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THERMAL CONDUCTIVITY AND KAPITZA RESISTANCE 
IN THE NORMAL AND SUPERCONDUCTING STATES* 

I. Introduction 

There are two processes by which heat may be transported through a solid. 

One of the processes arises due to the strong coupling between the atoms in a 

crystal lattice. Thus thermal conduction can take place by means of the lattice 

vibrations or phonons. These can be considered as longitudinal and transverse 

waves travelling through the material. This is the mechanism of heat transport 

in dielectrics and, as we shall see, the dominant mechanism in superconductors. 

The second process of heat conduction is by “free” electrons. In fairly pure 

metals, this is the dominant mechanism. As we shall see, this is why there is 

an intimate relationship between thermal conductivity and electrical conductivity 

in normal metals. 

Though our main interest will be in low-temperature thermal conductivity, 

the basic ideas which will be developed are applicable over the whole temperature 

range. Thus we shall also briefly look at high and intermediate temperatures. 

Kapitza resistance will also be considered, as an example of general thermal 

boundary resistance between two media which becomes particularly manifest at 

low temperatures. 

The derivations that will be presented are short, simple, and not rigorous. 

There isn’t enough time to present the rigorous derivations. A lot of things will 
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be swept under the rug. These will not be pointed out as such to avoid confusion 

at this level, since the topic is not of great familiarity to most of the people here. 

I would be glad to personally discuss the finer points with those of you who are 

interested. I hope to get across the basic concepts and their broad scope of 

applicability. What the heuristic derivations lack in rigor, I hope they’11 make up 

for in vigor to give you an insight into the physics behind the relevant equations. 

Although most of the derivations and interpretations are my own (I take the 

responsibility for their incompleteness and the errors in them), I have relied on 

several standard texts for general guidance. I recommend them to those who wish 

to probe deeper into the subject. These texts are: Rosenberg’s Low Temperature 

Solid State Physics, Ziman’s Electrons and Phonons, Dekker’s Solid State Physics, 

and Kittel’s Introduction to Solid State Physics. 

II. The Wiedemann-Franz Law 

Let’s start by quickly looking at electrical conductivity with which weOre fa- 

miliar, and then look at the contribution to thermal conductivity due to electrons 

by analogy. We’ll then relate the two conductivities. 

A. Electrical Conductivity 

-E 
x 

T 
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Fig. II. 1. Mean free path and time between collisions in a metal 

When an electric field, 8, is applied to a metal, the electrons of charge, -e, 

are accelerated on the average for a time, T , before being scattered. T is called 

the relaxation time. The electrons are scattered by impurities, vacant sites, 
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interstitial atoms, dislocation lines, grain boundaries, and other lattice defects. 

There is also scattering of the electrons by phonons. This can be visualized as 

density fluctuations due to thermal vibrations which, to the electrons, look like 

an increase or decrease of positive charge here and there. Phonon scattering 

is neglected in relating electrical and thermal conductivity as is done in this 

section. This is because when electrons are scattered through small angles by 

phonon interaction, the scattering is much more effective in producing a thermal 

than an electrical resistance. 

Between collisions, the electrons gain an average drift velocity, v. After 

each scattering collision, the velocity, v, will be lost or so changed in direction 

as to be effectively 0 in the direction of the electric field. 

v = - V(P.E.)T _ -e&r 
m m 

where m is the effective mass of an electron in the metal. 

density, j, resulting from this transport of charge is: 

j = n(-e)v = ne287/m 

where n is the number density of free electrons. 
. . . electrical conductivity, 

a=-&- = ne27/m 

w 1) 

The electric current 

(II. 2) 

w 3) 

Thus one metal is a better conductor than another because it has a higher density 

of free electrons. Its electrical conductivity goes down with increasing high 

temperature because the time, T , between collisions decreases. 
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B. Thermal Conductivity of Electrons 

