further, the energy favours some deformed (may be super-deformed or hyper-deformed)

shapes along with spherical structure in the isotopic chain in this region, which contrary

to the situation for the lighter Z elements [9]. In fact, the deformed shell effects play

an important role in the description of these super-heavy elements. Practically, the

deformed gap near the Fermi surface gives rise to a local minimum in the potential

energy surface (PES). Hence, it is fundamental need to see the behaviour of PES curves
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with respect to deformation (different solution at different deformation).

Figure 4.2: The potential energy surfaces for 292122 nucleus as a function of quadrupole
deformation parameter. The squares with solid-line is for SHF using SkI4 parameter set,
and the circles with solid-line is for RMF calculations using NL3 parameter set.

In constrained method [9, 11], instead of minimizing the H0, we have minimized

H ′ = H0 − λQ2 to perform the calculation of the potential energy surfaces in both

the RMF and SHF theories. Here, λ as a Lagrange multiplier and Q2 the quadrupole

moment. Thus, we calculated the binding energy corresponding to the solution at a

given quadrupole deformation β2. Here, H0 is the Dirac mean field Hamiltonian in Refs.

[9, 11]) for RMF model and it is a Schrödinger mean field Hamiltonian for SHF model.

In other words, we get the constrained binding energy from Ec =
∑
ij
<ψi|H0−λQ2|ψj>

<ψi|ψj> and
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the ’free energy’ from BE =
∑
ij
<ψi|H0|ψj>
<ψi|ψj> . In our calculations, the free energy solution

does not depend on the initial guess value of the basis deformation β0 as long as it

is nearer to the minimum in PES. However it converges to some other local minimum

when β0 is drastically different, and in this way we evaluate a different isomeric state

for a given nucleus. The PES, i.e., the potential energy as a function of quadrupole

deformation parameter β2, for the superheavy nucleus 292122, are shown in Fig. 4.2.

Both the RMF and SHF results are given for comparisons. The calculated PES is shown

for a wide range of oblate to prolate deformations. We notice from this figure that in

RMF, minima appear at around β2= -0.436, -0.032 and 0.523. The energy differences

between the ground and the isomeric states are found to be 0.48 and 1.84 MeV for the

nearest consecutive minimas. For SHF, the minima appear at around β2= -0.459,-0.159

and 0.511 with the intrinsic excited state energy differences are 1.30 and 0.48 MeV. From

the figure it is clear that the minima and the maxima in both the RMF and SHF are

qualitatively similar.

Further, we have extended the calculation to see the PES with and without reflec-

tional symmetry. Because, the work of Ref. [140], claimed that the super-deformed or

hyper-deformed state of a superheavy nuclei washed away by introducing reflectional

asymmetric in account. To verify this fact, we have done the calculation with and with-

out reflectional symmetry for 292120 and 292118 with SLy4 and SkI4 forces. To our

surprise, we do not get any significant change in the PES diagram, confirming the ex-

istence of super-deformed states of these SHE similar to the prediction of Z. Ren and

H. Toki [141, 142] for 287114 and 292118 nuclei. The obtained curve for the potential

energy surface is shown in Fig. 4.3. From, the figure, one can notice that there are three

minima in the energy surfaces of both the nucleus 292120 and 288118, at around β2 =

-0.125, +0.125, +0.56. Further getting a minima beyond β2∼1.0, which shows the fission

path of these nuclei. Therefore, we can say that there is a super-deformed solution or

a shape co-existence with β2 ∼ 0.0. The PES is an important scheme to determine the

shape of the nuclei in their ground state as well as in intrinsic excited states. This is also

reflected in the binding energy calculations of this nucleus in an isotopic chain, which
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Figure 4.3: The potential energy surfaces for the nucleus 292120 and 288118 obtained
by constrained non-relativistic SHF(SkI4 and SLy4) calculations with symmetric and
asymmetric conditions.

will be discussed in the following subsection.

4.2.2 Nuclear binding energy

Nuclear binding energy is the most fundamental and precise measured observable in

the laboratory. The efficiency of a theoretical model is determined from its accuracy in

producing the experimental binding energy. The calculated bulk properties obtained in

both the SHF (SkI4 and SLy4) and RMF (NL3 and NL3*) formalisms for even − even

(Z=120 and 122) [11, 9] and odd− odd (Z=115 and 117) [12, 10] nuclei.
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Table 4.1: The RMF(NL3*), RMF(NL3), SHF (SkI4) and SHF (SLy4) results for binding
energy BE, the quadrupole deformation parameter β2, two-neutron separation energy
S2n and the binding energy difference 4E between the ground- and first-exited state,
compared with the corresponding Finite Range Droplet Model (FRDM) results [29, 11]
for the isotopic chain of Z=120. The energy is in MeV.

Nucleus Formalism BE β2 S2n ∆E
288 RMF (NL3) 2031.75 0.560 16.28 0.929

RMF (NL3*) 2029.97 0.562 16.19
SHF (SkI4) 2014.83 0.523 16.48 0.408
SHF (SLy4) 1996.23 0.122 16.51 0.593

290 RMF (NL3) 2047.50 0.551 15.75 0.301
RMF (NL3*) 2045.56 0.556 15.59
SHF (SkI4) 2031.31 0.119 16.37 0.135
SHF (SLy4) 2012.74 0.115 15.98 1.310

FRDM 2039.49
292 RMF (NL3) 2064.11 0.540 16.61 0.730

RMF (NL3*) 2060.87 0.547 15.31
SHF (SkI4) 2047.68 0.113 15.53 0.591
SHF (SLy4) 2028.71 0.107 15.38 1.966

FRDM 2055.19 -0.130 15.70
294 RMF (NL3) 2078.43 0.536 14.61 0.916

RMF (NL3*) 2075.85 0.541 14.98
SHF (SkI4) 2063.21 0.110 14.75 0.688
SHF (SLy4) 2044.09 0.097 14.69 2.528

FRDM 2070.87 0.081 15.68
296 RMF (NL3) 2093.19 0.542 14.76 2.394

RMF (NL3*) 2090.29 0.545 14.44
SHF (SkI4) 2077.96 0.087 14.59 0.529
SHF (SLy4) 2058.78 0.088 14.03 2.887

FRDM 2085.32 -0.096 14.45
298 RMF (NL3) 2107.35 0.551 14.16 0.058

RMF (NL3*) 2104.30 0.554 14.01
SHF (SkI4) 2092.55 0.066 14.38 0.583
SHF (SLy4) 2072.81 0.060 13.86 3.026

FRDM 2099.73 -0.079 14.41
300 RMF (NL3) 2120.92 0.561 13.57 3.292

RMF (NL3*) 2117.63 0.564 13.33
SHF (SkI4) 2106.94 0.045 14.16 1.026
SHF (SLy4) 2086.68 0.040 13.19 3.446

FRDM 2113.39 -0.008 13.66
302 RMF (NL3) 2133.86 0.579 12.94 3.691

RMF (NL3*) 2130.28 0.586 12.65
SHF (SkI4) 2121.09 0.024 13.86 1.611
SHF (SLy4) 2099.87 0.019 12.5 3.791

FRDM 2126.05 0.000 12.66
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Figure 4.4: The binding energy for the nucleus Z=120 and 122 obtained from SHF(SkI4
and SLy4) and RMF (NL3 and NL3*) calculations. The FRDM predictions are given
for comparison [9, 11].

Even-even nuclei

For Z=120 isotopic chain

The obtained results for binding energy BE and binding energy per particle BE/A

for Z=120 from RMF(NL3*), RMF(NL3), SHF (SkI4) and SHF (SLy4) are shown in

Fig. 4.4(a) and Table. 4.1 along with the FRDM results [11]. From the figure and

table it is clear that, the binding energy obtained in both the RMF and SHF models

are qualitatively similar. We notice that the binding energy, obtained with NL3 and

NL3* parameter sets are almost equal within lower mass region but, towards higher
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Table 4.2: The SHF(SkI4) and the RMF(NL3) results for binding energy BE, two-
neutron separation energy S2n and the quadrupole deformation parameter β2, compared
with the Finite Range Droplet Model (FRDM) data for the isotopic chain of Z=122 [9].
The energy is in MeV.

SHF(SkI4 parameter set) RMF(NL3 parameter set) FRDM results
Nucleus BE S2n β2 BE S2n β2 BE S2n β2

294 2045.52 16.29 0.534 2062.49 16.71 0.530 2053.16 -0.155
296 2061.74 15.94 0.529 2078.46 16.21 0.527 2068.99 15.84 -0.130
298 2077.44 15.34 0.526 2093.81 15.70 0.536 2084.26 15.26 -0.096
300 2092.62 14.81 0.526 2108.67 15.18 0.548 2099.64 15.38 0.009
302 2107.30 14.34 0.529 2123.01 14.68 0.562 2113.98 14.34 0.418
304 2121.47 13.82 0.545 2136.83 14.17 0.603 2126.87 12.89 0.000
306 2132.71 13.20 0.556 2150.03 13.76 0.608 2139.43 12.56 0.000
308 2148.31 12.45 0.560 2162.49 13.08 0.618 2150.84 11.41 0.001
310 2160.66 12.00 0.571 2174.49 12.35 0.641 2162.05 11.22 0.003
312 2172.58 12.62 0.584 2187.10 11.92 0.742 2173.42 11.36 0.005
314 2184.17 12.02 0.594 2199.12 11.59 0.739 2184.67 11.25 0.006
316 2295.39 11.37 0.595 2210.49 11.22 0.736 2195.74 11.07 0.007
318 2206.30 10.65 0.588 2221.02 10.91 0.722 2214.11 18.37 0.541
320 2216.96 10.21 0.575 2231.23 10.67 0.728 2224.88 10.76 0.543

mass region, the binding energy using NL3* parameter set, is gradually getting lower

values than NL3 set, which are over-estimated to both the SHF (SkI4) and SHF (SLy4)

results by a constant factor. In an isotopic chain, we notice that the macro-microscopic

FRDM calculation lies in between RMF and SHF. But, the difference decreases gradually

towards the higher mass region in case of SHF (SkI4). The binding energy per particle

(BE/A) for the isotopic chain is also plotted in Fig 4.4 (b). Qualitatively, all the curves

show a similar behavior. Again a detail inspection shows that the BE/A value starts

increasing with the increase of mass number, reaching a peak value at A ∼ 302-304 for

RMF, SHF and FRDM models. This means that 302,304120 is the most stable element,

which is situated at N=182-184. Interestingly, this neutron number N = 184 is the next

predicted magic number [17]. It is worthy to mention that the results obtained in the

present calculation are almost consistent to the prediction by earlier calculations [11]

using some different force parameters. Hence, we may note that the results for binding

energy and related observables like magic numbers are independent of force parameters.
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For Z=122 isotopic chain

Table 4.2 and Fig. 4.4 (c) shows the calculated binding energy obtained from SHF (SkI4)

and RMF (NL3) formalisms [9]. Similar to Fig. 4.2, the binding energy obtained in the

RMF model also over-estimates the SHF result by a constant factor. In other words

similar to the chain of Z=120, here also the multiplication by a constant factor will make

the two curves overlap with one another. This means that a slight modification of the

parameter set of one formalism can predict the binding energy similar to that of the

other. Table 4.2 shows a comparison of the calculated binding energies with the FRDM

predictions of Ref. [32, 29], wherever possible. The binding energy per particle for the

isotopic chain is also plotted in Fig. 4.4 (d). We notice that here again the SHF and

RMF curves differ from one another through a constant scaling factor, and the FRDM

calculation lie in between these two calculations. This means qualitatively, all the three

curves show a similar behavior. However, unlike the BE/A curve for SHF or RMF, the

FRDM results do not show the regular behaviour. In general, the BE/A start increasing

with the increase of mass number A, reaching a peak value at A=302 for all the three

formalisms. This means that 302122 is the most stable element from binding energy point

of view. Interestingly, 302122 is situated towards the neutron deficient side of the isotopic

series of Z=122, and could be taken as a suggestion to synthesize this superheavy nucleus

experimentally.

