
The time-oriented boundary states and the

Lorentzian-spinfoam correlation functions

Eugenio Bianchi1,2 and You Ding1,3
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Abstract. A time-oriented semiclassical boundary state is introduced to calculate the
correlation function in the Lorentzian Engle-Pereira-Rovelli-Livine spinfoam model. The
resulting semiclassical correlation function is shown to match with the one in Regge calculus in
a proper limit.

To test the semiclassical behavior of the Engle-Pereira-Rovelli-Livine (EPRL) spinfoam
amplitude [1], we compute the two-point correlation functions for the Penrose metric operator
in the Lorentzian signature. The setting is the one introduced in [2] and developed in [3, 4].
In particular, the correlation functions are calculated on a time-oriented semiclassical state [4],
which is peaked on the space-like boundary geometry of a Lorentzian 4-simplex.

1. The time-oriented boundary states
The boundary of a Lorentzian 4-simplex consists of five space-like tetrahedra a which meet at
ten triangles (ab) (a, b = 1...5 and a < b). Suppose all the time-like normals to the tetrahedra are
outward-pointing, then the tetrahedra can be divided into two types: the time-like normals to
the tetrahedra are either future-pointing or past-pointing. Each triangle, with the two adjoining
tetrahedra, defines a wedge. These wedges are then classified into two types: it is called in
[5, 6] thick wedge if the incident tetrahedra are of same pointing type, which means both future-
pointing or both past-pointing, otherwise called thin wedge. Let us assign a quantity to the
triangle (ab) to denote this classification:

Πab =

{
0, thick wedge;
π, thin wedge.

(1)

Consider the complete graph Γ dual to the boundary of the 4-simplex, with five nodes a
dual to tetrahedra and ten links (ab) dual to the corresponding meeting triangles. Consider
the group SU(2), the spin network states |Γ, jab, ia〉 supported on this graph are given by
coloring each link (ab) with an irreducible representation jab (a spin), and coloring each node
a with an SU(2) intertwiner ia. These spin network states span the truncated SU(2) Hilbert
space HΓ of loop quantum gravity (LQG). There is another (overcomplete) basis of HΓ, which
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is Lorentzian coherent spin network states with nodes labeled by Lorentzian Livine-Speziale
coherent intertwiners[4]:

|Γ, jab,Υa(~n)〉 = exp (−i
∑

(a<b)

Πabjab)|Γ, jab,Φa(~n)〉. (2)

Notation is as follows. On the right hand side, Φa(~n) denotes the Euclidean coherent intertwiner
between the representations jab(b 6= a) [7],

Φa(~n) =

∫
SU(2)

dh
∏
b6=a
〈jab,mab|h|jab, ~nab〉 (3)

where the integral measure dh is the SU(2) Haar measure and |jab, ~nab〉 denotes the SU(2)
coherent state in the spin-j representation to the link (ab) of the boundary graph Γ; these
coherent states |j, ~n〉 are peaked on the geometry of a classical triangle: ~n are associated to unit-
normals to triangles of a tetrahedron, and j areas of the triangles. We assume all the normals
outward to the tetrahedron, which satisfy j1~n1 + j2~n2 + j3~n3 + j4~n4 = 0, thus we associate to
each triangle (ab) normals −~nab when a is target of the triangle and respectively ~nba when b is
the source. Given a tetrahedron a, the Lorentzian-geometry phase exp (−i

∑
b>a Πabjab) maps

the Euclidean coherent intertwiners into the Lorentzian ones [4]:

Υa(~n) = exp (−i
∑
b>a

Πabjab)Φa(~n), (4)

where the Lorentzian coherent intertwiner Υ(~n) in the l.h.s. is defined by time reversing the
past-pointing tetrahedra of the Euclidean coherent intertwiner Φ(~n):

Υ(~n) :=

{
Φ(~n), for future-pointing tetrahedra;
TΦ(~n), for past-pointing tetrahedra.

(5)

Given a Euclidean coherent intertwiner in equation (3), the effect of time reversal T on the
(past-pointing) coherent intertwiner is defined as

TΦa(~n) :=

∫
SU(2)

dh
∏
b6=a
〈jab,mab|hT̃ab|jab, ~nab〉, (6)

where “thickener” T̃ab associated to triangle (ab) time-reverses thin wedges but unchanges thick
wedges:

T̃ab|jab, ~nab〉 :=

{
|jab, ~nab〉, for thick wedge;
(−1)jab |jab, ~nab〉, for thin wedge.

(7)

The action (7) of the thickener T̃ can be reexpressed as

T̃ab|jab, ~nab〉 = exp(−iΠabjab)|jab, ~nab〉, (8)

with Πab related to the Lorentzian geometry by equation (1), and thus equation (4) can
be obtained by combining equations (5)-(8). The Lorentzian coherent spin network state
|Γ, jab,Υa(~n)〉 with nodes labeled by Lorentzian coherent intertwiners Υa(~n) is thus given by
equation (2).
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Before going to use the Lorentzian coherent spin network states to construct the boundary
semiclassical states, we want to make clear two points: (i)The Lorentzian coherent intertwiner
is obtained by time-reversing the past-pointing tetrahedra and unchanging the future-pointing
ones; the effect of the time reversal on tetrahedra is given by thickener T̃ab on each triangle (ab).