As we shall see, electrons make the dominant contribution to thermal con- 

ductivity of fairly pure metals in the normal state. If we think of the electrons 

in a metal as a free electron gas, then at a temperature, T, each electron has 

an average energy % kT where k is the Boltzmann constant. At a temperature 

T + 6T, the electron has an average energy gk(T +6T). The excess energy, 

$ k6T causes the electron to diffuse into the colder region. If the metal has a 

thermal gradient, this will look somewhat like a potential gradient of magnitude 

V ik T 
( 1 

acting like a “force” on each electron to move it from the region of 

high temperature to the region of lower temperature. This thermodynamic-like 

“force” gives rise to a drift of electrons down the metal controlled (for simplicity) as in the 

electrical case by collisions with lattice defects. The average drift velocity is 

v = v(34 . m (II* 4) 

Analogous to the electric current density, j, given by Eq. (II. 2), the transport 

of thermal energy is equivalent to a heat current density, 

q=n 

= VT . 
The thermal conductivity is 

nk2TT/m . 

(II. 5) 

w. 6) 
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Now, dividing Eq. (II. 6) by Eq. (II. 3): 

k2T/e2 , 

and if we had been more careful and used statistical quantum mechanics, we’d 

have: 

1% = -$- k2T/e2 1. (II. 7) 

Equation (II. 7) is the Wiedemann-Franz law. From it, we see why those metals 

that are good electrical conductors are also good thermal conductors, since the 

thermal conductivity is proportional to the electrical conductivity. 

We must bear in mind that scattering by phonons was neglected in deriving 

the W-F law, so it will not be valid in the temperature range where phonon scatter- 

ing is not a negligible process. We will see where this is shortly. 
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III. The Electronic Heat Capacity, Thermal Conductivity, and Diffusivity 

Throughout this seminar, I shall use the term “heat capacity11 to mean heat 

capacity at constant volume. Let us take a look at the density of occupied states 

of electrons in a metal as a function of energy, as shown in Fig. III. 1. 

DENSITY OF OCCUPIED STATES 

Fig. III. 1. Electron density of states as a function of energy 

At 0’ K, all the states are filled up to the Fermi energy, EF. As the tem- 

perature, T, is raised, those electrons whose energies lie within a range kT from 

EF will be excited to higher energy states. The electrons in lower states are 

essentially hemmed in by the filled states above them, as they are forbidden by 

the Pauli exclusion principle from sharing in these already filled higher states. 

Hence only those electrons that are within this energy range, kT from EF, can be 

free in the classical sense. It is these electrons which contribute to the temperature 

dependence of the total energy, E, of the electrons, and hence which are responsible 

for the heat capacity, C’. To a good approximation, we can say that the fraction 

of the total number of electrons, N, that are excited is kT/E ( F)’ and that each has 

acquired the extra classical energy ;kT. 

E=Eo+(g)N(;kT) = Eo+(g) (nV) (;kT) Y (III. 1) 

where E. is the total energy of the electrons at 0’ K, and V is the volume of the 

metal. 
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c’A& 3nVk2T/EF (III. 2) 

Had we been more careful, we’d have x2/2 instead of 3 in Eq. (III. 2). The 

heat capacity per unit volume, 

2 
C E C’/V = $- nk2T/EF (III. 3) 

Combining Eq. (III. 3) algebraically with the W-F law (II. 7), and substituting 

for u from Eq. (II. 3), we get: 

K = (+)($i)(% EF) 

+ Yigi ( 1 EF = 

7 = A/v 

where h is the electron’s mean free path between collisions. 

(III. 5) in (III. 4) 3 K = &k)(iiF%) = sc~v(m~;,2) 

(III. 4) 

(III. 5) 

(III. 6) 

Now $mv 2 A EF since EF typically w 5 ev and the electrons do not increase 

their energy much above this. 

:. [Ke = $Celeve I, (III. 7) 

where the subscript e has been put in to denote explicitly that these are the 

electron’s thermal conductivity, Ke; heat capacity per unit volume, Ce; mean 
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free path, Ae; and average velocity, ve. 

Equation (III. 7) can be derived more generally, and is valid over the whole 

temperature range. It is not limited by the Wiedemann-Franz law, nor by the 

particular temperature dependence of the heat capacity. We can see its gener- 

ality by substituting (III. 7) into the thermal conduction equation for a rod of 

length d. 

q=KT - ( 2 Tl) ‘d 

= C (T2 -T&v +) 

(III. 8) 

(III. 9) 

Equation (III. 9) can be interpreted thus: C ( T2 - T1 is the excess energy density 1 
at one end of the rod with respect to the other end. This excess energy is propa- 

gated along the material with an effective transport velocity which is just l/3 

the carrier velocity reduced by the ratio of the mean free path to the length of the 

rod. Of course, the same ideas would pertain for other geometries, though not 

as clearly. 

