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Summary. - In this note the theory of Free Electron Laser (FEL) 

Supermodes is extended to cover particle distributions with a cor- 

relation between energy and longitudinal position in a gaussian 

bunch. This extension is important for FEL’s in storage rings, 

because wake forces stemming from discontinuities in the vacuum 

chamber as well as the FEL process itself give rise to such correla- 

tions. 

PACS 42.6O.He - Optical problems related to properties and inter- 

actions of laser beams. 

1. - Introduction 

The longitudinal phase space of an electron bunch in a storage ring is 

usually described by the bunch length c, and the energy spread cr,. The equi- 

librium values of these quantities are determined by a balance of damping 

and quantum excitation stemming from the emission of synchrotron radia- 

tion. However, the presence of longitudinal wake fields lead to a correlation- 

between energy and position in the bunch, because the trailing particles loose 

energy due to the wake field the leading particles produce. 

Submitted to I1 Nuovo Cimento B 

*This work was supported in part by Department of Energy contract DE-AC03-76SF00515 
and by Bundesministerium fur Forschung und Technologie contract 05 AX 334 B2. 



In order to set up a self-consistent simulation of the coupled system of os- 

cillator FEL and storage ring, an extension of the theory of FEL supermodes 

to encompass electron bunches with energy-position correlation is needed. 

This extension is presented in this paper. The description of the full coupled 

system and the simulation results are the subject of a forthcoming paper. 

This paper is organized as follows. First, after a brief overview over the 

nature of the oscillator FEL process we will set up an eigenvalue equation 

that describes the spatial profiles of the supermodes. The next section is 

devoted to the solution of this equation employing a new technique using an 

ansatz of a distorted harmonic oscillator eigenfunctions and solving for a set 

of coefficients. In the final section physically relevant quantities, such as the 

gain, the length of the light pulse and the bandwidth are calculated. The 

proof of the biorthogonality of the supermodes with correlation is deferred 

to the appendix. 

2. - The Eigenvalue Equation 

In a FEL a bunched electron beam is passed through an undulator mag- 

net which forces the electrons on a transversely sinusoidal path. In this 

way they can exchange energy with the fields of a copropagating electromag- 

netic wave. In an amplifier configuration this wave is externally provided, 

typically by a laser. In an oscillator configuration the spontaneously emit- 

ted synchrotron radiation in the undulator is fed back by mirrors. Thus it 

can interact with subsequent electron bunches or with the same bunch in a 

circular accelerator. 

The optical resonator admits a large number of longitudinal modes. Their 

spacing is determined by the distance between the mirrors, typically of a few 

meters, leading to a frequency spacing of a few 10’s of MHz. The FEL 

process couples the modes by an active mode locking mechanism and the 

modes interfere in such a way as to create light pulses that bounce between 

the mirrors. These light pulses are usually called Supermodes. 
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. 
The number of coupled modes is mainly determined by the bunch length 

of the electron beam, because the bunch length determines the frequency 

content of the bunch spectrum. For a cm long bunch the frequency spectrum 

extends to a few GHz. The frequencies in the bunch spectrum are then used 

to bridge the gap between different resonator modes and couple them. An 

order of magnitude estimate of the number of coupled modes thus leads to 

lo2 to 103. 

The evolution equations for this large number of modes for a small signal- 

small gain oscillator FEL- were derived in ref. [l]. Under the assumption of 

narrow mode spacing, the spatial fourier transform of these evolution equa- 

- tions led to a partial integro-differential equation for the longitudinal electric 

- _ field profile E(z, t) derived in ref. [2] as 

(1)2T, .yp + [YT + igoq v. - 2nN)] E(z, t) + A@, w 

= -igo s s,” dy y E(z + Y, t) l:” dzo Jm de e4riNey’Af (Zo,E) . 
c -co 

where the temporal evolution is given on a time scale long compared to the 

cavity round trip time T,. In eq. (1) the foll owing abbreviations, consistent 

with ref. [a], are introduced 

go = 27r 
Ip L,X IC2 --- 

I, IO CL (1 + K’2)3/2 
(2N)2 . 

