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The Grenoble Analysis Toolkit (GreAT) – Application to cosmic-ray physics
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Abstract: The field of astroparticle physics is currently the focus of prolific scientific activity. In subsequent years,
this field will undergo significant development thanks to current experiments such as CREAM, PAMELA, Fermi, and
H.E.S.S.. Moreover, the next generation of instruments, such as AMS (launched on 16 May 2011) and CTA, will un-
doubtedly facilitate more sensitive and precise measurements of the cosmic-ray and γ-ray fluxes. To fully exploit the
experimental data generated by these experiments, robust and efficient statistical tools such as Markov Chain Monte
Carlo algorithms or Genetic algorithms, able to handle the complexity of joint parameter spaces and data sets, are nec-
essary for a phenomenological interpretation. The Grenoble Analysis Toolkit (GreAT) is an user-friendly and modular
object orientated framework in C++, which samples the user-defined parameter space with a pre- or user-defined algo-
rithm. The functionality of GreAT will be presented in context of cosmic-ray physics, where the boron-to-carbon (B/C)
ratio is used to constrain cosmic-ray propagation models.
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1 Introduction

A rapidly increasing proportion of modern physical and as-
trophysical analyses are characterised by the application of
extensive experimental datasets to constrain the parameter
spaces of complex multi-dimensional models. Such anal-
yses are necessarily highly computationally intensive; so
much so that even for moderate increases in the dimen-
sionality of the model parameter spaces, or the extent of
the plausible hyper-regions under exploration, naïve scan-
ning approaches rapidly become unfeasible. These diffi-
culties are particularly relevant in the context of increas-
ingly prevalent analyses involving sophisticated modelling
and global fitting of diverse, multi-messenger data. Fortu-
nately, the computational expense of such analyses can be
substantially reduced by the application of more discrimi-
natory scanning algorithms such as Markov Chain Monte
Carlo (MCMC).
The Grenoble Analysis Toolkit (GreAT)1 provides a flexi-
ble framework which allows researchers to rapidly imple-
ment advanced tools for statistical data analysis. In par-
ticular, the highly customisable, modular design of GreAT
facilitates straightforward development of utilities for pa-
rameter estimation, the derivation of confidence intervals,
goodness-of-fit quantification and hypothesis testing.

Here we outline the GreAT package content before describ-
ing an implementation of Markov Chain Monte Carlo algo-
rithm and its subsequent application to cosmic-ray physics.

2 Code content
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Figure 1: GreAT structure

In order to provide a customisable, user-friendly interface
GreAT is implemented as a C++ framework of class tem-
plates and abstract base classes. The general structure of

1. GreAT will soon be available here: http://lpsc.in2p3.fr/great
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the code is shown in Fig. 1. Within a given invocation of
GreAT, the user interacts exclusively with a manager class,
which coordinates all interactions between the otherwise
independent components of the analysis. To define their
analysis, the user is required to define a model which con-
sists of :

• the parameters of the model, each parameter can be
specified as a fixed, free or nuisance parameter. For
non-fixed parameters, the range of allowed values
must be specified. A prior function for each parame-
ter can also be defined by the user. If left unspecified,
the default prior is taken as a flat distribution in the
parameter range.

• a likelihood function,

• optionally, a prior function. If this is not defined the
default prior is taken as the product of the parameter
prior functions.

The user must then specify one or more algorithms that
should be used to perform the statistical analysis.
The required interfaces for both themodel class and the al-
gorithm class, are implemented in terms of abstract base
classes, from which user-defined models and algorithms
must inherit. During the analysis, each algorithm outputs
results as instances of trial classes, whose specificities nec-
essarily depend on the chosen algorithm (typically a trial
will contain all parameter values and the logarithmic like-
lihood value). These trials are stored in trial list and even-
tually used for a further analysis which can be defined with
the help of the estimator class.

3 Markov Chain Monte Carlo

The Bayesian approach aims to assess the extent to which
an experimental dataset improves our knowledge of a
given theoretical model. The technically difficult point
of Bayesian parameter estimation lies in the determina-
tion of the individual posterior probability-density function
(PDF), which requires an (high-dimensional) integration of
the overall posterior density. Thus an efficient sampling
method for the posterior PDF is mandatory. We have im-
plemented a Markov Chain Monte Carlo (MCMC) algo-
rithm for Bayesian parameter inference [1, 2]. In general,
MCMC methods attempt to study any target distribution
of a vector of parameters θ, by generating a sequence of n
points (hereafter a chain) {θi}i=1,...,n = {θ1, θ2, . . . , θn}.
The chain is Markovian in the sense that the sampling dis-
tribution of θn+1 is influenced entirely by the value of θn.
MCMC algorithms are designed to ensure that the time
spent by the Markov chain in a region of the parameter
space is proportional to the target PDF value in this re-
gion. Here, the prescription used to generate the Markov
chains is the Metropolis-Hastings algorithm [3, 4], which
ensures that the stationary distribution of the chain asymp-
totically tends to the target PDF by generating a candidate

