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Abstract

In this thesis, we address the issue of gravitational collapse in electromag-

netic theory. For this purpose, we adopt two approaches one by assuming

charged perfect fluid in the interior of a star and another by studying the

dynamics of thin shell of matter on the surface of a charged star. The

cylindrically symmetric charged perfect fluid collapse is explored by assum-

ing that charged perfect fluid is moving along geodesics in the interior of

cylinder. In this case, the analytic solution of the Einstein-Maxwell field

equations represents gravitational collapse. The end state of collapse is

found to be conical singularity.

We formulate general dynamical equations using Israel thin shell formal-

ism in charged background which helps to investigate gravitational collapse

of scalar field and polytropic matter thin shell. In massless case, we find

that scalar shell either expands to infinity or collapses to a point forming

a curvature singularity. Also, the massive scalar field shell can exhibit the

bouncing behavior. It is found that expanding and collapsing polytropic

matter as well as perfect fluid shell comes to rest, then re-expands to infin-

ity or re-collapses to a point. We also discuss the polytropic matter collapse

in non-commutative geometry. The non-commutative parameter stops the

shell to expand or collapse again, so there occurs a singularity at non-zero

value of shell radius.

The charged perfect fluid collapse with positive cosmological constant

is investigated in Friedmann and 5D Tolman-Bondi models. We find mar-

ginally bound solution for both models and non-marginally bound solution

for 5D model. Also, the formation of apparent horizons is discussed. The

x



xi

end state of charged perfect fluid gravitational collapse in both models has

been found as a black hole.

Finally, we discuss phantom energy accretion onto a 5D charged black

hole. It is found that if the charge of black hole is larger than its mass,

then a black hole is converted into naked singularity. The critical accretion

points are investigated. We conclude that when phantom energy accretes

onto 5D charged black hole then there appears a mass to charge ratio, the

lower limit of this ratio represents a regular as well as extremal 5D charged

black holes, while upper limit represents a naked singularity.
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Introduction

According to the predictions of modern physics, gravity is the weakest force

among four fundamental forces. It plays a vital role for studying the large-

scale structures due to its long-range nature as compared to other forces.

It helps to study the structure formation of galaxies, BHs and inflation of

the universe. General Relativity is the best theory for the description of

gravitational force in terms of geometry of manifold and its matter contents.

It also explains many astrophysical phenomena such as stellar evolution,

gravitational collapse and big bang.

Gravitational collapse is defined as the astronomical phenomenon in

which a star with mass much larger than the solar mass contracts to a

point under the effect of its own gravity. It occurs when internal nu-

clear fuel of a massive star fails to supply high pressure to balance gravity.

According to GR, gravitational collapse of massive objects (having mass

= 106M¯− 108M¯, where M¯ is the mass of the Sun) results to the forma-

tion of spacetime singularities in our universe [1]. One of the most debatable

problems in GR is the end state of massive star, which undergoes to gravita-

tional collapse after exhausting its nuclear fuel. What would be the nature

of singularity forming due to the gravitational collapse? To answer this

question, Penrose [2] proposed a hypothesis known as Cosmic Censorship

Hypothesis, which states that the end state of gravitational collapse must

1
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be a BH under some realistic conditions.

Despite of various attempts over the past four decades, this problem

remained unsolved at the foundation of BH physics. By the failure of nu-

merous attempts to establish the CCH, it seems natural to ask what is really

the nature of spacetime singularity? This leads to study the dynamics of

gravitational collapse in more extensive way in the framework of GR. It is

urged that the final fate of the gravitational collapse would be BH or NS

depending upon the nature of initial data of the collapse. The existence of

NS in gravitational collapse would be predicted if there are some families of

timelike geodesics which end at singularity in the past. On the other hand,

no such families of geodesics originate from the singularity when end state

of the gravitational collapse is BH [3]. In this case, the spacetime singu-

larity would be hidden by the event horizon of gravity, while for NS there

is a causal correspondence between the region of spacetime singularity and

external observers.

Recently, Virbhadra et al. [4] investigated that nature of singularity

in relativistic gravitational collapse can be determined by taking into ac-

count the concept of gravitational lensing. Virbhadra and Ellis [5] studied

Schwarzschild BH lensing and found that the relativistic images from BH

can confirm Schwarzschild spacetime in the vicinity of event horizon. The

same authors [6] observed the lensing phenomenon by a NS and conjectured

that a weak NS is covered by at least one photon sphere [7], while strong

NS cannot be covered by any photon sphere.

Claudel et al. [8] examined the existence of photon sphere in several

astrophysical objects. On the basis of this fact, they remarked that if energy

conditions are valid for a BH geometry then such a BH is always covered by
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at least one photon sphere. Virbhadra and Keeton [9] estimated the time

delay in gravitational lensing by a BH as well as NS and predicted that

weak CCH can be verified in the framework of GR. Also, Virbhadra [10]

pointed out that NS originating in spherically symmetric null dust Vaidya

collapse may validate the Seifert’s conjecture [11]. The same author [12]

presented an improved version of CCH on the basis of gravitational lensing

phenomenon.

The study of gravitational collapse in GR started from the pioneer work

of Oppenheimer and Snyder [13]. They investigated that spherically sym-

metric homogenous dust collapse leads to the formation of BH. Initially, it

was urged that homogeneity and spherical symmetry of the collapsing model

are responsible for the formation of BH. However, Lamitre-Tolman-Bondi

solutions [14]-[16] with inhomogeneous dust implied that collapse of such

matter would end as shell crossing and shell focusing singularities. Later on,

many authors [17]-[19] proved that shell crossing singularity is naked, while

shell focusing singularity might represent BH, depending on the choice of

initial data of collapse. Hence, it was concluded that homogeneity of the

collapsing model is not a sufficient condition for the formation of BH.

In order to generalize the collapsing mater, it becomes necessary to study

the collapse of matter with non-vanishing pressure. Misner and Sharp [20]

studied perfect fluid collapse and found BH as the end state of gravitational

collapse. Vaidya [21] and Santos [22] studied null dust collapse by taking

the collapsing model as a radiating star. Ori and Piran [23]-[25] investigated

the self-similar spherically symmetric perfect fluid collapse by assuming an

EoS p = kρ. They converted the field equations into ordinary differential

equations which were solved numerically by including radial null geodesic
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equations. They showed that there are solutions which represent NS as well

as BH for 0 < k 6 0.4. This problem was treated analytically by Joshi and

Dwivedi [26] and found that there exist only NS solutions in this case.

Cosmological constant (Λ) is the form of DE with EoS parameter, ω =

−1 [27]. Its presence in the field equations may alter the generic properties

of spacetime. There has been a renowned interest to study the gravitational

collapse with non-vanishing cosmological constant. Markovic and Shapiro

[28] investigated homogenous dust collapse with positive cosmological con-

stant. Khan and Qadir [29] discussed the singularity free model of grav-

itational collapse with positive and negative cosmological constant. Lake

[30] studied spherically symmetric dust collapse with positive and negative

cosmological constant.

Ghosh and Deshkar [31] explored the inhomogeneous higher dimensional

spherically symmetric dust collapse with cosmological constant and found

BH as end state. Sharif and Ahmad [32] discussed apparent horizons and

their physical significance for perfect fluid spherical collapse with positive

cosmological constant. They found that positive cosmological constant

slows down the rate of gravitational collapse. Debnath et al. [33] studied

thermodynamical behavior of collapsing non-adiabatic fluid in the presence

of positive cosmological constant. They remarked that thermodynamical

relations are independent of cosmological constant.

The current observational evidences of gravitational waves through ad-

vance detectors such as LIGO [34], VIRGO [35] and GEO [36] have increased

the interest to study the gravitational collapse in cylindrically symmetric

systems. The spherical systems are simple and do not provide non-trivial

examples of NS in the generic gravitational collapse. Therefore, the study of
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the NS formation in cylindrical collapse is much important as compared to

spherical systems. Some numerical studies [37]-[39] provide the generation

of gravitational waves from cylindrical collapse. These results have been

extended analytically by Nakao and Morisawa [40] to study gravitational

waves from cylindrical gravitational collapse.

There are also some developments [41]-[47] related to cylindrical col-

lapse, which has improved our understanding about its dynamics. Nolan

[48] examined that cylindrical null dust collapse leads to NS. Nakao and

Morisawa [49] investigated the gravitational collapse of a cylindrical perfect

fluid thick shell. Sharif and Ahmad [50] extended this work for two per-

fect fluid cylindrical collapse and discussed the generation of gravitational

waves. Di Prisco et al. [51] studied the shearfree gravitational collapse of

the anisotropic fluid in the cylindrically symmetric spacetime.

Israel [52] introduced thin shell formalism to obtain the exact solution

of dynamical systems in GR. The same author [53] also studied dynamics

of dust shell in vacuum. This formalism was extended to charged thin shell

by De La Cruz and Israel [54]. Later on, the gravitational instability and

collapse of charged perfect fluid thin shell were explored by Kuchar [55] and

Chase [56]. Boulware [57] examined the dynamical behavior of charged thin

shell and showed that a physical matter collapse may not end as NS. The

dynamics of thin matter shell with polytropic EoS was studied by Kijowski

and Magli [58]. Pereira and Wang [59] examined cylindrical matter shell

composed of dust by using thin shell formalism. Sharif and his collaborators

[60]-[62] discussed the dynamics of collapsing perfect fluid thin shell.
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Kaluza and Klein [63]-[66] introduced the idea of extension of four di-

mensions to five dimensions (5D) for the unification of gravitation and elec-

tromagnetism. The 5D solutions are much interesting in GR because 10D

and 11D solutions in higher dimensional theories of gravity recover 5D so-

lutions by reducing dimensions [67]. The nature of spacetime singularity in

5D is one of the well motivated problems in GR. Ilah and Lemos [68] ex-

tended the Oppenheimer and Snyder collapse model to higher dimensions.

Sil and Chatterjee [69] proved that for 5D inhomogeneous TB collapsing

model, there exist a minimum critical value of inhomogeneity parameter

for which solutions represent BH.

Ghosh and Saraykar [70] investigated gravitational collapse in 5D Vaidya

geometry and found curvature singularity. Ghosh et al. [71] studied 5D dust

collapse in TB spacetime with positive cosmological constant. Sharif and

Ahmad [72, 73] generalized this for perfect fluid with positive cosmological

constant. Jhingan and Ghosh [74] studied dust collapse in 5D Einstein-

Gauss-Bonnet gravity. They found counter examples to CCH and hoop

conjecture. Maeda [75] examined the effects of Gauss-Bonnet term on the

nature of spacetime singularity in 5D dust collapse. Banerjee et al. [76]

showed that for 5D marginally bound collapse, there appears NS which

might be covered by increasing the dimensions of the spacetime.

Wheeler and his collaborator [77, 78] investigated the scalar field in GR.

Although, there are no observational evidences about the existence of such

fields, but theoretically scalar field models are much important in inflation-

ary universe models. It has been found that when such a model collapses,

the end state is the primordial BH [79]. In this regard, the study of massive

scalar field collapse is strongly motivated in GR. Kaup [80] formulated the
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first complex massive scalar field model. Ruffini and Bonazzola [81] dis-

cussed the equilibrium conditions for boson stars (compact objects that are

composed of scalar fields) models. Recently, a lot of work has been done

to investigate the nature of spacetime singularity for massless scalar field

[82]-[88].

Goncalves [89] examined the dynamics of collapsing massive scalar field

in Einstein de-Sitter background. Chambers et al. [90] discussed the crit-

ical behavior of the scalar field during spherically symmetric gravitational

collapse. Virbhadra et al. [91] found that there exists a class of static

scalar field solutions which satisfies the energy conditions and represent

NS. Goswami and Joshi [92] derived a class of scalar field solutions which

lead to violation of CCH. Bhatachraya et al. [93] formulated some condi-

tions under which a collapsing scalar field undergoes to sudden dispersal.

Núñez et al. [94] discussed the dynamics of massless and massive scalar

field thin shell in Schwarzschild geometry.

In classical GR, the curvature singularity is such a point where physical

description of the gravitational field is impossible. This problem can be

removed in GR by taking into account the quantum mechanical treatment

to the standard formulation of GR. Motivated by such reasoning, some BH

solutions in NC field theory have been derived. In these solutions, curvature

singularity at origin is removed by de-Sitter core which is introduced due to

NC nature of spacetime [95]. Nicolini and his collaborators [96]-[98] devel-

oped NC version of all the well-known BHs (i.e., Schwarzschild, RN, Kerr

and Kerr-Newmann BHs) and discussed their thermodynamical behavior.

Bastos et al. [99, 100] explored the singularity problem and discussed some

NC BHs. Recently, Bartolami and Zarro [101] have investigated that NC
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factor affects the matter dispersion relation and EoS. Motivated by such

NC correction to BHs, Oh and Park [102] formulated the thin shell collapse

model in NC Schwarzschild geometry. They investigated the effects of NC

parameter on the singularity formation.

It is well-known that when phantom energy from an external source

accretes onto BH, then mass of BH decreases such that it eventually at-

tains extremal state and finally converts to NS. During accretion process,

charge and angular momentum remain unchanged. In Newtonian theory,

the problem of accretion of matter onto the compact object was formu-

lated by Bondi [103]. Michel [104] derived the relativistic formula for the

accretion of perfect fluid onto the Schwarzschild BH. Sun [105] discussed

phantom energy accretion onto BH in the cyclic universe.

Babichev et al. [106] investigated that phantom accretion onto a BH

can decrease its mass if the back reaction effects of accreting phantom fluid

on geometry of BH are neglected. Jamil et al. [107] discussed the critical

accretion on the RN BH. They determined a mass to charge ratio beyond

which a BH can be converted into a NS. The same conclusion was drawn

by Babichev et al. [108], by using the linear EoS and Chaplygin gas EoS

for RN BH. Madrid and Gonzalez [109] showed that accreting phantom

energy onto Kerr BH can convert it into a NS. Sharif and Abbas [110]-[112]

discussed the phantom energy accretion onto a class of BHs and found that

CCH is valid for phantom accretion onto a stringy charged BH.

The implementation of electromagnetic field in cosmological and as-

trophysical processes is an attractive research area in theoretical physics.

Many investigations in this direction are devoted to understand the inter-

action between electromagnetic and gravitational fields. However, little is
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known about the effects of electromagnetic field on gravitational collapse of

massive objects. Thorne [113, 114] studied cylindrically symmetric gravi-

tational with magnetic field and concluded that magnetic field can prevent

the collapse of cylinder before singularity formation. Ardvan and Partovi

[115] investigated dust solution of the field equations with electromagnetic

field and found that the electrostatic force is balanced by gravitational force

during collapse of charged dust.

Stein-Schabes [116] investigated that charged matter collapse may pro-

duce NS instead of BH. Germani and Tsagas [117] discussed the collapse

of magnetized dust in TB model. Kouretsis and Tsagas [118] explored

the aspects of charged collapse and concluded that electromagnetic tension

acts against the gravitational collapse. Further, Tsagas and his collabo-

rators [119]-[130] have implemented electromagnetic field in many cosmo-

logical and astrophysical scenarios. Recently, Herrera and his collabora-

tors [131, 132] have discussed the role of electromagnetic field on structure

scalars and dynamics of self-gravitating objects. Sharif and Bhatti [133, 134]

have extended this work for cylindrical and plane symmetries.

In this thesis, we explore the issue of spherical and cylindrical gravita-

tional collapse in the context of electromagnetic theory. For this purpose,

we solve the Einstein-Maxwell field equations with perfect fluid in spher-

ical and cylindrical geometrises and use the Israel thin shell formalism in

spherical charged background. Moreover, we investigate the status of CCH

through the phantom energy accretion onto 5D charged BH. The thesis is

organized as follows:

• In chapter One, we briefly discuss basic concepts of electromagnetic

theory and gravitational collapse.
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• Chapter Two deals with the cylindrically symmetric charged perfect

fluid gravitational collapse. For the analytic solution of the field equa-

tions, we assume that the charged fluid is moving along the geodesics

(with constant velocity). The physical properties of solution repre-

sent gravitational collapse. Further, we match the interior charged

non-static solution to exterior charged static solution, leading to the

relationship between the quantities in two regions of the collapsing

cylindrical star.

• Chapter Three is devoted to discuss the thin shell collapse of scalar

field and polytropic matter in the charged background using the Israel

thin shell formalism. In this case, numerical solutions are presented to

discuss the motion of thin shell. Further, the effects of NC parameter

on the collapsing polytropic shell are investigated in detail. We find

that massless and massive scalar field thin shells exhibit expanding,

collapsing and oscillating behavior. In case of polytropic matter, thin

shell collapses to zero size and NC prevents the singularity formation

at zero radius.

• In chapter Four, we discuss spherically symmetric charged perfect

fluid collapse in Friedmann universe model and generalized 5D model.

Using junction conditions, the solution of the Einstein-Maxwell equa-

tions is found with positive cosmological constant. The effects of

electromagnetic field on time formation of the horizons are explored.

In both models, we find BH as the end state of gravitational collapse.

• Phantom energy accretion onto 5D charged BH is presented in chapter

Five. In this case, we find that mass of BH decreases. Further, mass
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to charge ratio, critical accretion points and status of CCH have been

analyzed in detail.

• We conclude our results in chapter Six and also outline some future

research directions.



Chapter 1

Electromagnetic Theory and
Gravitational Collapse

This chapter contains a brief review of the basic concepts related to elec-

tromagnetic theory and gravitational collapse.