Here 0 describes the detuning between the cavity round trip time and the 

recurrence time of the electron bunches and go is the gain coefficient (here 

written for a helical wiggler). The other symbols are explained in Table 1. 

f (20, E) is the gaussian electron distribution function. It can be parametrized 

by its correlation matrix aij with i and j being .z or E and can be written as 

f(z0,&> = 2ad1G exp [ -& ~0” + 5 ZO(& - CO) - & (E - i0J2] 

(3) 
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.- with det g = 0,2a,2 -a&. Here aE is the relative energy spread, gZ is the bunch 

length and a,, describes the correlation between energy and position in the 

bunch. ~0 describes the relative energy offset between the resonance energy 

of the FEL and the electron energy. 

In order to simplify this integro-differential equation we follow the strat- 

egy outlined in ref. [2] and note that the gaussian integral over E can be 

done immediately. Assuming that the light pulse is only situated around the 

peak of the electron distribution, because the gain is maximum there, we 

can expand the integrand of the zo-integral in zo/a, and then evaluate the 

zo-integral. Upon expanding the electric field up to second order in the small 

quantity y = xA and keeping only terms up to second order in pC = A/a, 

and Z/B, we can rewrite eq. (1) as an eigenvalue equation 

with 
no = 2ip,rpL,G4 

RI = -Gl - 7r2p;G4 

a;22 = p;G4 

‘3 = -k$ (G2 + r2pzGs) + i’lrp,G3 

Here we have introduced scaled variables 3 = Z/CT,, T = got/2Tc and 

redefined the electric field as E(z) = 4(Z) exp [T (X - iO(vo - 27rN))] where 

X is the complex gain coefficient. Its real part determines the growth rate of 

the electric field and its imaginary part the phase shift introduced by the FEL 

interaction. p-lE = 4Na, parametrizes the energy spread and pS = 4Na,,/a, 

parametrizes the correlation between position and energy in the bunch. 
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PD=&FZ is introduced to facilitate the writing. The functions Gi(vn, PD) 

are given by the following expressions. 

G&o,PD) = - g G&'o&D) 
0 

where w(z) is the complex error function [3]. Note that all functions Gi 

can be expressed in terms of complex error functions and derivatives thereof. 

This makes their numerical evaluation very fast. We have introduced the 

adimensional detuning ~0 = 47rNeo. 

The results given in eq. (4) and eq. (5) differ from those in ref. [2] in three 

ways. First, terms proportional to /ls appear in the definition of the Ri, in 

particular a new coefficient Ro appears which was previously zero. Second, a 

new G-function, namely G5 is introduced. A plot of the real and imaginary 

part of the new function Gs(~s, PLg) for PD = 0 is shown in Fig. 1. Plots of 

G,..., G4 can be found in ref. [a]. Third, all G-functions now depend on 

PD rather than on ,Y~. Note that in the limit gze + 0, or equivalently, ,!L$ -+ 0 

eqs. (4) and (5) reduce to those in ref. [a]. 

Equation 4 describes the influence of the electron bunch represented by 

the quantities ~0, p,, ,CL~ and ps on the spatial profile of the supermodes. The 

inclusion of the correlation ,u, made it slightly more complicated but the 
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general structure of the equation remains the same already encountered in 

ref. [a]. 

The next section is devoted to the solution of eq. (4) using a new tech- 

nique. 

3. - The Solution 
-- 

In ref. [2] an equation similar to eq. (4) was solved using algebraic tech- 

niques. Here we will employ a more heuristic approach that nevertheless 

reproduces the results from ref. [2] in the limit pS -+ 0. The new approach 

is based on the observation that the right hand side of eq. (4) looks like the 

-.-t 

- 
Hamilton operator of a “torn and twisted, scaled and shifted” harmonic oscil- .- - . 
lator. The eigenfunctions of a harmonic oscillator are known to be gaussians 

with Hermite polynomials as forefactors [3]. Therefore, we use the ansatz 

(6) q&&q = H, (u(Z + b)) e-c(i+d)2 . - 

We substitute this ansatz in eq. (4), and use the following relations among the 

Hermite polynomials in order to express derivatives and powers of Hermite 

polynomials by sums of Hermite polynomials. 

