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SUMMARY

This thesis discusses various features of compactifications of string and M-theory

with non-vanishing fluxes on the compact space.

There is a review of the mathematics of special holonomy, its generalisation

to G-structures, and relevance for compactification. There is discussion of eleven-

dimensional supergravity and M-theory, and a broad exposition of Kaluza-Klein

reduction of string- and M-theory and the problems associated with this programme.

After this, there is general discussion of the effective theory produced from the

reduction of M-theory on G2-structure manifolds and then on the degrees of freedom

present in the low-energy theory given weak G2 holonomy.

A new solution to M-theory on manifolds of G2 holonomy is then presented, with

a domain wall in the non-compact space.

Finally, the effective action for massive IIA string theory on manifolds of SU(3)

structure is discussed, together with the stabilisation of the moduli for the space

SU(3)/U(1)× U(1) using the N = 2 → N = 1 super-Higgs mechanism.
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Chapter 1

Introduction

It has long been a goal to unify all known physics. In a modern context, this

means the combination of the quantum-field-theoretic approach of high-energy par-

ticle physics with the geometrical approach of general relativity. While sensible

Lagrangians can be written down that couple gravity with the particle content of

the standard model, such a ‘näıve quantum gravity’ will typically be highly diver-

gent, even at first-loop level, although classical calculations using such setups are

possible.

Faced with the non-renormalisability of näıve quantum gravity, there are various

responses. One is to undertake some radical re-thinking of our ideas about spacetime,

geometry, quantisation and so on. Approaches to quantum gravity that fall into this

category are, for example, loop quantum gravity and causal set theory. Another is to

investigate whether näıve quantum gravity is in fact non-perturbatively convergent,

or to look for some other field-theory technique to allow sensible calculations to be

done within the framework of näıve quantum gravity.

String theory sits somewhere between these two approaches. It grew rather

organically out of theories of the strong interaction that predated QCD, however

attempts to make the theory fully consistent produced strange results. In par-

ticular, a fully consistent quantum theory of strings must be supersymmetric and

ten-dimensional.
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Supersymmetry is a popular extension of the standard model of particle physics,

with supergravity being the local extension of supersymmetry. Imposing supersym-

metry constrains both the particle content and form of a theory, as well as offering

the possibility of non-trivial unification of the gauge and spacetime symmetries. Per-

haps most significantly, supergravities are typically far better behaved (although still

perturbatively divergent) when their quantisation is attempted. Since string theory

is the only known ultra-violet completion of a supergravity, it has been argued that

evidence for low-energy supersymmetry at the LHC would provide very strong in-

direct evidence for string theory, since supergravity is such a natural extension of

supersymmetry and string theory is such a natural extension of supergravity.

The presence of extra dimensions, while at first appearing to be in dramatic

conflict with observation, in fact has many features to recommend it. It is worth

noting that any prediction of the number of dimensions must in some sense be a

good thing—before string theory, it seemed that only anthropic reasoning could

give a ‘prediction’ for this quantity. More importantly, the compactification of extra

dimensions opens up the possibility of dynamically generating parameters in four

dimensions that would otherwise be put in by hand.

The simplest example of a compactification—pure gravity in five dimensions on

a circle—gives a good example of this, where the four-dimensional theory contains,

in addition to gravity, a gauge field and scalar whose couplings are given in terms

of the radius of the circle. Given many extra dimensions and a far richer higher-

dimensional theory as we have in string theory, it is not at all implausible that a

similar feat will be possible that yields the standard model at low energies.

In broad terms, therefore, this work concerns itself with the dimensional reduc-

tion of string theory and also of M-theory, a postulated eleven-dimensional theory

uniting the five known string theories. Of course, this topic is rather a large one,

and so we will first introduce some background material before proving new results.

In chapter 2 we discuss some of the mathematical results concerning special

holonomy and G-structures that will be relevant later. Chapter 3 concerns eleven-
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dimensional supergravity, its relationship to string theory, the concept of branes and

some of its compact solutions. More general concepts and challenges for Kaluza-

Klein theory are discussed in chapter 4. The material in these chapters is quite

standard, although our presentation of it is new—i.e. is not drawn verbatim from

any other source.

The main new results of this work were previously published in [1–3], and are

presented in chapters 5, 6, 7 and 8. We now turn to the ideas that motivate each

of these calculations in turn. As is mentioned explicitly in the title of this work,

their common theme is the inclusion of non-vanishing flux in the compactification

background.

1.1 Why flux compactification?

It has long been hoped that low-energy compactifications of string- and M-theory will

lead to phenomenological predictions that could be tested experimentally. A major

obstacle to achieving this goal is the presence of many light scalars, or ‘moduli’,

which are often flat directions of the four-dimensional theory. These arise as the

massless modes of the higher-dimensional matter fields and as gauge-independent

variations of the metric on the compact space. The precise values taken by the

moduli in the vacuum yield various parameters in the four-dimensional model and

therefore act as predictions coming from string theory; if they are flat directions

they parameterise a huge vacuum degeneracy.

A pressing concern regarding string theory compactifications, therefore, is the

issue of moduli stabilization, which practically means generating a four-dimensional

scalar potential with a minimum. One of the ways of inducing a non-trivial classical

potential for the low energy fields in the four-dimensional effective theory is through

the inclusion of non-vanishing field strengths for the higher-dimensional fields with

directions purely in the internal manifold. These are referred to as fluxes and have

been used extensively in the literature for the purposes discussed above—see [4–7]
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for some of the earlier work. It has been known for some time [8–10] and has recently

been studied in more detail [11–14], that flux of anti-symmetric tensor fields can,

under certain circumstances, be an effective tool to fix the moduli.

A counter-example to this is the case of low-energy M-theory on manifolds of

G2 holonomy. For this scenario the superpotential and Kähler potential, which

determine the potential for the scalar fields, were given in [11, 15]. On its own,

the potential generated does not fix the moduli, and recent work on moduli fixing

for M-theory on G2 manifolds required non-perturbative contributions [16]. It is,

therefore, incorrect to assume that the presence of fluxes is always sufficient to fix

moduli, although they may play an important role in the process of doing so.

The presence of background fluxes—when not perturbatively small—in M-theory

as well as in string compactifications induces a back-reaction on the underlying

geometry so that Ricci-flat manifolds admitting N = 1 supersymmetry in four

dimensions are no longer solutions to the equations of motion. In turn the resulting

geometry can be described in terms of the concept of G-structures [17–40]. As we

will discuss in chapter 2, G-structure manifolds can be classified in terms of their

non-vanishing torsion classes.

For M-theory most work is done on G2-structure manifolds [2, 41–43], although

SU(3)-structure manifolds have also been considered [32, 37]. In the case of string

theory both SU(3)- and SU(2)-structure manifolds have been considered [35,39,44–

47]. For a general review of structure manifolds in string and M-theory see [40] and

references therein.

From the point of view of phenomenology G-structure manifolds have the ad-

vantage that, although they are formally more general than G-holonomy manifolds,

they typically have a much simpler field content. This can be thought of as the tor-

sion placing restrictions on the possible metric deformations of the manifold. They

also have the feature that, since they are not Ricci-flat, the four dimensional back-

ground will not be Minkowski but, at least in the case where some supersymmetry

is preserved, anti-de Sitter (AdS).
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1.2 M-theory on G2-structure manifolds

It is well known that M-theory compactified on manifolds with G2 holonomy leads

to four-dimensional effective supergravities with N = 1 supersymmetry [48–50].

M-theory on manifolds with restricted structure group was also studied in [17, 51].

Here it was shown, amongst other things, that if the structure group is exactly G2

the only supersymmetric solution with non-vanishing fluxes is given by the Freund-

Rubin compactification [48] and that the internal manifold must be ‘weak G2’.

A phenomenological advantage of weak G2 holonomy spaces comes from the

consideration of chiral fermions. For typical Kaluza-Klein reductions of M-theory,

the spectrum of fermions in four dimensions is in general non-chiral and thus not

suitable for particle physics. This is due to a quite general index theorem for smooth

seven-dimensional spaces [52] that we discuss further in section 4.3.3.

The resolution of this problem came with the advent of dualities (as discussed

in section 3.2) and the realisation that chiral fermions appear at singular conical

points in the seven-dimensional manifold [53,54], together with a mechanism for the

cancellation of the appropriate anomalies [55].1 Since this realisation, there has been

considerable activity on the subject of M-theory on G2 spaces [11, 15, 18, 56, 58–68].

Conical singularities are quite well understood in the non-compact case [69], but

so far it has proved difficult to construct compact G2 holonomy manifolds with

point-like singularities. This is partly because the known way in which compact G2

holonomy manifolds are constructed is by the orbifolding of the seven-torus followed

by the blowing up of the orbifold singularities [66, 70, 71], which does not naturally

produce point-like singularities.

The known examples of compact manifolds with codimension seven singularities

are not in fact manifolds with G2 holonomy, but weak G2 manifolds, and it is

known [69] that chiral fermions can also emerge from singular weak G2 manifolds.

1Such compactifications turn out to be dual to intersecting brane models in the context of Type

IIA string theory, as originally discussed in [56, 57].
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These manifolds can be constructed by adding an extra compact dimension to weak-

SU(3) spaces to form a ‘lemon’ with two conical singularities [72]. Although having

two singularities presents phenomenological problems, spaces such as these may play

a role as simple models involving conical singularities, and motivate further study

into general features of weak G2 manifolds.