The action (7) of thickener T̃ab is defined by “time-reversing” thin wedges and unchanging thick
wedges. The action of the time-reversal on the thin wedge is motivated from the time reversal
T |j, ~n〉 = (−1)j |j,−~n〉 in quantum mechanics. However, there is a slight difference between them
of the minus sign for ~n. This minus sign is supposed to keep normals outward-pointing after
time reversal. (ii)The two phases from the intertwiner relation (4) and from the spin network
relation (2) are different, in the sense that a is fixed in the former but free in the latter. In fact,
the latter phase is product of the five phase in the former form. However, here, we call both of
them Lorentzian-geometry phase, if no confusion arises.

Now let us come to the Lorentzian semiclassical state superposed by the Lorentzian coherent
spin network states. Let φo label the simplicial extrinsic curvature, which is an angle associated
to the triangle shared by the tetrahedra; a Lorentzian semiclassical state peaked both on intrinsic
and extrinsic geometry can be given by a superposition of Lorentzian coherent spin network
states:

|Ψo〉 =
∑
jab

ψjo,φo(j)|j,Υ(~n)〉 , (9)

with coefficients ψjo,φo(j) given by a gaussian times a phase [2],

ψjo,φo(j) = exp
(
−i
∑
ab

γφabo (jab − (jo)ab)
)
× exp

(
−
∑
ab,cd

γα(ab)(cd) jab − (jo)ab√
(jo)ab

jcd − (jo)cd√
(jo)cd

)
,

(10)

where the 10 × 10 matrix α(ab)(cd) is assumed to be complex with positive definite real part.
In the following we will use the Lorentzian semiclassical state (9) to calculate the Lorentzian
two-point correlation function.

2. The EPRL correlation functions
The connected two-point correlation function Gabcdnm on a semiclassical boundary state |Ψo〉 is
defined as

Gabcdnm = 〈Ean ·Ebn Ecm ·Edm〉 − 〈Ean ·Ebn〉 〈Ecm ·Edm〉 , (11)

where (Ean)i is a flux operator through a surface fan dual to the triangle between the tetrahedra
a and n, parallel transported in the tetrahedron n. Here the dynamical expectation value of an
operator O on the semiclassical state |Ψo〉 is defined via

〈O〉 =
〈W |O|Ψo〉
〈W |Ψo〉

, (12)

where W is the EPRL spinfoam amplitude [1]. The correlation function (11) can be reexpressed
in terms of group integral [4]:

Gabcdnm =

∑
j ψj

∫
d4g d10z qabn q

cd
me

S∑
j ψj

∫
d4g d10z eS

−
∑

j ψj
∫

d4g d10z qabn e
S∑

j ψj
∫

d4g d10z eS

∑
j ψj

∫
d4g d10z qcdme

S∑
j ψj

∫
d4g d10z eS

. (13)

Notation is as follows. The coefficient ψj is short for ψjo,φo(j) given in equation (10). The
group integral d4g is short for the Haar measure of SL(2,C)4, one per each tetrahedron, and
one redundant integral is removed to obtain the finite integral [8]. We consider an irreducible
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representation of the Lorentz group SL(2,C) on the space H(k,p) of homogeneous functions

f jm(z)(k,p) on complex projective line P, and the integral d10z is over one P per each triangle, up

to a factor −(〈Zab, Zab〉〈Zba, Zba〉)−1, with Zab = g†az and Zba = g†bz. The “action” S is given by

S(g, z) =
∑

(a<b)

(
jab log

〈Jξab, Zab〉2〈Zba, ξba〉2

〈Zab, Zab〉〈Zba, Zba〉
+iγjab log

〈Zba, Zba〉
〈Zab, Zab〉

− iΠabjab

)
, (14)

with γ the Barbero-Immirzi parameter; the spinor ξ ∈ C2 is related to the coherent state |j, ~n〉 in
the sense that the corresponding SU(2) group element n(ξ) rotate the direction (0, 0, 1) in sphere
S2 into the ~n direction. The antipodal vector −~n(ξ) can be associated to Jξ, i.e. −~n(ξ) = ~n(Jξ).
The insertion qabn is given by

qabn = γ2janjbn
〈~σZan, ξan〉
〈Zan, ξan〉

· 〈~σZbn, ξbn〉
〈Zbn, ξbn〉

. (15)

The large-spin asymptotics of the correlation function (13) can be obtained via stationary
phase approximation [3, 6], which is given by (for details, see [4]):

Gabcdnm (α) = (γjo)
3(Rabcdnm (α) +O(γ)) (16)

with

Rabcdnm =
1

γ3j3
o

∑
p<q,r<s

Q−1
(pq)(rs)

∂qabn
∂jpq

∂qcdm
∂jrs

(17)

and

Q(ab)(cd) = − γα(ab)(cd)√
(jo)ab

√
(jo)cd

+ S
′′
Regge. (18)

If we take the classical limit, introduced in [3], where the Barbero-Immirzi parameter is taken
to zero γ → 0, and the spin of the boundary state is taken to infinity j → ∞, keeping the size
of the quantum geometry A ∼ γj finite and fixed, the two-point function (16) we obtain exactly
matches the one obtained from Lorentzian Regge calculus [9].

Deriving the LQG correlation function at the level of a single spin foam vertex is certainly
only a first step. Within the setting of a vertex expansion, an analysis of the LQG correlation
function for an arbitrary number of spinfoam vertices is needed. It would be interesting to
investigate the contribution of the γ-term to correlation functions when more than a single spin
foam vertex is considered.
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