Odd-odd Nuclei

The calculations for odd-even and odd-odd nuclei in an axially deformed basis is a

tough task in the mean-field model. To take care of the lone odd nucleon, one has to

violate the time-reversal symmetry in the mean field (already mention in Chapter 2).

So, we use Pauli blocking approach to deal such open shell nuclei. The effects of pairing

interaction in odd-even and odd-odd nuclei are expected to be considerably decreased

[143]. Therefore, in the present investigation we have chosen to use a BCS formalism

with a small constant pairing strength, which contributes little to the total binding

energy. This type of prescription has already been adopted in the past [139, 32, 29].
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Figure 4.5: The binding energy for the nucleus Z=115 and 117 obtained from RMF
(NL3) calculations along with FRDM predictions [10, 12]
.

For Z=115 isotopic chain

The total binding energy (BE) for whole isotopic chain for Z = 115 is plotted in Fig. 4.5

(a) and also listed in Table 4.3. From the figure and table, we notice that the microscopic

RMF (NL3) BE over-estimated than that of FRDM at N = 156 − 167, after that the

difference in binding energy decreasing towards the higher mass region (around A=287).

And beyond to this mass number the two curves again showing a similar behaviour.The

binding energy per nucleon (BE/A) for the isotopic chain is plotted in Fig. 4.5 (b).

This value starts reaching a peak value at A = 282 for RMF (NL3) and at A = 286 for
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Table 4.3: The RMF (NL3) results for binding energy BE, two-neutron separation energy
S2n, pairing energy Epair, the binding energy difference 4E between the ground- and
first-excited state solutions, and the quadrupole deformation parameter β2, compared
with the corresponding Finite Range Droplet Model (FRDM) results [12]. The energy
is in MeV.

RMF (NL3) Result FRDM Result
Nucleus BE S2n Epair ∆E β2 BE S2n β2

272 1944.3 16.7 17.3 6.51 0.255 1932.8 0.182
274 1961.0 16.6 16.9 6.20 0.244 1950.3 17.5 0.192
276 1977.2 16.3 16.3 5.87 0.232 1967.4 17.1 0.202
278 1992.8 15.6 15.8 5.30 0.218 1983.9 16.5 0.202
280 2008.0 15.1 15.4 4.77 0.196 2000.3 16.4 0.053
282 2022.8 14.7 14.7 4.15 0.182 2015.8 15.5 0.053
284 2036.7 13.9 14.3 3.18 0.173 2030.8 15.0 0.062
286 2049.8 13.1 14.0 2.06 0.165 2045.2 14.4 0.071
288 2062.5 12.7 13.7 1.23 0.152 2059.1 13.8 -0.087
290 2074.5 11.9 13.6 0.15 0.103 2072.6 13.5 -0.079
292 2086.5 11.9 13.5 0.02 0.060 2085.7 13.1 -0.061

FRDM [12]. It means 282115 is the most stable isotope from the RMF (NL3) and 286115

from the FRDM results [32, 29]. Hence, the predicted shell closure from FRDM in the

isotopic chain of Z=115 is N ∼ 172, which is not appear in case of RMF (NL3).

For Z=117 isotopic chain

The obtained results for binding energy per nucleon BE/A and the binding energy BE

from the RMF(NL3) formalism are compared with FRDM results [10] in Figs. 4.5 (c) and

in Table 4.4. Similar to the even− even nuclei, the results of RMF(NL3) over-estimates

the FRDM result. In general, the BE/A value starts increasing with the increase of

mass number A, reaching a peak value at A=288 for RMF(NL3) and at A=290 for the

FRDM formalism. This means to say that 288117 is the most stable isotope from the

RMF(NL3) model results and 290117 from the FRDM predictions. Interestingly, 288117

(with N=171) and 290117 (with N=173) are both closure to the predicted shell closure

at N=172 than at N=184. Note that the isotopes 300,302117, next to the magic number

N=184, are also included in this study. For the total binding energy BE in the isotopic
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Table 4.4: The RMF(NL3) results for binding energy BE, two-neutron separation energy
S2n, pairing energy Epair, the binding energy difference 4E between the ground- and
first-exited state solutions, and the quadrupole deformation parameter β2, compared
with the corresponding Finite Range Droplet Model (FRDM) results [10]. The energy
is in MeV.

RMF(NL3) Result FRDM Result
Nucleus BE S2n Epair ∆E β2 BE S2n β2

288 2052.58 14.836 14.698 0.333 0.018 2047.09 15.16 0.080
290 2066.13 13.552 14.274 0.360 0.017 2061.65 14.56 0.080
292 2079.80 13.664 14.109 0.096 -0.017 2075.72 14.07 0.072
294 2092.46 12.775 13.653 0.031 0.041 2089.22 13.50 -0.087
296 2104.80 12.335 13.583 0.104 0.028 2102.66 13.45 -0.035
298 2116.59 11.691 13.274 0.389 0.015 2114.79 12.13 -0.008
300 2128.17 11.576 12.841 0.970 0.005 2126.14 11.34 0.000
302 2138.66 10.488 12.623 0.596 0.004 2136.25 10.11 0.000
304 2148.29 9.634 12.695 0.012 0.002 2145.71 9.46 0.000
306 2157.72 9.430 12.348 0.004 0.030 2154.84 9.13 0.000
308 2167.32 9.601 11.912 0.304 0.047 2163.93 9.09 0.001
310 2176.65 9.329 11.538 0.512 0.051 2172.61 8.68 0.000

chain from microscopic RMF agree well with the macro-microscopic FRDM calculations,

their differences decreasing gradually towards the higher mass region (around A=298),

and then beyond this mass number the two curves again show a similar behavior.

4.2.3 The pairing energy

Pairing is a crucial quantity for open shell nuclei in determining the nuclear gross prop-

erties like binding energy, deformation, nucleonic density distribution and single particle

energy level etc. To deal such open shell nuclei in the present study, we have adopted the

constant gap BCS-pairing scheme to care the pairing correlation. This prescribed BCS

approach is valid for nuclei in the valley of β- stability line. However, this method breaks

down when the coupling of the continuum becomes important. The detail description

and the corresponding expression for pairing energy Epair are given in the Chapter 2.

Here, we deal with nuclei on or near the valley of stability line since the superheavy
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Figure 4.6: The pairing energy Epair, for the isotopic chain of Z= 115, 117, 120 and 122
from RMF(NL3). Here, the g.s. and e.s. in the lebel of the figure stands for ground and
first intrinsic excited state respectively [9, 10, 11, 12].

elements, though very exotic in nature, lie on the β-stability line. These nuclei are un-

stable because of the repulsive Coulomb force, but the attractive nuclear shell effects

come to their rescue, making the superheavy element possible to be synthesized, par-

ticularly when a combination of magic proton and neutron number happens to occur

(largest shell correction). Certainly, for a given nucleus, the magnitude of the pairing

contribution depends marginally on the quadrupole deformation β2. This means to say

that for differing β2-values in a nucleus, the pairing energy Epair changes only marginally
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(∼5-6%). On the other hand, even if the β2 values for two nuclei are same, the Epair val-

ues are different from one another depending on the filling of the nucleons. The obtained

results for even− even Z=120,122 and odd− odd Z = 115, 117 are shown in Fig. 4.6 for

the RMF(NL3) calculation [9, 10, 11, 12]. The pairing energy Epair in the isotopic chain

of Z=120,122 for both the ground-state (g.s.) and the first excited state (e.s.), referring

to different β2-values. It is clear from Fig. 4.6 that the Epair decreases with increase in

mass number A, i.e., even if the β2 values for two nuclei are the same, the pairing energies

are different from one another. This variation of Epair is ∼25% in an isotopic chain of a

particular Z-value. This change may cause due to their different configurations (different

β2 values) and the splitting of the single particle levels of nucleons inside a nucleus.

Figure 4.7: The shape co-existence ∆E, for the isotopic chain of Z= 115, 117, 120 and
122 from RMF and SHF for various parameter sets [9, 10, 11, 12].
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4.2.4 Shape co-existence

Shape coexistence is a phenomenon exhibited by atomic nucleus, where configurations

possessing remarkably different shapes with almost similar binding energies. In other

word, the collective motion of the nucleons inside a nucleus for certain proton (Z) and

neutron (N) can drive a system into dramatically different coexisting nuclear shapes with

very small difference in binding energy. The measure of the energy difference between

the ground and the first intrinsic excited state is given as [9, 10, 11, 12]:

4E(N,Z) = [BE(N,Z)]g.s. − [BE(N,Z)]e.s. . (4.1)

Here, we have also calculated the ”free solutions” for the whole isotopic chain for all

the atomic nuclei (i.e. Z=115,117,120 and 122), both in prolate and oblate deformed

configurations. In many cases, we find low lying excited states [9, 10, 11, 12]. As

measure from the binding energy difference 4E between two solutions from RMF and

SHF for Z=115, 117, 120 and 120 are shown in Fig (4.7) and listed in Table 4.1-4.4

[9, 10, 11, 12]. The maximum binding energy solution refers to the ground state and all

other solutions to the intrinsic excited state(s). The energy difference 4E is small for

neutron-deficient isotopes, but it increases with the increase of mass number A in the

isotopic series. This small difference in the binding energy for neutron-deficient isotopes

is an indication of shape co-existence. In other words, the two solutions in these nuclei are

almost degenerate and might have large shape fluctuations. Further, a deep inspection

shows that all the atomic nucleus follows a low laying excited correspond to their ground

state around the mass number ∼ 286 − 296. On the other hand, in SHF formalism,

4E value remains small throughout the isotopic chain. For example, in 308122 the two

solutions for β2 = 0.56 and β2 = 0.008 are completely degenerate with binding energies

2148.31 and 2148.12 MeV. Similar case one can see for the isotopic chain of Z=115, 117

and 120. This later result means to suggest that the ground state can be changed to the

excited state and vice-versa by a small change in the input, like the pairing strength,

etc., in the calculations. In any case, such a phenomenon is known to exist in many
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other regions [139] of the periodic table.

Figure 4.8: The quadrupole deformation parameter β2, for the isotopic chain of Z= 115,
117, 120 and 122 from RMF and SHF for various forces [9, 10, 11, 12].