Before such specific examples can be considered, it is necessary to consider the

general form of the effective theory obtained from the reduction of M-theory on weak

G2 manifolds. In several works it has been proposed that a superpotential depending

on the structure is generated, but in most cases the expression of such a superpoten-

tial in terms of the low-energy fields and its relevance for moduli stabilisation was

not possible to compute due to the lack of understanding of the low-energy degrees

of freedom that appear in such compactification.

Compactifications on manifolds with non-trivial G-structure are, in this sense,

poorly understood, due to lack of knowledge about their deformation spaces. The

purpose of chapter 6 is therefore to clarify some aspects of these compactifications

for the particular case of manifolds with weak G2 holonomy.

One route to understanding G-structure manifolds in string and M-theory com-

pactifications is via dualities [44,73–82]. In this way it is possible to deduce certain

properties of the moduli space of these manifolds. To our knowledge this was only

done in [73], where the low energy action was also computed. For such models

an explicit expression for the superpotential in terms of the low energy fields can

be found [44] and thus it is possible to say something about the dynamics (and in

particular moduli stabilisation). The main assumption in these papers was that the

fluxes/intrinsic torsion are perturbatively small and that in such a regime the moduli

space is similar to the moduli space of some Calabi-Yau manifold. The generalisation

of this conjecture for large fluxes/intrinsic torsion is, however, not known.

In a recent work, another conjecture about the deformation space of nearly-

Kähler manifolds (known also as manifolds of weak SU(3) holonomy) was made

[82]. In this paper it was proposed that the weak-SU(3) conditions impose strong
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constraints on the space of possible perturbations of such manifolds and only size

deformations of these manifolds are allowed.

In the chapter 5 we study some general aspects of M-theory compactifications on

manifolds with G2 structure. By compactifying certain fermionic terms we derive

the general form of the superpotential which appears in such compactifications. The

formula we obtain generalises in a natural way the result obtained in [15] for just

“F4” fluxes based on the general analysis in [83, 84].

In chapter 6, motivated by the fact that the manifolds with weak SU(3) holon-

omy are tightly constrained, we study their seven-dimensional relatives, namely

manifolds with weak G2 holonomy. Such manifolds have the property that the in-

trinsic (con)torsion is a singlet under the structure group G2 and it turns out that

one can infer enough about their internal structure to allow us to derive the low-

energy effective action for M-theory compactified on such manifolds. In the end

we link with chapter 5 by showing that the general formula for the superpotential

derived for any G2 structure produces the correct result for the manifolds with weak

G2 holonomy, meaning that the potential which is obtained from the compactifica-

tion can also be obtained from the general superpotential when inserted into the

standard N = 1 formula.

In this chapter we go one step further than previous work on weak G2 compact-

ifications and present the generic form of the low-energy theory obtained in such

compactifications. It is important to observe that the four-dimensional ground state

in this case is AdS, which together with the presence of a non-trivial flux along the

four spacetime dimensions changes the definition of the mass operators for the fields

which appear in the low-energy theory.

This should tell us that the appropriate AdS massless modes no longer appear

when the fields are expanded in harmonic forms, but in forms {α} which satisfy

dα = −τ ⋆ α, where τ measures the intrinsic torsion of the manifold with weak G2

holonomy. That is because these are precisely the variations of the G2 structure

that are compatible with the weak G2 conditions. Thus one can see in the same way
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as on manifolds with G2 holonomy that the modes coming from the matter fields

combine with the modes coming from the metric into the complex scalars a3 + iϕ.

1.3 G2 domain walls in M-theory

Generally, there are two somewhat complementary ways to approach flux compact-

ifications [85, 86]. Firstly they can be studied using the higher-dimensional theory

by computing the (supersymmetric) deformations of the G2 background due to non-

vanishing flux. Typically one expects the flux to deform the G2 space, introduce

warping and modify the external four-dimensional Minkowski space to a domain

wall, as in the analogous case for Calabi-Yau manifolds [85–87]. Examples of these

domain wall solutions have been studied in [88, 89]. A systematic analysis of such

flux backgrounds can be carried out by applying the formalism of G structures to

M-theory compactifications.

Alternatively, the problem can be approached from the viewpoint of the four-

dimensional effective supergravities that arise from a flux compactification on (un-

deformed) G2 spaces. The general structure of such theories, including a formula for

the flux superpotential, has been derived in [15]. Due to the presence of the non-

trivial superpotential, the simplest solution to these theories is not four-dimensional

Minkowski space but, rather, a domain wall.

The main goal of chapter 7 is to analyze G2 flux compactifications from both

viewpoints and discuss the relation between them. On the one hand, we will com-

pute the supersymmetric deformation of the eleven-dimensional G2 background due

to flux. This will be done to linear order in flux, following the logic of the cal-

culation in [87, 90]. We will then consider the associated four-dimensional N = 1

supergravities and find their exact BPS domain wall solutions. It is shown that

these four-dimensional BPS domain walls can be viewed as the zero-mode part of

the full eleven-dimensional solution. We also demonstrate that the solutions can

be supported by either a membrane, located entirely in the external space, or an
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M5-brane wrapping an associative three-cycle within the G2 space.

We consider these results to be phenomenologically relevant in two ways. Al-

though the G2 domain walls do not respect four-dimensional Poincaré invariance

they may still provide a basis for phenomenologically viable compactifications. This

is because non-perturbative effects that can be included in the four-dimensional effec-

tive theory may yet produce a minimum of the potential [8,12,16,91] and modify the

domain wall to a four-dimensional maximally symmetric space. More directly, our

solutions represent the simplest way in which a membrane (or a wrapped M5-brane)

would appear in a four-dimensional universe if it indeed arises from G2 compactifi-

cation of M-theory. In this sense, our results may provide the starting point for an

analysis of topological defects in an M-theory universe.

1.4 (massive) IIA string theory on SU(3)-structure

manifolds

A phenomenologically important feature of SU(3)-structure manifolds is that known

solutions on these manifolds to ten-dimensional Type IIA and IIB supergravities

preserve N = 1 supersymmetry [35, 39, 45–47], rather than N = 2 supersymmetry,

since the latter is problematic as a low-energy symmetry due inter alia to its lack

of chiral representations.

In chapter 8 we will consider compactifications of Romans’ massive Type IIA

supergravity on manifolds with SU(3) structure. An important advantage of Type

IIA theory as opposed to Type IIB is that fluxes alone can generate non-trivial

potentials for both complex structure and Kähler moduli, although fully stabilising

the moduli has required non-perturbative effects such as instanton corrections [92].

Recently, this has been overcome through the use of orientifolds, where N = 1 AdS

solutions with all moduli stabilised have been found [93–95].

As yet, the covariant embedding of the massive IIA theory in the M-theory ‘web

of dualities’ is not known, although it is believed to encode information about the
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Type-IIA string theory in D8-brane backgrounds [96]. The massive supergravity

theory is also considerably richer than the massless case, and we will not concern

ourselves with α′ corrections or other ‘stringy’ effects that would require the full

covariant embedding.

We will show that due to the torsion on the internal manifold there are two types

of fluxes that are associated with such compactifications: the usual fluxes associated

with non-perturbative sources and fluxes originating from vevs of scalar fields. We

will then derive the effective low energy N = 2 theory by reducing the gravitino

mass terms to obtain the four-dimensional gravitino mass matrix. From this point

we will restrict ourselves to the case where the compact space is in a special class

of half-flat manifolds shown to be the most general manifolds compatible with the

preservation of N = 1 supersymmetry in four dimensions. We will show that for the

second type of fluxes the theory can exhibit spontaneous N = 2 → N = 1 partial

supersymmetry breaking in the vacuum, and construct the resulting N = 1 effective

theory.

To study the vacua of the theory, we will consider a particular compact space,

and show that anN = 1 supersymmetric vacuum exists where all the moduli are sta-

bilised. This stabilisation does not involve the introduction of any non-perturbative

effects into the superpotential or the use of orientifolds.
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Chapter 2

Mathematical background

We now present some of the more mathematical results that will be useful in the

later chapters. We shall treat this material at the ‘physics’ level of formality, al-

though much of it corresponds to relatively recent developments in more formal

mathematics.

Throughout, we shall take M to be a generic manifold, with metric g and typical

point p.

2.1 Special holonomy

Special holonomy plays an important role in string- and M-theory compactifications,

given its role in providing supersymmetric effective theories upon compactification.

2.1.1 Definition of holonomy

The holonomy group is a property of the connection on the manifold. Using the

definition from [97], we proceed to define the set of closed curves around the point p

Cp := {c(t)|0 ≤ t ≤ 1, c(0) = c(1) = p} , (2.1.1)

where c is a curve on M . The holonomy group restricted to the point p is then

Hol(∇)|p := {P : TpM → TpM |X ∈ TpM, c ∈ Cp,∇X|c = PX} , (2.1.2)
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where TpM is the tangent space of M at p, and we have used ∇X|c to refer to the

element of TpM produced by parallel transport of X around the curve c.

For a connected manifold—which will be considered throughout the rest of this

work—the holonomy groups at different points can be shown to be isomorphic, and

so we can drop the subscript p in (2.1.2). In general, where M is N -dimensional,

Hol(∇) ⊂ GL(N,R). Orientable manifolds have Hol(∇) = SL(N,R), and metric

spaces have Hol(∇) = SO(N).

Where ∇ is the Levi-Civita connection on a space with metric g, the holonomy

group Hol(∇) is often written Hol(g).