1.1 Charged Compact Stars in General Rel-

ativity

On the basis of Eddington theory [135] of gaseous stars, Rosseland [136]

investigated that a star might contain equal number of positive ions and

electrons. A large number of electrons (as compared to positive ions) due

to their higher kinetic energy run to escape from its surface. In this way,

a star would contain only positive ions. This escape of electrons from the

surface of star will continue until the electric field induced inside the star

prevents more electrons to escape from its surface. Later on, it was proved

that during this process, a star would attain electric charge approximately

100 Coulombs per solar mass [137]. However, for very dense objects, high

density and relativistic effects must be taken into account.

A star can experience relativistic effects in strong gravitational field and

12
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require more charge to attain the equilibrium position. For a dense compact

star (having mass greater than the solar mass), electric field will be more

stronger than the Sun. For example, for equal amount of charge on the

surfaces of the Sun and neutron star, electric field on the surface of neutron

star would be 109 times stronger than on the surface of the Sun [138].

Thus a small amount of charge on the compact stars would produce strong

electromagnetic field, which affects geometry of the star significantly. On

the basis of this fact, gravitational collapse of charged stars in GR deserve

more investigations.

1.2 The Maxwell Equations

The energy-momentum tensor for electromagnetic field is given [139] as

T (em)
µν =

1

4π
(−gδωFµδFνω +

1

4
gµνFδωF δω), (1.2.1)

where Fµν is the Maxwell field tensor defined as

Fµν = φν,µ − φµ,ν (1.2.2)

and φµ is the four potential. The time component of the four potential

gives electric scalar potential and spatial components yield magnetic vector

potential. The electromagnetic energy-momentum tensor in mixed form is

T (em)µ

ν =
1

4π
(−F µωFνω +

1

4
δµ
ν FδωF δω). (1.2.3)

Its trace is T (em) = 0 only in four-dimensional case, otherwise it will be

non-zero. This energy-momentum tensor does not obey conservation law

[140] as

T (em)µν

;ν = −F µνJν , (1.2.4)
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where Jν is the four current.

The components of the energy-momentum tensor can be obtained by

solving the Maxwell equations for background spacetime. In classical elec-

tromagnetic theory, there are four fundamental equations known as Maxwell

equations. We can write their differential form as follows [141]

∇.E =
ρe

ε0

, (1.2.5)

∇.B = 0, (1.2.6)

∇×E = −∂B

∂t
, (1.2.7)

∇×B = µ0J +
1

c2

∂E

∂t
. (1.2.8)

The quantities E, B, ρe, J, ε0 and µ0 represent electric field, magnetic field,

charge density, current density, permittivity and permeability respectively.

Moreover, magnetic field B and magnetic field intensity H are related by

B = µ0H. A comprehensive description of the Maxwell equations is as

follows:

• Equation (1.2.5) describes Gauss law of electricity which shows how

electric field diverges from electric charge.

• Equation (1.2.6) is a Gauss law of magnetism which states that there

are no isolated magnetic poles.

• Equation (1.2.7) gives Faraday law which describes that electric field

is produced by changing magnetic field.

• Ampere law (1.2.8) states that changing electric fields and electric

currents produce the circulating magnetic fields.
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In tensor formalism, the Maxwell equations can be written in the following

form [139]

F µν
;ν = 4πJµ, F[µν;λ] = 0. (1.2.9)

1.3 Einstein-Maxwell Field Equations

The Einstein-Maxwell field equations for a charged gravitating system are

Gµν = 8π(T (m)
µν + Tµν

(em)), (1.3.1)

where Gµν is the Einstein tensor, T
(m)
µν is the matter energy-momentum

tensor and Tµν
(em) is the electromagnetic energy-momentum tensor. Since

the derivation of the Einstein-Maxwell field equations, relativists have been

suggesting several models of charged gravitating objects by considering dif-

ferent matter sources along with electromagnetic field. These models can

explain the physical nature of massive objects like neutron star, BH, pulsar,

quark star and quasar. These dense objects can be classified in terms of

their masses as white dwarf (mass < 1.44M¯), quark star (2M¯ − 3M¯)

and neutron star (1.35M¯ − 2.1M¯) [142].

The classical solution of the Einstein-Maxwell field equations is the RN

solution, which describes exterior gravitational field of massive charged ob-

ject. It has two singularities at different radial positions other than cur-

vature singularity at the origin. For this reason, this solution describes a

bridge (known as wormhole) between two regions and electric flux crosses

the bridge. Graves and Brill [143] investigated that the region of minimum

radius (so called the ”throat” of wormhole) contracts to non-zero radius

and re-expands after some time due to electric field strength. Thus, unlike
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the Schwarzschild solution, no particle can hit the singularity at r = 0 in

RN solution.

These aspects of RN solution indicate that charge provides resistance

(repulsion) against the gravitational collapse. Thus charge prevents the

collapse of massive object to a singular point. This result was proved by

Bonnor [144] while studying the physical properties of charged dust solution.

He remarked that a charged dust ball with finite mass and small radius can

remain in equilibrium against gravity by electrostatic repulsion provided by

small amount of charge. This highly motivates to study the application of

the Einstein-Maxwell field equations in relativistic gravitational collapse of

the charged massive objects.

1.4 Spacetime Singularity

Spacetime singularity is one of the most important investigations of GR,

developed during the dynamical evolution of the matter field in a spacetime.

It is a point in spacetime where physical quantities such as energy density,

spacetime curvature etc. become infinite and the usual laws of physics

no longer hold. In general, singularities appear when solutions of the field

equations are derived by imposing a high degree of symmetry on spacetime.

It is of two types:

• Coordinate singularity;

• Essential or genuine singularity.

A singularity that occurs due to the bad choice of coordinates and can

be removed by the change of coordinates is called removable or coordinate

singularity. A singularity that cannot be removed is called essential or
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genuine singularity. The essential singularity can further be divided into

the following two types:

• Black hole;

• Naked singularity.

1.4.1 Black Hole

The region in spacetime where gravitational pull is so strong that even

light cannot escape from it is called black hole. The boundary of BH is

called event horizon. Black hole is formed when a massive star (& 10M¯)

undergoes to gravitational collapse and the resultant object has mass &

3.2M¯. Black holes are complete collapsed and dense objects which have

the following properties [3, 140]:

• The gravitational field of complete collapsed object is described by

BH. This field can be characterized by three parameters that are

mass M , charge Q and angular momentum Ma. The relationship

between angular momentum and magnetic moment for a rotating BH

is equivalent to that for electron.

• Black holes are surrounded by a surface, called event horizon, where

gravitational field is so powerful that particles and light rays that once

enter into the event horizon, can never escape and penetrate forever.

• At the end state of collapse, a genuine singularity of the gravitational

field is produced that lies inside the event horizon of BH.

• Being a dense state of matter, a BH is stable and can never be de-

stroyed by the external fields. Any form of matter entering from
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outside into the BH can change its mass, charge and angular momen-

tum.

• For all physical processes, the area of BH is non-decreasing. This

statement is similar to the statement of the second law of thermo-

dynamics, i.e., total entropy of all matter in the universe is non-

decreasing.

1.4.2 Naked singularity

A spacetime singularity that can be observed by a far away observer is

called naked singularity. This singularity is not covered by an event horizon

and hence can be observed directly. Naked singularity has the following

properties [145, 146]:

• A NS represents the formation of high curvature and strong gravity

regions.

• Naked singularity provides source of gravitational waves.

• The amount of energy released during the formation of NS is less than

the formation of BH, even collapsing stars have the same radius, mass

and size.

• The information about the physics of quantum gravity can be ob-

tained through the NS.

1.5 Cosmic Censorship Hypothesis

In 1969, Penrose [2] conjectured that the spacetime singularity (i.e., ultra

dense region) resulting from the gravitational collapse of the generic matter
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must be covered by an event horizon of gravity. In other words, gravitational

collapse must end in a BH. This is known as Cosmic Censorship Hypothesis.

However, there is no mathematical formulation for this hypotheis. It has

the following two versions:

• Weak Cosmic Censorship Hypothesis (WCCH);

• Strong Cosmic Censorship Hypothesis (SCCH).

According to WCCH, there are certain classes of singularities forming

at the end stage of gravitational collapse which are clothed by the event

horizon and cannot be observed by an observer at infinity. In other words,

the singularity may not be globally naked in gravitational collapse. The

SCCH states that singularity can never be a locally naked at the end state

of the collapse [145]. The mathematical conditions for the validity of two

versions are entirely different. There are some models of collapse for which

WCCH holds but SCCH is violated and vice versa.

1.6 Why Does Naked Singularity Form in

Gravitational Collapse?

It is natural to ask what are the conditions under which a dynamical gravi-

tational collapse ends as a NS. Matter is the only source of gravity in New-

tonian theory, while in GR in addition to matter there is another factor

known as spacetime curvature that plays vital role to determine the na-

ture of gravitational field. The inhomogeneity in energy density and shear

in matter distribution would delay the trapping of matter (as implied by

the field equations), which can escape away from singularity. This implies
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that the inhomogeneity in energy density creates path for matter to escape,

leading to the formation of NS rather than BH.

When the amount of energy density inhomogeneity is very small (below

a critical limit), a BH will form but for enough inhomogeneity, trapping of

matter is delayed and as a result gravitational collapse will end as a NS

[147]. Thus the presence of inhomogeneity is responsible for the formation

of NS. If the density profile of the collapsed model is homogenous then the

result would be a BH as in the case of Oppenheimer-Snyder model. Also,

the density inhomogeneity of the collapsing matter delays the formation of

horizons. If singularity forms earlier than horizons, the end state of collapse

would be a NS.

1.7 Shell Focusing and Shell Crossing Singu-

larities

The shell focusing singularities may occur when particles world-lines focus

inwards to a point at the center of the collapsing star. These singularities

may occur in TB spacetime where the family of radial null geodesics are

incomplete and singularity cannot be removed by the extension of space-

time. The shell crossing singularities may arise from the crushing of matter

shell of different radii around the center of spherical symmetry by forming

a surface at which there would occur the intersection of light rays. It has

been proved that such singularities can only occur when perfect fluid is

considered as collapsing matter in the TB model [148, 149]. The spacetime

can be extended through shell crossing singularities. The major property of

these singularities is that the trajectories of the particles cross each other
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at a single point.

1.8 Gravitational Strength of Singularity

The gravitational strength or strength of a singularity is a prominent feature

of a singularity. A singularity is said to be gravitationally strong if it crushes

or stretches to a zero volume of any massive object that falls on it. In case

of Schwarzschild solution, singularity at r = 0 is a strong singularity [150].

The radially in-falling object is stretched infinitely in radial direction and

is crushed to zero volume in tangential direction. On the other hand, a

singularity is known as weak singularity if any object falling on it cannot

be destroyed in this way.

The gravitational strength of a singularity is also directly related to the

co-dimension of singularity. For four-dimensional spherically, cylindrically

and plane symmetric spacetimes, there are point singularities, line singular-

ities and plane singularities of co-dimension three, two and one, respectively

[152]. It is well-known [153] that tidal forces for point singularities of co-

dimension three are strong enough, so these can crush an object (falling

onto singularities) to zero volume.

In GR, such singularities are clothed by event horizon. Also, tidal forces

for line singularity are sufficiently strong (but weak as compared to point

singularity) and can crush an object of finite size to zero volume (except

conical singularity which is a famous example of cosmic string). Such singu-

larities are naked if these are long and straight [154]. For plane singularities,

the tidal forces are much weaker as compared to point and line singularities,

so these cannot crush an object to a zero volume.
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1.9 Spacelike and Timelike Singularities

A geodesically incomplete spacetime has a spacelike singularity in a region

where timelike geodesics end. On the other hand, such spacetime has time-

like singularity where the spacelike geodesics end up [155]. A spacelike

singularity would protect CCH as such singularity guarantees the existence

of event horizons whereas timelike singularity implies the existence of NS

and hence violates CCH. It is well-known [1] that the Schwarzschild and

FRW solutions have a spacelike singularity, while RN solution has a timelike

singularity. The Kerr and Kerr-Newman metrics have also timelike nature,

implying that nature of singularity explicitly depends upon the charge and

rotation parameters of the collapsed object. This is an open issue to de-

termine whether timelike singularities can be transformed into spacelike

singularities by taking into account some realistic perturbations.

1.10 Trapped Surface

In 1965, Penrose introduced the concept of trapped surface in GR for the

development of singularity theorems. A spacelike two-dimensional surface

is called trapped surface if it satisfies the property that all the light rays

directed outwards from this surface are convergent [156]. In spherical grav-

itational collapse, the presence of trapped surface would lead to the for-

mation of BH if the collapsing matter satisfies the weak energy condition.

In general, the trapped surfaces are formed during the gravitational col-

lapse if sufficiently large matter is compacted into small volume. According

to singularity theorems [1], if trapped surfaces exist then there must be a

spacetime singularity to future. If one accepts the validity of CCH, then
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the presence of trapped surfaces would lead to the indication that a BH is

in the process of formation [157].

1.11 Event and Apparent Horizons

The BH region in a spacetime is a boundary from which no light ray can

escape [158]. This boundary is called event horizon. In other words, the

boundary of a region in spacetime that cannot be observed by a far away

observer is called event horizon. According to Hawking and Ellis [1], event

horizon is a null surface which can completely describe the causal structure

of spacetime. In case of Schwarzschild BH, event horizon is at r = 2m.

Apparent horizon of a BH is the outer most boundary of a region that

contains trapped surface. The gravitational collapse of a massive star which

leads to the formation of BH, predicts that the event horizons are formed

earlier than the apparent horizons [1]. The event horizon of a BH is not

always the same as apparent horizon. Apparent horizon coincides with event

horizon only for stationary spacetime [159]. If apparent horizon exists then

it always lies inside the event horizon of BH.

1.12 Gravitational Lensing

Deflection of light rays by gravitational field is one of the consequences of

GR. The phenomena resulting from the deflection of electromagnetic radia-

tions in gravitational field is referred to gravitational lensing and an object

causing a detectable deflection is known as gravitational lens. Firstly, New-

ton and Laplace discovered such deflection of light rays as these rays pass

near massive bodies [160]. In 1804, Soldner [161] calculated the deflection
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of light due to the Sun by assuming that light consists of material particles

with Newtonian gravity. Later on, Einstein derived two formulae, one using

the equivalence principle [162] and another on the basis of GR. He found

that in the second case deflection angle is twice of the first case, which he

remarked due to the curvature of gravitational lens [163]. According to the

second formula, when a light ray tangentially grazes the surface of the Sun,

it is deflected by 1.7
′′
.

1.13 The Cosmological Constant

Einstein believed that gravity contracts the universe. To overcome the at-

tractive nature of gravity, Einstein introduced cosmological constant in his

field equations that would act as repulsive nature of gravity. The cosmolog-

ical constant was rejected by Einstein himself when Hubble discovered that

the universe expands rather than contracts. Einstein admitted that the

introduction of cosmological constant in the field equations was the biggest

blunder of his life. However, the study of type Ia supernova [164] indicates

that expansion of the universe is accelerating. To overcome this acceler-

ation, it becomes necessary to add the cosmological constant in the field

equations. The problems related to the growth, structure and age of the

universe can be resolved by using cosmological constant in field equations

[165]. The Einstein field equations with cosmological constant are given by

Gµν − Λgµν = κTµν , (1.13.1)

where Λ is called cosmological constant. In the absence of matter, this

reduces to

Gµν − Λgµν = 0. (1.13.2)
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1.14 Non-Commutative Theory of Gravity

In classical GR, singularity is such a region of spacetime at which the usual

laws of physics break down. This problem can be removed by applying the

formulation of NC field theory to GR [166]. For example, the NC BHs are

one of the outcomes of string theory. These have such geometric structure in

which curvature singularity is recovered by the minimal length introduced

by the NC nature of coordinates. Further, all types of NC BHs expose the

de-Sitter core due to quantum fluctuations at the center of the manifold.

The NC formulation of GR is one of the long standing problems which

has no solution yet. The application of Moyal ?-product among the tetrad

fields in the gravitational action is a mathematically correct approach but

not physically. It is due to the fact that the expansion of ?-product in NC

parameter is truncated upto a desirable order which causes to destroy the

non-local nature of NC theory. This results to face the BH geometry with

the same curvature singularities as in GR. Instead of using ?-product, one

can formulate NC form of GR using the coordinate coherent state approach.

In this approach, the density of point like source in NC spacetime can

be governed by a Gaussian distribution by using the relation [96]

ρ =
e−

r2

4Θ2

(4πΘ2)d
2

, (1.14.1)

where d is the dimension of the manifold, Θ is constant having the dimen-

sion of length squared. Further, the correction to the field equations can

be made by replacing the usual matter source by the Gaussian distribution

while the curvature part of the field equations is left unchanged. Using

this philosophy, many NC BH solutions have been derived [96]-[98]. Fol-

lowing this approach, we shall make only modification in matter part of the



26

junction conditions and leave the geometry part unchanged.

1.15 Boson Stars and Scalar Fields

The existence of dark matter has been demonstrated indirectly in vari-

ous large scale structures in our universe, for example, from the individual

galaxies to the whole universe [167]. Although, the direct measurements of

the nature of dark matter have produced no significant result yet, but sup-

positions on its constituents deviate from baryonic matter to non-baryonic

matter. One of the most reliable sources for dark matter is the boson star

[168], which was discovered thirty years ago on the theoretical basis. The

reality of boson stars have been applied successfully to several credible phys-

ical processes [169]. Such stars consist of real scalar fields which satisfy the

Einstein-Klien-Gordon equations for the background geometry.

There are no evidences for the existence of real scalar fields in nature,

but theoretically there are many arguments which explain the role of scalar

fields in the structure formation and evolution of the universe. It is strongly

believed that bosonic dark matter is collapsed to form boson stars. These

are the static stars composed of zero temperature scalar particles. The

existence of real scalar fields in GR was investigated by Wheeler and his

collaborator [77, 78].