4.2.5 Quadrupole deformation parameter

The quadrupole deformation parameter β2 is evaluated from the resulting proton and

neutron quadrupole moments [9, 10, 11, 12] as:

Q = Qn +Qp =

√
16π

5

(
3

4π
AR2β2

)
, (4.2)
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where, Qn and Qp are the proton and neutron quadrupole moments, respectively. The

shape of a nuclei for a given state can be determined from this observables. The

quadrupole deformation parameter β2, for both the ground and first excited states, are

calculated within these two formalisms for isotopic chain of Z=115, 117, 120 and 122.

The obtained results from our calculation are compared with the FRDM results are

shown in Fig. (4.8) and listed in Table (4.1-4.4) [9, 10, 11, 12]. In some of the earlier

RMF and SHF calculations, it was shown that the quadrupole moment obtained from

these theories reproduce the experimental data pretty well [70, 78, 83, 8, 85, 101, 9, 79].

The calculated value of β2 in the ground and intrinsic excited states for SHF and RMF

results agree well with each other (the excited solution are not included in the figure).

From the figure, it is clearly identified that (g.s.) quadrupole parameter β2 for SHF and

RMF, differ strongly from FRDM results [32, 29] for Z=120, 122. For example, in case

of Z=122, both SHF and RMF with highly deformed oblates configuration for isotopes

near the low mass region. Then, with increase of mass number there is a shape change

from highly oblate to highly prolate but which is not the case for FRDM. The interesting

point is that, most of the isotopes are super-deformed or / and hyper-deformed in their

g.s. configurations for Z=120 and 122, but are spherical solution for Z=115 and 117.

4.2.6 Two-nucleon separation energy

The two-nucleon separation energy is a crucial observable to predict the most stable

nuclei in an isotopic chain and also important to determine the magic properties of a

nucleus. The two-neutron separation energy S2n (N, Z)can be calculated from the binding

energies using the expression:

S2n(N,Z) = BE(N,Z)−BE(N − 2, Z), (4.3)

here, N and Z are the neutron and proton number of a nucleus, respectively. The

estimated S2n energy from microscopic binding energies for Z=115, 117, 120 and 122

isotopic chains are displayed in Fig. 4.9 (also listed in Table 4.1-4.4) along with the



CHAPTER 4. STRUCTURE OF SUPERHEAVY ELEMENTS 76

Figure 4.9: The two-neutron separation energy S2n, for the isotopic chain of Z= 115, 117,
120 and 122 from RMF and SHF are compared with the FRDM predictions [9, 10, 11, 12].

macro-microscopic FRDM prediction. From the figure and table, it is clear that S2n

values agree well with the FRDM calculations. The comparison of S2n for the SHF and

RMF with the FRDM result are further shown in Fig. 4.9, which shows clearly that the

two S2n values coincide remarkably well, except at mass A=316 and A=318 of Z=120

and Z=122, respectively, which seems spurious due to some error somewhere in FRDM

data. Apparently, the S2n decreases gradually with increase of neutron number, except

for the noticeable kinks at N ∼ 172 and N ∼ 188 − 190 in RMF, and at N ∼ 182 and

N ∼ 186 in FRDM. Interestingly, these neutron numbers are close to either N=172 or

184 magic numbers. However, the SHF results are almost smooth for whole isotopic
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chain.

Figure 4.10: The root-mean-square charge rch, neutron rp and matter rm for the isotopic
chain of Z= 122 from RMF (NL3) and SHF (SkI4) [9].

4.2.7 Nuclear radius

The root mean square (rms) matter radius is defined as

〈r2
m〉 =

1

A

∫
ρ(r⊥, z)r

2dτ, (4.4)

where A is the mass number and ρ(r⊥, z) is the deformed density. Here, the rms radii

for neutron and proton are calculated separately by taking the normalization to their
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number. The rms charge radius estimated from the simple expression,

rch =
√
r2
p + 0.64, (4.5)

taking into account the finite size of the proton radius as 0.8fm and rp is the rms radius

of the proton distribution in the nucleus. The rms radius for charge (rch), neutron (rn)

and matter distribution (rm) from SHF and RMF formalisms are shown in Fig. 4.10 for

Z=122 as a representative case. The upper panel (of Fig. 4.10) is for the RMF and the

lower one (Fig. 4.10) for the SHF calculations. As expected, the neutron and matter

distribution radius increases with increase of the neutron number. Although, the proton

number (Z=122) is constant in the isotopic series, still the value of rch also increase as

shown in the figure. This trend is similar in both the RMF and SHF formalisms. A

detailed inspection of the figure shows that, in RMF calculation, the radii show a jump

at A=312 (N=190) after the monotonic increase of radii till A=310. Note that a similar

trend was observed in RMF calculations for S2n for Z=122 (see, Fig. 3.9), which indicate

some special attention for detail study of this nuclei.

4.3 The α decay properties of superheavy nuclei

The synthesis of superheavy nuclei has been dramatically rejuvenated in recent years

owing to the emergence of hot and cold fusion reactions [122, 123, 124, 125, 126, 127,

128, 129, 130, 131, 132, 133]. With these advent of modern accelerators and suitable

detectors technique, it is possible to synthesize superheavy nuclei such as Z = 110−118

[122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133]. At present, it is important

and crucial to see the mode of decay and the stability of these newly synthesized nuclei.

The sustainability of these superheavy nuclei are controlled mainly by the spontaneous

fission and alpha decay processes. The decay of superheavy nuclei is possible if the

shell effect supplies the extra binding energy and increases the barrier height of fission

[144, 145, 20, 21]. The situation in spontaneous fission is very complex as compared

to the α decay. There is another possible decay mode called β-decay. Still, the β-
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decay proceeds via a weak interaction and is very slow and less favored compared to

spontaneous fission and alpha decay. Here, we have studied the α-decay properties of

newly synthesized Z=115, 117 and to be synthesized Z=120, 122 using RMF and SHF

formalisms.

Figure 4.11: The α− decay energy Qα obtained from RMF and SHF for the isotopic
chain of Z= 115, 117, 120 and 122 are compared with other theoretical prediction as well
as experimental data, whereever available [9, 10, 11, 12].

4.3.1 The α−decay energy

The alpha decay energy Qα is obtained from the relation [9, 10, 11, 12]:

Qα(N,Z) = BE(N,Z)−BE(N − 2, Z − 2)−BE(2, 2). (4.6)
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Here, BE(2, 2) is the binding energy of the α-particle (4He), i.e., 28.296 MeV, and

BE(N − 2, Z − 2) is the binding energy of the daughter nucleus after the emission of

an α- particle. The binding energy of the parent and daughter are obtained from the

microscopic RMF and SHF formalisms for some selected force parameters. Using these

binding energies, the Qα is estimated from the above relation in Eqn. (4.6). Here, we

have calculated the Qα for the α− decay chain of 287,288115, 293,294117, 292,304120 and

292122. The obtained Qα-values are compared with FRDM [32, 29], other theoretical

predictions [146, 147, 148, 149] and experimental data [129, 130, 131, 132], whereever

available [9, 10, 11, 12]. From the Fig. 4.11, one can notice that the calculated values the

Qα agree well with the known experimental data as well as with the other calculations

[146, 147, 148, 149, 150, 151], but slightly over-estimated with respect to the FRDM

predictions. Furthermore, the possible shell structure effects in Qα is noticeable for the

neutron number N=172 and 182/184 for both the RMF predictions and experimental

data.

4.3.2 The α−decay half-life

The α− decay half-life time Tα1/2 can estimated by using the phenomenological formula

of Viola and Seaborg [152]:

log10T
α
1/2(s) =

aZ − b√
Qα

− (cZ + d) + hlog, (4.7)

with Z as the atomic number of the parent nucleus. For the constants a, b, c and d,

instead of using the original set of constants from Viola and Seaborg [152], we use here

the more recent values suggested by Sobiczewski et al. [153]. The value of these constants

are a=1.66175, b=8.5166, c=0.20228, and d=33.9069. The quantity hlog accounts for the

hindrances associated with the odd nucleon number. The value of hlog as given by Viola

and Seaborg [152], is:

hlog = 0, Z and N even
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Figure 4.12: The α− decay-half life Tα1/2 of Z= 115, 117, 120 and 122 from RMF and SHF
are compared with other theoretical prediction as well as experimental data, whereever
available [9, 10, 11, 12].

= 0.772, Z odd and N even

= 1.066, Z even and N odd

= 1.114, Z and N odd.

Moreover, here we have also included the recent phenomenological formula of Ref. [154]

to estimate the α− decay half-life time Tα1/2:

log10T
ph
α (Z,N) = aZ[Qα(Z,N)− Ei]−1/2 + bZ + c. (4.8)
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Where the parameters a = 1.5372, b = -0.1607, c = -36.573 and the parameter Ei (average

excitation energy of the daughter nucleus) is,

Ei = 0 for Z even−N even

= 0.113 for Z odd−N even

= 0.171 for Z even−N odd

= 0.284 for Z odd−N odd.

Here, in the above equation of Tα1/2, Qα(Z,N) is the crucial variable and is estimated

from RMF and SHF formalism. From these Qα(Z,N) values, the α-decay half-life Tα1/2

are calculated by using Eqn. (4.7) and Eqn. (4.8) for 293,294117, 292,304120, 292122 and

287,288115, respectively. The calculation of Tα1/2 from Ref. [154] is carried out to see

the effect of that formula to the Eqn. (4.7). Note that the Eqn. (4.8) for Tα1/2 is

only applied to the α- decay chain of 287,288115. From Fig. 4.12, we found almost

similar results as for all the α- decay series. Specifically, the RMF and SHF results for

Tα1/2 agree well with the experimental data, as well as the calculations of other authors

[146, 147, 148, 149, 150, 151], but slightly over-estimate to the FRDM results [32, 29].

Similar to the Qα, some possible shell structure also appear at N=172, 182/184, which

need a careful inspection.

4.4 Summary and Conclusion

We have calculated the binding energy, the rms charge, neutron and matter radii, and

quadrupole deformation parameter for the isotopic chain of recently synthesized Z=115,

117 and predicted to be synthesized Z=120, 122 superheavy element for both the ground-

as well as intrinsic first-excited states using the RMF and SHF formalism with various

forces. From the calculated binding energy, we have estimated the two-neutron separa-

tion energy and the energy difference between ground- and first-excited state for studying

the shape co-existence. Also, we have estimated the pairing energy for the ground-state
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solution in the whole isotopic chain for all atomic nucleus. We found a shape change from

a prolate to an oblate deformation with increase of isotopic mass number are noticed.

Most of the ground-state structures are with spherical solutions for Z=115, 117 and are

super-deformed or/ and hyper-deformed solution in case of Z=120, 122. The obtained

results are almost similar to other theoretical calculations and experimental data except

few cases. From the binding energy analysis, we found that the most stable isotope in

the isotopic series of all Z-values is close to predicted magic number at N=172 or 184.

Our predicted α-decay energy Qα and half-life Tα1/2 matches nicely with the available

theoretical prediction as well as experimental data. Again, similar to the binding energy,

some shell structure is also observed at N=172 and/ or 184 from the Qα and Tα1/2 for

both RMF and SHF calculations.