2.1.2 Classification of special holonomy manifolds

The possible holonomy groups for a simply connected manifold M of dimension N

with irreducible non-symmetric metric g were given in [98], although here we quote

from [70]. It turns out that one of the following must hold.

(i) Hol(g) = SO(N),

(ii) N = 2n for n ≥ 2, and Hol(g) = U(n) ⊂ SO(N),

(iii) N = 2n for n ≥ 2, and Hol(g) = SU(n) ⊂ SO(N),

(iv) N = 4n for n ≥ 2, and Hol(g) = Sp(n) ⊂ SO(N),

(v) N = 4n for n ≥ 2, and Hol(g) = Sp(n)Sp(1) ⊂ SO(N),

(vi) N = 7, and Hol(g) = G2 ⊂ SO(7), or

(vii) N = 8, and Hol(g) = Spin(7) ⊂ SO(8).

All but the first case on this list are said to be special holonomy, while the last two

are said to be exceptional holonomy.

There are known examples of manifolds for each of the cases above. In par-

ticular, all Calabi-Yau three-folds have SU(3) holonomy. The discovery of explicit



13

compact spaces of exceptional holonomy was, however, a relatively recent develop-

ment [99, 100]. The moduli spaces of the G2 holonomy manifolds constructed using

the methods outlined in [70, 99] were considered in [66, 71].

2.2 G-structures

Associated with each holonomy group is a set of globally defined harmonic forms

obeying certain algebraic relations. The concept of a G-structure generalises G-

holonomy by considering a set of globally defined forms, which we shall call structure

forms, with the same algebraic relations but which are not necessarily harmonic.

2.2.1 Generalities

Let us write φip for the i-th globally defined p-form. We can then parameterise the

deviation from harmonicity using torsion classes Wa, so that schematically

dφip =
∑

a

Wa ∧ φja,i,pqa,i,p
. (2.2.1)

To see the relationship between the torsion classes and the usual definition of torsion,

we define a metric compatible connection ΓT such that

d(T )φip = 0 . (2.2.2)

The connection ΓT turns out to be equivalent to the Levi-Civita connection plus a

contorsion κ obeying

κµν
r = (ΓT )

r
[µν] , (2.2.3)

where µν . . . are spacetime indices. Using (2.2.2), we can write the exterior deriva-

tives of the structure forms as

(dφip)µ1...µp+1
= (−)p+1(p+ 1)! κ[µ1µ2

r(φip)µ3...µp+1]r . (2.2.4)

The contorsion provides a way of classifying supersymmetric solutions of supergrav-

ity theories by considering the structure group G of the manifold as a subgroup of
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SO(N). Since in general the contorsion has two antisymmetric indices and one other

index, we have that

κ ∈ Λ1 ⊗ Λ2 ∼= Λ1 ⊗ so(n)

∼= Λ1 ⊗ (g ⊕ g⊥) (2.2.5)

∼= Λ1 ⊗ g⊥ ,

where g is the Lie algebra on G and g⊥ is its complement in so(N). In the last line,

we used that the action of g on the structure forms must vanish. We can decompose

κ according to the irreducible representations of G in Λ1⊗g⊥, which will be spanned

by the torsion classes

κ ∈
⊕

a

Wa . (2.2.6)

The precise torsion classes filled by κ will be determined by comparing (2.2.4) and

(2.2.1). Spaces of G structure can therefore be classified by which of the torsion

classes are filled. In the case where all torsion classes vanish, the space has holonomy

G. Note that in this definition we are considering the holonomy with respect to the

Levi-Civita connection. When we consider the connection with torsion, it is clear

that using the definition (2.1.2) gives Hol(∇T ) = G.

2.2.2 Relation to spinors

The G-structures on a manifold can be related to the number of globally defined

spinors on the manifold. Suppose we have a set {ηA} of such spinors. The structure

forms can then be constructed from bilinears in those spinors so that

(φip)µ1...µp = ηAi,p
γµ1...µpηBi,p

, (2.2.7)

where the {γµ} are Dirac matrices on the manifold. Since the connection with torsion

that we have defined is still metric-compatible, its action on the vielbeins implicit

in the Dirac matrices of (2.2.7) gives zero, and so the condition (2.2.2) is equivalent

to

D(T )ηA = 0 , (2.2.8)
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where we use D for a spinor covariant derivative. (2.2.8) therefore allows us to write

the action of the Levi-Civita connection on the globally defined spinors as

(DηA)
µ =

1

4
κνρ

µγνρηA . (2.2.9)

The form of (2.2.9) is that of a typical Killing spinor equation for a supersymmetric

bosonic configuration of a supergravity theory, for example (3.1.5). For vanishing

contorsion it becomes the zero-flux condition for a supersymmetric solution as in

(3.3.2)—i.e. the existence of a covariantly constant spinor—however there is also

the possibility that for non-zero flux and non-vanishing contorsion supersymmetry

could still be preserved, as for (3.3.6).

2.2.3 Structure group SU(3) ⊂ SO(6)

As an example of the procedure above, we consider six-dimensional Euclidian mani-

folds of SU(3) structure, of which the Calabi-Yau is a special case for empty torsion

classes. A six-dimensional manifold is said to have SU(3) structure if it admits a

nowhere-vanishing two-form J and three-form Ω (with complex conjugate Ω) obey-

ing

J p
m J

n
p = −δnm ,

(P+)
n
mΩnpq = Ωmpq ,

(P−)
n
mΩnpq = 0 ,

Ω ∧ Ω = −4

3
iJ ∧ J ∧ J ,

Ω ∧ J = 0 ,

⋆Ω = −iΩ , (2.2.10)

where ⋆ denotes the Hodge star and we have defined the usual projectors

(P±)
n
m :=

1

2
(δnm ∓ iJ n

m ) . (2.2.11)
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An alternative definition of an SU(3)-structure manifold is a six-dimensional space

with an nowhere-vanishing Weyl spinor η+, with Majorana conjugate η−, that obey

η+η+ = η−η− = 1 , η+η− = η−η+ = 0 , (2.2.12)

and in terms of which we can write the structure forms as

Jmn := −iη+γmnη+ ,

Ωmnp := η−γmnpη . (2.2.13)

The exterior derivatives of these forms are split into torsion classes as below

dJ = −3

2
Im(W1Ω) +W4 ∧ J +W3 ,

dΩ = W1J ∧ J +W2 ∧ J +W5 ∧ Ω . (2.2.14)

Standard group theory gives

Λ1 ⊗ su(3)⊥ = (3+ 3)⊗ (1⊕ 3 + 3)

= (1⊕ 1) ⊕ (8⊕ 8) ⊕ (6+ 6) ⊕ (3+ 3) ⊕ (3+ 3) ,

⇒ κ ∈ W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5 ,

where the torsion classes are aligned to sit underneath the irreducible representa-

tions of SU(3) that they are associated with. We now turn to the classification of

manifolds of SU(3) structure in terms of their torsion classes.

One important result is that a manifold is only complex when W1 = W2 = 0.

Although the proof of this result is non-trivial, note that, for non-vanishing W1, the

relations in (2.2.14) simply cannot be written in holomorphic and anti-holomorphic

coordinates, which is possible for all tensors on complex manifolds.

A further class of manifolds have Re(W1) = Re(W2) = W4 = W5 = 0 and are

called half-flat. Half-flat manifolds with W2 = W3 = 0 are called nearly Kähler.

A Calabi-Yau manifold thus has an alternative definition as a manifold of SU(3)

structure with completely vanishing torsion classes. Although in this sense, consid-

ering SU(3)-structure manifolds with non-trivial torsion is more general than the
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Calabi-Yau case, in fact the physics that we obtain from such manifolds will often

be simpler. For example, it was argued in [82] that nearly Kähler manifolds do

not possess any complex structure moduli, and this argument should also apply to

half-flat manifolds.

2.2.4 Structure group G2 ⊂ SO(7)

A seven-dimensional manifold is said to have G2 structure if it admits a globally

defines three-form ϕ with four-form Hodge dual Φ := ⋆ϕ. There is no easy set

of algebraic relations like (2.2.10) that these forms obey; instead we look at the

pullback of ϕ onto the tangent space, ϕ. There should be some tangent-space basis

{eA} in which this pullback can be written

ϕ = e123 + e145 + e167 + e246 − e257 − e347 − e356 , (2.2.15)

where eA1...An := eA1 ∧ . . .∧ eAn . The four-form pullback can then be written in this

basis as

Φ = e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247 . (2.2.16)

An alternative definition of a G2 structure manifold is as a seven-dimensional space

with a nowhere-vanishing Majorana spinor η in terms of which we can write the G2

forms as

ϕABC = iηγABCη , ΦABCD = −ηγABCDη . (2.2.17)

The action of Levi-Civita derivatives on the spinor and forms is given in terms of

the contorsion κABC as

D
(T )
A η = DAη −

1

4
κABCγ

BCη = 0 , (2.2.18)

∇(T )
A ϕBCD = ∇AϕBCD − 3κA[B

EϕCD]E = 0 ,

∇(T )
A ΦBCDE = ∇AΦBCDE + 4κA[B

FΦCDE]F = 0 . (2.2.19)
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The torsion classes are given by

dϕ = W1Φ +W2 ∧ ϕ+W4 ,

dΦ =
4

3
W2 ∧ Φ+W3 . (2.2.20)

The group theoretical result is

Λ1 ⊗ g⊥2 = 7⊗ 7

= 1 ⊕ 7 ⊕ 14 ⊕ 27 ,

⇒ κ ∈ W1 ⊕ W2 ⊕ W3 ⊕ W4 ,

where as above, the torsion classes have been aligned to sit underneath the irre-

ducible representations of G2 that they are associated with.