state picked at random from a proposal distribution and ac-
cepting or rejecting this candidate state with a given prob-
ability.
To obtain a reliable estimate of the PDF, the chain anal-
ysis is based on the selection of a subset of points from
the chains. Some steps at the beginning of the chain are
discarded (burn-in length), in order to forget the random
starting point. By construction, each step of the chain is
correlated with the previous steps: sets of independent sam-
ples are obtained by thinning the chain (over the correlation
length). The fraction of independent samples measuring
the efficiency of the MCMC is defined to be the fraction
of steps remaining after discarding the burn-in steps and
thinning the chain. The final results of the MCMC analy-
sis are the target PDF and all marginalised PDFs. They are
obtained by merely counting the number of samples within
the related region of parameter space.
To optimise the efficiency of the MCMC and minimise the
number of chains to be processed, the proposal distribu-
tion should be as close as possible to the true distribu-
tion. In [1, 2] and seminal works, three alternative proposal
functions were used to explore the parameter space: a one-
dimensional Gaussian distribution, a multivariate Gaussian
distribution, and a distribution obtained by binary space
partitioning. In the current version of the MCMC imple-
mented in GreAT, only the multivariate Gaussian distribu-
tion is used where the covariance matrix is automatically
updated after each chain. The updated covariance matrix is
saved externally in order to allow chains running in parallel
to use the latest evaluation.

4 Application to cosmic-ray physics

One outstanding issue in the field cosmic-ray (CR) physics
is the determination of the transport parameters in the
Galaxy. During the journey of Galactic cosmic rays
(GCRs), from the acceleration sites to the solar neighbour-
hood, secondary CR species are produced due to nuclear
interactions of heavier primary species with the interstel-
lar medium. Hence, they are tracers of the CR transport
in the Galaxy. Secondary-to-primary ratios, such as e.g.,
B/C, sub-Fe/Fe, are therefore suitable quantities to con-
strain the transport parameters for species Z ≤ 30. We
show here some constraints obtained for the B/C ratio in
the framework of a diffusion model using the MCMC al-
gorithm described above, interfaced with the USINE prop-
agation package [5].
We consider the 1D thin disc diffusion model [6] with con-
stant Galactic wind Vc and minimal reacceleration. The
diffusion coefficient is given by K(R) = K0βR

δ. The free
parameters of this model are the constant Galactic wind
speed Vc, the normalisation K0 and the slope δ of the dif-
fusion coefficient K(R), and finally the Alfvén velocity Va

related to the reacceleration. Here we used the B/C data
only and we fixed the halo size of the Galaxy L to 4 kpc.
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The marginalised PDFs for the model parameters and their
correlations are shown in Fig. 2.
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Figure 2: PDFs for the diffusion model with parame-
ters {Vc, δ, K0, Va}. The diagonal plots show the 1D
marginalised PDF of the indicated parameters. Off-
diagonal plots show the 2D marginalised PDF for the
paramters in the same column and same line, respectively.
The colour code corresponds to the regions of increasing
probability (from paler to darker shade). The two con-
tours (smoothed) delimit regions containing respectively
68% and 95% (inner and outer contour) of the PDF.

Taking advantage of the knowledge of the posterior distri-
bution, sampled by the MCMC, we can estimate credible
intervals for each parameter as well as a credible region in
the whole parameter space. In Bayesian statistics, the so-
called credible interval defines a range [θa, θb] which con-
tains the true value θ0 with a given degree of belief. The
parameter sets contained in the credible regions are used
to draw credible envelopes (belt) on the fluxes. An exam-
ple is given in Fig. 3 which demonstrates that current data
are already able to constrain strongly the B/C ratio, even at
high energy. A more detailed description of the performed
MCMC study and results on stable and radioactive nuclei
are given in [1, 2]. A summary of recent results from this
MCMC analysis is presented in [5, 7].

5 Conclusion

The Grenoble Analysis Toolkit (GreAT) is an user-friendly
and modular object orientated framework in C++, which
allows scientists to easily apply many kinds of statistical
analysis to their data. Here we have briefly described an
implementation of the Metropolis-Hastings MCMC algo-
rithm and its subsequent application to address an outstand-
ing question in cosmic-ray physics.
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Figure 3: 68% CL envelope (shaded area) and best-fit ratio
(thick line) for the 1D diffusion model using B/C data from
various experiments over 4 orders of magnitude in energy.
Here the interstellar ratios are shown. The force-field ap-
proximation was used to demodulate the experimental data.
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