Chapter 5

Island of stability at superheavy

valley

5.1 Introduction

The search of new elements is an important issue in nuclear science, after the discovery

of artificial transmutation of elements by Sir Ernest Rutherford in 1919 [155]. The

existence of Neptunium (Np), Plutonium (Pt) and other 14 elements (entitled as trans-

uranium element) beyond the last heaviest naturally occurring 238U, give a new form (a

separate block) to the Mendeleev′s periodic table, which was landmark in the Nuclear

Chemistry. Further, the study of super-heavy nuclei explores the borderline of the nuclear

chart. The production of super-heavy elements (SHE) turned out to be most tedious

task in the field of exotic nuclei. The fundamental questions in the study of super-

heavy elements is the prediction and/ or production (synthesis) of the doubly magic

nucleus, next to Z=82, N=126 (208Pb). A number of theoretical calculations [113, 118,

32] have been predicted that the next magic nucleus could be 298114, later which is

supported by other calculations [32, 29, 156]. At present, Z=114 nucleus is already

synthesized but for only a lighter isotope 289114 [127]. The α−decay properties is also

observed and the α−decay energies or Qα values are explained on RMF calculation [157].

Recent experiments [158, 127, 128, 129, 130, 131, 132, 122, 123, 124, 125, 126] give some

84
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signature for nuclei even closure to the expected island of stability in superheavy valley.

With the development of heavy ion beam it could be possible to make some progress in

the super-heavy region. Recent theoretical calculations for super-heavy elements have

generated quite an excitement where new magic numbers are predicted for both protons

and neutrons. This excitement cover questions in our mind:

• Whether there is a limited number of elements that can exist either in nature or

can be produced from artificial synthesis by using modern technique ?

• What is the maximum number of protons and neutrons of that of a nucleus ?

• What is the next double shell closure nucleus beyond 208Pb ?

To answer these questions, first we have to understand the agent which is responsible

to rescue the nucleus against Coulomb repulsion. The obvious reply is the shell energy,

which stabilizes the nucleus against Coulomb disintegration [144]. Many theoretical

models, like the macroscopic−microscopic (MM) calculations involves to explain some

prior knowledge of densities, single-particle potentials and other bulk properties which

may accumulate serious error in the largely extrapolated mass region of interest. They

predict the magic shells at Z=114 and N=184 [145, 156, 159, 116, 160] which could

have surprisingly long life time even of the order of a million years [113, 114, 115, 116,

161]. Some other such predictions of shell-closure for the superheavy region within the

relativistic and non-relativistic theories also have some impact in this directions [53, 94].

Experimentally, till now, the quest for superheavy nuclei has been dramatically re-

juvenated in recent years owing to the emergence of hot and cold fusion reactions. In

cold fusion reactions involving a doubly magic spherical target and a deformed projectile

were used by GSI [122, 123, 124, 125] to produce heavy elements upto Z = 110−112.

In hot fusion evaporation reactions with a deformed trans-uranium target and a doubly

magic spherical projectile were used in the synthesis of superheavy nuclei Z = 112−118

at Dubna [127, 128, 129, 130, 131, 132, 133]. At the production time of Z = 112 nucleus

at GSI the fusion cross section was extremely small (1pb), which led to the conclusion
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that reaching still heavier elements will be very difficult or/ and impossible. At present,

the emergence of hot fusion reactions using 48Ca projectiles at Dubna has drastically

changed the situation and nuclei with Z = 114−118 were synthesized and also observed

their α-decay as well as terminating spontaneous fission events. It is observed that Z =

115−117 nuclei have a long α-decay chains contrast to the short chains of Z = 114−118.

Moreover, the life times of the superheavy nuclei with Z = 110−112 are in milliseconds

and microseconds whereas the life time of Z = 114−118 up to 30 s. This pronounced

increase in life times for these heavier nuclei has provided great encouragement to search

the magic number somewhere beyond Z =114. Moreover, it is also an interesting and

important question for the recent experimental discovery [162, 163, 164, 9] say chemical

method of Z = 122 from the natural 211,213,217,218Th which have long lived super-deformed

(SD) and/ or hyper-deformed (HD) isomeric states 16 to 22 orders of magnitude longer

than their corresponding ground-state (half-life of 292122 is t1/2 ≥ 108 years). Hence,

it is an inbuilt motivation for all nuclear theorist as well as experimentalist to see the

Island of Stability in superheavy valley. Here, we have scanned this region using recent

developed and successful microscopic models to find some signature of shell closures for

proton and neutron.

The Chapter is organized as as follows: The details of the calculations and results

are given in Section II. A summary of the results together with a concluding remarks are

given in Section III.

5.2 Result and Discussion

A number of force parameters are convenient to solving the standard SHF Hamiltonians

and RMF Lagrangians. The ground state properties, like the binding energies (BE),

quadrupole deformation parameters β2, charge radii (rc), and other bulk properties are

evaluated by using the various non-relativistic and relativistic parameter sets in some

of our previous works and by other authors [70, 85, 101, 82, 165]. From these results,

one can find that, more or less, most of the recent parameter sets reproduce well the
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Figure 5.1: The proton (neutron) average pairing gap ∆p (∆n) for Z=78-82 with N=120-
140 [17].

ground state properties, not only of stable normal nuclei but also of exotic nuclei which

are far away from the valley of β-stability. This means that if one uses a reasonably

acceptable parameter set, the predictions of the model will remain nearly force indepen-

dent. Here, we have used two well-defined but distinct approaches (i) non-relativistic

Skryme-Hartree-Fock (SHF) with FITZ, SIII, SkMP and SLy4 interactions [78, 79, 80, 4]

(ii) Relativistic Mean Field (RMF) formalism [8, 46, 49, 63, 64, 85] with NL3, G1, G2

and NL-Z2 parameter sets. The constant strength scheme is adopted to take care of

pairing correlation [70] and evaluated the pairing gaps 4n and 4p for neutron and pro-

ton respectively from the celebrity BCS equations [101]. This types of prescription for
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Figure 5.2: The two neutron separation energy S2n for Z=78-82 and N=120-140 in the
framework of SHF and RMF theory [17].

pairing correlation both in RMF and SHF have been used by us and many other authors

[85, 70, 139]. Within this pairing approach, it is shown that the results for binding energy

are almost identical with the predictions of the Relativistic Hartree-Bogoliubov (RHB)

approach [85, 66]. Here, our calculation has appeared as a powerful tool to study the

shapes and collective properties of nuclei, which mainly connected with the stability of

a nucleus. In order to get magic numbers for proton and neutron in the valley of super-

heavy, we first established the basic magic properties. It is well understood and settled

that the properties of a magic number for a nuclear system have following characteristics:

• The average pairing gap for proton ∆p and neutron ∆n at the magic number is
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minimum.

• The binding energy per particle is maximum compared to the neighboring one, i.e.

there must be a sudden decrease (jump) in two neutron (or two proton) separation

energy S2n just after the magic number in an isotopic or isotonic chain.

• At the magic number, the shell correction energy Eshell is maximum negative.

• A pronounced energy gap in the single-particle levels εn,p appears at the magic

number.

Here, we focus on the shell closure properties in the superheavy nuclei based on the

above four important observables and identified the magic proton and neutron numbers.

Before going to that region, first of all we have tested these observable for a well known

and experimentally verified double closed Pb isotopes. For this representative case, we

have taken the region Z=78-82 with N=120-140 and calculated the average pairing gap

(for proton ∆p and neutron ∆n), and two neutron separation energy S2n. These are

shown in Figs. 5.1 and 5.2 respectively [17]. The experimental values are given for

comparisons. From Figures, it is clear that the ∆p gives the minimum value (almost

zero) for Z=82 and ∆n is minimum at N=126 in the isotopic chain of all these atomic

nuclei. The results also consistent to the S2n energy calculation. The experimental datas

are also showing same behaviour in both the case. It is worthy to mention that the above

defined magic properties are clearly observed from figures (Fig 5.1 and 5.2 [17]) for Z=82

with N=126. To find the next magic nuclei beyond 208Pb for that, we have to looked the

above defined magic properties in the superheavy region.

5.2.1 Average pairing gap

The average pairing gap is defined by [9, 10, 17],

∆q = Gq

∑
αq

[
nαq

(
1− nαq

)]−1/2
. (5.1)
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Figure 5.3: The proton average pairing gap ∆p for Z=112-126 with N=162-220 and
Z=112-130 with N=162-260 [17].

Here, q= Neutron or Proton, nαq is the occupation probability of a state with quantum

numbers αq = nljm. The quantity Gq stands for pairing strength and the sum is

restricted to +ve values of m. This simple approach is used here to calculate the average

pairing gap for proton (∆p) and neutron (∆n). A wide range of nuclei starting from

the proton-rich to the neutron-rich region is scanned in the superheavy valley (Z=112 to

Z=130). The curves for ∆p are displayed in Fig. 5.1 obtained by SHF and RMF with

FITZ, SIII, SLy4, SkMP and NL3,NL-Z2, G1, G2 force parametrizations. Analyzing the

figure carefully, it is clear that the value of ∆p almost zero for the whole Z=120 isotopic

chain in both the theoretical approaches. For example, ∆p ∼ 0.0001 for all isotopes of
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Figure 5.4: Same as Fig. 5.1 but for neutron average pairing gap ∆n [17].

Z=120 and ∼ 0.5 for all other case. Here, a similar ∆p is also observed for few isotopes

of Z=114 and Z=124 in RMF (G2).

To predict the corresponding neutron shell closure of the magic Z=120, we have esti-

mated the neutron pairing gap ∆n for all elements Z=112−130 with their corresponding

isotopic chain. As a result, the calculated ∆n for the whole isotopic chains are displayed

in Fig. 5.2. We obtained an arc like structure (similar to Fig. 5.1) with vanishing ∆n

at N= 182, 208 and N=172, 184, 258 respectively for SHF and RMF of the considered

parameter sets. Further, the neutron pairing gap is found to be minimum among the

isotopic chains pointing towards the magic nature of Z =120. Therefore, all of these

force parameters are directing Z = 120 as the next magic number after Z =82.
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Figure 5.5: The two neutron separation energy S2n for Z=112-126 and N=162-220 in
the framework of SHF theory [17].

5.2.2 Two neutron separation energy

The two nucleon separation energy of a nucleus is defined as:

S2q |q=n,p= BE(Nq)−BE(Nq − 2), (5.2)

where, Nq is the number of neutron (proton) for a given nucleus. A sharp fall in the

S2q value means that a very small amount of energy required to remove two nucleons as

compared to its magic neighbor. Thus, the nucleus is significantly stable as compare to

the daughter, which is a most basic characteristics of magic number. In other word, the
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binding energy per particle (BE/A) is maximum for double closed nucleus (4He, 16O,

40Ca, 48Ca, ... and 208Pb) compared to the neighboring one. For example, the BE/A

with SHF (FITZ set) for 300,302,304120 are 7.046, 7.048 and 7.044 MeV corresponding to

N=180, 182 and 184 respectively. Similarly with SLy4 these values are 6.950, 6.952 and

6.933 MeV. This is reflected in the sudden jump of S2n from a higher value to a lower one

at the magic number in an isotopic chain. This lowering in two neutron separation energy

is an acid test for shell closure investigation. Fig. 5.3 shows the S2n as a function of

neutron number for all the isotopic chain of the considered elements for SHF formalisms

[17]. In spite of the complexity about single-particle and collective properties of the

nuclear interaction some simple phenomenological facts emerge from the bulk properties

of the low-lying states in the even-even atomic nuclei. The S2n energy is sensitive to

this collective/ single-particle inter play and provides sufficient information about the

nuclear structure effects. From Fig 5.3, we notice such effect, i.e., jump in two neutron

separation energy at N=182 with SHF. However, we find similar results S2n and Eshell

energies for RMF calculation at neutron numbers 172 and 184.