At very low temperatures, the product Ae ve has essentially no temperature 

dependence. Since Ce oc T (III. 3), this implies Ke oc T (III. 7) at very low 

temperatures. We can also see this from the W-F law (II. 7), since the electrical 

resistivity, p = l/o, approaches a constant value p. at very low temperatures. 

Ke =(4 $ Go)T =(3-$-)T (III. 10) 

The residual resistivity, po, is a result of impurities and other lattice 

defects in a metal. When the purity of two samples of a given metal is so high 

that it would be almost impossible to detect differences by any standard analytical 

technique, they can readily be compared by the electrical resistivity ratio. This 
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is the ratio of the room temperature to the He temperature resistivity. While 

the residual resistivity, po, is very sensitive to the presence of impurity atoms, 

the room temperature resistivity is determined mainly by phonon (thermal vi- 

brational) scattering for fairly pure metals. 

The transient transport of heat (before the steady state thermal conductance 

equation can be applied) is described by 

= = DV2T at (III. 11) 

where D is the thermal diffusivity. 

K D =c*p = L hv 
-imF =3 

(III. 12) 

C!' where p is the mass density of the material, and the specific heat, C* =- = 
PV 

c/p. 

Since Av is essentially temperature independent at very low temperatures, D is 

also. 
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IV. Relating the Phonon Specific Heat to the Phonon Thermal Conductivity 

In the Superconducting Journal Club seminar I gave about a year ago, I 

derived the phonon (lattice) contribution to the heat capacity, Cb, by Debye’s 

method. From last year we know that at low temperature, 

. . 

5 = AT3 =$!!$ 

E= $A,4 = nV <E> = nV(kT) 

u-v* 1) 

(IV. 2) 

where n is the number density of phonons, V is the volume of the specimen, 

and <E> is the average energy per phonon. 

(Iv. 2)+n = AT3/4kV = c;/4kV = cp/4k u-v* 3) 

where C 
P 

= Cp/V is the heat capacity per unit volume. Now the phonon heat 

current density is 

qp = n (kAVT)v = (Cp/4k)(khVT)v =KpVT W.4) 

where A is the phonon mean free path, and Kp is the phonon thermal conductivity. 

We can roughly define the phonon mean free path, A, as the distance a 

phonon travels before its energy is reduced to l/e of its original value. In a 

normal metal, phonons are scattered by other phonons, electrons, and lattice 

defects. In a superconductor (as in dielectrics), the scattering of phonons by 

electrons is negligible, particularly at very low temperatures. The phonon-phonon 

scattering arises due to the lattice anharmonicity as the phonons pass through 

regions of differing density. The lattice anharmonicity is increased when the 

lattice is strained, which increases the phonon scattering, and decreases the 

phonon thermal conductivity. 
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From Eq. (IV. 4), we have 

1 Kp = zCphv, 

and if we had done it more carefully, we’d have 

I K = 
P lc A v 3 PPP I 

w. 5) 

where the subscript p has been put in to denote explicitly that these are the 

phonon quantities . 

At very low temperatures, the product hp vp has negligible temperature 

dependence. 

. 
. . Kp cc T3 

for very low T. 
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V. Significance of the Heat Capacity and K /K 

The general relationship K = &Z Av has been variously credited to Drude 

and Debye. It should not be too surprising that the thermal conductivity is in- 

timately related to the heat capacity. The heat capacity is quite a significant 

and basic quantity. That superconductors have an energy gap, and its magnitude, 

can be deduced from the superconducting specific heat. The relation between the 

critical magnetic field, Hc , and the critical temperature, T c, Hc L Ho[‘-(T&)Z] 

can be derived from the difference between the superconducting and the normal 

heat capacities of the material. The fact that many different “soft” supercon- 

ductors have approximately the same value of HO/Tc results simply from the 

fact that they have approximately the same electronic specific heat in the normal 

state. 