To discuss the physical aspects of boson star, Kaup [80], Ruffini and

Bonazzola [81] found spherically symmetric solutions of the Einstein-Klein-

Gordon equations. Further, they determined the equilibrium conditions

for scalar field in boson stars. Also, these studies imply that scalar field

configurations inside boson stars are macro quantum states and can be
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prevented from gravitational collapse by Heisenberg uncertainty principle.

Although, scalar fields are stable against the simple external perturbations

but it is interesting to determine the stability conditions for the oscillating

star in the presence of strong external perturbations.

1.16 Junction Conditions

After the discovery of the Schwarzschild interior and exterior solutions,

the problem of junction conditions achieved a considerable interest in GR

for matching two gravitational fields. In Newtonian physics for matching

the two gravitational fields, boundary conditions, equation of continuity of

gravitational potential and its first derivatives (when crosses the junction

surface) were studied [170].

In contrast to Newtonian physics, GR is based on ideas that gravita-

tional potential should be determined by the smoothness of the coordinates

in which the metric of underlying geometry is described. The applications

of junction conditions in GR commonly occur for studying the dynam-

ics of matter thin shells, boundary of collapsing star, gravitational waves

and cosmological phase transitions. In GR, the problem of smooth match-

ing of two gravitational fields over a boundary surface was initially for-

mulated by Lanczos [171, 172] which was generalized by several authors

[52, 53, 173, 174].

To study the gravitational collapse of a star in GR, there are two versions

of junctions conditions due to Darmois [173] and Israel [52, 53]. Both these

require to consider the appropriate geometry of the interior and exterior

regions of a star. For the smooth matching, a spacetime representing a
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massive star is divided by a hypersurface Σ into two regions that are known

as interior and exterior spacetimes.

For Darmois junction conditions in the interior spacetime, matter is

considered, while the exterior spacetime is taken as vacuum (Schwarzschild),

electro-vacuum (RN), or non-vacuum (Vaidya) if matter in the interior of a

star is assumed to be perfect fluid, charged perfect fluid or heat conducting

fluid. These usually determine the relation between the quantities of two

regions over a boundary surface. For Israel junction conditions, both regions

of a star are taken as vacuum and a thin layer of matter is considered on

the boundary surface. These can be used as an alternative to the Einstein

field equation for studying the dynamics of a system.

Darmois junction conditions are given as follows:

• The continuity of spacetimes over the hypersurface Σ gives

(ds2
−)Σ = (ds2

+)Σ = ds2
Σ, (1.16.1)

where ds2
− and ds2

+ represent the line elements of the interior and

exterior spacetimes, respectively, ds2
Σ is the intrinsic metric defined on

the hypersurface Σ. The subscript Σ indicates that these quantities

must be evaluated at Σ.

• The continuity of the extrinsic curvature over the hypersurface Σ leads

to

[Kij] = K+
ij −K−

ij = 0, (i, j = 0, 2, 3), (1.16.2)

where Kij is the extrinsic curvature which is given by

K±
ij = −nσ

±(
∂2xσ

±
∂ξi∂ξj

+ Γσ
µν

∂x±µ

∂ξi

∂x±ν

∂ξj
). (1.16.3)
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Here nσ is normal to the boundary surface given by

nσ =
f,σ

|gνλf,νf,λ| 12
, (1.16.4)

where f = 0, defines the equation of hypersurface Σ. The Israel junction

conditions require the continuity of the line elements, while the second

condition is modified as follows [52]

Sij =
1

κ
{[Kij]− γij[K]}, (1.16.5)

where Sij is the surface energy-momentum tensor, κ is the coupling con-

stant, γij is the induced metric on Σ and

[Kij] = K+
ij −K−

ij , [K] = γij[Kij]. (1.16.6)



Chapter 2

Charged Perfect Fluid
Cylindrical Gravitational
Collapse

In this chapter, we investigate charged perfect fluid cylindrical gravitational

collapse. For this purpose, we determine analytic solution of the Einstein-

Maxwell field equations by assuming that charged perfect fluid is moving

along the geodesics in the interior of cylinder. This assumption implies

that g00 = 1 for the underlying metric. Recently, Brandt et al. [175]

have studied spherically symmetric perfect fluid gravitational collapse with

geodesic assumption.

In the present chapter, we use the geodesic assumption and explore ana-

lytic solution of the field equations with charged perfect fluid in cylindrically

symmetric spacetime. We find that solution represents gravitational col-

lapse of cylinder along the longitudinal direction. This chapter is organized

as follows. We explore the solution of the Einstein-Maxwell field equations

in section 2.1. The physical properties of the solutions are discussed in sec-

tion 2.2. Section 2.3 is devoted to study the junction conditions between

the interior charged perfect solution and exterior charged vacuum solution.

Results of this chapter have been published in the form of a research paper

30
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[176].

2.1 Solution of Einstein-Maxwell Field Equa-

tions

This section is devoted to investigate solution of the Einstein-Maxwell field

equations coupled with perfect fluid as the source of gravitation distrib-

uted per unit length of the cylinder. The general cylindrically symmetric

spacetime is given by the following line element [177]

ds2
− = A2(dt2 − dr2)−B2dθ2 − C2dz2, (2.1.1)

where A, B and C are functions of t and r. Here, we take the following

restrictions on the coordinates in order to preserve the cylindrical symmetry

of the spacetime

−∞ < t < ∞, 0 ≤ r, 0 ≤ θ ≤ 2π, −∞ < z < ∞. (2.1.2)

The proper unit length of the cylinder for the line element (2.1.1) is defined

by

l = 2πBC. (2.1.3)

For the solution of Einstein-Maxwell field equations, we have to solve

the Maxwell equations (1.2.9) with Maxwell field tensor (1.2.2) for the line

element (2.1.1). For this purpose, we assume that in comoving coordinates

system, the charge per unit length of the cylinder is at rest so that the

magnetic field will be zero. Thus we can choose four potential and four

current as follows

φµ = (φ(t, r), 0, 0, 0), Jµ = σuµ, (2.1.4)
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where σ is the charge density. The only non-zero component of the Maxwell

field tensor is

F01 = −F10 = −∂φ

∂r
. (2.1.5)

Thus the Maxwell equations (1.2.9) take the following form

1

A3

∂2φ

∂r2
+

1

A3

∂φ

∂r

(
B′

B
+

C ′

C
− 2

A′

A

)
= 4πσ, (2.1.6)

1

A4

(
∂2φ

∂t∂r
+

∂φ

∂r
(
Ḃ

B
+

Ċ

C
+ 2

Ȧ

A
)

)
+

∂

∂t
(

1

A4
)
∂φ

∂r
= 0, (2.1.7)

where dot and prime indicate derivatives with respect to time t and radial

coordinate r, respectively. Integration of Eq.(2.1.6) implies that

∂φ

∂r
=

2qA2

BC
, (2.1.8)

where q(r) = 2π
∫ r

0
σ(ABC)dr is the total amount of charge per unit length

of the cylinder. We would like to mention here that Eq.(2.1.7) is satisfied

by Eq.(2.1.8). Equation (2.1.5) can also be written as

F01 = −F10 = −2qA2

BC
. (2.1.9)

The non-zero components of T ν
µ

(em) turn out to be

T 0
0

(em)
= T 1

1
(em)

= −T 2
2

(em)
= −T 3

3
(em)

=
1

2π

q2

(BC)2
.

The electric field intensity is defined by

E(r, t) =
q

2π(BC)
. (2.1.10)

The energy-momentum tensor for perfect fluid is

Tµν = (ρ + p)uµuν − pgµν , (2.1.11)

where ρ is the energy density, p is the pressure and uµ = Aδ0
µ is the four-

vector velocity in comoving coordinates.
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The Einstein-Maxwell field equations (1.3.1) for cylindrically symmetric

perfect fluid distribution take the following form

−B′′

B
− C ′′

C
+

A′

A

(
B′

B
+

C ′

C

)
+

Ȧ

A

(
Ḃ

B
+

Ċ

C

)
− B′C ′

BC
+

ḂĊ

BC

= 8πA2

(
ρ +

q2

2πB2C2

)
, (2.1.12)

−Ḃ′

B
+

Ċ ′

C
+

Ȧ

A

(
Ḃ

B
+

Ċ

C

)
− Ȧ

A

(
B′

B
+

C ′

C

)
= 0, (2.1.13)

A′

A
(
B′

B
+

C ′

C
) +

Ȧ

A

(
Ḃ

B
+

Ċ

C

)
+

B′C ′

BC
+

ḂĊ

BC
− B̈

B
− C̈

C

= 8πA2

(
p− q2

2πB2C2

)
, (2.1.14)

−C̈

C
+

C ′′

C
+

(
A′

A

)′
− (

Ä

A
) +

Ȧ

A2
= 8πA2

(
p +

q2

2πB2C2

)
,(2.1.15)

−B̈

B
+

B′′

B
+

(
A′

A

)′
− (

Ä

A
) +

Ȧ

A2
= 8πA2

(
p +

q2

2πB2C2

)
.(2.1.16)

We assume that the charged perfect fluid distributed per unit length of

the cylinder follows along the geodesics in the interior of cylinder. This

requires that velocity should be uniform and acceleration must be zero

which is only possible if A is constant (for simplicity, we take A = 1). Thus

using Eq.(2.1.10), we can rewrite Eqs.(2.1.12)-(2.1.16) as follows

−B′′

B
− C ′′

C
+

Ċ

C
− B′C ′

BC
+

ḂĊ

BC
= 8π

(
ρ + 2πE2

)
, (2.1.17)

Ḃ′

B
+

Ċ ′

C
= 0, (2.1.18)

B′C ′

BC
− ḂĊ

BC
− B̈

B
− C̈

C
= 8π

(
p− 2πE2

)
, (2.1.19)

−C̈

C
+

C ′′

C
= 8π

(
p + 2πE2

)
, (2.1.20)

−B̈

B
+

B′′

B
= 8π

(
p + 2πE2

)
. (2.1.21)

We note that there are five equations and five unknowns B, C, p, ρ, E,

therefore we can find a unique solution.
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For this purpose, we adopt the method of separation of variables. The

comparison of Eqs.(2.1.20) and (2.1.21) gives

−C̈

C
+

C ′′

C
= −B̈

B
+

B′′

B
. (2.1.22)

Let

B(t, r) = f(r)g(t), C(t, r) = h(r)k(t). (2.1.23)

Using Eq.(2.1.23) in (2.1.18), we get

f = αhL, k = δg−L, (2.1.24)

where L (6= 0, for non-trivial solution) is a separation constant while α and

δ are integration constants. Using Eq.(2.1.24) in (2.1.22), it follows that

g̈

g
− k̈

k
=

f ′′

f
− h′′

h
. (2.1.25)

Since both sides are functionally independent, we put them equal to con-

stant say M(6= 0)

g̈

g
− k̈

k
= M =

f ′′

f
− h′′

h
. (2.1.26)

Application of Eq.(2.1.24) to (2.1.26) leads to

g̈

g
− ġ2

g2
=

M

L + 1
,

h′′

h
+

h′2

h2
=

M

L− 1
. (2.1.27)

The solution of these equations is

g(t) = β0 cos
1

1−L (W (t + t0)), h(r) = β1 cosh
1

1+L (S(r + r0)), (2.1.28)

where β0, β1, t0 and r0 are constants of integration. Further, W and S are

given by the following relations

W =

√
M(L− 1)

L + 1
, S =

√
M(L + 1)

L− 1
. (2.1.29)
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Using Eq.(2.1.28) in (2.1.24), it follows that

k(t) = β2 cos
L

L−1 (W (t + t0)), f(r) = β3 cosh
L

1+L (S(r + r0)), (2.1.30)

where β2 and β3 are constants of integration. Thus the metric coefficients,

given by Eq.(2.1.23), turn out to be

B = Ωcosh
L

1+L (S(r + r0)) cos
1

1−L (W (t + t0)), (2.1.31)

C = Ψcosh
1

1+L (S(r + r0)) cos
L

L−1 (W (t + t0)), (2.1.32)

where Ω = β0β3, Ψ = β1β2. Consequently, the spacetime (2.1.1) takes the

form

ds2
− = dt2 − dr2 − Ω2cosh

2L
1+L (S(r + r0)) cos

2
1−L (W (t + t0))dθ2

− Ψ2cosh
2

1+L (S(r + r0)) cos
2L

L−1 (W (t + t0))dz2. (2.1.33)

Using the following transformations

Sr′ = S(r + r0), Wt′ = W (t + t0), θ′ = Ωθ, z′ = Ψz,

the above metric (2.1.33) reduces to

ds2
− = dt′2 − dr′2 − cosh

2L
1+L (Sr′) cos

2
1−L (Wt′)dθ′2

− cosh
2

1+L (Sr′) cos
2L

L−1 (Wt′)dz′2. (2.1.34)

By assuming Ω = 1, it is clear that the above metric preserves cylindrical

symmetry with the restriction on coordinates given by Eq.(2.1.2). We take

B̃ = cosh
L

1+L (Sr′) cos
1

1−L (Wt′), C̃ = cosh
1

1+L (Sr′) cos
L

L−1 (Wt′).

2.2 Physical Properties of the Solution

Here, we discuss some physical and geometrical properties of the solution.

The physical parameters, i.e., pressure p, density ρ, and the electric field
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intensity E are given by

p =
1

16π

[
S2

(1 + L)
− 4tan2(Wt′)W 2L

(1− L)2
+

W 2

(L− 1)(2L− 1)

]
, (2.2.1)

E =

[
1

32π2

(
2L(1 + L)2W 2sec2(Wt′)− (1 + L)3W 2 − (L− 1)3S2

(1− L2)2

+
2LS2sec2h(Sr′)

(L + 1)2

)] 1
2

, (2.2.2)

ρ =
1

8π

[−S2(1 + L + L2 + Lsec2h(Sr′))
(L + 1)2

+
LW 2tan2(Wt′)

(L− 1)2

]
. (2.2.3)

We would like to mention here that Eqs.(2.1.31), (2.1.32) and (2.2.1)-(2.2.3)

satisfy all the field equations with the restriction on constants given by

Eq.(2.1.29). The proper unit length of the cylinder for the new metric is

given by

l = 2πB̃C̃ ≡ 2πcosh(Sr′)cos(Wt′) (2.2.4)

and the longitudinal length in this case is

l̃ =
l

2π
= B̃C̃ ≡ cosh(Sr′)cos(Wt′). (2.2.5)

The rate of change of longitudinal length is

˙̃l = −W cosh(Sr′)sin(Wt′), (2.2.6)

where negative sign shows that motion is directed inward. Such motion

represents gravitational collapse of the charged perfect fluid distributed per

unit length of the cylinder.

In order to analyze the nature of singularity of the solution, we use

curvature invariants. Many scalars can be constructed from the Riemann

tensor but symmetry assumption can be used to find only a finite number

of independent scalars. Some of these are

R1 = R = gabRab, R2 = RabR
ab, R3 = RabcdR

abcd, R4 = Rab
cdR

cd
ab.
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Here, we give the analysis for the first invariant commonly known as the

Ricci scalar. For the metric (2.1.34), it is given by

R =
2

l̃
( ¨̃BC̃ − B̃ ¨̃C − B̃′′C̃ − C̃ ′′B̃ + ˙̃B ˙̃C − B̃′C̃ ′). (2.2.7)

We see that the Ricci scalar as well as all the other curvature invariants

and physical parameters of the solution are finite for r′ → 0. Thus r′ = 0

is the conical singularity of the new metric.

Now we analyze values of the constants for which the solution is phys-

ical. In this solution, L and M are non-zero separation constants for the

non-trivial solution, while the rest are integration constants that can be

removed by applying the transformations to Eq.(2.1.33) and by evaluating

the physical parameters from the field equations. From Eq.(2.1.29), it is

clear that the constants W and S cannot be chosen arbitrarily. These are

non-zero because M 6= 0 for non-trivial solution. Further, for W and S to

be real, we have the following four possible solutions

1. L < −1, M > 0; 2. L > −1, M < 0;

3. L > 1, M > 0; 4. L < 1, M < 0.

Keeping in mind these restrictions on the constants, we find that the

cases 1 and 2 lead to non-physical solutions (i.e., negative energy density

for the arbitrary choice of coordinates). In the case 3, for 0 < M ≤ 0.5 and

1 < L ≤ 1.9, there exists a physical solution which represents gravitational

collapse. The graphs 2.1-2.4 in this case indicate that all the physical

quantities become homogeneous. Thus the geodesic model with charged

perfect fluid distributed per unit length of the cylinder is free of initial

inhomogeneities.
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It is interesting to mention here that pressure remains a function of time

only for this geodesic model that is analogous to the spherical case [175].

In the case 4 for 0.63 ≤ L ≤ 0.95 and −1 < M ≤ −0.10, all quantities

except pressure behave like the case 3, while pressure is negative in this

case indicating a DE solution. As long as the realistic energy condition

ρ + 3p > 0 holds, gravity remains attractive. However, the violation of this

condition, i.e., ρ + 3p < 0 due to negative pressure, leads to the repulsive

gravitational effects. Thus in the relativistic physics, negative pressure

acting as a repulsive gravity plays the role of preventing the gravitational

collapse. We are interested to study the gravitational collapse which is the

consequence of attractive gravity, so the case 4 leads to expanding solution.

Thus the only case 3 is interesting for gravitational collapse.

The rate of change of longitudinal length in Figure 2.1 shows that the

longitudinal length is a decreasing function of time, thus the resulting solu-

tion represents the gravitational collapse. The collapse starts at some finite

time and ends at t′ = 1, where longitudinal length of the cylinder reduces

to zero. Further, energy density is an increasing function of time shown in

Figure 2.2. This is the strong argument for a model to represent collapse.