5.2.3 The shell correction energy

According to Strutinsky energy theorem in liquid drop model [166, 167], the total quantal

energy can be divided into two parts:

Etot = Eavg + Eshell, (5.3)

here, Etot, Eavg, and Eshell are the total, average and shell correction energy, respectively.

The addition of shell correction contribution to the total energy, the whole scenario of

liquid properties converted to shell structure which could explain the magic shell even

in the frame-work of liquid-drop model.The average part of the ground state energy of a

shell model potential can be obtained by replacing the Hartree-Fock occupation number

nα (see previous subsection 5.2.1) by average occupation number nα. The values of nα is

1 and 0 for occupied and empty state, respectively. This implies that the shell correction
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Figure 5.6: The shell correction energy Eshell for Z=112-126 and N=162-220 in the
framework of SHF theory [17].

energy is the difference between the exact and average energy and is given by,

Eshell =
∑
α

(nα − nα) εα, (5.4)

with εα is the energy eigen values of the nuclear potential. The smoothed nα are nor-

malized separately for neutron and proton number for a given nucleus. Recently, it is

reported by Satpathy et al. [144] that the shell effect is not only responsible for the sta-

bility of the superheavy nuclei but also balance the Coulomb repulsion. Hence, the shell

correction energy Eshell is a key quantity to determine the shell closure of nucleon. The

magnitude of total (proton plus neutron) Eshell energy is dictated by the level density
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around the Fermi level. A positive Eshell reduces the binding energy and a negative shell

correction energy increases the stability of the nucleus. As a representative case, we have

depicted our SHF result of Eshell in Fig 5.4. It is clear from the figure, the extra stability

of 302,328120. However, we find similar results for Eshell energies for RMF calculation at

neutron numbers 172, 184.

Figure 5.7: The single-particle levels for neutron εn and proton εp nearer to the Fermi
level for 302120 in SHF(SLy4 and FITZ) and 304120 in RMF (NL3 and G2). The energy
is in MeV [17].
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5.2.4 Single-particle energy levels

From the above subsections 5.2.1-5.2.4, we have already found some signatures of magic

properties for Z=120 at N=182 for SHF and N=184 for RMF formalisms. As a further

confirmatory test, the single-particle energy levels for neutrons and protons εn,p are

analyzed. The calculated εn,p nearer to the Fermi levels are shown in Fig. 5.5 for 302120

(N=182) SHF (SLy4 and FITZ) and for 304120 (N=184) RMF (NL3 and G2). From

the figure, one can estimate the energy gaps 4εn,p for neutron and proton orbits. For

example, in 302120 (FITZ), the gap 4εn = εn(3d3/2)− εn(4s1/2) at N=182 is 1.977 MeV

and4εp = εp(2f5/2)−εp(3p3/2) = 1.340 MeV at Z=120, which is considerably large value.

Almost identical behaviour is noticed with RMF (at N=184) calculations, irrespective

of parameter used, confirming Z=120 as a clear magic number. It is well accepted that

the sequence of the magic number for exotic system is much different from that of the

normal nuclei [168, 82, 157]. This phenomenon is quite normal in superheavy region.

Hence, from these observables, one can conclude Z=120 is the next magic proton with

corresponding neutron (s) N=172, 182/184 in the superheavy valley.

It is well known that, the double magic nuclei, 4He, 16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn

and 208Pb are spherical in their ground state. Here we are enthusiastic to know the

shape of these predicted magic nuclei 292,304120 in their ground state. For this we have

calculated the quadupole deformation parameter β2 using axially deformed RMF and

SHF formalisms for these force parameters. The results obtained from these calculations

are quite interesting, because the ground state solution appear at β2 ∼ 0.0, which is also

spherical in nature.

5.3 Summary and Conclusion

In summary, we have analyzed the pairing gap ∆p and ∆n, two-neutron separation

energy S2n, shell correction energy Eshell and single-particle energy εp,n for the whole

Z =112−130 region covering the proton-rich to neutron-rich isotopes. To our knowledge,

this is one of the first such extensive and rigorous calculation in both SHF and RMF
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models using a large number of parameter sets. The recently developed effective field

theory motivated relativistic mean field forces G1 and G2 are also involved. Although the

results depend slightly on the forces used, the general set of magic numbers beyond 208Pb

are Z=120 and N=172, 182/184. The highly discussed proton magic number Z = 114 in

the past (last four decades) is found to be feebly magic in nature.



Chapter 6

Evolution of clustering in Nuclei

6.1 Introduction

Becquerel, first observed the natural radioactivity in 1896; the first experimental ob-

servation of α− decay from nucleus was found in 1908 by Rutherford [169, 170]. The

successful explanation of α− radioactivity is carried out through quantum-tunneling ef-

fect by Gamow [171] and Gurney and Condon [172] in 1928. At the beginning of that

time, the decay supposed to be one the possible way for a unstable nucleus to stabi-

lized. But, the theoretical prediction of the new possible mode of decay called cluster

decay (i.e. cluster radioactivity) was pointed in 1980, which is one of the land mark in

nuclear physics [173]. In this decay, one or more small nuclei, heavier than α− particle

are emitted from the core of the parent nucleus. The experimental research on cluster

radioactivity is started in 1984 [169, 174] and subsequently grew up reaching a steady

state in the period 1990-2000. The consequent excitement led several experiments at

Berkeley, Dubna, Orsay and Milano to develop experimental techniques to investigate

such peculiar and extremely rare decay mode of nuclei. However, these are not only moti-

vation of an intense experimental investigation in the course of twenty years but also this

allowed to measure the decay properties of thousands of cases corresponding to different

combinations of parent nuclei, emitted clusters and the Q−value for such radioactive de-

cay. At present the clusters 20O, 23F, 2426Ne, 28,30Mg and 32,34Si are continuously found

98
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in Fr, Ra, Ac, Th, Pa, U , Pu, and Cm nuclei in trans-lead region.

After the confirmation of clustering, few questions raised in our mind: (1) are they

initially formed inside the parent nuclei; (2) how they look like i.e. what is the internal

configuration of these sub-atomic nuclei; (3) what are the constituent of these cluster

i.e. to count the nucleons for a cluster. Hence, it is important to see the preformed

cluster(s) inside the parent nucleus and estimate their life time. Theoretically, the shell

model, cluster model and fission model are used to describe the cluster radioactivity

[175]. These models are based on two assumptions, such as pre− and post− formation

of clusters in a nucleus. For example, in case of unified fission model (UFM), the basic

concept is that the nucleus continuously deforms as it penetrates the barrier and reaches

scission configuration. But, in case the preformation cluster model (PCM), the plenty of

nucleons in the ground state of parent nuclei are considered to be cooled and reassigned

and the cluster preformation is existed in the parent before penetrate the barrier.

Moreover, the relativistic mean field (RMF) calculations are very much successful in

determining the clusters inside the parent nuclei from its intrinsic density distribution.

For example, the α − α clustering in 8Be, the 3α-equilateral triangle (co-existing with

spherical shape) in 12C, 4α-tetrahedron (kite-like shape) in 16O and the 3α and 4α-

linear chains for their excited state are some interesting results from RMF [176, 177].

Furthermore, 56Ni shows [177] a preferred N=Z, α-nucleus clustering for states with

deformations up to hyper-deformation (β ≤2.45). Similarly, for heavy actinides (222Ra,

232U, 236Pu and 242Cm), the RMF gives[178] not only the N≈ Z, α-like clustering in

the g.s. but also the exotic N 6=Z clustering in excited states. Signatures of clustering

structure in RMF calculations of super-heavy Z=114 and 120, N=172-184 nuclei[178, 179]

are also obtained in terms of exotic N 6=Z clusters at the center of their super-deformed g.s.

or the clustering in to two large and some small pieces is universal for all super-deformed

ground states in Z=120 nuclei. The super-superheavy 238U+238U→476184∗ nucleus also

supports the clustering phenomenon, with a kind of triple fission of an exotic cluster

in the neck region of two equal fragments of N=Z matter[180]. From the calculated

neutron and proton densities, only the N/Z (=ρn/ρp) ratios of the clusters were obtained
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Table 6.1: The RMF(NL3) results of BE, β2, and the root-mean-square radii of charge
rc and matter rm for the 112−122Ba nuclei in their ground-state (g.s.) and 1st, 2nd,
etc., excited states (e.s.) are compared with FRDM, Hartree-Fock-BCS (HFBCS) and
experimental data, whereeever available. The extrapolated binding energies marked with
star (*).
Nucl. BE rrms: RMF β2 BE rc β2

RMF Expt. rm rc RMF Expt. FRDM HFBCS FRDM
112Ba 895.4 4.62 4.74 0.24 894.9 4.72 0.21

893.3 4.80 4.99 -0.39
882.4 5.35 5.48 1.24

114Ba 920.1 922.3 4.65 4.75 0.24 921.3 4.74 0.24
918.1 4.78 4.90 -0.39
909.3 5.33 5.45 1.21

116Ba 947.6 947.0∗ 4.70 4.78 0.30 946.9 4.78 0.28
943.7 4.80 4.90 -0.39
934.2 5.36 5.46 1.20

118Ba 971.4 971.0∗ 4.75 4.82 0.33 970.8 4.80 0.29
969.2 4.71 4.81 -0.24

120Ba 993.9 993.6 4.78 4.83 0.32 993.44 4.8 0.28
991.6 4.75 4.81 -0.23

122Ba 1015.5 1015.5 4.80 4.84 0.32 0.354 1015.2 4.81 0.27
1013.5 4.77 4.82 -0.23

[178, 180], which were indeterminate up to ∼20% since only the average densities could

be used. However, the actual internal or sub-structure of the clusters was not determined

in these calculations, which is one of the aims of the present study. The important step,

carried out here for the first time is the counting of number of protons and neutrons

present in the clustering region(s), which determines the sub-atomic nuclei in the cluster

region.