Also as above, the torsion classes can be used to classify G2 manifolds. The case

where all torsion classes vanish corresponds to G2 holonomy, while when only W1 is

non-zero, the manifold is said to have weak G2 holonomy.

2.2.5 Relation to the metric

A metric is, in a sense, an SO(N) structure for an N -dimensional manifold, while

an orientation is an SL(N) structure. Both of these can be obtained from the kind

of forms discussed above as below

gmn = (det(s))−1/8smn for

smn = − 1

64
(ΩmpqΩnrs + ΩnpqΩmrs)Jtuǫ̂

pqrstu , (2.2.21)

ǫmnpqrs = −15J[mnJpqJrs] = −5

2
iΩ[mnpΩqrs] ,

gAB = (det(t))−1/9 tAB for

tAB =
1

144
ϕACDϕBEFϕGHI ǫ̂

CDEFGHI ,

ǫABCDEFG = 5ϕ[ABCΦDEFG] . (2.2.22)
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Variations of the metric can therefore be linked to variations of the structure forms

in each case, giving

δgmn = −1

8
(δΩ)(m

pqΩn)pq −
1

8
(δΩ)(m

pq
Ωn)pq − (δJ)t(mJ

t
n)

+

[
1

64
(δΩ)yΩ+

1

64
(δΩ)yΩ− 1

8
(δJ)yJ

]
gmn (2.2.23)

for the SU(3)-structure. In this form, calculation is rather difficult, however by using

the fact that P+ + P− = 1, we can obtain some of the calculational convenience of

holomorphic and anti-holomorphic coordinates by acting on (2.2.23) with projectors

to give

(P+)m
p(P+)n

qδgpq = −1

8
δΩp

qr
(P+)(m

pΩn)qr ,

(P−)m
p(P−)n

qδgpq = −1

8
δΩp

qr(P−)(m
pΩn)qr , (2.2.24)

[(P+)m
p(P−)n

q + (P−)m
p(P+)n

q] δgpq = −1

8
δΩp

qr(P+)(m
pΩn)qr −

1

8
δΩp

qr
(P−)(m

pΩn)qr

−δJp(mJn)p +

[
1

64
(δΩ)yΩ+

1

64
(δΩ)yΩ− 1

8
(δJ)yJ

]
gmn .

We will refer to the variations of J and Ω as Kähler and complex structure defor-

mations respectively.

For the G2 case, variations are given by

δgAB =
1

2
ϕ(A

CDδϕB)CD − 1

18
(ϕyδϕ)gAB . (2.2.25)

All relevant conventions are given in the appendix.
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Chapter 3

Eleven-dimensional supergravity

Much of our analysis in this work will start from eleven-dimensional supergravity.

We outline in this chapter the essential technical details of this theory as well as the

reasons for studying it.

3.1 Action and symmetries

The eleven-dimensional supergravity was first presented in [101] and contains the

following fields: the three-form Â3 with field strength F̂4 = dÂ3, the gravitino Ψ and

the graviton g. Using the indices I, J . . . to run over eleven-dimensional spacetime

indices, its action can be written, up to four-fermion terms which we ignore, as

S11 =
1

2

∫

M11

[
⋆R̂ +

1

2
F̂4 ∧ ⋆F̂4 +

1

6
Â3 ∧ F̂4 ∧ F̂4

]

−1

2

∫

M11

d11X
√−g

[
ΨIΓ

IJKDJΨK +
1

8
ΨIΓJKΨL(F̂4)IJKL

+
1

96
ΨIΓ

IJK1K2K3K4ΨJ(F̂4)K1K2K3K4

]
, (3.1.1)

where we have used the conventions outlined in the appendices.

Typically, we will also consider configurations for which the fermionic field van-
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ishes, so 〈ΨI〉 = 0. In this case, the equations of motion are

dF̂4 = 0 , (3.1.2)

d†F̂4 = −1

2
F̂4 ∧ F̂4 , (3.1.3)

R̂IJ =
1

12

[
(F̂4)IK1K2K3

(F̂4)J
K1K2K3 − 1

12
gIJ F̂4yF̂4

]
. (3.1.4)

The supersymmetric transformation for the gravitino is then the only non-trivial

supersymmetry transformation and is given by

δǫΨI = DIǫ+
1

288

(
Γ̂ J1J2J3J4
I − 8δJ1I Γ̂J2J3J4

)
(F̂4)J1J2J3J4 ǫ , (3.1.5)

where ǫ is a Majorana spinor parameterising the supersymmetry transformation.

3.2 Eleven-dimensional supergravity and M-theory

Eleven-dimensional supergravity is often referred to as M-theory, particularly in the

context of compactifications. Strictly speaking, however, it is just the low-energy

limit of M-theory, which should be an ultraviolet completion of eleven-dimensional

supergravity that unifies the existing five string theories, and may resolve some other

outstanding questions in the field. We will now discuss briefly the evidence for M-

theory, placing particular emphasis on the implications that this has for thinking

about string phenomenology.

3.2.1 ‘Web of dualities’

There are five known supersymmetric string theories: Type I, IIA and IIB; Heterotic

E8 × E8 and Heterotic SO(32). Each of these theories has a low-energy limit given

by an appropriate supergravity theory in ten dimensions. The superstring theories

are believed to be related to each other by a ‘web of dualities’—relations between

the theories that transform one into the other—that also include eleven-dimensional

supergravity [102]. These dualities are often shown diagrammatically as in figure
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Figure 3.1: M-theory ‘web of dualities’.

3.1, which is a schematic representation of the supergravity dualities. Briefly, these

consist of the following operations:

S1 : Compactification on a circle. The Kaluza-Klein modes of eleven-dimensional

supergravity are dual to solitonic states in IIA supergravity. This is a super-

gravity duality.

S1/Z2 : Compactification on an interval. The Kaluza-Klein modes of eleven-dimensional

supergravity are dual to solitonic states in Heterotic E8×E8 supergravity. This

is a supergravity duality.

T : Each string theory is compactified on a circle of radius R. The large-R limit

of one theory will be the small-R limit of the other, due to the interchange of

string winding and momentum modes, and so this duality is essentially stringy

in origin.Z2 : There is a worldsheet parity symmetry in the IIB string theory, hence Z2.

Projecting out the parity-odd states, and introducing open strings with SO(32)

Chan-Paton factors to cancel anomalies, gives the Type I string theory.
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S : In supergravity terms, the SO(32) Heterotic string and the Type I string are

the same. The S duality between them comes from going between strong and

weak string coupling, which is given in terms of the dilaton expectation value

〈φ〉 as gs = e〈φ〉. S duality is the transformation 〈φ〉 → −〈φ〉, which is just

a field redefinition in supergravity, but changes the regime in which gs is an

appropriate expansion parameter in string theory. There is no rigorous proof

of this duality in the full string theory case, although there is much indirect

evidence.

Although this picture is only fully demonstrated in the case of the supergrav-

ity theories, it is conjectured to hold for the full string theories as well. This

raises the question—what eleven-dimensional theory would take the place of eleven-

dimensional supergravity in the corresponding string-theory picture? This full the-

ory is called M-theory, although as mentioned above, in the context of phenomenol-

ogy, this term is often used exchangeably with eleven-dimensional supergravity.

3.2.2 Branes

String theory is formulated as a supersymmetric worldsheet theory, which to be

consistent must be embedded in a ten-dimensional spacetime. As mentioned above,

at low energies different ten-dimensional supergravities are found depending on the

boundary conditions imposed on the string worldsheet. These supergravity theories

have a range of extended solitonic solutions of various dimensions, as outlined in

[103]. In particular, each of the ten-dimensional supergravity theories has a solitonic

string state.

At the same time, starting with the embedded worldsheet theories, it is possible

to apply two types of open-string boundary conditions: Neumann conditions, for

which the string moves freely, and Dirichlet conditions, for which the ends of the

string are constrained. Given p Dirichlet conditions, the ends of the string will be

constrained to a (10− p− 1)-dimensional hyperplane. Initially, it was not clear how
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to interpret Dirichlet boundary conditions, and their lack of Poincaré invariance led

to the idea that they were unphysical.

It was with [104] that these hyperplanes were first given their modern interpre-

tation as dynamical objects in their own right, called D-branes. Relics of these

dynamical objects can be seen in the solitonic solutions of the supergravity theories,

which correspond to ‘frozen out’ non-perturbative states in the full string theory.

Where there is a p-form flux, the (p− 1)-form field that yields it can be coupled to

a (p− 2)-brane soliton.

Eleven-dimensional supergravity does not have a solitonic string state, but does

include a membrane and a dual fivebrane. This suggests that M-theory may be,

ultimately, the theory of a supermembrane. Another suggested idea is that of ‘brane

democracy’, meaning that ultimately every supergravity may be the low-energy limit

for the quantised worldvolume theory of each of the branes it admits as a solution.

Such hypotheses are hard to test in practice, since for objects of higher dimensions

than the string, the quantised worldvolume theory is highly divergent due to the lack

of conformal symmetry. Although there are various suggestions for ways around

this problem, the most promising of which is matrix theory, this means that the

full structure of M-theory is not currently known and so we are restricted to what

can be deduced from its low-energy limit, stringy dualities, brane physics and other

indirect methods.