I-i,(x) = 2nH,-&z9 

fL(z) = 2x%(4 - K+l(q 

tin(x) = 4n(n - 1) IIn-2(x) 

(7) f&(2$ = (422 - 24 K(lL’> - 23z fL+1(~) 

zH,(z) = ; Hn+l(IL’) + nKl-1(4 

x2Hn(x) = i f&+2(z) + (n + i) K(z) + n(n - 1) ffn-2(x) 

where dots denote differentiation with respect to 2. Finally, we compare co- 

efficients before the Hermite polynomials to obtain a coupled set of equations 
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for the unknowns a, b, c, d, A,. The solution of this set of equations leads after 

some tedious algebra to the result [4] 

pcGz - 2i7rp.,O + 2dm [(G3 - 0) + i F ap,Gs] 
- 

.- _~ - . 

Here, a, b, c and d describe the eigenfunctions of eq. (4) by virtue of eq. (6) 

and A, is the complex gain coefficient that determines the growth rate of 

the nth supermode. The influence of the electron distribution function on 

the supermodes is buried in the dependence of eqs. (8) on the parameters 

~0, I-&, pD and l-k. In particular, note that the functions Gi depend explicitely 

on u. and PD. 

The growth rate Re[X,] h s ows a characteristic quadratic dependence on 

the cavity detuning 0, already reported in refs. [a]. This is shown in Fig. 2 

where Re[Xo] is plotted as a function of 0 in the range 0 5 0 < 1 for pe = 0.5, 

p-1, = 0.2 and pC = 5 x 10m3. Re[X 0 assumes its maximum value for a non zero ] 

0 in order to compensate for the lethargic effect [2] of the FEL interaction. 
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The dependence of the growth rate on the index n is weak, because n enters 

only to order pC in A,. 

The maximum growth rate can be found analytically by differentiating 

the last of equations 8 with respect to 0. For the maximum we obtain 

(9) 0 max = Re 
G3 + +wp&‘5 - W&/G)/2 

1+ ~2p:G4/G~ 1 . 

This optimum resonator detuning is related to the symmetry properties of 

the supermodes. In fact, from eq. (6) we see that we have &(-(22 + b)) = 

(-l)“q@+b) f i we require b = d. By virtue of eqs. (8) this can be rewritten 

as 2fi;21S24 = OoOs, which-reduces after some manipulations to eq. (9). This 

fact leads us to the conclusion that the symmetric supermodes have the 

largest growth rate. 

Fig. 3 shows the effect of pS on the growth rate Re[Xo] of the fundamen- 

tal supermode. Here u. and the cavity detuning 0 are always adjusted to 

obtain maximum growth rate. Re[X 0 is almost independent of pu,, however, ] 

it shows a minimum for p-1, = 0 and slightly increases for increasing ]ps 1, be- 

cause pD = sz” ,u, - ,us is red. uced and PD is proportional to the longitudinal 

emittance d=. Increasing ]pS] therefore reduces the randomness of the 

electron distribution and consquently increases the gain. 

Having determined the spatial field profile and the gain of the supermodes 

we will calculate the physically relevant quantities, namely the length and 

the spectral bandwidth of the light pulse in the next section. 

4. - Spatial and Spectral Characteristics of the 

Fundamental Supermode 

The spatial and spectral characteristics of the fundamental supermode $0 

which has, as is apparent from the last of eqs. (8), the largest growth rate can 

be determined from the spatial and spectral energy distribution functions. 

The spatial energy distribution for the fundamental supermode is given by 
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where the asterisk denotes complex conjugate. The physical relevant quan- 

tities are < Z > and 6-2 =< .Z2 > - < Z >2 where the acute brackets denote 

averaging with respect to S(Z). All needed integrals can be calculated from 

the generating function 

(11) I,(B) = LIdi c+(Z) d*(Z) eBt 

by partial differentiation -with respect to B. This leads to the longitudinal 

displacement of the light pulse relative to the maximum of the electron dis- 

tribution of < 2 >= -Re[cd]/Re[c] and the length of the lightpulse (both 

quantities are given in units of a,) l 

Upon fourier transforming the spatial profile of the electric field and 

utilizing the fact that the longitudinal resonator modes are densely spaced 

we can construct the spectral density function. From this the bandwidth ZrE 

is calculated. We obtain 

(13) z = Rel;,cl = /Lu, IGdG4I + 2apsIm[~G1/G4] + T~,LL~ 
me r@m . 

sV is the bandwidth in the normalized units and is related to the physical 

bandwidth ~Iwlw by nw/w = G,/27rN. 