The present chapter is organized as follows. In section Section II, the details of the

calculations and the results are outlined. The evolution of clustering inside the parent

nucleus and the counting of the nucleons inside the cluster are also included in this

section. A summary of the results together with concluding the remarks are given in

Section III.
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6.2 Method of Calculation and result discussion

The mean-field equations are solved self-consistently taking different inputs of the ini-

tial deformation β0. For a normal ground state solution in the considered mass region,

the number of major shells for Fermions and bosons are used here NF=NB= 10. To

test the convergence of the solutions, few calculations are done with NF = NB = 12

also. The variation of these two solutions are ≤ 0.02% on binding energy and 0.01%

on nuclear radii for drip-line nuclei. This implies that the used model space is good

enough for the considered nuclei. However, in the present paper, we deal with a rather

large deformed state. To get a self-consistently converged solution for such cases (large

deformation), one may need a large model space for both the Fermions and bosons os-

cillator shells. For this reason, we have used an axially deformed harmonic oscillator

basis with NF=NB=20 shells for these special cases. The number of mesh points for

Gauss-Hermite and Gauss-Laguerre integration are 20 and 24, respectively. For a given

nucleus, the maximum binding energy corresponds to the ground state and other solu-

tions are obtained at various excited intrinsic states. In our calculations, we obtained

different nucleonic potentials, densities, single-particle energy levels, root-mean-square

(rms) radii, deformations and binding energies for different states. These observables

explain the structure and sub-structure for a nucleus in a given state.

6.2.1 Potential Energy Surface

The potential energy surface (PES) is calculated by using the RMF formalism in a

constrained method [181, 9, 10, 182, 183], i.e., instead of minimizing the H0, we have

minimized H ′ = H0 − λQ2, with λ as a Lagrange multiplier and Q2, the quadrupole

moment. The details procedure for this calculations are already given in subsection 2.1.

The term H0 is the Dirac mean field Hamiltonian for RMF model (the notations are

standard and its form can be seen in Refs.[85, 183]). The converged free energy solution

does not depend on the initial guess value of the basis deformation β0 as long as it is

nearer to the minimum in PES. However, it converges to some other local minimum
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Figure 6.1: The potential energy surfaces for 112Ba and 122Ba nuclei, i.e, constrained
binding energy as a function of quadrupole deformation parameter in RMF (NL3) cal-
culations [13].

when β0 is drastically different, and in this way we evaluate a different intrinsic isomeric

state for a given nucleus.

The PES for the representative 112Ba and 122Ba nuclei are shown in Fig. 6.1 for a

wide range of β2 starting from oblate to prolate deformation [13]. The upper panel is for

112Ba and the lower one for 122Ba. For 112Ba, we notice the minima are around β2=-0.39,

-0.20, 0.24, 1.02 and 1.20, corresponding to binding energy BEc= 890.6, 894.2, 896.7,

884.2 and 882.7 MeV, respectively, and their energy differences between the nearest

consecutive minima are 3.60, 2.50, 12.93 and 1.52 MeV. However, in case of 122Ba, only

two minima exist around β2 = -0.23 and 0.26 at BEc = 1012.4 and 1013.7 MeV. The
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intrinsic energy difference between these two configurations is 1.3 MeV. From this figure,

it is clear that there exists two identical major minima at β2 ∼ -0.23 and 0.24 in both the

112Ba and 122Ba nuclei. A further investigation of the PES for other isotopes shows that

actually the multi-minima structure of 112Ba disappears gradually with the increase of

mass number in the isotopic chain of Ba, and reaches to only two minima configuration,

one oblate and another prolate, at mass number A=122. In other word, there is no

solution exist at high deformation (super/hyper-deformation) for higher mass of the Ba.

6.2.2 Nuclear Bulk properties

The binding energies (BE) and quadrupole deformation parameters β2 for 112−122Ba

isotopes are evaluated for the ground as well as intrinsic excited states (e.s.). The

obtained results are tabulated in Table 6.1, together with the experimental data[107, 184]

and the extrapolated values (marked with star (*)), wherever available. The finite range

droplet model (FRDM) binding energies and β2-values are also listed in the table for

comparison [13]. Since no experimental data are available for rch, the tabulated values

are the theoretical results from Hartree-Fock-BCS (HFBCS) method [13].The first row in

each nucleus corresponds to the ground state (g.s.) binding energy and all other energies

are the first and second excited state BE’s, respectively. The experimental value of g.s.

β2 is available for 122Ba only, since the neutron -deficient 112−120Ba isotopes lie near the

proton drip-line, and hence their deformation parameters are not yet known. Table 6.1

shows the binding energies, charge radii rc and β2 values agree well with the available

experimental data and with other theoretical calculations for both ground and excited

states [13].

In Table 6.1, as discussed above, all the Ba isotopes are shown to have several intrin-

sic minima, where each minimum corresponds to a deformation and a binding energy.

For example, the ground state deformation β2=0.24 for 112Ba. Similarly the g.s. de-

formations for 114Ba, 116Ba, 118Ba, 120Ba and 122Ba are 0.24, 0.30, 0.33, 0.32 and 0.32,

respectively. All other intrinsic excited state deformations, with corresponding binding

energies, are also listed in Table 6.1 [13]. For 112,114,116Ba nuclei we get a solution at



CHAPTER 6. EVOLUTION OF CLUSTERING IN NUCLEI 104

a highly deformed configuration of β2 ∼ 1.2, whereas this hyper-deformed minimum is

washed out with increase of mass number in the Ba isotopic chain.This means there is

no hyper-deformed solutions for 118−122Ba (see also, Fig. 4 where such highly deformed

configurations are shown only for 112,114,116Ba). The root mean square (rms) radii of

matter and charge distribution are also calculated for various quadrupole deformations

from oblate to prolate and hyper-deformed states. The matter rms radius rm and charge

distribution rms radius rc are listed in Table 6.1 for different β2 values. From the table,

it is observed that the rm increases with increase of quadrupole deformation.

Figure 6.2: The internal sub-structure of 24Mg with and without pairing in the ground
state configuration [14].



CHAPTER 6. EVOLUTION OF CLUSTERING IN NUCLEI 105

6.2.3 Relativistic mean-field and clustering

It is well known that the RMF formalism reproduce the cluster structure of nuclei

[185, 186, 13, 14] which are already predicted by several cluster models [187, 188, 189].

However, the mean field concept itself goes against the finding of clustering. In case

of present RMF formalism, the mean-field approximation is taken for different meson

fields considering as classical number. And the nucleons are treated as point particle,

which oscillates in the mean field meson medium and gives the way for an independent

constraint, results the clustering inside the nucleus. On the other hand, one can say that

the fluctuation in the central density of the nucleons are due to the shell effect, which

may caused by the pairing correlation of nucleons around the Fermi surface. If this is

the case, then it would have hard to find the shell gaps and other magic properties in the

RMF formalism. Further, to show the quantitative explanation, we have calculated the

gross properties including the density profile for the well known nuclei such as 24Mg with

and without pairing correlations. The contour plot of the density profiles are shown in

Fig. 6.2. From the figure, one can find almost identical structures in both the cases even

the deformation also almost same for both the approximations. For example, the defor-

mations with and without pairing correlations are 0.45 and 0.44, respectively (see Fig.

6.2) and the ground state solution for both the cases correspond to almost same binding

energy (see Ref. [14]). This confirms the power of RMF theory for cluster prediction.

6.2.4 The Clustering and Sub-atomic Nuclei

The internal structure of a nucleus depends on the density distributions of protons and

neutrons for a given state. Here, the densities are obtained from RMF (NL3) in the

positive quadrant of the plane parallel to the symmetry z−axis. These are evaluated

in the ρz plane, where ρ = x = y = r⊥. It is to be noted that, both the axes z and

ρ are conserved in our formalism under the space reflection symmetry. Now we can

obtain the complete picture of a nucleus in the ρz plane by reflecting the first quadrant

to other quadrants. Figs. 6.3-6.5 show the density plots for all the possible solutions,
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Table 6.2: The number of protons Zclus. and neutrons Nclus., and mass Aclus., in clusters
inside the 112−122Ba nuclei for different solutions from the RMF(NL3) formalism. The
clusters are listed as the ground state (g.s.) and the first excited state (e.s. I) and
the second excited state (e.s. II) solutions. The ranges of integration in Eq. (2), i.e.,
r1, r2; z1, z2 (in fm), for each cluster are also given.

Nucleus State β2 Cluster Zclus. Nclus. Aclus. Cluster

range (r1, r2; z1, z2)
112Ba g.s. 0.24 (-1.5, 1.5; 1.9, 4.5) 17.7 18.3 36.0 36Ar

(1.3, 2.45; -1.3, 1.3) 5.8 6.2 13.0 12C

(2.9, 3.8; -2.0, 2.0) 7.1 7.4 14.5 14N

e.s.I -0.39 (-3.45, 3.45; -1.7, 1.7) 50.4 52.9 103.3 103Sn

e.s.II 1.24 (-1.0, 1.0; -6.4, 6.4) 46.5 48.8 95.3 95Pd
114Ba g.s. 0.24 (-1.5,1.5; 2.1,4.6) 16.9 17.9 34.7 35Cl

(1.25, 2.5; -1.1, 1.1) 5.8 6.2 12.0 12C

(3.3, 3.7; 0.7, 2.0) 1.1 1.2 2.3 2H

e.s.I -0.39 (-3.35, 3.35; -1.5, 1.5) 49.9 54.7 104.6 105Sn

e.s.II 1.21 (-1.0, 1.0; -6.5, 6.5) 46.2 49.6 95.8 96Pd
116Ba g.s. 0.30 (-1.5,1.5; 2.2, 4.6) 16.8 17.9 34.7 35Cl

(1.25, 2.25; -1.1, 1.1) 5.8 6.5 12.3 12C

(3.3, 3.76; 0.6,2.0) 1.1 2.3 3.4 3H

e.s.I -0.39 (-3.3, 3.3; -1.5, 1.5) 48.8 54.9 103.7 104In

e.s.II 1.20 (-1.0, 1.0; -6.7, 6.7) 47.8 52.5 103.3 103Cd
118Ba g.s. 0.33 (-1.6, 1.6; 2.5, 5.5) 19.9 22.2 42.0 42Ca

(3.3, 3.6; 0.7, 2.0) 0.8 0.9 1.7 2H

(1.6, 2.1; -0.4, 0.4) 0.7 0.8 1.6 2H

e.s.I -0.24 (-1.1, 1.1; -0.6, 0.6) 5.6 6.4 12.0 12C
120Ba g.s. 0.32 (-1.7, 1.7; 2.6, 5.3) 19.3 23.2 42.5 43Ca

(3.4, 3.6; 0.8, 1.75) 0.7 1.2 1.9 2H

e.s.I -0.23 (-1.1, 1.1; -0.6, 0.6) 5.9 6.3 12.2 12C
122Ba g.s. 0.32 (-1.7, 1.7; 2.5, 5.3) 19.7 22.8 42.6 43Ca

(3.4, 3.7; 0.8, 2.0) 0.7 1.8 2.5 3H

e.s.I -0.23 (-1.1, 1.1; -0.55, 0.55) 5.6 6.4 12.0 12C
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starting from oblate to prolate deformation of the Ba isotopic chain (see Table 6.1). The

density profiles for the ground state of 112−122Ba follow the prolate ground state solution

around β2 ∼0.25 are shown Fig. 6.3. The oblate-deformed and hyper-deformed prolate

solutions obtained for 112−122Ba isotopes around β2 ∼ -0.35 and 1.1 are shown in Figs.

6.4-6.5, respectively. From these graphs, the clustering structures in Ba nuclei are quite

evident. Considering the color code, starting from deep violet with maximum density

distribution to olive bearing the minimum density, one can Analise the distribution of

nucleons inside the various isotopes at various shapes. (In black and white figures, the

color code is read as deep black with maximum density to light gray as minimum density

distribution). In Fig. 6.4, the minimum density for the oblate-state starts from 0.001

fm−3 and goes up to a maximum of 0.16 fm−3, but in case of the prolate-states in Figs.