We are now in a position to estimate the relative contribution to the thermal 

conductivity of the electrons and the phonons in a fairly pure normal metal. 

K e _ ‘eVehe ‘evi *e -- 
K 

P Cpvphp = 
cPv; TP 

(v-1) 

whereA=vr. 

At 300’ K: Cp is 6 Cal/mole -OK for most metals and has no temperature 

dependence as the temperature is increased; and C, is typically - 10-lcal/mole-oK. 

- lo8 cm/set, 7e - 10 -13 
V e set, v P 

- 3 X lo5 cm/set, and 7p - 10 -11 sec. 

. Ke . . 
K - 2Oat 300’K. 

P 
w* 2) 
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The theoretical prediction that in a pure metal at room temperature, the 

electron contribution to the thermal conductivity is about 20 times the phonon 

contribution is consistent with the experimental observation that at room tem- 

perature, metals have a thermal conductivity one or two orders of magnitude 

higher than those of solid crystalline dielectrics. 

At low temperatures, C, = aT and Cp = A T3, so 

Ke (a T) ve he -= 
K 

P (AT)3vp Ap ’ 
W.3) 

To roughly see what this comes to, I have estimated some numbers for 

silver and copper at 2’ K. For silver, a - 0.6 X 10m3 j/mole-OK2, 

A- 0.2 X 10B3 j /mole-OK4, ve N 1.4 X lo8 cm/set, v 
P 

- 3 X lo5 cm/set, 

Ae - 1o-3 cm, and A - 10 -1 
P cm. 

Ke 
*F- - 4 for silver at 2O K . 

P 
(V-4) 

For copper, a - 0.74 X 10m3 j /mole-‘K2, A - 0.5x10 -4 j/mole-OK4, 

v - 1.6 X lo8 cm/set, v 
P- 

3 X lo5 cm/set, he - low3 cm, h - 10-l cm. e P 

Ke *y - 20 for copper at 2’ K. 
P 

w* 5) 
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VI. Thermal Conductivity of Fairly Pure Normal Metals 

HIGH PURITY 

/, J 
- CONSTANT 

LOWER PURITY 
. . 

I 
0 8 

I ?-T 
7y30°K 8-300°K 

Fig. VI. 1. Thermal conductivity of two specimens 
of the same metal of different purity 

Figure VI. 1 shows two typical curves for the thermal conductivity of metals 

as a function of temperature. The upper curve is for a metal of high purity and 

the lower curve is for the same metal of lower purity. The temperature de- 

pendence to the left of the maximum is linear. This can be seen from the W-F law or 

Ke= 1C A 3 e eve. Since Aeve is essentially temperature independent and Ce oc T, 

then Ke oc T in this region. The W-F law is valid here and similarly says that 

(VI. 1) 

where p. is the residual electrical resistivity at very low temperature, and 

= 2.45 X 10B8 watt-ohm/OK2 

is called the Lorenz number. 
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The W-F law is only valid where lattice defect scattering dominates, which 

is at very low temperatures where the phonon density and hence the phonon scat- 

tering of electrons is quite small and, as we shall see, at high temperatures. 

However, occasionally engineers take the W-F law to be valid over the whole 

temperature range and put in a variable Lorenz number to keep the relationship 

from breaking down. The danger in doing this is that the temperature dependence 

of L is variable, depending on the sample purity. The less pure the sample, the 

more defect scattering will dominate, and the less L will vary. Conversely, the 

more pure the sample, the more L will vary. 

To the right of the thermal conductivity maximum, phonon scattering will 

dominate up to about the Debye temperature, 8, which is - 300’ K for most metals. 

The W-F law is not valid in this region. As we saw in Section IV, the phonon den- 

sity is cc T3. Therefore, the electron mean free path, he oc T -3 , since mean 

free paths are inversely proportional to the density of scatterers. The electron 

heat capacity per unit volume, Ce a~ T, and ve is roughly constant. Therefore 

Ke = +Ceheve =3 Ke oc T(T-3) =T-2. (VI. 2) 

From the Debye temperature on, the average phonon energy cannot increase 

as the temperature is increased. 