Fivebranes require the supergravity action to be written as in [105]. Without

quoting the whole result, this involves writing the action in a way that is symmetric

under the duality Â3 ↔ Â6 explained more at the end of chapter 5. The duality

symmetric action contains an auxiliary scalar field a, and its coupling to the fivebrane

involves a worldvolume two-form B.

3.2.3 Relevance of M-theory

As well as the loftier concerns about the ultimate theory that may be lying behind

string theory, which are beyond the scope of this thesis, ideas about duality and
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branes have a relevance for the attempt to connect string theory with observation—

string phenomenology. In particular, it encouraged renewed study of compactifi-

cations of both eleven-dimensional supergravity and string theories other than the

Heterotic string.

While we deal more comprehensively with the problems of string phenomenol-

ogy in chapter 4, it is worth noting here that from first principles, there is much

to recommend compactifications of eleven-dimensional supergravity. Firstly, since

the higher-dimensional theory is the low-energy limit of M-theory, and we expect

decompactification at high energies, it is the most natural supergravity to start

compactifying. Indeed, the fact that eleven dimensions is maximal from the point

of view of supersymmetry is what recommended eleven-dimensional supergravity as

the main object of study for some of the initial papers on Kaluza-Klein theories.

Secondly, the Freund-Rubin solution to eleven-dimensional supergravity (pre-

sented below) remains one of the most pleasing explanations for the existence of

four non-compact dimensions in the context of string- and M-theory. This is made

possible by the presence of four-form flux, which can pick out four dimensions. Fur-

thermore, this flux is naturally sourced by the M-theory membrane. Finally, there

are several other more speculative reasons, including the possible existence of a

‘topological M-theory’ (sometimes called Z-theory) with the natural target space of

a G2 manifold.

Despite these a priori justifications for the study of compactifications of eleven-

dimensional supergravity, there are many practical difficulties involved in its dimen-

sional reduction that we will discuss further in chapter 4. It is to be hoped that

these difficulties are not insuperable, and furthermore that this work offers some

help in their solution.
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3.3 Compactifications of eleven-dimensional su-

pergravity

We shall consider two broad cases of M-theory compactification: the Ricci-flat and

the Freund-Rubin. These will be classified according to the number of supercharges

that they preserve, which will depend on the holonomy group or structure group of

the manifold respectively.

3.3.1 Ricci-flat compactifications

Setting F̂4 = 0 in (3.1.4) tells us that any compactification of the form

M11 =M4 ×M7 , (3.3.1)

for Ricci-flat M4 and M7, will be a solution. In the limit where all of the radii of

compactification of M7 are small, the low-energy theory will be a four-dimensional

supergravity, as argued in section 4.2. N for this supergravity will be given by the

number of Killing spinors on M7, i.e. spinors η satisfying

DAη = 0 , (3.3.2)

where A,B . . . are seven-dimensional spacetime indices and D is the Levi-Civita

spinor covariant derivative. Spinors satisfying (3.3.2) will give vanishing supersym-

metric variation for the gravitino at zero flux, from (3.1.5). In fact, for general

bosonic configurations the equation δǫΨ = 0 is often called the Killing spinor equa-

tion, with ǫ called the Killing spinor.

From the discussions in chapter 2, it is clear that the number of supersymmetries

in the effective theory will be related to the holonomy group of the Levi-Civita

connection on the manifold, which here we write Hol(M7). This relation takes the

form

Hol(M7) = 1 ⊂ SU(2) ⊂ SU(3) ⊂ G2 ⊂ SO(7) ,

⇒ N = 8 4 2 1 0 ,
(3.3.3)

where the values of N are aligned with the appropriate holonomy groups.
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3.3.2 Freund-Rubin

The Freund-Rubin solution [106] takes the same product form as (3.3.1), but with

the non-vanishing flux

F̂4 =
3

2
τdVol(M4) , (3.3.4)

where dVol(M4) is the volume element on M4. From (3.1.4), this means that M4

must be AdS4, while M7 must have constant positive curvature. The Ricci tensors

for M4 and M7 are in fact

Rµν = −3

4
τ 2gµν , RAB =

3

8
τ 2gAB . (3.3.5)

When considering the amount of supersymmetry preserved, the equation (3.3.2) is

modified to

DAη +
i

8
τγAη = 0 . (3.3.6)

Following the approach of chapter 2, we can then define a connection ΓT , which will

give D
(T )
A η = 0. The holonomy group of this connection, Hol(ΓT ), will determine

the supersymmetries preserved in the four-dimensional theory in the same way that

Hol(X7) does in (3.3.3) above.

The condition that Hol(ΓT ) = G will be equivalent to saying that M7 is a G-

structure manifold, with torsion classes given as a function of τ . We will later give

special attention to the structure group G2.

Also note that when more general scenarios with additional fluxes, warp factors,

non-perturbative effects and so on are considered, the simple relationship between

holonomy and supersymmetries will not typically hold.
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Chapter 4

Effective four-dimensional theories

Kaluza-Klein reduction involves the production of effective four-dimensional theories

from higher-dimensional configurations involving four non-compact dimensions, with

the other dimensions compact. In this chapter, we will consider which kind of four-

dimensional theories are most commonly attempted to obtain by reduction of higher

dimensional theories, as well as the general method of dimensional reduction for field

theories.

There is a large body of literature on the topics presented in this chapter. There-

fore, rather than citing according to priority, we will often cite works simply because

they clearly explain the relevant concepts.

4.1 Four-dimensional supergravities

Four-dimensional supergravities are classified according to their values for N , which

is the number of supercharges ǫ their action preserves. In four dimensions such

charges will be Majorana or Weyl depending on conventions, and obey

δǫS
4
SUGRA = 0 , (4.1.1)

where S4
SUGRA is the four-dimensional supergravity action. In this work, we will con-

sider bosonic configurations, which are those where the fermion expectation values
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vanish. For such configurations, the gravitino variations will typically take the form

δǫψµ ∝M3/2γµǫ , (4.1.2)

whereM3/2 is the mass of the gravitino ψµ, and γµ is a four-dimensional Dirac matrix.

Therefore, the number of distinct gravitini in the theory—provided it has been

constructed to obey (4.1.1)—will give the value of N for the action. Furthermore,

the value of N for a given solution to the theory will be given by the number of

physically massless gravitini. We will discuss this further in chapter 8.

For now, we turn to the N = 1 and N = 2 supergravities, since although N = 4

and N = 8 are possible, they are far more complicated and have phenomenological

problems that make them less-favoured theories to be obtained by Kaluza-Klein

reduction.

4.1.1 N = 1 supergravity

The full component action of N = 1 supergravity in four dimensions is rather

complicated. In supersymmetric theories, however, the fields sit in supermultiplets,

which can in this case be combined into superfields. These make the action of

four-dimensional N = 1 supergravity rather simpler, giving

S4 =

∫

M4

d4x
√−g

∫
d2Θ2E

[
3

8

(
D D − 8R

)
exp

{
−1

3

[
K(Φ,Φ) + Γ(Φ,Φ,V )

]}

+
1

16g2
H(ab)(Φ)F

(a)F (b) +W (Φ)

]
+ h.c. (4.1.3)

Each of the symbols above encodes field theoretic information, which we will now

explain. Θ represents fermionic coordinates in superspace, with measure E . D

is a superspace covariant derivative, with R the superspace curvature. In compo-

nents, this curvature contains the graviton gµν , and gravitino ψµ. Φ stands for

the chiral superfields, which contain spin-0 scalars T i, as well as spin-1
2
fields χi,

and non-dynamical degrees of freedom, while V stands for the vector superfields,

which contain spin-1
2
gauginos λ and spin-1 gauge fields Aµ as well as non-dynamical

degrees of freedom. F is the supercovariant field strength of V .
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Although the field content as described is common to all four-dimensional N = 1

supergravities, the functionals are used to specify exactly which N = 1 supergravity

we are considering. K is the Kähler potential, Γ is the counterterm, H(ab) is the

gauge kinetic funtion and W is the superpotential. These quantities, together with

the number of fields, will be what we derive from Kaluza-Klein reduction of higher

dimensional theories.

Most often, we will discuss the scalar sector of N = 1 supergravity, which is

given by

S4
scalar =

1

2

∫ (√−gR + 2gī∂µT
i∂µT  + 2V

)
. (4.1.4)

gī is the Kähler metric, given in terms of the Kähler potential K by

gī =
∂2K

∂T i∂T 
. (4.1.5)

Field-space indices i, j, . . . are lowered and raised by gī and its inverse gī. The

potential V is given by

V = eK
(
gīDiWD̄W − 3|W |2

)
, (4.1.6)

where W is the superpotential and the Kähler covariant derivative Di is defined by

Di :=
∂

∂T i
+

(
∂K
∂T i

)
. (4.1.7)

4.1.2 N = 2 supergravity

Four-dimensional N = 2 supergravity has a far more complicated Lagrangian than

the N = 1 theory, so here we simply outline some of the features of the theory that

will be useful later.

As for N = 1 supergravity, the fields sit in supermultiplets, although the N = 2

multiplets typically contain more fields. From [107], these are
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Spin Field Name Multiplet

2 gµν Graviton

3
2

ψα, ψα Gravitino doublets The gravitational multiplet

1 A0 Graviphoton

1 Ai Gauge bosons

1
2

λi,α, λiα Gaugino doublets Vector multiplets

0 T i Vector multiplet complex scalars

1
2

ζa′ , ζ
a′ Hyperinos

0 ξa, ξ̃a Hypermultiplet real scalars Hypermultiplets.