The pressure in the interior of cylinder starts decreasing as shown in Fig-

ure 2.3. This causes to initiate the gravitational collapse, more matter is

concentrated in the small volume, hence density goes on increasing.

It is to be noted that decrease in the proper unit length of the cylinder,

increases the interaction between the electric charges and a strong electro-

magnetic force inside the cylinder is created. This is an increasing function

of time as shown in Figure 2.4. The resultant action of electromagnetic

and gravitational forces play a dominant role to reduce longitudinal length
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Figure 2.1: Decrease in longitudinal length with the passage of time for
0 < M ≤ 0.5 and 1 < L ≤ 1.9.

Matter Density Graph
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Figure 2.2: Increase in density with the passage of time for 0 < M ≤ 0.5
and 1 < L ≤ 1.9.
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Figure 2.3: Decrease in pressure with the passage of time for 0 < M ≤ 0.5
and 1 < L ≤ 1.9
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Electric Field Intensity Graph
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Figure 2.4: Increase in electric intensity with the passage of time for 0 <
M ≤ 0.5 and 1 < L ≤ 1.9.

of cylinder to zero.

The nature of the collapse can be explained as follows. When latitudinal

and vertical lengths of the cylinder reduce to zero, there is a complete

collapse. From the metric (2.1.33), we have gθθ = B̃2, gzz = C̃2. Since

singularity analysis implies that the Ricci scalar diverges at a point where

the longitudinal length is zero. Thus when the longitudinal length as well

as the latitudinal and vertical lengths reduce to zero, we obtain a conical

singularity at r′ = 0.

2.3 Junction Conditions

We assume that the 3D spacelike boundary surface Σ splits the two 4D

cylindrically symmetric spacetimes M+ and M−. The metric which de-

scribes the internal region M− is the charged perfect fluid solution given by

Eq.(2.1.34). For the exterior region M+, a charged cylindrically symmetric

electro-vacuum solution is taken as [178]

ds2
+ = ZdT 2 − 1

Z
dR2 −R2(dθ2 + α2dz2), (2.3.1)
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where Z(R) = 2Q2

R2 − 4m
R

, α is constant with the dimension of 1
length

, m

and Q are the mass and charge distributed per unit length of the cylinder,

respectively. This choice of the exterior solution in M+ region is compatible

with the charged perfect fluid solution in the interior region M− for the

smooth matching over the boundary surface Σ.

The boundary surface Σ in terms of interior and exterior coordinates

can be described by the following equations

k−(r′, t′) = r′ − r′Σ = 0, (2.3.2)

k+(R, T ) = R−RΣ(T ) = 0, (2.3.3)

where r′Σ is a constant. Using these equations, the interior and exterior

metrics on Σ take the following form

(ds2
−)Σ = dt′2 − B̃2dθ′2 − C̃2dz′2, (2.3.4)

(ds2
+)Σ = [Z(RΣ)− 1

Z(RΣ)
(
dRΣ

dT
)2]dT 2 −R2

Σ(dθ2 + α2dz2).(2.3.5)

Here we assume g00 > 0 so that T is a timelike coordinate. Also, from

Eqs.(1.16.4), (2.3.2) and (2.3.3), the outward unit normals from boundary

surface Σ to interior and exterior regions are given by

n−µ = (0, 1, 0, 0), n+
µ = (−R†

Σ, T †, 0, 0), (2.3.6)

where dagger † represents derivatives with respect to new coordinate t′.

The continuity of the first fundamental form from Eq.(1.16.2) over Σ

gives

(B̃)Σ = RΣ, (C̃)Σ = αRΣ, =⇒ (C̃)Σ = α(B̃)Σ,

[Z(RΣ)− 1

Z(RΣ)
(
dRΣ

dT
)2]

1
2 dT = (dt′)Σ. (2.3.7)



42

From Eq.(1.16.3), the components of extrinsic curvature K±
ij in terms of

interior and exterior coordinates are

K−
00 = 0, K−

22 =
1

α2
K−

33 = (B̃ ¯̃B)Σ,

K+
00 = (R†T †† − T †R†† − Z

2

dZ

dR
T ††3 +

3

2Z

dZ

dR
T †R†2)Σ,

K+
22 =

1

α2
K+

33 = (ZRT †)Σ, (2.3.8)

where bar ¯ represents differentiation with respect to the new coordinate

r′.

Also, the continuity of the extrinsic curvature components from Eq.(1.16.3)

with Eqs.(2.3.7) and (2.3.8) leads to

( ¯̃B†)Σ = 0, (2.3.9)

m = [
Q2

2B̃
+

B̃

4
(B̃†2 − ¯̃B2)]Σ. (2.3.10)

Equation.(2.3.9) implies that the boundary surface Σ represents a cylinder

with constant proper unit length which behaves as boundary of the interior

charged perfect fluid. It connects the interior charged perfect fluid solution

to the exterior electro-vacuum solution. Using Eq.(2.3.9) in (2.3.10), we get

m = (Q2

2B̃
)Σ. This equation implies that gravitational and Coulomb forces

of the system balance each other on the boundary surface Σ.



Chapter 3

Scalar Field and Polytropic
Matter Thin Shell Collapse in
Charged Background

This chapter is devoted to explore the dynamics of scalar field and poly-

tropic matter thin shell in RN geometry. For this purpose, we derive the

general equations of motion for thin shell by using Israel formalism, then

apply these equations to scalar field and polytropic matter thin shell. This

chapter generalizes the dynamics of scalar field thin shell by Núñez et al.

[94] and polytropic matter thin shell by Oh and Park [102] from the Schwarz-

schild geometry to RN geometry.

We divide this chapter into three main sections. In section 3.1, we

formulate the general equations of motion by taking interior and exterior

regions of a star as RN geometries. The boundary surface (between the

interior and exterior regions of a star) representing the thin layer of matter

is taken as spacelike 3D surface. Section 3.2 is devoted to discuss the dy-

namics of scalar field by considering the massless and massive scalar field

cases explicitly. The polytropic matter as well as perfect fluid thin shell

collapse is presented in section 3.3. Further, the effects of NC parameter

on the collapse of polytropic matter and perfect fluid shell are investigated.

43
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Throughout this chapter, equations of motion are solved numerically. We

have published two research papers [179, 180] on the basis of results pre-

sented in this chapter.

3.1 Equations of Motion in Charged Back-

ground

In this section, we use Israel thin shell formulation to derive equations of

motion for thin shell of matter. We take a 3D spacelike boundary surface

Σ, which splits the two 4D spherically symmetric spacetimes M+ and M−.

The exterior and interior regions M+and M−, respectively are described by

the RN metrics given by

(ds)2
± = N±dT 2 − 1

N ±
dR2 −R2(dθ2 + sin2 θdφ2), (3.1.1)

where N±(R) = 1 − 2M±
R

+
Q2
±

R2 , M± and Q± are the mass and charge,

respectively. The subscripts + and − represent quantities in exterior and

interior regions to Σ, respectively. Further, it is assumed that charge in both

regions is the same, i.e., Q+ = Q− = Q. The strength of electric field on

the shell can be described by the Maxwell field tensor, FTR = Q
R2 = −FRT .

By employing the intrinsic coordinates (τ, θ, φ) on Σ at R = R(τ), the

metrics (3.1.1) on Σ become

(ds)2
±Σ

= [N±(R)− 1

N±(R)
(
dR

dτ
)2(

dτ

dT
)2]dT 2 −R2(τ)(dθ2 + sin2 θdφ2).

(3.1.2)

Here, it is assumed that g00 > 0 so that T is a timelike coordinate. Also,

the induced metric on the boundary surface Σ is given by

(ds)2
Σ = dτ 2 − a2(τ)(dθ2 + sin2 θdφ2). (3.1.3)
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The continuity of the first fundamental form gives

[N±(RΣ)− 1

N±(RΣ)
(
dRΣ

dτ
)2(

dτ

dT
)2]

1
2 dT = (dτ)Σ, R(τ) = a(τ)Σ. (3.1.4)

The outward unit normals nµ
± to Σ in M± coordinates can be evaluated as

nµ
± = (−Ṙ(τ), Ṫ , 0, 0), (3.1.5)

where dot represents differentiation with respect to τ .

The non-vanishing components of the extrinsic curvature are

K±
ττ =

d

dR

√
Ṙ2 + N±, K±

θθ = −R

√
Ṙ2 + N±, K±

φφ = K±
θθ sin2 θ. (3.1.6)

The perfect fluid energy-momentum tensor is

Sij = (ρ + p)uiuj − pγij, (3.1.7)

where ui = δ0
i and γij is same defined after Eq.(1.16.5) . Using Eqs.(3.1.4),

(3.1.7) and (1.16.5) and (1.16.6), we obtain

ρ =
2

κR2
[Kθθ], p =

1

κ
{[Kττ ]− [Kθθ]

R2
}. (3.1.8)

Inserting the non-zero components of the extrinsic curvature components,

we get

(η+ − η−) +
κ

2
ρR = 0, (3.1.9)

d

dR
(η+ − η−) +

1

R
(η+ − η−)− κp = 0, (3.1.10)

where η± =

√
Ṙ2 + N±.

Making use of Eq.(3.1.9) in (3.1.10), it follows that

dρ

dR
+

2

R
(p + ρ) = 0. (3.1.11)
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Alternatively, it can also be written as

ṁ + pȦ = 0, (3.1.12)

where m(= ρA) and A(= 4πR2(τ)) stand for the integrated total energy

density at some time and area of the shell, respectively. The conservation of

surface energy-momentum tensor leads to the same equation as Eq.(3.1.12),

hence this equation is known as energy conservation law on the shell.

Equation (3.1.11) can be solved by using EoS, p = kρ, yielding the

solution

ρ = ρ0(
R0

R
)2(k+1), (3.1.13)

where R0 is the position of the shell at τ = τ0 and ρ0 is the density of matter

on the shell at position R0. Inserting this value of ρ in the definition of m,

we get

m = 4πρ0
R

(2k+2)
0

R2k
. (3.1.14)

From Eq.(3.1.9), we obtain equation of motion of thin shell given by

Ṙ2 + Veff (R) = 0, (3.1.15)

where the effective potential Veff (R) is

Veff (R) =
1

2
(N+ + N−)− (N+ −N−)2

(κρR)2
− 1

16
(κρR)2. (3.1.16)

Alternatively, it can be written in the following form

Veff (R) = 1−
(

M+ −M−
m

)2

+

(
Q

R

)2

− (M+ + M−)

R
−

( m

2R

)2

, (3.1.17)

where we have used κ = 8π.

To see the effects of charge parameter Q on the dynamics of the shell,

we can write Eq.(3.1.15) by using the above equation as follows

Ṙ = ±
√(

M+ −M−
m

)2

−
(

Q

R

)2

+
(M+ + M−)

R
+

( m

2R

)2

− 1. (3.1.18)
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Figure 3.1: Behavior of the shell velocity with respect to stationary ob-
server, when M+ = 1, M− = 0, k = ρ0 = R0 = 1 and Q = 1. The upper
and lower curves correspond to uncharged and charged cases, respectively.
It is clear that initially velocity in the charged case is less than the un-
charged case. Velocity in both cases match for larger values of R as the
term Q2

R2 becomes negligible.

Here +(−) correspond to expansion (collapse) of the shell and m is the

same as defined after Eq.(3.1.12). The term Q2

R2 (Coulomb repulsive force)

in Ṙ (velocity of the shell with respect to stationary observer) indicates

that charge reduces shell velocity with respect to stationary observer. This

velocity also depends on position of the observer, whether the observer is

located inside or outside the shell. Further, Eq.(3.1.17) implies that charge

parameter increases the effective potential Veff .

In next sections, we shall see that throughout the dynamics of the shell,

charge parameter reduces the velocity of the shell with respect to stationary

observer. Thus initially the velocity of the shell with respect to stationary

observer in the RN background is slower as compared to the Schwarzschild

case (as shown in Figure 3.1). We conclude that electrostatic repulsive

force in RN background tries to balance with the gravitational force due to

the shell and hence the shell velocity with respect to stationary observer is

slow in charged case as compared to the uncharged case.
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3.2 Scalar Field Thin Shell Collapse

In order to study the dynamics of scalar field thin shell, we apply a trans-

formation on the perfect fluid energy-momentum tensor, so that we have a

scalar field energy-momentum tensor. The transformation is [94]

ui =
φ,i√
φ,jφ,j

, ρ =
1

2
[φ, νφ

, ν + 2V (φ)], p =
1

2
[φ, νφ

, ν − 2V (φ)], (3.2.1)

where V (φ) = m̃2φ2 is the potential term which is non-zero for massive

scalar field. We note that the scalar field will be massless in the absence

of such term. Using Eqs.(3.1.7) and (3.2.1), we can write the energy-

momentum tensor of the scalar field as follows

Sij = ∇iφ∇jφ− γij [
1

2
(∇φ)2 − V (φ)]. (3.2.2)

Since the induced metric (3.1.3) depends only on τ , so φ also depends on

τ . Thus Eq.(3.2.1) leads to

ρ =
1

2
[φ̇2 + 2V (φ)], p =

1

2
[φ̇2 − 2V (φ)]. (3.2.3)

In terms of scalar field, the integrated total energy density of the shell at

some time is

m = 2πR2[φ̇2 + 2V (φ)]. (3.2.4)

Using Eqs.(3.2.3) and (3.2.4) in Eq.(3.1.12), we get

φ̈ +
2Ṙ

R
φ̇ +

∂V

∂φ
= 0. (3.2.5)

This is the Klien-Gordon (KG) equation, ¤φ+ ∂V
∂φ

= 0, in coordinate system

of the shell metric (3.1.3). In terms of scalar field, the effective potential is

Veff (R) = 1−
(

M+ −M−
2πR2(φ̇2 + 2V (φ))

)2

+

(
Q

R

)2

− (M+ + M−)

R

− [πR(φ̇2 + 2V (φ))]2. (3.2.6)
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Figure 3.2: The left graph is the behavior of scalar field, while the right
graph is the behavior of shell radius R. Both these graphs have been plotted
by using M+ = 1, m̃ = 1, M− = 0, Q = 1, φ̇(1) = 0.19 and φ(1) = R(1) =
1.

Now we solve the KG equation (3.2.5) and equation of motion (3.1.15)

(with Eq.(3.2.6)) simultaneously for φ(τ) and R(τ). In this case, the exact

solution is not possible. We solve these equations numerically by assuming

the following initial conditions: φ̇(1) = 0.19 and φ(1) = R(1) = 1. The

solution of Eqs.(3.1.15) and (3.2.5) for the set of initial data are shown in

Figure 3.2. The left graph shows the behavior of scalar field in which upper

and lower curves represent the expanding and collapsing shell, respectively.

The right graph is the behavior of shell radius whose upper and lower curves

represent the collapsing and expanding shell, respectively. In case of col-

lapse (upper curve in left graph of Figure 3.2), scalar field density φ goes

on increasing while in case of expansion (lower curve in left graph of Figure

3.2), scalar field density φ comes to a point on τ -axis implying that scalar

field decays to zero value in this case. In the following, we shall explicitly

discuss the massless and massive scalar field cases.
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3.2.1 Massless Scalar Field

A scalar field becomes massless, when scalar potential, V (φ), is zero. In

this case, the KG equation reduces to φ̈+ 2Ṙ
R

φ̇ = 0 whose solution is φ̇ = Ω
R2 ,

where Ω is an integration constant. The corresponding equation of motion

(3.1.15) with Eq.(3.2.6) takes the form

Ṙ2 + 1−
(

M+ −M−
2πΩ2

)2

R4 +

(
Q

R

)2

− (M+ + M−)

R
− π2Ω4

R6
= 0. (3.2.7)

We define the following two parameters

[M ] = M+ −M−, M =
M+ + M−

2
.

Using these in Eq.(3.2.7), it follows that

Ṙ2 + Veff = 0, (3.2.8)

where

Veff = 1−
(

[M ]

2πΩ2

)2

R4 +

(
Q

R

)2

− 2M

R
− π2Ω4

R6
. (3.2.9)

For the initial data of shell, the left graph in Figure 3.3 shows the

increase and decrease in shell radius implying the expansion and collapse

of the massless scalar field shell. Thus a massless scalar shell may expand

or collapse depending on the sign of velocity (i.e., Ṙ) of the shell with

respect to stationary observer. The behavior of the potential depends on

the number of roots of the potential. If there is no root then the scalar field

shell either expands indefinitely or collapses to zero size from some finite

value. If there is one non-degenerate root then the shell expands to infinity

or contracts to some finite size. For one degenerate root, the shell will be

in an unstable equilibrium or collapses to form a BH or NS singularity.
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Figure 3.3: The left graph shows the shell radius for massless scalar field
case. The right graph is the effective potential for massless scalar field with
Ω = 1, keeping all the remaining parameters and initial conditions same as
in Figures 3.1, 3.2.
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Figure 3.4: This describes the behavior of effective potential (Eq.(3.2.9)).
Both graphs correspond to varying M+ and M−, keeping the remaining
parameters same as in the previous cases.
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Figure 3.5: The left graph describes the effective potential for massless
scalar field with different values of Ω, keeping all the remaining parameters
same as in previous cases. The right graph represents the behavior of the
massless scalar field shell for different values of the charge Q.
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The graphical representation of the effective potential with same values

of the parameters is shown in Figures 3.4, 3.5. Both graphs for varying

M+ and M− in Figure 3.4 and the left graph in Figure 3.5 show that the

effective potential diverges for initial values of R and then Veff → −∞ as

R → ∞. In these cases, the shell expands to infinity or collapses to zero

size. The right graph in Figure 3.5 shows that the effective potential has

one root and there occurs unstable situation, after which potential diverges

negatively and the shell expands or collapses. The cases in which collapse

occurs, the shell collapses to zero size by forming a curvature singularity at

which intrinsic Ricci scalar of the shell, Rµ
µ = − 2

R2 (2RR̈ + Ṙ2), diverges.