Average Phonon Energy Maximum = k0 = h uD (VI. 3) 

where uD is the Debye frequency. This is the highest or cut-off frequency 

beyond which the lattice will not propagate a wave. This is essentially when the 

wavelength has decreased to the point that one-half wavelength is comparable to 

the lattice spacing. The total energy of the phonons increases as the temperature 
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is raised because the number of phonons continues to increase. Since the average 

energy per phonon cannot increase, the phonons cannot take energy from the elec- 

trons beyond the Debye temperature. Hence the phonons are no longer effective 

in reducing the electron transport of thermal energy in the range T > 0, and we 

are back to a lattice defect dominance. Thus the W-F law is valid in this region, 

and since p cc T here, 

Ke=T-x~T= 7r2 k2 T constant 
e2 p 

. (VI. 3) 

Now that we have covered the whole temperature range, let’s go back to the 

low temperature range and look at it more closely. In the range 0 < T < 6/10, 

we can express l/K (called the thermal resistivity) as 

1 PO 
K = LT + bT2. (VI. 4) 

This can be derived theoretically by more refined arguments than those given 

here, or simply be considered as a best fit to the experimental data. If we solve 

for the maximum value of K, this occurs at a temperature, 

(VI. 5) 

Thus we see that for a given metal, the addition of impurities or other lattice 

defects increases the residual resistivity, p. , and hence the temperature at 

which K is maximum, as well as reducing K. This explains the relative shapes 

of the two curves in Fig. VI. 1. 
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To summarize: The conduction electrons and the lattice phonons contribute 

to thermal conductivity in a normal metal, and both contributions are limited by 

scattering from lattice imperfections, as well as by the mutual scattering of 

electrons and phonons. In a normal metal, at both high and low temperatures, 

the electrons make the dominant contribution to the thermal conductivity. At very 

low temperatures, the electron thermal conductivity is primarily limited by 

scattering from lattice point imperfections causing the conductivity to vary ap- 

proximately linearly with temperature, and to decrease markedly with an increase 

in crystal defects. 
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VII. Thermal Conductivity of Superconductors and Dielectrics 

In a superconductor, an increased density of %uperconducting” electrons 

is found in the ground state as the temperature is decreased, with a correspond- 

ing decrease in the number of “normal11 electrons. Since the electron energy 

gap is larger than the phonon energy at superconducting temperatures, the ground 

state electrons cannot interact to scatter (or be scattered by) the phonons, nor 

can they carry thermal energy. Perhaps the reason for this will be clearer after 

we look at the energy level diagram for a superconductor, as shown in Fig. VII. 1. 

DENSITY OF STATES 

1375A4 

Fig. VII. 1. Electron density of states as a function 
of energy in a superconductor 

The most singular aspect of the energy level diagram is the energy gap of 

width 2 cO centered about the, Fermi energy, EF. The gap represents a forbidden 

energy region, and results from quantum phys its . It turns out that in the super- 

conducting ground state, the electrons move around in pairs of opposite spin, 

and that it is not possible to break up a pair without introducing an energy of 
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at least 2 E O. Hence the configuration of electron pairs is a stable one at very 

low temperatures. 

Until now, we have found that the thermal conductivity is higher, the higher 

the electrical conductivity. So it may come as a surprise to learn that a super- 

conductor (which is as good an electrical conductor as one could hope for) is not 

a very good thermal conductor. The energy gap, 2 E 9, is typically - 4kTc, 

where Tc is the critical temperature where the transition is made from the 

superconducting to the normal phase. 

2 EO - 4kT - 10s3 ev C (VII. 1) 

At 1°K, 

kT1 
-4 -10 ev (VII. 2) 

As long as kT < 2 co, the superconducting electrons can’t scatter or be scattered 

by phonons , nor can they carry thermal energy. 

Let’s see why this is so. At 0’ K, all the energy states below the energy gap 

are filled. This is the shaded region in Fig. VII. 1. At temperature, T < Tc, a 

relatively small number of electrons near the energy gap are excited above it. 