0 za Hypermultiplet complex scalars

α is an SU(2) index taking values 1, 2. The chirality of a fermionic field is positive

if its SU(2) index is raised and negative if this index is lowered. i runs from 1 to

NV , a runs from 1 to NH and a′ runs from 1 to NH/2. The raising and lowering of

a′ determines chirality in the same way as α.

Similarly to the N = 1 theory, the sector of N = 2 supergravity that we will

pay most attention to is the scalar sector coming from the vector multiplets and

the hypermultiplets. The hypermultiplet scalars {ξa, ξ̃a, za} provide coordinates for

a quarternionic manifold MQ of dimension 4NH while the vector multiplet scalars

{T i} provide coordinates for a special Kähler manifold MK .

As would be expected, it is possible to break N = 2 → N = 1 given an appro-

priate form for the scalar potential. This is generally a rather difficult procedure,

in particular finding which fields are made massive and determining the N = 1

quantities W and K from the N = 2 quantities. There are further phenomenologi-

cal problems with this mechanism [108], in particular the difficulty of getting chiral

fermions in the spontaneously broken theory. Again, we will discuss this further in

chapter 8.
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4.2 Kaluza-Klein reduction

We turn now to the mechanism by which effective field theories can be derived from

higher-dimensional theories, drawing on the approach of [109–111].

We suppose that the higher-dimensional theory is a theory in D spacetime di-

mensions, with coordinates XM for M,N . . . = 0, . . . , D − 1. We then look for

solutions to this theory with line element

ds2D = gMNdX
MdXN = gµνdx

µdxν + gmndy
mdyn , (4.2.1)

where gMN is the metric on the D-dimensional space MD, gµν is the metric on

a four-dimensional non-compact space M4 and gmn is the metric on a (D − 4)-

dimensional compact space K. The coordinates on these last two spaces are xµ for

µ, ν . . . = 0, 1, 2, 3 and ym for m,n . . . = 1, . . . , D − 4 respectively. The line element

(4.2.1) thus puts the space XD in the product form

MD =M4 ×K . (4.2.2)

Note that there are generalisations of this procedure to include ‘warp factors’ depen-

dent on the ym into the non-compact space. For now, we will consider how various

fields behave under the decomposition (4.2.2). In doing this, we will consider simple

actions for each field (containing only the kinetic term) and furthermore will not

take any field to have a vacuum expectation value (vev). Such an approach brings

out the most important features of compactification.

Later on, however, we will consider relaxing some of these assumptions, which

turn out not to be appropriate when we consider more general compactification

scenarios.
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4.2.1 Scalar field

Consider a scalar field φ with action

SDφ =

∫

MD

dDX
√−g ∂Mφ∂Mφ

=

∫

M4

d4x
√−g

[
V∂µφ∂µφ+

∫

K

dD−4y
√
g∂mφ∂

mφ

]
, (4.2.3)

where V = Vol(K). This factor of the volume will be removed by a rescaling of the

metric, gµν → V−1gµν , as shown in section 4.2.2, and so we concentrate instead on

the second term in the second line of (4.2.3). In the limit where the compact space is

extremely small, we will be able to ignore terms like ∂mφ, since non-zero derivatives

along the ym directions will be proportional to the inverse compact radii, and hence

the scalar modes associated with them will, from a four-dimensional point of view,

look extremely massive.

To see why this should hold, consider the case where K is a circle of radius r.

The equation of motion for φ is then

0 = ∇M∇Mφ =
(
∇µ∇µ + r−2∂2y

)
φ . (4.2.4)

This equation can be solved by Fourier decomposition of φ into

φ(X) =
∑

p∈Z φp(x)eipy ⇒
[
∇µ∇µ −

(p
r

)2]
φp = 0 . (4.2.5)

Clearly, then, the mass of each scalar field mode φp goes like p/r. So in the limit of

small radius, the modes with p 6= 0 will be extremely massive, and can be consistently

truncated. After substituting (4.2.5) into (4.2.3) and setting gµν → V−1gµν , φ0 →
φ, φp 6=0 → 0 we find the four-dimensional effective action for a scalar field

S4
φ =

∫

M4

d4x
√−g ∂µφ∂µφ . (4.2.6)

This result generalises to more complicated compact spaces K, with the operator

∇m∇m playing the role of a four-dimensional mass that varies inversely with the

radii of compactification in the generalisation of (4.2.5). Note that for the scalar
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field, the reduction is rather simple, and does not depend on any special features of

the compact space. Other fields have more involved reductions, but the basic ideas

will still hold.

4.2.2 Einstein-Hilbert term

The Einstein-Hilbert term takes the form

SDEH =

∫
dDX

√−g 1

2
R̂ , (4.2.7)

where R̂ is the D-dimensional Ricci scalar. Making arguments similar to those for

the scalar field above, we can ignore internal metric derivatives and so using the

decomposition (4.2.1) we see that

R̂ = R +RK − gmn∇2gmn −
1

4
gmngpq (∂gmn · ∂gpq − 3∂gmp · ∂gnq) , (4.2.8)

where R is the four-dimensional Ricci scalar, and RK is the Ricci scalar on K.

Inserting the expansion (4.2.8) into (4.2.7), we find that the four-dimensional Ricci

scalar picks up a factor of V, which is removed by the Weyl rescaling

gµν → V−1gµν . (4.2.9)

After performing this rescaling for the Ricci scalar, volume element and external

raised indices, we end up with

S4
EH =

1

2

∫

M4

d4x
√−g

[
R + V−1RK +

3

2
∂µ(lnV)∂µ(lnV)

+
1

4V

∫

K

dD−4y
√
g gmngpq (∂µgmn∂

µgpq − ∂µgmp∂
µgnq)

]
. (4.2.10)

4.2.3 Form fields

Consider a p-form field A with field strength F = dA. This will have action

SDA =
1

4

∫

MD

dDX
√−g F ∧ ⋆F , (4.2.11)
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and equations of motion

dF = d ⋆ F = 0 ⇐⇒ ∆(D)F = 0 . (4.2.12)

Now, the D-dimensional Laplacian ∆(D) splits under the Ansatz (4.2.1) to give

∆(D) = ∆(4) +∆(D−4) . (4.2.13)

We then expand F in eigenforms of ∆(D−4), which is the equivalent of Fourier ex-

pansion in the scalar case, so that

F =

min(p,4)∑

q=max(0,p−D)

F i
(q) ∧ ω(p−q),i , (4.2.14)

where we have chosen
{
ω(q),i

}
as a basis for q-forms on K that are eigenforms of

∆(D−4). By arguing that the ω(q),i with non-zero eigenvalues will, in the limit of

a small compact space, be extremely massive, we truncate those modes with finite

masses, leaving only harmonic forms on the internal space. If we then take
{
π(q),i

}

as a basis of harmonic q-forms on K, the action (4.2.11) reduces to

S4
A =

1

4

min(p,4)∑

q=max(0,p−D)

∫

M4

d4x
√−g Cq,ijF i

(q) ∧ ⋆F j
(q) , (4.2.15)

where

Cq,ij =

∫

K

d6y
√
g π(p−q),i ∧ ⋆π(p−q),j . (4.2.16)

Now, since the harmonic forms are in one-one correspondence with the non-trivial

cycles on the manifold, it is topological information about K that determines the

effective action (4.2.15). In particular, the number of q-form fields will be equal to

the qth Betti number on the manifold, and the quantity Cq,ij will be given by the

intersection numbers of the q-cycles on K.

Note that a scalar field is simply a 0-form, while a vector field is a 1-form, so the

analysis here specialises to these cases.
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4.2.4 Fermionic fields

For a spinor field Ψ, the action is

SDΨ =

∫

MD

dDX
√−g ΨΓMDMΨ , (4.2.17)

where ΓM are the D-dimensional Dirac matrices and DM is the spinor covariant

derivative. The equations of motion are then the standard Dirac equation

ΓMDMΨ = 0 . (4.2.18)

The reduction of fermionic fields involves not just splitting the space-time indices,

but also the spinor indices. We start by defining

γ := i
∏

µ

γµ , γK := iD(D−1)/2
∏

m

γm , (4.2.19)

where γm are the Dirac matrices on K and γµ are the four-dimensional Dirac ma-

trices. γK will be proportional to 1 for D odd and will be a chirality operator

for D even, while γ will be the four-dimensional chirality operator. We can then

decompose the D-dimensional Dirac matrices as

Γµ = γµ ⊗ γK , Γm = γ ⊗ γm . (4.2.20)

There is an additional subtlety to do with the Weyl rescaling (4.2.9). Since the Dirac

matrices are defined in terms of the metric, when we rescale the metric we should

also rescale the Dirac matrices, i.e.

{γµ, γν} = gµν → V−1gµν ⇒ γµ → V−1/2γµ . (4.2.21)

Taking ηi as a basis of spinors on K, and ψi as a set of four-dimensional spinors, we

write

Ψ(X) = Nψi(x)⊗ ηi(y) , (4.2.22)

where N is a normalisation factor, following the metric Ansatz (4.2.1). The Dirac

equation then reads

(
γµDµψ

i
)
⊗ γKηi + γψi ⊗ (γmDmηi) . (4.2.23)
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Now, using arguments similar to the above, if we choose the ηi to be eigenspinors

of the Dirac operator γmDm, then only the ones with zero eigenvalue will appear in

the effective theory for the limit of small K.