3.2.2 Massive Scalar Field

In this case, we discuss the motion of scalar field for which potential term,

V (φ), is determined by taking p as an explicit function of R. From Eq.(3.2.3),

we get

φ̇2 = p + ρ, V (φ) =
1

2
(p− ρ). (3.2.10)

Here we use p as an explicit function of R, [94] i.e., p = p0e
−kR, where p0

and k are constants. Inserting this value of p in Eq.(3.1.11), we obtain

ρ =
χ

R2
+

2(1 + kR)p0e
−kR

k2R2
, (3.2.11)

where χ is constant of integration. Notice that the above equations satisfy

the conservation equation (3.1.11). Further, applying the values of p and ρ

in Eq.(3.2.10), we get

V (φ) =
χ

2R2
− p0e

−kR

2

(
1− 2(1 + kR)

k2R2

)
, (3.2.12)

φ̇2 =
χ

R2
+ p0e

−kR

(
1 +

2(1 + kR)

k2R2

)
. (3.2.13)
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Figure 3.6: The behavior of effective potential for massive scalar field is
shown for the fixed values of all parameters but varying charge parameter.

These equations satisfy the KG equation (3.2.5). Using Eqs.(3.2.11)-(3.2.13)

in (3.2.6), we get

Veff (R) = 1−
(

M+ −M−
m

)2

+

(
Q

R

)2

− (M+ + M−)

R
−

( m

2R

)2

, (3.2.14)

where

m = 4πR2ρ ≡ 4πχ +
8πp0e

−kR

k2
(1 + kR). (3.2.15)

The behavior of effective potential for massive scalar field shell is shown

in Figure 3.6. The left graph is effective potential for massive scalar field

(Eq.(3.2.14)) when k = 1, χ = 3, p0 = 1, keeping the remaining parameters

same as in the massless scalar field case. This implies that Veff → −∞
as R → 0, the massive shell collapses to zero size forming a curvature

singularity. The right graph represents effective potential for massive scalar

field shell with different values of Q.

There exist such values of charge parameter for which scalar field shell

executes an oscillatory motion. The oscillations occur at two points where

Veff cuts the horizontal axis. The values of R for which Veff = 0 are shown

in the right graph of Figure 3.6 yielding zero velocity. This implies that

the shell stops for a moment and then expands or collapses. During the

collapsing phase at minimum values of the radius, the tangential pressure
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reaches its maximum values while during the expansion, minimum pressure

occurs at maximum radius. In this way, the scalar field shell performs

the oscillatory motion. The values of R for which Veff = 0, and intrinsic

curvature of the shell is finite, are bouncing points, after bounce, the shell

either expands or collapses.

3.3 Polytropic Matter Thin Shell Collapse

The equation of state for the polytropic matter is

p = kρ(1+ 1
n

), (3.3.1)

where k is EoS parameter and n denotes the polytropic index. Notice that

different values of n correspond to different types of matter, for example, for

n →∞, we have perfect fluid for which energy density is given by (3.1.13).

The solution of Eq.(3.1.11), by using (3.3.1), for finite values of n is

ρ = {(k + ρ0

−1
n )(

R

R0

)
2
n − k}−n, (3.3.2)

where R0 is the position of the shell at τ = τ0 as mentioned earlier. We note

that energy density for polytropic matter diverges at R = R0(
k

k+ρ0
−1
n

)
n
2 .

Using x = R
R0

, t = τ
R0

and Eq.(3.3.2) in Eqs.(3.1.15) and (3.1.16), we

obtain equation of motion for polytropic matter with finite n

ẋ2 + Veff (x) = 0, (3.3.3)

where

Veff (x) = 1− ε+

x
+

Q̃2

x2
− ε2

−ζ2

4x4
(x

2
n − d)2n − x2

ζ2(x
2
n − d)2n

. (3.3.4)
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Figure 3.7: Both graphs represent the effective potential for the polytropic
matter shell (3.3.4). The left graph corresponds to n = 30 and k = 2 while
the right graph for n = −30 and k = 2. For both graphs, the values of
the parameters are M− = 0, M+ = R0 = ρ0 = Q = 1, κ = 8π. These
values of the parameters will remain the same for each graph while the
extra parameters will be mentioned.
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Figure 3.8: The left graph shows the effective potential for the perfect
fluid shell (3.3.5) with k = 2. The right graph represents the increase and
decrease in the shell radius with the increase of time for x(0) = 25.

Here ε± = (M+±M−)
R0

, Q̃ = Q
R0

, d = k

k+ρ
−1
n

0

, ζ = 4
(k+ρ

−1
n

0 )n

κR0
. Similarly, we use

Eq.(3.1.14) in (3.1.16) and get the effective potential for infinite n (perfect

fluid) case, given by

Veff (x) = 1− ε+

x
+

Q̃2

x2
− ζ̄2

x2+4k
− ε2

−x4k

4ζ̄2
, (3.3.5)

where ζ̄ = 1
4
κρ0R0

(1−4k).

Now we discuss Eqs.(3.3.3)-(3.3.5) graphically following the recent pa-

pers [181, 182]. Figure 3.7 describes the behavior of effective potential

(3.3.4) for the collapsing polytropic matter with finite n and shell initial
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data. The left graph in Figure 3.8 indicates the behavior of effective poten-

tial (3.3.5) for the perfect fluid shell depending on the EoS parameter and

shell initial data. All these graphs show that Veff 6 0, thus Eq.(3.3.3) im-

plies that motion is possible as ẋ2 > 0. The left graphs in both figures show

that the effective potential increases from −∞ to 0 and then decreases from

0 to finite negative value. This implies that expanding or collapsing shell

of matter comes to rest and then expands or collapses. The right graph in

Figure 3.7 represents the following three phases.

1. Initially Veff → −∞ as x → 0, in this case, polytropic matter shell

will expand to infinity for large initial radius or collapses to zero ra-

dius, forming a BH or NS. Bouncing would occur during the formation

of BH and NS if initial shell velocity is negative and positive, respec-

tively.

2. When Veff → 0 for x > 0, the matter shell attains the non-static

equilibrium state as x increases.

3. Veff → −∞ for some values of x. This implies that static shell comes

to the state of expansion or collapse. In case of no crossing to x-axis,

the shell collapses to zero or expands to infinity depending on the

choice of the shell initial data.

Since the equation of motion (3.3.3) is nonlinear, its exact solution is

impossible but can be solved numerically. The numerical solution of this

equation for suitable choice of initial data and for some initial value of shell

radius gives the behavior of the shell radius with respect to time shown in

right graph of Figure 3.8. This shows that radius is decreasing (increas-

ing) function of time which is the strong argument for a shell to collapse
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(expand).

3.3.1 Effects of NC Parameter on Polytropic Matter

Thin Shell collapse

In this section, we study gravitational collapse in the NC RN geometry.

The line element for NC RN metric is [98]

(ds)2
± = N±dT 2 − 1

N ±
dR2 −R2(dθ2 + sin2 θdφ2), (3.3.6)

where

N±(R) = 1− 4M±
R
√

π
γ

(
3

2
;
R2

4Θ

)
+

Q2

πR2
γ2

(
1

2
;
R2

4Θ

)
− Q2

πR
√

2Θ
γ

(
1

2
;
R2

2Θ

)

+
Q2

πR

√
2

Θ
γ(

3

2
;
R2

4Θ
)

and lower incomplete gamma function is defined by

γ
(a

b
; x

)
=

∫ x

0

t
a
b
−1e−tdt. (3.3.7)

In the commutative limit R√
Θ
−→ ∞, i.e., Θ → 0, Eq.(3.3.6) reduces to

conventional RN metric (3.1.1). Here we assume smeared source in the

NC geometry and use the modified energy density and pressure [102] ρm =

ρs + ρΘ and pm = ps + p⊥, respectively. The quantities ρs and ps are the

energy density and pressure of the shell used in the previous section, while

ρΘ and p⊥ are the energy density and pressure of the smeared source in NC

theory.

It can be found [102] that ρΘ and p⊥ satisfy the following relation

p⊥ = −(1− R2

4Θ
)ρΘ. (3.3.8)

Hence, from Eq.(3.1.12), the NC energy density is ρΘ = ρ̄e−(
R2−R2

0
4Θ

), where

ρ̄ is the value of ρΘ at position R0. It is interesting to note that when
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R → 0 or Θ → ∞, this matter acts as a matter of constant density. Thus

the modified energy density for finite n is

ρm = {(k + ρ0

−1
n )(

R

R0

)
2
n − k}−n + ρ̄e−(

R2−R2
0

4Θ
). (3.3.9)

Also, for perfect fluid, we have

ρm = ρ0(
R0

R
)2k+2 + ρ̄ e−(

R2−R2
0

4Θ
). (3.3.10)

The effective potential (3.1.16) in this case can be modified as follows

Veff (R) =
1

2
(N+ + N−)− (N+ −N−)2

(κρmR)2
− 1

16
(κρmR)2. (3.3.11)

Using x = R
R0

and t = τ
R0

as in the previous case, we get the modified energy

density and effective potential for finite n as follows

ρm = {(k + ρ0

−1
n )x

2
n − k}−n + ρ̄e−R2

0(x2−1
4Θ

), (3.3.12)

Veff (x) = 1− ε+

x
+

Q̃2

x2
− 4ε2

−
κ2R2

0x
4

(
{(k + ρ0

−1
n )x

2
n − k}−n + ρ̄e−R2

0(x2−1
4Θ

)
)−2

− R2
0κ

2x2

16

(
{(k + ρ0

−1
n )x

2
n − k}−n + ρ̄e−R2

0(x2−1
4Θ

)
)2

. (3.3.13)

The effective potential for the perfect fluid is

Veff (x) = 1− ε+

x
+

Q̃2

x2
− 4ε2

−
κ2R2

0x
4
{ρ0(

1

x
)(2k+2) + ρ̄e−R2

0(x2−1
4Θ

)}−2

− R2
0κ

2x2

16
{ρ0(

1

x
)(2k+2) + ρ̄e−R2

0(x2−1
4Θ

)}2. (3.3.14)

Now we discuss the behavior of Eqs.(3.3.11)-(3.3.14) graphically. It

follows from Figures 3.9-3.12 that the effective potential increases from

negative to zero for polytropic matter with varying Θ and fixed k. The

similar behavior of the effective potential (3.3.14) for the perfect fluid shell

is shown in the left graph of Figure 3.13. It is mentioned here that we have
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Figure 3.9: Both graphs show the effective potential for the polytropic
matter shell in NC background (3.3.13). The left graph corresponds to
n = 30 and Θ = 4, while the right graph for n = 30 and Θ = 8. For both
graphs k = 2, ρ̄ = 1.
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Figure 3.10: These indicate the effective potential for the polytropic matter
shell in NC background (3.3.13). The left graph corresponds to n = 30 and
Θ = 12, while the right graph to n = −30 and Θ = 4.
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Figure 3.11: Both graphs represent the effective potential (3.3.13) corre-
sponding to n = −30, Θ = 8 and Θ = 12.
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Figure 3.12: The effective potential (3.3.14) corresponding to Θ = 4 and
Θ = 8 respectively.
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Figure 3.13: The effective potential of the perfect fluid shell corresponding
to Θ = 12 is shown in the left graph. The right graph shows that shell radius
is increasing or decreasing function of t which corresponds to expansion or
collapse.

only considered the case for which k > 0 in order to exclude the possibility

of the exotic matter (DE) shell for which k < 0. This implies that depending

on the choice of initial data, the shell continuously expands or collapses to

a finite size then comes to rest position.

After a shell attains a last stage of rest position, it has no capability

to re-expand or re-collapse to zero size. All the graphs in NC background

have Veff → −∞ at x > 0, neither of them is divergent at x = 0. This

confirms that NC can measure short distances up to the order of Planck

length scale. This can be seen by investigating the horizon radius and

point of singularity where density diverges. The exact solution of nonlinear
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equation of motion (3.3.3) with effective potentials in NC case is impossible.

As before, we solve this equation by using numerical technique with initial

condition. The behavior of the shell radius in this case is shown in right

graph of Figure 3.13.

The BH horizon can be found by solving

1 − 4M±
xR0

√
π

γ

(
3

2
;
(xR0)

2

4Θ

)
+

Q2

π(xR0)2
γ2

(
1

2
;
(xR0)

2

4Θ

)
− Q2

π(xR0)
√

2Θ

× γ

(
1

2
;
(xR0)

2

2Θ

)
+

Q2

π(xR0)

√
2

Θ
γ

(
3

2
;
(xR0)

2

4Θ

)
= 0. (3.3.15)

For R0 = 1, Q = 1, M+ = 1, M− = 0 and taking initially xh = 0.1, the

position of the horizon by iterative method is

xh = 1.35862; Θ = 4,

xh = 1.70161; Θ = 8,

xh = 1.94338; Θ = 12. (3.3.16)

For finite n, the modified energy density (3.3.12) as well as the effective

potential (3.3.13) for polytropic matter shell in NC case are singular at

xs = k
n
2

(k+ρ
−1
n

0 )
n
2

. Although this is independent of Θ but it is the only value

of x at which the modified energy density and effective potential diverge.

Further, all graphs of the effective potential for polytropic matter in

Figures 3.9-3.12 for NC case imply that Veff diverges negatively at x > 0,

while the right graph of Figure 3.7 in commutative case for polytropic

matter imply that Veff → −∞ at x = 0. This means that the NC parameter

Θ has shifted the singularity from x = 0 to x > 0. Hence, for the values

of the parameters, k, n and ρ0 used for the solutions previously, we obtain

xs = 0.00228365 at which polytropic matter shell in NC case becomes

singular. From the values of xh and xs, we conclude that ”shell radii are



62

Before collapse

After collapse in GR
After collapse in NC

Figure 3.14: An artistic view of gravitational collapse in GR and NC theo-
ries of gravity. The shell before collapse is composed of matter, after collapse
in GR matter is contracted to a point, while in NC approach matter is con-
tracted within an inner small circle. According to GR, the shell collapses
to zero radius leaving behind event horizon while in NC, it collapses to
non-zero radius interior to the event horizon.

greater than the singular point (where density diverges)” i.e., horizon covers

the singularity at point xs = 0.00228365, which leads to the formation of

BH as the final fate of the collapse as shown in Figure 3.14.

For the case of infinite n, the energy density as well as effective potential

diverge at x = 0. Thus for each value of Θ, the corresponding values of

horizon radius are greater than zero, hence a singular shell of zero radius

seems to be covered by the horizon radius. Consequently, we can say that

perfect fluid shell collapse in NC geometry always ends as a BH. Hence

in NC case, polytropic matter shell collapses to a small circle of non-zero

radius, while perfect fluid shell collapses to zero radius. The clear effects of

Θ appear in the presence of generic polytropic matter.



Chapter 4

Charged Perfect Fluid
Collapse in Friedmann and 5D
Tolman-Bondi Models

In this chapter, we discuss charged perfect fluid collapse in Friedmann and

5D TB models with positive cosmological constant. This provides an ex-

tension of perfect fluid collapse with positive cosmological constant [32, 72]

to charged perfect fluid collapse with positive cosmological constant. The

format of this chapter is the following. In section 4.1, we explore charged

perfect fluid collapse in Friedmann universe model. Using junction condi-

tions between the Friedmann universe model and charged de-Sitter solution,

we find analytic solution of the Einstein-Maxwell field equations. The for-

mation of apparent horizons and their physical significance is discussed.

Section 4.2 extends this procedure for charged perfect fluid collapse in 5D

TB model. The contents of this chapter have been published in the form of

two research papers [183, 184].
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4.1 Charged Perfect Fluid Collapse in Fried-

mann Universe Model

This section is devoted to study the charged perfect fluid collapse in the

Friedmann universe model. For this purpose, we discuss junction condi-

tions, which help to explore solution of the field equations. Also, we find

marginally bounded solution and investigate physical significance of appar-

ent horizons.

4.1.1 Junction Conditions

Here, we formulate conditions for smooth matching of interior and exterior

regions of a star on the boundary surface Σ. To this end, we assume that

a spacelike 3D hypersurface divides two 4D manifolds M− and M+ as in-

terior and exterior regions, respectively. The interior manifold is taken as

Friedmann model [1]

ds2
− = dt2 − a(t)2

(
dχ2 + f 2

k (dθ2 + sin θ2dφ2)
)
, (4.1.1)

where fk(χ) can be defined as

f(χ) =





sin χ, k = 1

χ, k = 0,

sinh χ, k = −1,

k = 1, 0,−1 correspond to closed, flat and open universe models respec-

tively, χ is the hyper-spherical angle such that 0 ≤ χ < ∞ for open and

flat models but 0 ≤ χ < 2π for closed model and a(t) is the scale factor.

Further, χ is related to radial coordinate r as follows

• r = sin χ (closed)
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• r = χ (flat)

• r = sinh χ (open).