(These act like normal electrons. ) By the Pauli exclusion principle, the electrons 

whose energies lie below - kT of the bottom of the energy gap cannot be excited 

into higher states as the higher states are already occupied. Nor can they go to 

lower states for the same reason. Those electrons that lie within - kT of the 

bottom of the energy gap also have almost nowhere to go. They cannot lose energy 

because all the lower states are filled. There are relatively few empty states 

available between kT and the energy gap for them to go into. Those at the bottom 

of the energy gap cannot gain energy - kT since this would put them in the for- 

bidden region. They can only gain energy 2 2 co. Hence there can be no energy 
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exchange between the superconducting electrons and the phonons , and only those 

electrons above the gap (which are now normal) can carry thermal energy. The 

number of these normal electrons decreases as T goes down from Tc. 

Hence an increasing fraction of the thermal conduction is due to phonons as 

the temperature is lowered until they finally dominate the thermal conductivity 

in a superconductor. Not only is their relative contribution increased, but their 

absolute contribution is also increased due to the absence of electron scattering. 

Thus a given specimen has two sets of values of thermal conductivity with differ- 

ent functional dependence on temperature, depending on whether it is in the normal 

or superconducting state. In either case, the thermal conductivity is very sensitive 

to bulk defects, such as impurities, crystal boundaries, internal grain boundaries, 

dislocations, and strain, since all of these lead to phonon and “normal” electron 

scattering. 

Since phonons provide the dominant thermal conductivity in dielectrics also, 

much of what will be said will apply to dielectrics as well as superconductors. 

(Many of the phonon processes we will discuss also occur in metals, but are over- 

shadowed by the electron processes. ) The main phonon scattering processes are: 

1. Umklapp (phonon-phonon) 

2. Boundary 

3. Impurities and other point defects 

4. Dislocation strain field 

5. Normal electrons (for superconductors) 
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) IF UMKLAPP 
OR 

-3’2 IF POINT DEFECT 

PROCESS 

PROCESS 

137585 

Fig. VII. 2. Thermal conductivity of crystalline dielectrics, 
or of superconductors at very low temperature 

The umklapp process is a three-phonon process which occurs when two 

phonons of wave vectors kI and k2 add together to yield a third phonon whose 

wave vector kg falls outside the zone boundary. This causes a reflection of kg 

much like the Bragg reflection of x-rays by the crystal lattice. This causes the 

resulting motion to be in approximately the opposite direction. This diminishes 

the energy flux in the original direction, giving rise to thermal resistance. 

Wmklappl’ comes from the German, meaning “flipping over. I1 The umklapp 

process is dominant in fairly pure, defect-free crystals to the right of the max- 
8 imum in Fig. VII.2, where Kp 0~ exp - . 

( ) O-’ 
If the crystal has a significant 

number of impurities and other point defects, the exponential dependence will 

be suppressed and Kp ff T - 3/2 in this region. 
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As the temperature is lowered, the mean free path of the phonons increases. 

As we go to temperatures to the left of the conductivity maximum, impurity atoms 

and other point defects do not much reduce Kp since they are now much smaller 

than the phonon wavelength and do little to scatter the phonons. At 300° K, the 

phonon mean free path, hp, is - 10m5 to 10m6 cm in a metal, which is about the 

same as the electron mean free path, he, in the metal. At low T < $ , Ae will 
-3 increase to - 10 -1 cm, whereas A will increase - 10 

P 
cm or greater. At 

this point, Kp o( T3 from Eq. (IV. 5), and will also be approximately cc smallest 

dimension of the specimen if it is a single crystal, or the size of the individual 

crystallites if it is polycrystalline. This is one of the reasons that a dielectric or 

superconducting monocrystal has a higher thermal conductivity than a polycrystal. 

This size effect is illustrated in Fig. VII. 2, where the diameter of specimen 2 is 

greater than specimen 1, which are otherwise identical. Similarly, when boundary 

scattering becomes dominant over bulk scattering, the surface smoothness of the 

specimen is important if it is a monocrystal. If the surface is highly polished, Kp 

may be a factor of 2 to 3 greater at - 2’ K than if the surface had been rough- 

ground or etched. This is because the phonons will be specularly reflected rather 

than diffusely scattered at the surface. The behavior of a smooth and a rough 

surface is, respectively, like that of curves 2 and 1 in Fig. VII. 2. One may think 

of the conductance of gas in pipes as an analogue to thermal conductance, with 

pressure as the analogue of temperature. At high pressure, the collision fre- 

quency in the gas is much higher than with the pipe walls. As the pressure is re- 

duced and the mean free path increases, the collision frequency with the wall be- 

comes much higher than between gas molecules, and the nature of the gas flow 

changes. Other scattering processes which further reduce Kp are the strain field 

induced either by external strain or in neighboring atoms near a dislocation; and 

by normal electrons. 
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Fig. VII. 3. Thermal conductivity of normal and superconducting 
niobium under various conditions. 