Fig. 4 shows the length of the light pulse in units of the electron bunch 

length uZ as a function of p,. Clearly the effect of pL, is weak and symmetric. 

The dependence of the bandwidth 6, is shown in Fig. 5. Here the influence 

of pu, is also weak but an asymmetry shows up which can be accounted for 

by the term linear in p3 in the expression for eV, 



5. - Conclusions 

In this note we calculated the influence of a gaussian bunch with energy- 

position correlation on FEL supermodes using a new technique. The tech- 

nique is based on the observation that the right-hand side of eq. (4) is 

quadratic in ,Z and d/d.Z and therefore suggests an ansatz using harmonic 

oscillator eigenfunctions. The general result was then used to determine the 

gain, spatial and spectral characteristics of the fundamental supermode. The 

influence of the correlation, parametrized by p, = 4Na,,/a, was shown to 

be weak. 
,.-C 

These results developed in this paper can now be used to investigate the 

output characteristics of a FEL in a storage ring. For a full self-consistent .- _ . 
simulation of the coupled system of FEL and storage ring the effect of the 

light pulse on the electron bunch has to be investigated. This undertaking 

_ will be the topic of a forthcoming paper. 

In ref. [5] it was shown that the eigenfunctions of a “Hamilton” operator 

similar to the right hand side of eq. (4) are orthogonal to those of the adjoint 

operator Ht and thus form a biorthogonal set. We will complement the above 

analysis and prove in the appendix that this is still true for the general case 

given by eq. (4). 
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Appendix: Supermode Biorthogonality 

In this appendix we will investigate the mathematical properties of the 

Hamiltonian for the supermodes, defined by the right-hand side of eq. (4) 

more closely. To exhibit its group-theoretical properties it can be written as 

-- (14) H = i-& + R1i+ + i-&i- + C&i+ + R& + f&i . 

Here the &‘s and 2’s are defined by 

(15) 

ii+ = 

i = 

i, = 

I, = 

i- = 

z” 

d 
3.2 

a 
( ) 

1+ 25; = i (C+C?- + CL?,) 

1 1 - ,g2 = 2 z 2+&+ 

ldi l,, 
- - = - 
2 d.22 2 

a-a- 
- 

The i’s obey the commutation relations of SU(1,l) [6] 

[i+,i-] = -26, 

(16) [ 1 f(), i, = f, 
[ 1 &k = -i- 

and the 6’s obey the usual harmonic oscillator commutation relation 

(17) [ii-, ii+] = i . 
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From eqs. (15) and (16) follows in a straight forward fashion that 

. [ I 1 
/$-J,ti+ = - h+ 

2 

[ I 
i,,;- = -1 ii 

2 

(18) [i+,ci+] = 0 
.- [i+,&] = -i?i+ 

[L$-] = 0 

[i-,6+] = c?L 

.- - . To investigate the spectrum of H we have to determine the adjoint operators 

of the i’s and 2’s with respect to the scalar product 

- (19) 

where the asterisk denotes the complex conjugate. With the aid of some 

partial integrations the following relations immediately follow 

;It_ = --ii- ) a+ -+ =;+ 

g = -i. 7 ii: = i, 7 it = L 

where the dagger denotes adjoint operators. Now we are in a position to 

calculate the adjoint of the Hamiltonian H 

If we require that H is hermitian it has to fulfill H = Ht. This poses the 

following constraints on the coefficients 0; 

-.-C 

- 
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Obviously we have to require that Ro and a;24 are purely imaginary and the 

others are real. Reexpressing the R; by the Gj-functions we can approxi- 

mately fulfill these requirements if we choose ~0 = 2.6 where the G-functions 

are almost real [2] and setting the resonator detuning 0 to the value given by 

eq. (9). Only under these circumstance can we expect “almost orthogonal” 

eigenfunctions from the “almost hermitian” operator. 