The RN de-Sitter spacetime is taken as exterior manifold

ds2
+ = GdT 2 − 1

G
dR2 −R2(dθ2 + sin θ2dφ2), (4.1.2)

where

G(R) = 1− 2m

R
+

Q2

R2
− Λ

3
R2,

m and Λ are constants and Q is the charge. The equation of hypersurface

in terms of interior spacetime M− coordinates is

h−(χ, t) = χ− χΣ = 0, (4.1.3)

where χΣ is a constant as Σ is a comoving surface forming the boundary

of interior matter. Also, the equation of hypersurface in terms of exterior

spacetime M+ coordinates is given by

h+(R, T ) = R−RΣ(T ) = 0. (4.1.4)

Using Eq.(4.1.3) in (4.1.1), the interior metric on Σ takes the form

(ds2
−)Σ = dt2 − a(t)2fk(χΣ)(dθ2 + sin θ2dφ2). (4.1.5)

Also, Eqs.(4.1.4) and (4.1.2) yield

(ds2
+)Σ =

(
G(RΣ)− 1

G(RΣ)
(
dRΣ

dT
)2

)
dT 2 −R2

Σ(dθ2 + sin θ2dφ2), (4.1.6)

where we assume that

G(RΣ)− 1

G(RΣ)
(
dRΣ

dT
)2 > 0,
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so that T is a timelike coordinate. From Eqs.(1.16.1), (4.1.5) and (4.1.6),

it follows that

RΣ = (afk)Σ, (4.1.7)
(

G(RΣ)− 1

G(RΣ)

(
dRΣ

dT

)2
) 1

2

dT = dt. (4.1.8)

Also, from (4.1.3)-(4.1.6), the outward unit normals (1.16.4) in terms of

interior and exterior coordinates are given by

n−µ = (0, a(t), 0, 0), n+
µ = (−ṘΣ, Ṫ , 0, 0). (4.1.9)

The components of the extrinsic curvature K±
ij from Eqs.(1.16.3) and

(4.1.9) are

K−
00 = 0, K−

22 = csc2 θK−
33 = (fkfk

′a)Σ,

K+
00 = (ṘT̈ − Ṫ R̈− G

2

dG

dR
Ṫ 3 +

3

2G

dG

dR
Ṫ Ṙ2)Σ,

K+
22 = csc2 θK+

33 = (GRṪ )Σ, (4.1.10)

where dot and prime mean differentiation with respect to t and χ, respec-

tively. The continuity of the second fundamental form gives

K+
00 = 0, K+

22 = K−
22. (4.1.11)

Using Eqs.(4.1.10) and (4.1.11) along with Eqs.(4.1.7) and (4.1.8), the final

form of junction conditions become

˙(fk
′)Σ = 0, (4.1.12)

m = (
afk

2
− Λ

6
(afk)

3 +
Q2

2afk

+
aȧ2

2
fk

3 − a

2
fkfk

′2)Σ. (4.1.13)

Equations (4.1.7), (4.1.8), (4.1.12) and (4.1.13) are the necessary conditions

for the smooth matching of interior and exterior regions of a star over the

boundary surface.
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4.1.2 Solution of Einstein-Maxwell Field Equations

In this section, we solve the Einstein-Maxwell field equations with cosmo-

logical constant, perfect fluid and electromagnetic field in the Friedmann

universe model. The Einstein-Maxwell field equations with cosmological

constant are given by

Gµν − Λgµν = κ(Tµν + T (em)
µν ). (4.1.14)

Using Eqs.(1.2.3) and (2.1.11) in (4.1.14), we obtain

Rµν = 8π[(ρ + p)uµuν +
1

2
(p− ρ)gµν + T (em)

µν − 1

2
gµνT

(em)]−Λgµν . (4.1.15)

In this case, uµ = δ0
µ.

Now we solve Maxwell equations (1.2.9). For this purpose, we assume

that in comoving coordinates system the charge is at rest, so that the mag-

netic field in the interior of a star will be zero. Thus we can choose four

potential and four current as follows

φµ = (φ(t, χ), 0, 0, 0), Jµ = σuµ, (4.1.16)

where σ is the charge density. Using Eqs.(1.2.2) and (4.1.16), the only

non-zero component of the field tensor is

F01 = −F10 = −∂φ

∂χ
. (4.1.17)

Also, from Eqs.(1.2.9), (4.1.16) and (4.1.17), we have

1

a2

(
∂2φ

∂χ2
+ 2

fk
′

fk

∂φ

∂χ

)
= 4πσ, (4.1.18)

∂2φ

∂χ∂t
+

ȧ

a

∂φ

∂χ
= 0. (4.1.19)

Integration of Eq.(4.1.18) implies that

∂φ

∂χ
=

q

afk
2 , (4.1.20)
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where q(χ) = 4π
∫ χ

0
σa3fk

2dχ is the total amount of charge in the interior

region of a star. This amount of charge can be obtained by the conservation

law of charge, i.e., Jµ
;µ = 0. Notice that Eq.(4.1.19) is identically satisfied

by Eq.(4.1.20).

The electromagnetic field intensity is given by

E =
q

(afk)2
. (4.1.21)

where E = 4πẼ. Equations (4.1.20) and (4.1.21) yield

∂φ

∂χ
= aE. (4.1.22)

Using Eqs.(4.1.17) and (4.1.22), we obtain

F01 = −F10 = −aE. (4.1.23)

The non-zero components of T
(em)
µν and its trace turn out to be

T
(em)
00 =

1

8π
E2, T

(em)
11 = − 1

8π
E2a2, T

(em)
22 =

1

8π
E2(afk)

2,

T
(em)
33 = T

(em)
22 sin2 θ, T (em) = 0.

Using these values, the Einstein-Maxwell field equations (4.1.15) for the

interior spacetime take the following form

R00 = −3
ä

a
= 4π(ρ + 3p) + E2 − Λ, (4.1.24)

R11 = − ä

a
− 2

(
ȧ

a

)2

+
2

a2

fk
′′

fk

= 4π(p− ρ) + E2 − Λ, (4.1.25)

R22 = − ä

a
− 2

(
ȧ

a

)2

+
1

a2

(
fk
′′

fk

+ (
fk
′

fk

)2 − 1

fk
2

)

= 4π(p− ρ)− E2 − Λ, (4.1.26)

R33 = sin2θR22, (4.1.27)

When we talk about a field then there is a force associated with this field

which acts on the underlying geometry and causes the distortion. The elec-

tromagnetic force associated with electromagnetic field in the Friedmann
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universe model causes to disturb the generic properties of the Friedmann

universe model. In order to preserve the homogeneity and isotropy of the

model, we assume that matter field is much stronger than the electromag-

netic field [120], i.e., E2 << ρ. Thus all the results are valid for E2 << ρ

and hence for stiff matter (i.e., ρ = p), E2 << p. Integrating Eq.(4.1.12)

with respect to t, it follows that

fk
′ = w,

where w = w(χ) is an arbitrary function of χ.

The energy conservation equation, T ν
µ;ν = 0, for perfect fluid with inte-

rior metric shows that pressure is a function of t only, i.e.,

p = p(t).

Using these values of fk
′ and p in Eqs.(4.1.24)-(4.1.27), it follows that

2
ä

a
+

(
ȧ

a

)2

+
(1− w2)

(afk)2
= Λ + E2 − 8πp(t). (4.1.28)

We consider p as a polynomial in t as given by [32]

p(t) = p0(
t

T
)−c, (4.1.29)

where T is the constant time introduced in the problem due to physical

reason by re-scaling of t, p0 and c are positive constants. Further, for

simplicity, we take c = 0 so that

p(t) = p0.

Equation (4.1.28) gives

2
äfk

afk

+

(
ȧfk

afk

)2

+
(1− w2)

(afk)2
= Λ + E2 − 8πp0. (4.1.30)
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Since in comoving coordinates system the charge is at rest, so E is taken

as time independent [185]. Integration of the above equation with respect

to t yields

(ȧfk)
2 = w2 − 1 + (Λ + E2 − 8πp0)

a2fk
2

3
+ 2

M

(afk)2
, (4.1.31)

where M = M(χ) is an arbitrary function of χ which is related to the

mass of the collapsing system. Substituting the values of fk
′ and ȧfk in

Eq.(4.1.24), we get

M ′ =
2E ′E

3
(afk)

3 + a3fk
′fk

2(4π
(
p0 + ρ) + 2E2

)
. (4.1.32)

For physical reasons, we assume that (p0+ρ) > 0. Integrating this equation

with respect to χ, we obtain

M(χ) = 4πa3

∫ χ

0

(ρ+p0)fk
′fk

2dχ+2

∫ χ

0

E2fk
′fk

2dχ+
2

3
a3

∫ χ

0

E ′Efk
3dχ+M0,

(4.1.33)

where M0 is integration constant which can be taken to be zero due to finite

distribution of matter at the center of spherical symmetry.

The function M(χ) should be positive, otherwise M(χ) < 0 implies that

mass is non-physical. Using the values of fk
′ and ȧfk, into the junction

condition (4.1.13), it follows that

m =
M(χ)

afk

+
Q2

2afk

. (4.1.34)

Using Misner-Sharp definition of mass function [20], the total energy m̃(χ, t)

inside the boundary surface Σ with the contribution of electromagnetic field

and cosmological constant for the Friedmann model

m̃(χ, t) =
1

2
(afk)

(
1− (ȧfk)

2 + fk
′2
)

+
q2

2afk

− Λ

6
(afk)

3. (4.1.35)
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Replacing the values of fk
′ and ȧfk, we obtain

m̃(χ, t) =
M(χ)

afk

+
q2

2afk

. (4.1.36)

From Eqs.(4.1.34) and (4.1.36), it can be found that m̃(χ, t) =Σ m if and

only if q = Q. This result provides the necessary and sufficient conditions

for the continuity of gravitational masses in the interior and exterior regions

over the boundary surface Σ.

Now we take (Λ + E2 − 8πp0) > 0 and assume that for marginally

bounded solution w(χ) = 1. In order to obtain analytic solutions in closed

form, we use Eqs.(4.1.2), (4.1.31) and w(χ) = 1 so that

afk = (
6m

Λ + E2 − 8πp0

)
1
3 sinh

2
3 α(χ, t) (4.1.37)

where

α(χ, t) =

√
3(Λ + E2 − 8πp0)

2
(ts − t).

Here, ts(χ) is an integration function which is related to the time of for-

mation of singularity. The time t = ts corresponds to the shell focusing

singularity at afk = 0, where matter shell hit the physical singularity.

4.1.3 Apparent Horizons

Now we discuss the physical significance of apparent horizons, i.e., area

of apparent horizons, time difference between the formation of apparent

horizons and singularity etc. In 4D, an apparent horizon occurs when the

boundary of trapped two spheres is formed. For the interior spacetime, we

find this boundary of trapped two spheres whose outward normals are null

as follows

gµν(afk),µ(afk),ν = (ȧfk)
2 − (fk

′)2 = 0. (4.1.38)
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Using the values of fk
′ and ȧfk in the above equation, it follows that

(Λ + E2 − 8πp0)(afk)
3 − 3(afk) + 6M = 0. (4.1.39)

When Λ = 8πp0 − E2, we have afk = 2M . This is called Schwarzschild

horizon. For M = p0 = E = 0, we have afk =
√

3
Λ
, which is called

de-Sitter horizon.

Equation (4.1.39) can have the following positive roots.

Case (i): For 3M < 1√
(Λ+E2−8πp0)

, we obtain two horizons

(afk)ch =
2√

(Λ + E2 − 8πp0)
cos

ϕ

3
, (4.1.40)

(af)bh =
−1√

(Λ + 8πE2 − p0)
(cos

ϕ

3
−
√

3 sin
ϕ

3
), (4.1.41)

where

cos ϕ = −3M
√

(Λ + E2 − 8πp0). (4.1.42)

If we take M = 0, it follows from Eqs.(4.1.40) and (4.1.41) that (afk)ch =
√

3
(Λ+E2−8πp0)

and (afk)bh = 0, where (afk)ch and (afk)bh are called cosmo-

logical and BH horizons, respectively.

Case (ii): For 3M = 1√
(Λ+E2−8πp0)

, there is only one positive root which

corresponds to a single horizon, i.e.,

(afk)ch = (afk)bh =
1√

(Λ + E2 − 8πp0)
= (afk). (4.1.43)

This shows that both horizons coincide. The range for the cosmological and

BH horizons can be written as follows

0 ≤ (afk)bh ≤ 1√
(Λ + E2 − 8πp0)

≤ (afk)ch ≤
√

3

(Λ + E2 − 8πp0)
.

(4.1.44)

The BH horizon has its largest proper area 4π(afk)
2 = 4π

(Λ+E2−8πp0)
and cos-

mological horizon has its area between 4π
(Λ+E2−8πp0)

and 12π
(Λ+E2−8πp0)

.
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Case (iii): For 3M > 1√
(Λ+E2−8πp0)

, there are no positive roots and conse-

quently there is no apparent horizon.

We now calculate the time of formation of the apparent horizon by using

Eqs.(4.1.37) and (4.1.39)

tN = ts− 2√
3(Λ + E2 − 8πp0)

sinh−1(
(afk)N

2M
−1)

1
2 , (N = 1, 2). (4.1.45)

This implies that

(afk)N

2M
= cosh2 αN , (4.1.46)

where αN(r, χ) =

√
3(Λ+E2−8πp0)

2
[ts(χ)−tN)], t1, t2 and ts correspond to time

formation of cosmological horizon, BH horizon and singularity. Equations

(4.1.44) and (4.1.45) give (afk)ch ≥ (afk)bh and tbh ≥ tch, respectively. The

inequality tbh ≥ tch indicates that the cosmological horizon forms earlier

than BH horizon. In general, Eq.(4.1.45) shows that tN ≤ ts, which confirms

the formation of BH.

The time difference between the formation of cosmological horizon and

singularity and the formation of BH horizon and singularity can be found

as follows. Using Eqs.(4.1.40)-(4.1.5), we have

d( (afk)ch

2M
)

dM
=

1

M
(−sin ϕ

3

sin ϕ
+

3 cos ϕ
3

cos ϕ
) < 0, (4.1.47)

d( (afk)bh

2M
)

dM
=

1

M
(−sin (ϕ+4π)

3

sin ϕ
+

3 cos (ϕ+4π)
3

cos ϕ
) > 0. (4.1.48)

The time difference between the formation of singularity and apparent hori-

zons is

τN = ts − tN . (4.1.49)

It follows from Eq.(4.1.46) that

dτN

d( (afk)N

2M
)

=
1

sinh αN cosh αN

√
3(Λ + E2 − 8πp0)

. (4.1.50)
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Using Eqs.(4.1.47) and (4.1.50), we obtain

dτ1

dM
=

dτ1

d( (afk)ch

2M
)

d( (afk)ch

2M
)

dM
=

1

M
√

3(Λ + E2 − 8πp0) sinh α1 cosh α1

× (−sin ϕ
3

sin ϕ
+

3 cos ϕ
3

cos ϕ
) < 0. (4.1.51)

Similarly, from Eqs.(4.1.49) and (4.1.50), we get

dτ2

dM
=

1

M
√

3(Λ + E2 − 8πp0) sinh α2 cosh α2

×(−sin (ϕ+4π)
3

sin ϕ
+

3 cos (ϕ+4π)
3

cos ϕ
) > 0. (4.1.52)

Equations (4.1.51) and (4.1.52) imply that the time interval between the

formation of cosmological horizon (BH horizon) and singularity is decreasing

(increasing) with the increase of mass.

4.2 Charged Perfect Fluid Collapse in 5D

Tolman-Bondi Model

In this section, we investigate the charged perfect fluid collapse in 5D TB

model. We discuss the matching conditions for 5D TB model and 5D RN

de-Sitter solution. The analytic solution of the Einstein-Maxwell field equa-

tions with cosmological constant is found in 5D TB model. The formation

of apparent horizons is also discussed.

4.2.1 Junction Conditions

A spacelike 4D hypersurface Σ is taken such that it divides a 5D spacetime

into two 5D manifolds, M− and M+, respectively. The 5D TB spacetime

is taken as an interior manifold M− [69]

ds2
− = dt2 −X2dr2 − Y 2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (4.2.1)
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where X and Y are functions of t and r. For the exterior manifold M+, we

take the 5D RN de-Sitter spacetime [186]

ds2
+ = CdT 2 − 1

C
dR2 −R2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (4.2.2)

where

C(R) = 1− 2m

R2
+

Q2

R4
− Λ

6
R2,

m and Λ are constants and Q is the charge.

The equations of the hypersurface Σ in terms of the interior and exterior

spacetimes are given as

k−(r, t) = r − rΣ = 0, k+(R, T ) = R−RΣ(T ) = 0, (4.2.3)

where rΣ is a constant. Using Eq.(4.2.3) in (4.2.1) and (4.2.2), we obtain

the following form of the interior and exterior spacetimes on the boundary

surface Σ

(ds2
−)Σ = dt2 − [Y (rΣ, t)]2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2),(4.2.4)

(ds2
+)Σ = [C(RΣ)− 1

C(RΣ)
(
dRΣ

dT
)2]dT 2

− RΣ
2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2). (4.2.5)

For T to be a timelike coordinate, we assume that

C(RΣ)− 1

C(RΣ)
(
dRΣ

dT
)2 > 0.

From Eqs.(1.16.1), (4.2.4) and (4.2.5), it follows that

RΣ = Y (rΣ, t), (4.2.6)
(

C(RΣ)− 1

C(RΣ)
(
dRΣ

dT
)2

) 1
2

dT = dt. (4.2.7)

The outward unit normals to Σ in the coordinates of M− and M+ are

n−µ = (0, X(rΣ, t), 0, 0, 0), n+
µ = (−ṘΣ, Ṫ , 0, 0, 0). (4.2.8)
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The components of the second fundamental form turn out to be

K−
00 = 0, K−

22 = csc2 θK−
33 = csc2 θ csc2 φK−

44 =

(
Y Y ′

X

)

Σ

,

K+
00 =

(
ṘT̈ − Ṫ R̈− C

2

dC

dR
Ṫ 3 +

3

2C

dC

dR
Ṫ Ṙ2

)

Σ

,

K+
22 = csc2 θK+

33 = csc2 θ csc2 φK+
44 =

(
CRṪ

)
Σ

, (4.2.9)

where dot and prime indicate differentiations with respect to t and r, re-

spectively. The continuity of the second fundamental form gives

K+
00 = 0, K+

22 = K−
22. (4.2.10)

When we make use of Eqs.(4.2.9) and (4.2.10) along with Eqs.(4.2.6) and

(4.2.7), the junction conditions become

(
XẎ ′ − ẊY ′

)
Σ

= 0, (4.2.11)

m =

(
Y 2

2
+

Q2

2Y 2
− Λ

12
Y 4 +

(Ẏ Y )2

2
−

(
Y Y ′

X

)2
)

Σ

. (4.2.12)

Equations (4.2.6), (4.2.7) and Eqs.(4.2.11), (4.2.12) are necessary conditions

for the smooth matching of interior and exterior regions of a star.