If we look at Fig. VII. 3, which is from Calverly et al. ,’ and has had a few 

curves added to it, we can see the thermal conductivity of niobium in the normal 

and superconducting states for various specimens and conditions. The curve 

1. A. Calverly, K. Mendelssohn, and P. M. Rowell, Cryogenics 2, 26 (1961). 
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labeled NII is for a highly perfect monocrystal of niobium in the normal state. 

Curve SII is for this monocrystal in the superconducting state. The maximum 

comes at about 1.9’ K, and is 0.18 watt/cm-OK. As Dick Neal has pointed out, 

operation on or to the right of the maximum, K max’ would be unstable because 

a slight temperature increase would lead to a decrease in K with a further in- 

crease in T. The curve labeled I is for a less perfect monocrystal which may 

also have some induced strain. The thermal conductivity is correspondingly 

reduced in both states. In the superconducting state, its peak is about 

0.07 watt/cm-OK and is shifted to about 2.2O K. A superconducting polycrys- 

talline sample is represented by the curve labeled P-S. At 1.9’ K, its con- 

ductivity is down to 0.006 watt/cm-OK. I believe that the increase in K past 

the minimum is ascribable to the increase in the number of normal electrons 

as T increases. 

Irradiation of a monocrystal much like specimen II, with a dose of 10 18 

fast neutrons/cm2, reduces its thermal conductivity to the dashed curves labeled 

M-N and M-S. The original conductivity can be recovered in part by annealing 

the crystal at elevated temperatures. Single dislocations will anneal out (heal) 

readily. If dislocation clusters are formed, these will not heal as readily. The 

formation of isotopes will leave a permanent decrease in the thermal conductivity. 

Care must be taken in measuring the normal state thermal conductivity, 

since the application of a magnetic field will increase the thermal resistivity just 

as it does the electrical resistivity. The relative increase is larger the lower 

the temperature. It is larger for transverse fields than for longitudinal, though 

a longitudinal field may at low values decrease the thermal resistivity. It is a 

larger effect for multivalent than for monovalent metals. 
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We could not expect to make the rf structure for the superconducting accel- 

erator out of monocrystalline material. However, in addition to removing surface 

impurities and to some extent bulk impurities, the high temperature vacuum an- 

nealing may be expected to grow single c.rystals across the thickness of the wall 

with the grain boundaries appearing largely in the direction parallel to the heat 

flow across the cavity wall, rather than perpendicular to it. Though such a crys- 

talline structure is not as favorable as a single monocrystal, it should have 

superior thermal conductivity to an ordinary polycrystal. The outlook for the 

disks in the cavities may not be as favorable if they are solid. However, if the 

cavities and hence the disks are hydroformed or if the disks are grooved on the 

outside so that the heat conduction is across the disk wall rather than from its 

iris to its outside diameter, then the outlook for the disks may also be favorable. 

Therefore, in addition to making the usual thermal conductivity measure- 

ments on long thin rods, measurements should be made with both ordinary and 

recrystallized thin-walled cylinders across the wall thickness, though it may be 

a more difficult experiment. One possible engineering experiment which has 

occurred to me, and which I understand HEPL is also considering, is to measure 

the total temperature difference between the inside wall of a cavity and the liqtiid 

helium temperature as a function of the power input on the inside cavity wall. 

Due to Kapitza resistance (which we will consider shortly), this temperature dif- 

ference is larger than that just across the cavity wall, so that the thermal con- 

ductivity of the wall itself would not be measured. However, this is just the 

engineering type of information we need. 