6.3 and 6.5 it starts from 0.001 fm−3 and goes up to 0.18 fm−3, which means that the size

of cluster nucleus in the oblate-state is larger than that of the prolate-state. A careful

inspection of the density distributions in different regions of the nucleus clearly shows the

formation of various clusters inside the nuclei, which are listed in Table 6.2 as ground-

state (g.s.) and excited state (e.s.) I or II cluster states, together with their deformations

β2. A prominent observation is that there is no configuration of deformation β2 ∼1.2,

i.e., e.s.II, in cases of 118−122Ba, similar to what is shown in Fig. 6.5 for lighter mass

112−116Ba isotopes.

Basically, we predicted the clustering regions inside a nucleus on the basis of the total

density distribution. A widely varying (total) density of the region inside the nucleus

with respect to that of its surrounding region is called as the clustering region, which

have very high preformation and the decaying probability. This region having the average

density ranging from 0.150 to 0.171 fm−3 for prolate and from 0.160 to 0.158 −3 for oblate

states. Such regions are decorated with deep violet and red (in colored figures) and deep

black and black (in B/W figures) for prolate and oblate solutions, respectively. Finally,

if we concentrate on the cluster configuration of each of the nucleus in 112−122Ba chain, it

is clear from the figures that there is a near gradual change in the prolate configuration

inside the nucleus, i.e., the clusters inside the nucleus for different β2 values are distinct
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from each other, but the same for oblate configuration is rather sudden in going from a

heavy cluster to a small cluster. For example, the ground-state solution of 112Ba contains

three clusters (36Ar, 12C and 14N), which is not the same for other cases of 114−122Ba. The

same result holds good for intrinsic exited states also. Only 12C cluster is consistently

seen for 112−116Ba and 118−122Ba, respectively, for prolate ground-state and first excited

states.

Figure 6.3: The cluster configurations of 112−122Ba for the prolate ground states in
RMF(NL3) calculations [13].
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Figure 6.4: The cluster configurations of 112−122Ba for the oblate intrinsic 1st excited
states (e.s.I) in RMF(NL3) calculations [13].

6.2.5 Counting of nucleons inside the clusters

In this subsection, we count the number of nucleons in different clusters formed inside

the 112−122Ba isotopic chain, listed in the Table 6.2. The density distributions of these

clusters obtained from the RMF(NL3) formalism for different solutions of deformation

parameters β2 from oblate to prolate configurations are already shown in Figs. 6.3 to

6.5. From these density distribution plots of oblate or prolate configuration, we find the

number of nucleons by using the general formula in Eqn. (6.1) (given below) for both

the protons and neutrons (using individual density distributions) which together with
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Figure 6.5: The cluster configurations of 112−116Ba for the intrinsic excited hyper-
deformed states in RMF(NL3) calculations [13].

the total number of nucleons are listed in the Table 6.2. To perform this calculation,

we need the ranges of the integral i.e. the dimension, which defines the lower and upper

limit of the integral in Eqn. (6.1) [r⊥ (r1, r2) and z (z1,z2)]. The values of the ranges for

different clusters for some of the 112−122Ba isotopes are listed in Table 6.2. The formula

used to identify the ingredient (nucleons) of the cluster is given by [13]:

n =
∫ z2

z1

∫ r2

r1
ρ(z, r⊥)dτ, (6.1)
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where, n is the number of neutrons N or protons Z or mass A and z (z1, z2), r⊥ (r1 ,

r2) are the ranges. From the estimated proton and neutron numbers, we determine the

mass of the cluster inside the nucleus. It is worth mentioning here that the ranges are

guided by the graphical technique to some extent. As a result, the counting of nucleons

inside a cluster may be undetermined to the extent of one unit each. In other words, the

obtained Zclus. + Nclus. = Aclus. may read as Aclus. ± 1. With the ranges of a cluster for

both the axes at hand, we solve the integral in Eqn. (6.1) within these limits, i.e., obtain

a sum of all the densities of this region for each point corresponding to their individual

density values over the nucleus, which gives the number of nucleons (proton or neutron).

From this proton and neutron numbers, we determine the mass number of the cluster

present inside the nucleus.

First of all, we notice from Table 6.2 that the ground-states (g.s.) of 112−116Ba nuclei,

and the first excited oblate states (e.s.I) of 118−122Ba, show the presence of 12C cluster

configuration. Note that 12C cluster refers to 100Sn daughter, and its existence inside the

Ba nuclei has been of interest both from experimental and theoretical points of views.

The g.s. of 112−116Ba also show the presence of other lighter and relatively heavier

clusters, like 14N and 35Cl, 36Ar, respectively, whereas the same for the g.s. of 118−122Ba

are predicted to be only the relatively heavier ones like 42Ca and 43Ca. Furthermore,

the oblate state (e.s.I) and hyper-deformed state in 112−116Ba also show the presence of

heavier cluster 103Sn, 105Sn, 104In, 95Pd, 96Pd and 103Cd, respectively. Note that these

heavier clusters have less probability to decay from the interior of the parent nucleus.

The important point to note here is that 12C cluster is formed inside the Ba nuclei,

and not from the outer region. In other words, 12C does constitute the cluster structure

both in ground and excited states of some Ba isotopes, particularly in 112,114,116Ba and

118,120,122Ba, respectively. The hyper-deformed solutions (β2 ∼1.2) are obtained only

for the 112−116Ba isotopes, i.e., there are no such hyper-deformed states predicted for

118−122Ba isotopes. In other words, 118−122Ba nuclei show no clustering configuration at

such large deformations. Some of the calculations for clustering on lighter mass regions

are already carried out by using recent RMF (NL3* and NL075) force parameters. Some
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of the results are also included in above subsection but the counting of nucleons for the

Mg isotopes are are not included in the thesis [14].

6.3 Summary and Conclusion

Concluding, we have calculated the gross nuclear properties and the nucleon density

distributions for the isotopic chain 112−122Ba using the deformed relativistic mean field

formalism with NL3 parameter set. The gross properties, like the binding energy, de-

formation parameter β2 and the charge radius rc, show qualitative similarity between

the experimental and RMF calculated values. Analyzing the nuclear density distribu-

tions, we get the internal or sub-structure of clusters in Ba isotopes. We find the prolate

ground and first-excited oblate states of some Ba isotopes, specifically, the 112,114,116Ba

and 118,120,122Ba, respectively, which consist of 12C cluster. The ground-state solutions

also support the cluster configurations of other light and the relatively heavier nuclei

such as H, N , Cl, Ar and Ca. Some g.s. solutions also contain light particles like 1,2,3H.

This is an interesting result of the RMF(NL3) technique for nuclear structure physics.

It is relevant to mention here that, in view of our earlier [179] as well as the recent calcu-

lation [14], the above results on clustering are not expected to change much by changing

of the RMF parametrization. For example, the clustering phenomenona remains almost

similar with NL3 and another force parameters NL-SV1, NL3* and NL075 [177, 178, 14],

though these results are more apparent and universal for the RMF approach. Also, the

pairing effect on cauterization picture is examined. We notice that there is no change

at all in the clustering of a nucleus with and without pairing correlations. Some times,

the solutions which appeared in the zero-pairing case, were washed out when pairing

interaction was allowed. However, the cluster structure of a nucleus remained unaffected

as long as the solution for that nucleus existed.

As already pointed out in the Introduction, clustering is also important for the decay

of excited compound nuclei formed in nuclear reactions. Todate, the decay of 116,118,122Ba∗

compound nuclei in to the intermediate mass fragments (IMFs), and symmetric and
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near-symmetric fission fragments are measured[190, 191, 192, 193, 194]. The fusion-

evaporation residues are not yet identified. 12C as one of the IMFs measured with the

largest yield is shown in RMF (NL3) calculation to arise from the interior of Ba nuclei,

and not from the outer region. Finally, the present RMF model, used for the calculation

of clustering structure in nuclei, has still some scope to take into account the parity

reflection symmetry and correlations beyond the mean field in the formalism, which may

at present be a limitation.



Chapter 7

Summary and conclusion

In this thesis we analyze the nuclear potential as well as the nuclear structure and internal

sub-structure for both stable and drip-line nuclei over the nuclear chart. We have applied

the well known and widely used effective mean-field theories such as relativistic mean

field, Effective Field Theory motivated relativistic mean field and Skyrme Hartee-Fock

approach to study the basic gross nuclear properties of a nucleus such as the binding

energy (BE), root mean square charge rch, neutron rn, proton rp, matter radius rm and

the quadrupole deformation parameter β2 for ground and intrinsic excited (or isomeric)

states. Mainly, our studies are directed towards the exotic drip-lines and super-heavy

nuclei in the nuclear landscape.

In Chapter 2, we have presented both non-relativistic Skryme-Hartree-Fock (SHF)

and relativistic mean field (RMF) theories in detail. The SHF model is generated by

the interactions between all the constituent nucleons in the nucleus as described by the

nucleon-nucleon potential. This leads to the ansatz for the Hartree-Fock approximation

that the ground-state trial wave-function of a nucleus containing ’A’ nucleons is written

as a Slater determinant, or antisymmetrised product of occupied states. The full many-

body Hamiltonian, written in terms of an one-body kinetic energy term and a two-body

force for nucleons. The expectation value of the total Hamiltonian with respect to the

Hartree-Fock wavefunction gives an approximation to the ground-state energy. In case

114
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of relativistic mean field theory, the interaction between the nucleons introduced by dif-

ferent mesons. The Lagrangian density that introduces nucleon field ψ, isoscalar scalar

meson field σ, isoscalar vector meson field ω, isovector vector meson field ρ and isovector

scalar meson field δ. The Euler-Lagrange equation reproduced the field equations for

different fields and these are solved self-consistently. The total energy of the nucleus

comes from the energy contribution from nucleon and mesons. The BCS pairing cor-

relation for open shell nuclei is included in this sections. The fixation of parameters

as well as different forces are also discussed in this chapter. This chapter contains all

mathematical derivations and parametrizations, which are used in the calculation and

further predictions.

In Chapter 3, we have discussed microscopic origin of nucleon-nucleon NN poten-

tial derived from linear and non-linear relativistic mean field Lagrangian density. This

potential is entitled as R3Y and is presented eloquently in terms of the well known in-

built RMF theory parameters. In other word, the potential can be expressed in terms of

meson masses (mσ, mω, mρ and mδ) and their coupling constants (gσ, gω, gρ and gδ) for

different fields. This NN potential could replace the phenomenological M3Y interaction

for most of the calculations of nuclear observables. The results obtained from different

force parameters are compared with M3Y potentials. To show the applicability of the

microscopic origin of R3Y potential, we have studied the cluster radioactivity. This make

a bridge between R3Y and the phenomenological M3Y in terms of optical potential and

explaining the cluster decay property of the nuclei. Exploring such R3Y potential from

RMF theory being considered as a unified formalism for studying a number of nuclear

phenomena or at least one step forward in our understanding of NN-interaction.