There are, however, subtleties in constructing the effective action, due to the fact

that Dirac spinors are not in general irreducible spinor representations, and have to

be decomposed. For some numbers of dimensions, the irreducible representations can

be Majorana, in some they can be Weyl and in others they can be Majorana-Weyl.

Although this may affect how we count spinor fields, for the moment we simply take

ξi to be a basis for eigenspinors of the Dirac operator with zero eigenvalue, and write

the effective action as

S4
ψ =

∫

M4

d4x
√−g cijψiγµDµψ

j , (4.2.24)

where

cij = V1/2|N |2
∫

K

d6y
√
g ξiξj . (4.2.25)

N should then be chosen to put the kinetic terms in (4.2.24) in canonical form,

which will typically mean that N ∝ V−1/4. Unlike the form fields above, the zero

eigenspinors of the Dirac operator are not related to simple topological quantities

like the Betti numbers, but are instead given by special holonomy (or more generally

G-structure) considerations.

For Rarita-Schwinger fields like gravitini, the procedure is very similar to the

above, together with the reduction of the spacetime index. Such a field ΨM will

yield both a four-dimensional Rarita-Schwinger field from the terms in Ψµ and D

spin-1
2
fields from the terms in Ψm.

4.3 Some phenomenological problems

Physically, it is hoped that Kaluza-Klein reduction can reproduce all features of cur-

rently observed four-dimensional physics—i.e. the standard model—together with

extensions that have not been ruled out by data, such as TeV-scale supersymmetry.



38

The attraction of such a reduction would be that fundamental quantities in the four-

dimensional theory such as coupling constants, particle content and even quantities

like the cosmological constant can be related to features of the compact space and

higher-dimensional theory.

Typically, the higher-dimensional theory will be simpler, and may be derived

from still more fundamental principles. Furthermore, the compactification of the

internal space (or decompactification of the external space) should be a dynamical

process, leading to an explanation of the multiple parameters of the standard model.

Although the discussion above has been general, in that it has not assumed

any particular higher-dimensional theory, it is really in the context of string and

M-theory that the Kaluza-Klein approach is most explanatory. This is because the

theories in question should provide quantum theories of gravity, and also have enough

dimensions and sufficient field content to be ‘rich’ enough to encode the standard

model given very few (if any) fundamental parameters in the higher dimensional

theory.

We now turn to some of the challenges facing the compactification of string and

M-theory, a field often called string phenomenology.

4.3.1 Particle content

As mentioned above, a successful Kaluza-Klein theory should be able to reproduce

the particle content of the standard model. In particular, this means that there

should be three generations of quarks and leptons with the appropriate Yukawa

couplings to the Higgs sector to generate values within the experimental bounds

for the CKM mass matrix for quarks, and the MNS mass matrix for leptons, after

electroweak symmetry breaking.

For E8 ×E8 Heterotic string theory compactification on six-dimensional spaces,

as outlined in [110], the number of generations of fermions Ng is given by

Ng = |χ(K)/2| , (4.3.1)
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where χ(K) is a topological property of the compact space K called the Euler

number, which is related to the Betti numbers by

χ(K) =
∑

p

(−1)pbp(K) , (4.3.2)

where bp(K) is the p-th Betti number of K. Although other compactification sce-

narios do not necessarily have such a simple relationship between the number of

generations and topological properties, arriving at the correct number of genera-

tions should still involve some special subclass of the type of space under discussion.

What is more problematic, however, is finding exactly the correct Yukawa cou-

plings. These can most easily be obtained when the compact space is an orbifold,

and the mass hierarchies within fermion families can be given by the distances be-

tween the orbifold fixed points. As yet, however, there is no compactification that

gives a set of Yukawa couplings that is completely consistent with standard model

observations.

4.3.2 Gauge group

The gauge group for the standard model is SU(3) × SU(2) × U(1)Y , which breaks

to SU(3)×U(1)EM via the Higgs mechanism. There are many possible groups that

could themselves spontaneously break to the standard model—the so-called GUT

(Grand Unified Theory) groups. [112] gives a flavour for just how many possibilities

there are. Note that non-supersymmetric GUT theories actually suffer from many

of the same problems as the non-supersymmetric standard model, in particular the

hierarchy problem. This does not apply, however, to supersymmetric GUTs, which

are still popular ‘bottom up’ extensions to the standard model.

Of course, as well as obtaining the correct gauge group, compactification should

yield the observed gauge couplings at the standard model energy scale, or GUT

gauge couplings that can spontaneously break to the standard model values at lower

energy.
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Clearly, the groups SO(32) and E8×E8 associated with the Heterotic string are

large enough to contain the standard model gauge group. If anything, these groups

are larger than would typically be postulated for phenomenological reasons. The

other string theories and M-theory, however, do not have fundamental gauge groups

and so some other approach is required to generate non-Abelian gauge groups in

four dimensions.

One route to a larger gauge group is from the isometry group of the compact

manifold, which is the group of transformations leaving its metric invariant. In-

finitesimally these transformations can be written as

ym → ym + δaξma , (4.3.3)

where a are Lie algebra indices δa are parameters of the transformation and {ξa}
are the Killing vectors of the space K. These obey the relation

ξnb ∂nξ
m
c − ξnc ∂nξ

m
b = −Ca

bcξ
m
a , (4.3.4)

where Ca
bc are the structure constants of the isometry group G. Defining Aµ

m :=

ξma A
a
µ shows how fluctuations parameterised by Aµ

m around the ground-state metric

given in (4.2.1) give rise to the vector field Aaµ with gauge group G via

gµν → gµν +Am
µAm,ν , gmµ → Am,µ , gmn → gmn . (4.3.5)

Gauge transformations are therefore generated by isometries of K. While there

are manifolds that have isometry group SU(3)× SU(2)× U(1) or larger—typically

constructed as cosets G/H for some H ⊂ G—Calabi-Yau and G2-holonomy spaces

typically have trivial isometry group and so cannot give non-Abelian gauge groups

from metric variations.

Another possibility is to introduce singularities into the compact space [69].

These are singularities that look locally like C2/Γ for some finite subgroup Γ ⊂
SU(2). For each such non-trivial Γ there is a corresponding Dynkin diagram from

An≥1, Dn≥4 or En=6,7,8 [70], which is the reason that these are often called A-D-

E singularities. It turns out that such singularities give gauge group according to
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the appropriate Dynkin diagram, i.e. G = SU(N ≥ 2), SO(2N ≥ 8) or EN=6,7,8

respectively. As an example, Γ = Z2 ⇒ G = SU(2).

Finally, motivated by M-theory considerations (see section 3.2), the worldvol-

ume action for N coincident branes has U(N) symmetry [113, 114]. This enhanced

symmetry, rather than the U(1)N that one would get from separated branes, comes

from the massless limit of string modes stretching between the branes. Where the

branes fill the external space, either because they are three-branes or because they

are (p > 3)-branes wrapped on calibrated (p − 3)-dimensional submanifolds of the

compact space, then the presence of branes ‘frozen’ into the low-energy theory can

give U(N) symmetry.

Of course, these possibilities for the generation of gauge groups are not mutually

exclusive: one could dimensionally reduce a theory with a fundamental gauge group,

on a manifold with non-trivial isometry group and A-D-E singularities in the pres-

ence of D-branes. This reflects in part the shift in emphasis of string phenomenology

from the search for the standard model in string theory to the realisation that there

are likely to be many ways of generating the standard model, and concerns about

what process selects the appropriate one.

4.3.3 Chiral fermions

It has been known for some time that the weak interaction maximally violates par-

ity. In field-theoretic terms, this means separating fermionic fields into different

chiralities, since in four dimensions Dirac spinors are not irreducible representations

and so must be separated into Weyl (or Majorana) components. Each of the two

chiralities has different couplings to the weak force, hence the violation of parity.

When a higher dimensional theory is compactified, the four-dimensional chirali-

ties of the fermions are linked to the chiralities of their counterparts on the compact

space. To see this, we continue the discussion (and notation) of section 4.2.4, making
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use of [52, 97, 110]. We start by defining

Γ4 := i
∏

µ

Γµ = γ ⊗ 1 ,
ΓK := iD(D−1)/2

∏

m

Γm =





γ ⊗ 1 for D odd,1⊗ γK for D even.
(4.3.6)

This gives the expected result for the higher-dimensional parity operator

Γ = Γ4ΓK =





1⊗ 1 for D odd,

γ ⊗ γK for D even.
(4.3.7)

Note that although the case of odd D may appear trivial, we will keep the discussion

below general. Now, as mentioned before, the higher-dimensional fermion field Ψ will

not in general be a Dirac field, but will be in one of the irreducible representations

obtained using the chirality operator, so that ΓΨ = ±Ψ. Such a condition clearly

gives that Γ4Ψ = ±ΓKΨ, and so links external and internal parity.

One important quantity to consider using this relation is the index of the Dirac

operator γµDµ. This operator splits into two operators D and D†, which are non-

vanishing on positive and negative chirality fermions respectively. The index is then

given by

index(γµDµ) = dim(ker(D))− dim(ker(D†))

= ν+ − ν− , (4.3.8)

where ν± is the number of zero-mass modes with chirality ±1. Clearly, we will

want this quantity to be non-zero to give chiral fermions in four dimensions. Using

the relationship between four-dimensional and D-dimensional chirality for positive

(D + 4)-dimensional chirality, we see that

index(γµDµ) = index(γmDm) . (4.3.9)

Together with the Atiyah-Singer index theorem, this tells us that

ν+ − ν− =

∫

K

Â(TK)|V , (4.3.10)
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where Â is the Dirac genus and TK is K’s tangent space. From its definition, Â

contains only (0 mod 4)-forms, giving the result

dim(K) 6= 0 mod 4 ⇒ ν+ − ν− = 0 . (4.3.11)

This creates a prima facie problem for any string or M-theory compactification,

where the values for dim(K) are D = 6, 7 respectively, however there are several

ways around this result.