4.2.2 Solution of Einstein-Maxwell Field Equations

We solve the Einstein-Maxwell field equations with positive cosmological

constant in 5D TB model. We assume that the charged perfect fluid is

in comoving coordinates system so that the magnetic field is zero. Conse-

quently, the five potential and the five current can be taken as

φµ = (φ(t, r), 0, 0, 0, 0), Jµ = σδµ
0 , (4.2.13)

where σ is the charge density. In this case, the non-zero component of the

field tensor is

Ftr = −Frt = −∂φ

∂r
. (4.2.14)
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Also, Eqs.(1.2.9), (4.2.13) and (4.2.14) yield

∂2φ

∂r2
+

∂φ

∂r
[
3Y ′

Y
− X ′

X
] = 4πσX2, (4.2.15)

∂2φ

∂r∂t
− ∂φ

∂r
[
Ẋ

X
+

3Ẏ

Y
] = 0. (4.2.16)

Integration of Eq.(4.2.15) leads to

∂φ

∂r
=

X

Y 3
q, (4.2.17)

where q(r) = 4π
∫ r

0
σY 3Xdr is the total amount of charge. By using Eqs.

(4.2.14) and (4.2.17), we get

Ftr = −Frt = − X

Y 3
q. (4.2.18)

The electromagnetic field intensity is

E =
q

Y 3
, (4.2.19)

where E = 2π2Ẽ. Equations (4.2.18) and (4.2.19) yield

Ftr = −Frt = −XE. (4.2.20)

The non-zero components of T ν
µ

(em) are

T 0
0

(em)
= T 1

1
(em)

= −T 2
2

(em)
= −T 3

3
(em)

= −T 4
4

(em)
=

1

8π
E2.

Thus the Einstein-Maxwell field equations for the interior spacetime (4.2.1)

with positive cosmological constant and perfect fluid are written as

G0
0 = − 3

X2

(
Y ′′

Y
− X ′

X

Y ′

Y
+

Y ′2

Y 2

)
+ 3

(
Ẏ 2

Y 2
+

Ẋ

X

Ẏ

Y

)
+

3

Y 2

= Λ + E2 + 8πρ, (4.2.21)

G1
1 = − 3Y ′2

X2Y 2
+ 3

(
Ÿ

Y
+

Ẏ 2

Y 2

)
+

3

Y 2
= Λ− 8πp + E2, (4.2.22)
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G2
2 = − 2

X2

(
Y ′′

Y
− X ′

X

Y ′

Y
− Y ′2

2Y 2

)
+ 2

(
Ÿ

Y
+

Ẋ

X

Ẏ

Y
+

Ẏ 2

2Y 2
+

Ẍ

2X

)

+
1

Y 2
= Λ− 8πp− E2, (4.2.23)

G3
3 = G4

4 = G2
2 = Λ− 8πp− E2, (4.2.24)

G0
1 = −3

(
Ẏ ′

Y
− Ẋ

X

Y ′

Y

)
= 0. (4.2.25)

To solve these equations, we integrate Eq.(4.2.25) with respect to t so

that

X =
Y ′

f
, (4.2.26)

where f = f(r) represents the energy inside the hypersurface Σ. Making

use of Eqs.(4.2.22) and (4.2.26), it follows that

Ÿ

Y
+

(
Ẏ

Y

)2

+
1− f 2

Y 2
=

1

3

(
Λ− 8πp + E2

)
(4.2.27)

The energy-momentum conservation equation for matter implies that p =

p(t). Using this value of p in the above equation, we obtain

Ÿ

Y
+

(
Ẏ

Y

)2

+
1− f 2

Y 2
=

1

3

(
Λ− 8πp(t) + E2

)
. (4.2.28)

We assume p to be in the form given by Eq.(4.1.29). Inserting this value

of p(t) in Eq. (4.2.28), we get

Ÿ

Y
+

(
Ẏ

Y

)2

+
1− f 2

Y 2
=

1

3

(
Λ− 8πp0 + E2

)
. (4.2.29)

Also, integrating the above equation with respect to t, we have

Ẏ 2 = f 2 − 1 +
2M

Y 2
+ (Λ− 8πp0 + E2)

Y 2

6
, (4.2.30)

where M is an arbitrary function of r and is related to the mass of the

collapsing system. Using Eqs.(4.2.26) and (4.2.30) in Eq.(4.2.21), we obtain

M ′ =
8π

3
(ρ + p0)Y

3Y ′ − EE ′

6
Y 4. (4.2.31)
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We assume that ρ and p0 satisfy the weak energy condition [1]

ρ ≥ 0, ρ + p0 ≥ 0. (4.2.32)

Integrating Eq.(4.2.31) with respect to r, it follows that

M(r) =
8π

3

∫ r

0

(ρ + p0)Y
3Y ′ − 1

6

∫ r

0

EE ′Y 4, (4.2.33)

where we have taken M0 = 0 due to finite distribution of mass at r = 0.

The total energy m̃(r, t) up to radius r at time t inside the hypersurface

can be evaluated by using the definition of Misner-Sharp mass. For the

interior metric with cosmological constant and electromagnetic field, it takes

the form

m̃(r, t) =

(
Y 2

2
+

q2

2Y 2
− Λ

12
Y 4 +

(Ẏ Y )2

2
−

(
Y Y ′

X

)2
)

Σ

. (4.2.34)

Comparing the above equation with (4.2.12), we get m̃(r, t) =Σ m if and

only if q = Q. This shows the continuity of gravitational masses in both

regions over boundary surface.

Now we solve Eq.(4.2.30) for the following two cases:

f(r) = 1, f(r) 6= 1.

Case A: Solution with f(r) = 1

For Λ−8πp0+E2 > 0, the analytic solutions in closed form can be obtained

from Eqs.(4.2.26) and (4.2.30) as follows

Y (r, t) =

(
12M

Λ− 8πp0 + E2

) 1
4

sinh
1
2 α(r, t), (4.2.35)
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X(r, t) =

(
12M

Λ + E2 − 8πp0

) 1
4

[(
4M ′

M
− 2EE ′

√
(Λ + E2 − 8πp0)

)

× sinh α(r, t) +

(
2(ts(r)− t)EE ′

√
3

2(Λ + E2 − 8πp0)

+ t′0(r)

√
(Λ + E2 − 8πp0)

6

)
cosh α(r, t)

]
sinh

−1
2 α(r, t),

(4.2.36)

where

α(r, t) =

√
2(Λ− 8πp0 + E2)

3
(ts(r)− t). (4.2.37)

Here, ts(r) is an arbitrary function of r and is related to the time of forma-

tion of the singularity. In the limit (8πp0 − E2) → Λ, the above solution

corresponds to the 5D TB solution

lim
(8πp0−E2)→Λ

Y (r, t) = (8M(ts − t)2)
1
4 , (4.2.38)

lim
(8πp0−E2)→Λ

X(r, t) =
M ′(ts − t) + 2Mt′s
(32M3(ts − t)2)

1
4

. (4.2.39)

Case B: Solution with f(r) 6= 1

Integrating Eq.(4.2.30) with the conditions Λ−8πp0+E2 > 0 and f(r) 6= 1,

it follows that

Y (r, t) =

[(
12M

Λ− 8πp0 + E2
− 9(f 2 − 1)2

(Λ− 8πp0 + E2)2

) 1
2

× sinh α(r, t)− 3(f 2 − 1)

Λ− 8πp0 + E2

] 1
2

. (4.2.40)
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Using Eq.(4.2.40) in (4.2.26), we obtain

X(r, t) =
1

2f

[(
12M

Λ− 8πp0 + E2
− 9(f 2 − 1)2

(Λ− 8πp0 + E2)2

) 1
2

× sinh α(r, t)− 3(f 2 − 1)

Λ− 8πp0 + E2

]− 1
2
[
1

2

(
12M

Λ− 8πp0 + E2

− 9(f 2 − 1)2

(Λ− 8πp0 + E2)2

)− 1
2

sinh α(r, t)

(
12M ′

Λ− 8πp0 + E2

− 24MEE ′ + 36ff ′(f 2 − 1)

(Λ− 8πp0 + E2)2
+

(
36EE ′(f 2 − 1)2

(Λ− 8πp0 + E2)3

))

+

(
12M

Λ− 8πp0 + E2
− 9(f 2 − 1)2

(Λ− 8πp0 + E2)2

) 1
2

cosh α(r, t)

×
(

2EE ′

6(Λ− 8πp0 + E2)
1
2

(ts(r)− t) +

(
2(Λ− 8πp0 + E2)

3

) 1
2

× ts
′)

(
6(f 2 − 1)EE ′

(Λ− 8πp0 + E2)2
− 6ff ′

Λ− 8πp0 + E2

)]
,

(4.2.41)

where α(r, t) is given by Eq.(4.2.37). Equations (4.2.40) and (4.2.41) rep-

resent the non-marginally bound solution corresponding to f(r) 6= 1. One

can easily verify the marginally bound solution given by Eqs.(4.2.35) and

(4.2.36) by substituting f(r) = 1 into Eqs.(4.2.40) and (4.2.41). For E = 0,

Eqs.(4.2.35), (4.2.36), (4.2.40) and (4.2.41) reduce to marginally bound and

non-marginally bound solutions for 5D perfect fluid collapse case [72].

4.2.3 Apparent Horizons

In this case, apparent horizons can be found by using the boundary of three

trapped spheres whose outward normals are null. For the interior metric,

this is given as follows

gµνY,µY,ν = Ẏ 2 − (
Y ′

X
)2 = 0. (4.2.42)
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Inserting Eqs.(4.2.26) and (4.2.30) in the above equation, we get

(Λ + E2 − 8πp0)Y
4 − 6Y 2 + 12M = 0. (4.2.43)

In particular, for Λ = 8πp0 − E2, we have Y =
√

2M , which is called the

Schwarzschild horizon. For M = 0, p0 = 0, and E = 0, it follows that

Y =
√

6
Λ
, which is called the de-Sitter horizon.

The following positive roots are found from Eq.(4.2.43).

Case (i): For 4M < 3
Λ−8πp0+E2 , we obtain two horizons

Ych =

√
3

Λ− 8πp0 + E2
+

√
9− 12M(Λ− 8πp0 + E2)

Λ− 8πp0 + E2
, (4.2.44)

Ybh =

√
3

Λ− 8πp0 + E2
−

√
9− 12M(Λ− 8πp0 + E2)

Λ− 8πp0 + E2
. (4.2.45)

When M = 0, these reduce to Ych =
√

6
(Λ+E2−8πp0)

and Ybh = 0.

Case (ii): For 4M = 3√
(Λ+E2−8πp0)

, we have repeated roots

Ych = Ybh =
3√

(Λ + E2 − 8πp0)
= Y, (4.2.46)

which shows that both horizons coincide. The ranges for the cosmological

and the BH horizons are

0 ≤ Ybh ≤
√

3

Λ− 8πp0 + E2
≤ Ych ≤

√
6

Λ− 8πp0 + E2
. (4.2.47)

The BH horizon has its largest proper area 4πY 2 = 12π
(Λ+E2−8πp0)

, and the

cosmological horizon has its area between 12π
(Λ+E2−8πp0)

and 24π
(Λ+E2−8πp0)

.

Case (iii): For 4M > 3√
(Λ+E2−8πp0)

, there is no positive real root, hence,

there is no apparent horizon.

The formation time for the apparent horizon with the help of Eqs.(4.2.35)

and (4.2.43) is given by

tN = ts−
√

3

2(Λ− 8πp0 + E2)
sinh−1

(
YN

2

2M
− 1

) 1
2

, (N = 1, 2). (4.2.48)
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This shows that apparent horizons are formed earlier than singularity, hence

the end state of gravitational is BH. In the limit (8πp0−E2) → Λ, we obtain

the result corresponding to 5D TB solution

tah = ts −
√

M

2
. (4.2.49)

Equations (4.2.47) and (4.2.48) imply that Ych ≥ Ybh and tbh ≥ tch, re-

spectively. The inequality tbh ≥ tch indicates that the cosmological horizon

forms earlier than the BH horizon.



Chapter 5

Phantom Energy Accretion
onto 5D Charged Black Hole

Here, we investigate the phantom energy accretion onto 5D charged BH.

Babichev et al. [106] have shown that phantom accretion onto the Schwarz-

schild BH diminishes its mass. Jamil et al. [107] have studied the phantom

accretion onto the charged BH. They found that if the BH mass due to

accretion of phantom energy becomes smaller than its charge, then it is

converted into a NS, which is the violation of CCH. The same conclusion

was deduced by Babichev et al. [108], when they studied the phantom en-

ergy accretion onto charged BH with generalized linear EoS and Chaplygin

gas. In this chapter, we extend the work of Jamil el al. [107] to 5D charged

BH. This chapter is organized as follows. In section 5.1, we formulate

the equation of motion for accretion process by using energy conservation,

Bernoulli equation and mass flux conservation equation. Section 5.2 is de-

voted to study the critical accretion. The results of this chapter have been

published in the form of a research paper [187].

84



85

5.1 Accretion onto 5D Charged Black Hole

In this section, we discuss the phantom energy accretion onto 5D charged

BH. We consider a charged static spherically symmetric N + 2 dimensional

BH solution [185]

ds2 = B(r)dt2 − 1

B(r)
dr2 − r2dΩN , (5.1.1)

where dΩN is the unit N sphere and B(r) = 1− 2m
rN−1 + Q2

r2N−2 . For N = 2,

this reduces to 4D conventional RN metric, while for n = 3, we get a 5D

charged BH solution given by

ds2 = B(r)dt2 − 1

B(r)
dr2 − r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (5.1.2)

where B(r) = 1− 2m
r2 + Q2

r4 . Here m and Q are the mass and charge of BH.

The black hole horizons can be found by solving B(r) = 1− 2m
r2 + Q2

r4 ≡ 0,

for r whose positive real roots will give horizons as follows

r1 =

√
m +

√
m2 −Q2, r2 =

√
m−

√
m2 −Q2. (5.1.3)

For m2 > Q2, r1 > r2, r1 and r2 are called outer and inner horizons

respectively, for m2 = Q2, r1 = r2 ≡ m (an extremal charged BH) and

for m2 < Q2, both horizons disappear and singularity becomes naked at

r = 0. For Q = 0, r1 = 2m (Schwarzschild horizon in 4D) and r2 = 0. This

implies that like 4D case, the presence of charge is essential for the existence

of inner horizon (Cauchy horizon). The regularity of the 5D charged BH

can be seen in the regions r1 < r < ∞, r2 < r < r1 and 0 < r < r1.

The energy-momentum tensor for phantom energy is specified by the

perfect fluid given by Eq.(2.1.11), in which ρ and p violates the dominant

energy condition, i.e., ρ + p < 0 and uµ = (u0, u1, 0, 0, 0) is the five-vector
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velocity. We would like to mention here that uµ satisfies the normalization

condition, i.e., uµuµ = 1. The conservation of the energy-momentum tensor

yields

r3u(ρ + p)
(
B(r) + u2

) 1
2 = A1, (5.1.4)

where A1 is an integration constant with no dimension and u1 = u < 0

because phantom energy falls radially inward onto BH. By projecting the

energy-momentum conservation law on five velocity, we can get energy flux

equation, i.e., uµT
µν

;ν = 0 for which Eq.(2.1.11) leads to

r3u exp(s) = −A2, (5.1.5)

where s =
∫ ρh

ρ∞
dρ̂

ρ̂+p(ρ̂)
, and A2 > 0 is another integration constant which is

related to energy flux and has the dimension of r3. Also, ρh and ρ∞ are

phantom energy density at horizon and at infinity. From Eqs.(5.1.4) and

(5.1.5), it follows that

(ρ + p)
(
B(r) + u2

) 1
2 exp(−s) = A3, (5.1.6)

where A3 = −A1

A2
= ρ∞ + p(ρ∞).

The rate of change of BH mass due to phantom energy accretion is [106]

ṁ = 2π2r3T r
t.

Using Eqs.(5.1.4)-(5.1.6) in the above equation, it follows that

ṁ = 2π2A2(ρ∞ + p∞). (5.1.7)

We note that the mass of BH decreases if (ρ∞+p∞) < 0. Thus the accretion

of phantom energy onto a BH decreases the mass of BH. As the phantom

accretion only diminishes mass and does not affect the charge of BH, so

we can deduce that when m2 < Q2 is reached, then singularity becomes
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naked at r = 0 and phantom accretion by 5D charged BH may lead to the

violation of CCH. This is explained in the next section. It is mentioned

here that one can solve Eq.(5.1.7) for m by using EoS p = ωρ. Since all

p and ρ, violating dominant energy condition, must satisfy this equation,

hence it holds in general, i.e., ṁ = 2π2A2(ρ + p).

5.2 Critical Accretion

This section is devoted to analyze the critical points (such points at which

flow speed is equal to the speed of sound) during the accretion of phantom

energy. The phantom energy falls onto BH with increasing velocity along

the particle trajectories. For the discussion of critical accretion points,

we follow the procedure of Michel [104]. The conservation of mass flux

Jµ
; µ = 0, gives

ρur3 = A4, (5.2.1)

where A4 is another integration constant, which is negative because u < 0.