In Chapter 4, we have studied the nuclear structure for ground and intrinsic ex-

cited (or isomeric) states of superheavy nuclei in the frame work of relativistic and

non-relativistic effective interactions. The axially deformed relativistic mean field and

non-relativistic Skryme-Hartree-Fock theory are employed to investigate the bulk prop-

erties of recently synthesized super-heavy nuclei such as Z=115, 117, 120 and 122 and

their isotopic chains. First of all, the potential energy surfaces (PES) as a function of
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quadrupole deformtion parameter β2 is calculated by using both the RMF and SHF the-

ories in a constrained method. Thus, from the PES curve, one can found the ground as

well as the intrinsic excited state solutions of a given nucleus. The gross properties, such

as binding energy (BE), root mean square charge radius rch, proton radius rp, neutron

radius rn, matter radius rm and quadrupole deformation parameter β2 are calculated

using various forces. From the calculated binding energy, we also estimated the two-

neutron separation energy S2n for the isotopic chain. The pairing energy Epair and the

shape co-existence ∆E are evaluated for all atomic nuclei. Closed shell structures are

observed at N = 172 or 184 and N = 182 from the analysis of binding energy per particle

BE/A and the S2n energy in an isotopic chain for RMF and SHF calculations. We found

spherical and super-deformed or hyper-deformed ground state solution for Z=115, 117

and Z=120,122, respectively. The α-decay energy Qα, half-life time Tα and mean-life τ

are also estimated for 287,288115, 293,294117, 292,304120 and 292122 series. Our predicted

observables for α-decay chains agree nicely with the FRDM calculations and available

experimental data for all isotopic series. Both SHF and RMF formalisms are employed

to see the force dependence of the results. We found qualitatively similar predictions in

both the techniques.

According to the previous calculation (Chapter-3), we found some closed shell struc-

ture at N=172,182 or 184 for all atomic nuclei, which enhanced our curiosity to find

a suitable combination of neutron and proton number at superheavy island with magic

properties. In Chapter 5, the main aim of this work is to identify the next double closed

shell nucleus beyond 208Pb, which may be a possible candidate for the experimentalists to

look for. In this context, we have a wide range of nuclei starting from the the proton-rich

to the neutron-rich region in the superheavy valley (Z=112-130). Two well established

distinct approaches such as non-relativistic SHF and relativistic mean field formalism

with various force parameters are used in this calculations. The recently developed effec-

tive field theory motivated relativistic mean field forces G1 and G2 are also involved. To

our knowledge, this is one of the first such extensive and rigorous calculation in both SHF

and RMF models using a large number of parameter sets. Based on the four important
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observables such as average pairing gap (for proton ∆p and neutron ∆n), two neutron

separation energy S2n, shell correction energy Eshell and single-particle energy spectra

εn,p, we have concluded that the general set of magic numbers beyond 208Pb are Z=120

and N=172, 182/184. The highly discussed proton magic number Z = 114 ( from last

four decades) is found to be feebly magic in nature.

In Chapter 6, we extend the idea of nuclear structure to sub-structure, i.e. the

internal configuration (clustering) of a nucleus. The aim of this work is to discuss the

possibility of existence (preformation) of cluster (s) inside the parent nucleus and identify

them. The recent experiment at GANIL, motivated us to see the interesting clusters of

Ba isotopes in the ground and/ or excited states with well developed and microscopic

model. Here, we have used relativistic mean-field formalism with successful NL3 force

for the present study. First of all, we have calculated the gross nuclear properties like

binding energy, deformation parameter β2, the charge radius rc and the nucleon density

distributions ρn,p for the isotopic chain 112−122Ba using the deformed relativistic mean

field theory. The obtained bulk properties from RMF show a qualitative as well as

quantitative similarity to the experimental values. The internal configuration of these

nuclei are analyzed from nucleonic density distributions. The most important step in

this calculation is to count the number of nucleons inside the cluster (s) region. Here we

are using a straight forward method to find the number of nucleons (proton and neutron

separately) for a cluster region. Using this method, we found the prolate ground and

first-excited oblate states of some Ba isotopes, specifically, 112,114,116Ba and 118,120,122Ba,

respectively. The cluster mostly consist of 12C nucleus and also support the cluster

configurations of other light and the relatively heavier nuclei such as H, N , Cl, Ar and

Ca. Some g.s. solutions also contain light particles like 1,2,3H. This is an interesting result

of the RMF(NL3) technique for nuclear structure physics. It is relevant to mention here

that, the above results on clustering are not expected to change much by changing of

the RMF parametrization.

In concluding this thesis we would like to say that, the main objective behind the

present effort has been to see how far the effective interaction can account the diverse
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properties of nuclei in normal as well as exotic situations. The reasons behind the

choice of the SHF and RMF theory for the study of nuclear properties are multifarious.

One of the important reasons, is the simplicity and self-consistent solution involved in

calculations. These approaches become feasible over nuclear chart including superheavy

nuclei. It has been possible to describe successfully many important observables like

binding energy, root mean square charge and matter radius, quadrupole deformation

parameter, single particle energy, pairing energy, average pairing gap for nucleons, the

shell correction energy, single particle energy levels and other related related properties

with popular set of forces such as FIT-Z, SIII, SKMP, SkI4, SLY4 (for SHF) and NL-SH,

NL3, NL3*, G1 and G2 (for RMF).

Future Prospects: The studies of nuclei far from the valley of stability broaden

the opportunities of research in the area of both nuclear structure and reaction physics.

This is also an indirect impact to the atomic physics as well as in astrophysics and

material science. In nuclear physics there are a number of exciting and crucial topics to

be addressed. Some of the topics which we are intending to pursue in immediate future

are as follow:

• The nuclear structure near the drip-line is one of the important research area in

present day nuclear physics. A lot of exotic phenomena like halo and skin structure

exhibit due to the large isospin in such nuclei. A detail analysis is needed within

the availability of nuclear models taking into account the necessity of the problem.

This can also be extended to superheavy nuclei, which is again an important area.

More explanations are needed to understand the super-deformed / hyper-deformed

(β2 ∼ 0.5) ground state in case of exotic nuclei including superheavy. Further

modification is important in the method of calculation of half-life tα1/2 and mean-

life τα of nucleus.

• In the intermediate region, the nuclei far away from the β -stable region or near to

drip-line showing some magicity, i.e. the half-life of these nuclei higher in magnitude

than that of neighbor. This motivates us to explore such special features are

important topic at the present status of nuclear physics. Further more explanation
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needed for the crucial feature such as Island of Inversion in an isotopic chain of

atomic nuclei.

• The experimental proton drip-line is known up to Z=82. However, to reach the

neutron drip-line experimentally is much more tricky, and the present experimental

status to reach the theoretical prediction of neutron drip-line is up to the Mg-

isotopes. Many interesting physics has been evolved in recent past near the proton

and neutron drip lines. The proton and neutron halo and skin is one among the

exciting discoveries. More work in this direction are needed.

• The application of these models in nucleon-nucleus and nucleus-nucleus reaction

also plays significant roles to understand the observables like differential reaction

cross-section dσ/dΩ, total reaction cross-section σt, analyzing power Ay and the

spin rotation parameter Q− value. We have already dedicated some efforts in this

directions, which can be available in Ref. [195] but more clarification and deep

understanding is important.

• We have already undertaken some modification in the relativistic mean field La-

grangian keeping in view for a complete Lagrangian. At present, we have in-

troduced some extra terms like the cross-coupling of ω and ρ with new coupling

constant Λv in ERMF and applied this to the study of nuclear matter [196]. The

extension of this modified Langagian to the study of finite nuclei under rudimentary

stage.

Here we have mention some work, which are already taken care in our plan for the

current or near future study. Also, there are so many highly interesting works are already

there to explore in the nuclear structure study. Again, an unified description both for

nuclear matter under extreme conditions and the properties of finite nuclei starting from

the beta stable to drip-line and superheavy nuclei using simple effective interaction is

one step forward in nuclear physic and also in progress.



Appendix A

Eigen functions and its components

The Dirac equation with the eigen values Ei and eigen function Psii(r) are given by,

hΨi(r) = EiΨi(r), (A.1)

with the normalization condition,

∫
d3rΨ†i (r)Ψi(r) = 1. (A.2)

The eigen functions in Eqns (A.1-A.2) for a spherically symmetric nuclei is given by

[8, 73],

Ψi(r) = Ψn,k,m,t =

 i
r
Ga(r)Φkm

i
r
Fa(r)Φ−km

 ζt, (A.3)

where, Ga and Fa are the upper and lower component of the wavefunction Ψi(r) with

a = (n, k,m), respectively. The Φkm is the spin harmonics. The values t = 1
2

and −1
2

for

proton and neutron, respectively. The radial equations for Fa and Ga are given by,

(
d

dr
+
k

r

)
Ga(r)− [Ea − U1(r) + U2(r)]Fa(r)− U3Ga(r) = 0, (A.4)
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and

(
d

dr
− k

r

)
Fa(r)− [Ea − U1(r)− U2(r)]Ga(r)− U3Fa(r) = 0. (A.5)

Here, U1 (r), U2 (r) and U3 (r) the single particle potentials and they defined as:

U1(r) = W (r) + taR(r) +
(
ta +

1

2

)
A(r) +

1

2M2
(βs + 2taβv)∇2A(r),

(A.6)

U2(r) = M − Φ(r),

(A.7)

U3(r) =
1

2M

[
fvW

′(r) + tafρR
′(r) + A′(r)

(
(λp + λn)

2
+ ta(λp − λn)

)]
. (A.8)

The prime (′) denotes the first derivative of the field with respect to the radial component

of the co-ordinates.



Appendix B

The Hartree-Fock potential

The explicity form of the Hartree-Fock equation (see Eqn. 2.41) can be written as,

εiφi(r) = − h̄2

2m
+

A∑
j>i

∫
φ∗j(r

′)V (r, r′)φi(r)φj(r
′)dr′

−
A∑
j>i

∫
φ∗j(r

′)V (r, r′)φi(r
′)φj(r)dr′. (B.1)

Here, the second term in the above expression is known direct or Hartree term,

U
(i)
H (r =

A∑
j>i

∫
φ∗j(r

′)V (r, r′)φj(r
′)dr′, (B.2)

which is a local potential that depends only on the one-body density,

ρ(r) =
A∑
i=j

φ∗j(r)φj(r). (B.3)

The third term of the Eqn. (B.1) is called as exchange or Fock potential,

U
(i)
H (r =

A∑
j>i

φ∗j(r
′)V (r, r′)φj(r) (B.4)
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which comes from the antisymmetrisation of the many-body wave function, which is

non-local potential. Its non-local density matrix is given by,

ρ(r, r′) =
A∑
i=1

φ∗i (r
′)φi(r). (B.5)

This leads to a simplified form for the Hartree-Fock equation given as:

εi = − h̄2

2m
+ U

(i)
H (r)φi(r)−

∫
U

(i)
F (r, r′)φi(r

′)dr′. (B.6)

Hence, within the Hartree-Fock approach, a particular system under investigation is spec-

ified by choosing the relevant two-body potential. The Coulomb and kinetic interactions

are universal functions for all systems and also independent of V (r, r′).
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