If we require that H is normal, i.e. it commutes with its adjoint we have 

to check under what conditions the commutator [H, Ht] vanishes. Using the 

definition of the adjoint and the commutation relations we obtain 

[K H+] = ( Roy + fgh) I, - (aJq + qp,) i- - 2(R& - q-i?,) iTo 

+ [; (Rofq + Q&%3) + (R,R1; + !-23-l,)] ?A+ 

+ [; poq - qp4) + (R,fq - cq-l,)] ii- 

(23) + (wq + np,) i 
The constraints for the R’s are then given by 

(24) 

Re[RoRI] = 0 

Re[RoR?J = 0 

Irn[flifi~] = 0 

Re[2RrRi + fioCJ = 0 

Im[2R& + fi,nf] = 0 

Re [fl&$ = 0 . 
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. . 
These conditions are not generally fulfilled but can approximately be fulfilled 

under the same conditions stated above. We conclude that the Hamiltonian 

is neither normal nor hermitian and in general we cannot expect anything 

special about the eigenfunctions of H or Ht. However, in ref. 6 it is shown 

that the eigenfunctions of a reduced Hamiltonian H (the terms with &o and 
. a+ are missing) are biorthogonal to an adjoint set of eigenfunctions of the 

adjoint Hamiltonian Ht. We will prove this statement for the full Hamiltonian 

H. The eigenfunctions of H are given by eq. (6). Using the same technique 

we obtain for the eigenfunctions of the adjoint operator Ht 

(25) q&(.2) = H&(,5 + 8)) ,F”(“+~)~ 
- 

.- . . where G, b, C, d are now given by 

(26) ifi2 =&--m 
2 

6 aqn; - (27) R;;R1; = -2 

P2 0 7 4R*R* 12 

For completeness we add that the eigenvalues of the adjoint operator 1, are 

given by 1, = XL. To prove the biorthogonality we have to show 

Using the generating function for the Hermite polynomials [3] 

(31) e-s2+2sx = c H,(x) 5 
n=O 
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we calculate the expression 

J O” = d,5 e -s2+2sa(z+b) e-t2+2ta(2+b) e-c(z+d)2--C*(z+P)2 -03 
-- 

fi = - exp 
a 

2st - 5 (d - c?+)~ + 24s + t) II 
(32) = $f exp noa -2%fl4 

0; - 4filf& 

= 
- 

.- 

- where we had calculated b - (cd + E*~*)/cL” = 0. Comparing the coefficients 

in front of (sn/n!)(tm/m!) we. obtain our final result 

This completes the proof. Note, that the exponential on the right hand side 

vanishes if we have R&s = 2!$f14. Th’ IS is exactly the condition for optimum 

detuning eq. (9) or highest symmetry of the supermodes. The relation among 

these conditions has to be investigated more closely in the future. 

-.-C 

- 
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Figure Captions 
. . 

1. G5( vo, PD ~= 0) (real=solid, imaginary=dashed). 

2. Growth rate Re[X ] 0 as a function of the resonator detuning 0 in the 

range 0 I 0 F 1 for p-LE = 0.5, ps = 0.2 and pC = 5 x 10T3. 

-- 3. Growth rate Re[X ] 0 as a function of pS in the range -pu, 5 pu, 5 pE for 

p-LE = 0.5 and pL, = 5 x 10m3. 

- 

4. The length of the laser pulse 5~ in units of the electron bunch length 

as a function of ps in the range -pu, < pL, < p.E for ,xC = 0.5 and 

pc = 5 x 10-3. 

5. The bandwidth of the laser pulse in units of 1/27rN as a function of ,CL~ 

in the range -1~~ 5 ps < pL, for II, = 0.5 and pC = 5 x 10m3. 
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TABLE I. - List of symbols used 

N 

L 
L, = Nl, 

TC 
L, = Tc/2 c 

YT 
co 
0, 
0; 

022 
ST 

Ii-’ 
A = NX 

x 
wo = 2nc/X 
u. = 47rN~~ 

PL = A/L, 

pc = A/a, 

pc = 4Na, 
ps = ~NG,/G 

PD=&FZ 

CL 

IP 

IO 

number of wiggles 
wiggle period 
length of wiggler 
optical cavity round trip time 
distance between mirrors 
losses in the optical cavity 
relative energy offset 
relative energy spread 
bunch length 
energy-position correlation 
difference between cavity round trip time 
and recurrence time of the electron bunch 
rms wiggler parameter 
slippage between the light and the electrons 
laser wavelength 
laser frequency 
adimensional detuning 
mode spacing parameter 
mode coupling parameter 
normalized energy spread 
normalized energy position correlation 
measure of the longitudinal emittance 
transverse cross section of the laser mode 
peak electron current 
Al&n current 
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