From Eqs.(5.1.4) and (5.2.1), it follows that
(

ρ + p

ρ

)2 (
B(r) + u2

)
= A5, (5.2.2)

where A5 = (A1

A4
)2. Differentiating Eqs.(5.2.1) and (5.2.2) and ruling out

dρ, we get

dr

r

(
3V 2 − 2(m

r2 − Q2

r4 )

B(r) + u2

)
+

du

u

(
V 2 − u2

B(r) + u2

)
= 0, (5.2.3)

where V 2 = dln(ρ+p)
dlnρ

− 1.

The critical points can be found by taking both the factors inside the

square brackets equal to zero. Thus, we obtain

u∗2 =
2

3

(
mr∗2 −Q2

r4∗

)
, V∗

2 =
2(mr∗2 −Q2)

3r∗4 − 4mr∗2 + Q2
. (5.2.4)
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We see that physically acceptable solutions of the above equations are ob-

tained if u∗2 > 0 and V∗
2 > 0 implying that

mr∗2 −Q2 > 0, 3r∗4 − 4mr∗2 + Q2 > 0. (5.2.5)

The subscript ∗ represents a quantity at a point where speed of flow is equal

to the speed of sound, such a point is called a critical point.

The fluid particles that move towards a BH initially have flow speed less

than speed of sound but as it comes closer to BH horizons, its speed may

transit from subsonic to supersonic level. The circular boundary around BH

where flow speed is equal to the speed of sound is called a sound horizon.

The flow speed is supersonic inside the sound horizons but less than speed

of light, as fluid reaches the BH horizon, the flow speed approaches to the

speed of light. After crossing the BH horizon, it becomes greater than the

speed of light. Notice that the equations corresponding to Eq.(5.2.5) are

linear and quadratic in r for 4D charged BH [107].

The positive real roots of the second equation of Eq.(5.2.5) are

r∗± =
1√
3

(√
2m±

√
4m2 − 3Q2

)
(5.2.6)

which are real if

m2

Q2
> 3

4
.

These roots represent the position of critical points near a BH. For the

solution about critical point, we insert the values of r∗± from Eq.(5.2.6) in

the first equation of Eq.(5.2.5). For r∗+, the first equation of Eq.(5.2.5)

gives

m
√

4m2 − 3Q2 > 3Q2 − 2m2, (5.2.7)

which is satisfied only if

3

4
6 m2

Q2
<

3

2
. (5.2.8)
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We would like to mention here that such limits on the mass to charge ratio

occur for studying the pseudo-Newtonian force about a charged rotating

BH [188].

In phantom energy accretion onto a 4D charged BH, Jamil et al. [106]

found such ratio for RN BH as 8
9

6 m2

Q2 < 4
3
. It is interesting to note that

mass to charge ratio in Eq.(5.2.8) can represent a regular as well extremal

5D RN for lower limit, while upper limit of this ratio can represent a NS.

Hence, it is possible that accreting phantom energy onto 5D charged can

convert it into NS and CCH can be violated. We would like to mention

that increase of dimension does not alter the final fate of charged BH,

when phantom energy accretes onto it. Also, for r∗−, the first equation of

Eq.(5.2.5) gives

m
√

4m2 − 3Q2 6 2m2 − 3Q2. (5.2.9)

For 2m2 − 3Q2 < 0, the above equation yields no solution. We must have

2m2 − 3Q2 > 0 which yields m2

Q2 > 3
2
. Further, Eq.(5.2.9) is satisfied only

for m2

Q2 < 1. Since two ratios are inconsistent in this case, so accretion is

not possible through r∗−.



Chapter 6

Summary and Discussion

This chapter is devoted to summarize and discuss briefly the results of

previous chapters. We also mention some open problems at the end of this

chapter.

Gravitational collapse is an open issue in GR, which is highly motivated

by CCH. In order to prove or disprove this hypothesis, many efforts have

been made by considering different spacetimes and different forms of collaps-

ing matter. To address this issue, we have studied the fate of gravitational

collapse in electromagnetic theory by assuming cylindrical and spherical

spacetimes. For the spherical gravitational collapse, the collapsing matter

has been taken as charged perfect fluid with positive cosmological constant.

Also, the scalar fields and polytropic matter have been considered in the

charged background. Throughout the thesis, we have used two approaches

to discuss the gravitational collapse one by solving the Einstein-Maxwell

field equations with perfect fluid and another by using Israel thin shell

formalism in charged geometry. We have also studied phantom energy ac-

cretion onto 5D charged BH to highlight the status of CCH. The results

obtained in thesis can be summarized as follows.

Chapter TWO deals with charged perfect fluid cylindrical gravitational
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collapse. The analytic solution of the Einstein-Maxwell field equations has

been found by assuming that fluid is moving along the geodesics inside the

cylindrical symmetry. The method of separation of variables has been used

to determine the solution of the field equations. For a particular range

of separation constant, the solution represents gravitational collapse. It is

found that all physical parameters like density, pressure, electromagnetic

field intensity and velocity of the collapsing cylinder become free of initial

inhomogeneity. In this case, pressure is a function of time only as in the

case of geodesic spherical collapsing model [175]. The essential singularity

of solution occurs at a point where the longitudinal length reduces to zero.

Since in the limit r′ → 0, the Ricci scalar and other physical parameters

are finite, so r′ = 0 is a conical singularity of the metric (2.1.34).

The electromagnetic force associated with electromagnetic field in curved

spacetime causes to increase the inhomogeneity of that spacetime. But

smoothness in energy density and pressure graphs (Figures 2.2 and 2.3)

represent that electromagnetic field cannot promote inhomogeneity. This

is due to the weak electromagnetic field, Figures 2.2 and 2.3 imply that

E < ρ, which is the condition for a weak electromagnetic field [120]. Using

approximate symmetry approach, Hussain et al. [189] have pointed out

that presence of fluctuations in energy density indicate gravitational waves.

Since fluctuations are absent in energy density graph (Figure 2.2), so there

are no gravitational waves. By matching charged perfect fluid solution with

the exterior charged vacuum solution by Darmois junction conditions, we

have found:

• Boundary of charged fluid acts as a cylinder of constant proper unit

length;
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• Coulomb and gravitational forces of system balance each other on

boundary of cylinder.

In chapter THREE, we have presented thin shell collapse of scalar field

and polytropic matter in the charged background. Using the Israel thin

shell formalism, we have derived general dynamical equations for thin shell

between two RN spacetimes. This general formulation has been applied

to scalar field and polytropic matter thin shell explicitly. We have studied

the dynamical behavior of scalar field thin shell by treating it as massless

and massive. The complete dynamics of scalar field can be described by

the equation of motion (3.1.15) and KG equation (3.2.5). These equations

cannot be solved exactly, so we have solved them numerically by taking

V (φ) = m̃2φ2 and some initial conditions. This solution is represented in

Figure 2.2, which shows that scalar field shell can expand and collapse. It

decays out in the case of expansion, while it inflates to infinity in the case

of collapse.

In massless scalar field case, we have found that shell radius is an increas-

ing (decreasing) function of time implying expansion (collapse). Further,

Veff (R) in Figures 2.3-2.5 shows that massless scalar field can collapse to

a point by forming a curvature singularity or it can expand to infinity. To

discuss the massive scalar field case, we have taken p as an explicit function

of R and have calculated the scalar potential V (φ) (3.2.12). In this case,

shell radius R behaves like the massless scalar field and Veff (R) → −∞ as

R → 0 (left graph in Figure 2.6). This shows that shell contracts to zero

radius forming a curvature singularity. There is also bouncing behavior of

shell in this case as Veff (R) has a well (left graph in Figure 2.6).

Also, the general formalism has been applied to polytropic matter as
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well as perfect fluid thin shell. The dynamics of the system in this case can

be described by Eqs.(3.3.3)-(3.3.5). Figure 3.7 describes Veff (3.3.4) for

polytropic matter with finite n and initial data of collapsing shell. Also, Veff

(3.3.5) for perfect fluid is shown in left graph of Figure 3.8. These graphs

show that Veff 6 0, hence Eq.(3.3.3) indicates that motion is possible as

ẋ2 > 0. The left graphs in both figures show that Veff varies from −∞ to

0 and from 0 to finite negative value. Since in both these phases motion is

always possible, therefore expanding or collapsing matter shell comes to rest

and then re-expands or re-collapses. The right graph in Figure 3.7 implies

that Veff → −∞ as x → 0. The matter thin shell expands to infinity or

collapses to a point to form a BH or NS. The expanding (collapsing) shell

would exhibit bouncing or oscillating behavior, if initial shell velocity is

negative (positive).

To study the effects of NC parameter Θ on thin shell gravitational col-

lapse in the charged background, we have adopted the approach introduced

by Oh and Park [102]. The geometry part of dynamical equations derived

earlier has been left unchanged, while density and pressure of shell have

been modified by adding density and pressure of gravitational source due to

non-commutativity. The NC version for shell dynamical equations has been

derived, which are given by Eqs.(3.3.11)-(3.3.14). The numerical solution

of these equations has been presented in Figures 3.9-3.12. These graphs

show that in the presence of NC parameter Θ, an initially expanding or

collapsing matter shell comes to rest which cannot re-expand or re-collapse.

The solutions for r in g00(r) = 0 from Eq.(3.3.6), give the horizons radii.

For large value of NC factor Θ, it has been found from Eq.(3.3.13) that

the horizon radii cover the singularity at xs = 0.00228365, where density is
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singular for the case of polytropic matter with finite n. Thus a regular BH

is formed in this case with various horizons. For perfect fluid with infinite

n, ρ as well as Veff become singular at x = 0. Thus for all values of Θ, the

values of horizon radii are greater than zero, hence a singular shell of zero

radius seems to be hidden by various concentric circles.

The charged perfect fluid gravitational collapse in Friedmann and 5D

TB model with positive constant have been discussed in chapter FOUR.

In both cases, Darmois junction conditions have been used to find ana-

lytic solution of the Einstein-Maxwell field equation and to show the con-

tinuity in the gravitational masses of interior and exterior regions. The

non-marginally bound solution for 5D TB model and marginally bound so-

lution for Friedmannn as well as 5D have been found. The formation of the

apparent horizons and time difference between the formation of apparent

horizons and singularity have been discussed for both models. It is found

that time of BH horizon formation is larger than cosmological horizon for-

mation, therefore BH is the end state of gravitational collapse. In case of

Friedmannm model, Eqs.(4.1.51) and (4.1.52) imply that the time differ-

ence between cosmological horizon and singularity is a decreasing function

of mass, while time difference between BH horizon and singularity is an

increasing function of mass.

To discuss the effects of electromagnetic field and positive cosmological

constant on gravitational collapse, we have calculated the rate of gravi-

tational collapse in Friedmann and 5D TB model from Eqs.(4.1.31) and

(4.2.30), respectively. The rate of collapse in Friedmann model is

(äfk) = − M

(afk)2
+ (Λ + E2 − 8πpc)

(afk)

3
. (6.0.1)

This is the acceleration of collapsing matter. For M ≥ 1

3
√

(Λ+E2−8πpc)
and
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(afk) ≥ 1√
(Λ+E2−8πpc)

, we get äfk ≥ 0, which implies that there is no

collapse of matter at all. For M < 1

3
√

(Λ+E2−8πpc)
and (afk) < 1√

(Λ+E2−8πpc)
,

it follows that (äfk) < 0, this is condition for the occurrence of gravitational

collapse. Similar analysis can be made from the rate of collapse in 5D TB

model, given by the following equation

Ÿ = −2m

Y 3
+ (Λ− 8πpc + E2)

Y

6
. (6.0.2)

We have discussed the phantom energy accretion onto 5D charged BH

in chapter FIVE. We have derived the equation of motion for phantom

energy onto 5D charged BH. It has been found that when phantom energy

accretes onto 5D charged BH, then mass of BH goes on decreasing with

the passage of time. Since charge of BH remains constant during accretion

process, so when amount of charge is larger than the amount of mass, then

BH is converted into NS. The critical accretion analysis implies that there

exists a unique critical point for which mass to charge ratio is 3
4

6 m2

Q2 < 3
2
.

This ratio incorporates BHs (extremal and non-extremal for lower bound)

and NS (for upper bound). Hence, RN BH in phantom energy dominated

universe may provide a process for the formation of NS and CCH can be

violated in this case.

In this thesis, we have studied the gravitational collapse of charged per-

fect collapse and gravitational collapse of thin shell in charged geometry. It

would be interesting to investigate the gravitational collapse of charged dis-

sipative fluid in cylindrical and spherical geometries. The thin shell collapse

in charged de-Sitter, rotating and charged rotating background would be

interesting to explore the status of CCH. The charged perfect fluid cylin-

drical gravitational collapse can be studied by using symmetry approach

introduced by Soh and his collaborators [190, 191] to discuss non-static,
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shear-free charged perfect fluid solutions. The 5D TB model collapse can

also be extended to some generalized model with g00 6= 1. The procedure

of phantom energy accretion onto 5D charged BH can be applied to higher

dimensional rotating and charged rotating BHs to see the effects of rotation

parameter on the accretion process in higher dimension. Several modified

theories like f(R) gravity, Gauss-Bonnet gravity and f(T ) gravity, are al-

ternative to GR. It would be interesting to extend the work of this thesis

in modified theories of gravity.
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des sciences Mathématique, part XXV (Gauthier-Villars, Paris, 1927).

[174] Brien, O.S. and Synge, J.L.: Jump Conditions at Discontinuities in

General Relativity(Institute for Advanced Studies, 1952).

[175] Brandt, C.F.C., Chan, R., da Sliva, M.F.A. and da Rocha, J.F.V.:

Int. J. Mod. Phys. D 19(2010)317.

[176] Sharif, M. and Abbas, G.: J. Phys. Soc. Jpn. 80(2011)104002.

[177] Di Prisco, A., Herrera, L., MacCallum, M.A.H. and Santos, N.O.:

Phys. Rev. D 80(2009)64031.

[178] Chao-Guang, H.: Acta Physica Sinica 4(1995)617.

[179] Sharif, M. and Abbas, G.: Gen. Relativ. Gravit. 44(2012)2353.

[180] Sharif, M. and Abbas, G.: J. Phys. Soc. Jpn. 81(2012)044002.



109

[181] Mann, R.B. and Oh, J.J.: Phys. Rev. D 74(2006)124016.

[182] Mann, R.B., Oh, J.J. and Mu-In, P.: Phys. Rev. D 79(2009)64005.

[183] Sharif, M. and Abbas, G.: Astrophys. Space Sci. 327(2010)285

[184] Sharif, M. and Abbas, G.: J. Korean Phys. Soc. 56(2010)529.

[185] Bakshi, A.V. and Bakshi, U.A.: Field Theory (Technical Publishing,

2007).

[186] Konoplya, R.A. and Zhidenko, A.: Phys. Rev. Lett. 103(2009)161101.

[187] Sharif, M. and Abbas, G.: Mod. Phys. Lett. A 26(2011)1731.

[188] Qadir, A.: Eur. Phys. Lett. 2(1986)427.

[189] Hussain, I., Mahomed, F.M. and Qadir, A.: Phys. Rev.

D79(2009)125014.

[190] Soh, C.W. and Mahomed, F.M.: Class. Quantum Grav.

17(2000)3063.

[191] Mahomed, F.M., Qadir, A. and Soh, C.W.: Nuovo Cimento B

118(2003)373.



Appendix

List of Publications

This thesis has resulted the following papers which have been published

and attached herewith.

1. Sharif, M. and Abbas, G.: Charged Perfect Fluid Cylindrical Gravi-

tational Collapse, J. Phys. Soc. Jpn. 80(2011)104002.

2. Sharif, M. and Abbas, G.: Expanding and Collapsing Scalar Field

Thin Shell, Gen. Relativ. Gravit. 44(2012)2353.

3. Sharif, M. and Abbas, G.: Non-Commutative Correction to Thin

Shell Collapse in Reissner-Nordström Geometry, J. Phys. Soc. Jpn.

81(2012)044002.

4. Sharif, M. and Abbas, G.: Gravitational Charged Perfect Fluid Col-

lapse in Friedmann Universe Models, Astrophys. Space Sci. 327(2010)285.

5. Sharif, M. and Abbas, G.: Effects of the Electromagnetic Field

on Five Dimensional Gravitational Collapse, J. Korean Phys. Soc.

56(2010)529.

6. Sharif, M. and Abbas, G.: Phantom Accretion by Five Dimensional

Charged Black Hole, Mod. Phys. Lett. A 26(2011)1731.

Also, the following papers related to this thesis have been published/submitted.

1. Sharif, M. and Abbas, G.: Gravitational Collapse: Expanding and

Collapsing Regions, Gen. Relativ. Gravit. 43(2011)1179.

2. Sharif, M. and Abbas, G.: Dynamics of Non-adiabatic Charged

Cylindrical Gravitational Collapse, Astrophys. Space Sci. 335(2011)515.

110



111

3. Sharif, M. and Abbas, G.: Phantom Accretion onto the Schwarz-

schild de-Sitter Black Hole, Chin. Phys. Lett. 28(2011)090402.

4. Sharif, M. and Abbas, G.: Phantom Accretion by Stringy Charged

Black Hole, Chin. Phys. Lett. 29(2012)010401.

5. Sharif, M. and Abbas, G.: Phantom Energy Accretion by a Class of

Black Holes, J. Phys.: Conf. Ser. 354(2012)012019.

6. Sharif, M. and Abbas, G.: Dynamics of Shearfree Dissipative Col-

lapse in f(G) Gravity, (Submitted for Publication).

7. Sharif, M. and Abbas, G.: Singularities of Noncompact Charged

Objects, (Submitted for Publication).

8. Sharif, M. and Abbas, G.: Perfect Fluid Accretion by the Interior of

Black Hole, (Submitted for Publication).