One way of supplying the power would be to coat the inside cavity wall with 

a resistive coating and heat it electrically. Another way would be to support an 
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electrical heater coaxially with the cavity along its length, and supply power to 

the inside cylindrical cavity wall by radiation. Either method has problems 

associated with it of putting in the power uniformly, of making sure that steady- 

state equilibrium is established and maintained, of measuring or inferring the 

inside wall temperature as a function of power dissipation, etc. I think the in- 

formation to be gained is important enough that we should do this or some sim- 

ilar kind of simulation experiment. 
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VIII. Kapitza Resistance 

Thermal boundary resistance is associated with heat flow across all solid- 

solid as well as all solid-liquid interfaces. There is a thermal boundary re- 

sistance between a superconductor and a normal metal which would be encountered 

for niobium or technetium deposited on copper. This has been measured between 

superconducting tin and copper. 2 Barnes and Dillinger found: 

8.8 cm20K 
Rb = 7 watt 

At 1.85’K: 

For peak flux: 

AT = RK(h/A) = ‘rn>; (16)(1.3 x 10s3 W/cm2) A 1 .03’K j 

They also did it for superconducting lead on copper and found Rb= (11. O/T4)cm2-“K/W. 

So if niobium or technetium on copper is similar to tin or lead on copper, this should 

be a negligible effect. 

There is a temperature difference between a solid and the liquid helium next 

to it, due to the acoustic mismatch for the phonons traveling from the solid to the 

liquid. This is known as the Kapitza boundary effect, or Kapitza resistance, named 

after its discoverer (1941), P. L. Kapitza. This temperature difference is pro- 

portional to the heat flux from the solid to the liquid helium, and needs to be deter- 

mined experimentally. Kapitza resistance is essentially a measure of the efficiency 

2. L. J. Barnes and J. R. Dillinger, Phys. Rev. Letters 10, 287 (1963). 
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with which the excess thermal energy of the solid is transmitted to the liquid. 

In metals, this energy primarily resides in electrons and these and the phonons 

must interact with the He across the interface to generate phonons in the liquid. 

This interaction depends on the acoustic impedance on both sides of the interface. 

In superconductors at very low temperatures, this energy resides primarily 

with the phonons. Therefore, one would expect a difference in the Kapitza re- 

sistance depending on whether the specimen is in the normal or superconducting 

state. One might expect a larger Kapitza resistance in the superconducting 

state, as there are then fewer coupling mechanisms, which is what is observed 

experimentally. The agreement between theory and experiment is still poor. 3 

Theory predicts the Kapitza resistance to be one to two orders of magnitude 

higher than is measured. 

The Kapitza resistance depends on the particular material as well as its 

surface condition, and is experimentally defined as RK = AAT/G, where A is 

the interfacial area, AT is the temperature difference, and G is the heat flow. 
-3 RK is approximately oc T . The Kapitza resistance for the Nb-He11 interface 

is not readily available. However, the upper limit Kapitza resistance for the 

Cu-He11 interface of 10 cm2- K/W at 1.85’ K should be indicative. For an 

average heat flux of 1.3 X 10 -3 watt/cm2, this gives AT = 0.013O K, which is 

negligible. For an assumed duty cycle of 0.06, the peak flux is about 16 times 

this, giving AT = 0.21’ K, which is not negligible. However, if there are spots 

where the field emission power dissipation is 0.1 watt/cm2, the interface 

temperature difference may be as high as lo K (assuming the worst case of a 

uniform heat flux through the wall), whereas the temperature difference across 

3. G. L. Pollack, Rev. Mod. Phys. 3, 48 (1969). 
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a niobium wall of 0.25 cm thickness and 0.18 W/cm-OK thermal conductivity 

would be only 0.14’ K. Large heat currents may lead to nonlinear and turbulence 

effects with a local destruction of the superfluidity of l3eI.I. 

Despite the lack of experimental values for the Kapitza resistance of niobium, 

and the poor footing of the theory, an estimate can be made. We can relate the 

theory phenomenologically to the experimental values. The Khalatnikov theory3 

predicts that RK is proportional to the atomic mass times the Debye temperature 

cubed of the particular solid. Using the range of 0.55 to 10 cm2-“K/W for copper, 

this predicts a range of s for niobium of 0.246 to 4.48 cmLOK/W. However, 

using the range of 0.48 to 1.7 cm?-o K/W for superconducting lead implies a range 

of 1.98 to 7.05 cm2-OK/W for niobium. 
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