Where there is a fundamental gauge field with groupG, as in the Heterotic string,

the Dirac operator picks up a term in the gauge field, changing the result (4.3.10)

from the index theorem to

ν+ − ν− =

∫

K

Â(TK)ch(E)|V , (4.3.12)

where ch(E) is the total Chern character of E, which is the associated vector bundle

for the principal bundle P (K,G). Of course, the result (4.3.12) still places con-

straints on which gauge-group/manifold combinations will provide chiral fermions

in four dimensions.

As mentioned above, the other string theories and M-theory do not have fun-

damental gauge groups, and so again some alternative methods must be found to

obtain chiral fermions in four dimensions.

Analogously to the A-D-E singularities discussed above, it is also possible to

introduce conical singularities into the compact space K to give chiral fermions.

These are singularities with codimension dim(K), and hence involve essentially four-

dimensional physics, with chiral supermultiplets sitting at each singularity. Care

must also be taken to ensure that the chiral and other anomalies produced at these

singularities are cancelled by inflow from the bulk theory as in [54, 55, 115, 116].

Also, branes can produce chiral fermions when they intersect at non-trivial an-

gles. In particular, generically intersecting stacks of D6-branes produce a chiral

fermion at the intersection charged under the U(M) × U(N) obtained from inter-

secting a stack of M and a stack of N D6-branes [117].
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4.3.4 Moduli stabilisation and supersymmetry breaking

Typically, when a theory is compactified there are a large number of four-dimensional

scalar fields derived from the purely internal components of bosonic fields in the

higher-dimensional theory. For the case of N = 1 supersymmetry, the potential

for these ‘moduli’ fields is given by (4.1.6), with the superpotential W and Kähler

potential K given by features of both the compact space and the fields on it.

The usual reason for giving special attention to N = 1 supersymmetry in this

context—apart from its other phenomenological benefits—is that for higher super-

symmetries, the possible contributions to the scalar potential are in some sense

‘special cases’ of N = 1 contributions, while for fully broken supersymmetry there

are so many possible potentials that any systematic discussion of them is almost

impossible.

For string and M-theory compactifications, the typical form of the Kähler po-

tential is

K ∝ lnV , (4.3.13)

where V is the volume of the compact space and the constant of proportionality is

an integer given by the underlying theory. Where T i are the scalar components of

the chiral superfields, K is a function of (T i + T ı) as would be expected, although

this function can often be quite complicated.

The superpotential then usually takes contributions from three effects—gaugino

condensation, instantons and fluxes. The first two of these are non-perturbative in

origin, and are usually included in the superpotential in the form

Wnp =
∑

i

kie
−αiT i

, (4.3.14)

where ki, αi are constants. Gaugino condensates are formed when there is a non-

Abelian gauge group present, while instantons are string or brane effects from Eu-

clidian worldvolumes wrapping calibrated cycles on the manifold.

Flux terms arise when the p-form fluxes take non-vanishing values on the in-

ternal space. Although they are perturbative in the sense of appearing as classical
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expectation values, they should ultimately be sourced by branes, which are really

non-perturbative objects. The rough form for such terms is

Wflux =
∑

i,p

∫

K

F i
(D−p) ∧ T ip , (4.3.15)

where F i
p is the i-th p-form flux and T ip is the superfield whose real part is φip, the i-th

globally defined p-form on the manifold obeying G-structure relations as in chapter

2.

There are, of course, other terms that can contribute to the superpotential, most

importantly from space-filling D3/D3-branes or wrapped higher-dimensional branes.

As well as contributing particle content as mentioned above, these will typically

alter the Kähler potential and superpotential. We will not concern ourselves here or

elsewhere in this work with the exact form of such terms, whose form can be quite

heterogeneous depending on the precise way in which branes are introduced to the

theory.

The problem of moduli stabilisation is, therefore, of trying to generate potentials

for the scalar fields T i with stable local (and preferably global) minima. For some

time this was seen as an extremely difficult problem, however recently models have

proliferated with stable minima, particularly with the advent of flux compactifica-

tions.

Assuming that the moduli can be stabilised at a supersymmetric minimum, the

task remains of breaking to a non-supersymmetric theory, ideally at a mass scale

suitable for solving the standard model hierarchy problem. Of course, there is always

the possibility that the moduli could be stabilised only at a non-supersymmetric

vacuum, however in that case it will be harder to obtain the benefits of low-energy

supersymmetry. It is also practically easier to search what can be quite complicated

potentials for supersymmetric than non-supersymmetric minima, as can be seen

from the conditions

DiW = 0 ⇒ SUSY minimum; (4.3.16)

∂iV = 0, DiW 6= 0 ⇒ ����SUSY extremum. (4.3.17)
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Here W is the superpotential, V is the potential, the scalar directions are labelled

with i, and Di is the Kähler covariant derivative. As well as being significantly more

complicated, the condition (4.3.17) also leaves open the possibility of the extremum

being a maximum in some of the directions, while supersymmetry ensures (physical)

minimality.

Therefore, a common desideratum for scalar potentials from string- and M-theory

compactifications is to give supersymmetric minima, with supersymmetry softly

broken at energies much below the Kaluza-Klein scale, although of course this is

more easily said than done.

4.3.5 Cosmology

A variety of problems with the ‘standard big bang’ model of cosmology have led

to the widespread (although by no means universal) acceptance of inflationary cos-

mology, briefly reviewed in [118]. This involves a period in the early universe when

the universe’s scale factor a(t) has positive definite second derivative with respect

to time, which in the FRW setup means

ä > 0 ⇔ ρ+ 3p < 0 . (4.3.18)

Assuming positive energy density ρ, this means that inflation happens during a

period of negative pressure. The simplest way to implement this is with a scalar

field φ—the inflaton—which obeys

ρ =
1

2
φ̇2 + V (φ) , p =

1

2
φ̇2 − V (φ) . (4.3.19)

So for a scalar field, (4.3.18) will hold when the potential V (φ) dominates over the

kinetic energy 1
2
φ̇2, a condition often called slow roll.

Of course, there are many other ways to implement (4.3.18) than with a scalar

field coupled to gravity, and as mentioned some of the problems that inflation was

designed to solve are also resolved by alternative theories. Given the successes of

inflationary models of density perturbations in fitting data from WMAP, however,
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it is more common to try to embed inflation in string theory than to come up with

a full alternative.

Typically, then, it is hoped that the scalar potential generated by Kaluza-Klein

reduction will contain a direction that can behave like the inflaton. This means that

we hope that the potential will be suitably flat on the approach to its minimum.

There are, however, deeper problems than just the flatness of the potential. It

is a general result that supergravity compactifications cannot yield de Sitter (dS)

backgrounds in four dimensions [119]. These are relevant firstly because the period

of inflation is well described by a dS phase in the universe’s history, and secondly

because the current best fits of cosmological data involve a positive cosmological

constant which, although it is small compared to the Planck energy, still makes up

around 70% of the universe’s energy density, although there may be other explana-

tions for this ‘dark energy’.

The no-go theorems on de Sitter vacua can be avoided by using non-perturbative

effects, however until recently all vacua found had the four-dimensional space as

either Minkowski or Anti-de Sitter (AdS). This situation changed with the work

of [12], often called the KKLT scenario, mainly due to the inclusion of effects arising

from space-filling D3-branes, which in the context of their compactification shift the

potential by

VD3 =
D

σ3
, (4.3.20)

where D is a (positive) factor depending on inter alia the number of D3-branes, and

σ is the volume modulus for the Calabi-Yau space upon which they compactify the

Type IIB string theory.

As well as trying to obtain empirically adequate results for inflation and vacuum

energy, there are many other requirements upon string compactifications coming

from cosmology. One of these is the provision of a candidate for ‘dark matter’, which

makes up around 30% of the universe’s energy density, completely dominating over

ordinary baryonic matter. Viewed in the light of this evidence, the ‘exotic’ particles

often yielded by string- and M-theory compactifications may turn out to be an
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advantage. If the lightest supersymmetric particle is stable, supersymmetry alone

may solve this problem, as may low-lying Kaluza-Klein modes, although either of

these would not necessarily provide direct support for string theory if observed.

Despite the fact that WMAP has effectively ruled out topological defects as

the dominant source of density perturbations in the early universe, there has been

renewed interest in them as a sub-dominant source of perturbations (for the case

of cosmic strings see [120]). Therefore, generation of topological defects at energy

densities not ruled out by measurements may be either a positive or negative feature

of a given string- and M-theory compactification depending on how the observations

turn out.

4.3.6 Prospects for Kaluza-Klein theory

Solving any individual one of the problems above is a highly complex task; solving all

at once may seem impossible. For example, decades of work on compactifications of

the Heterotic string have culminated in the ‘Heterotic Standard Model’ result [121],

which contains the correct particle content and gauge group, but since the moduli

are not stabilised the Yukawa couplings cannot be compared to experiment.

On the other hand, the KKLT scenario inspired much work involving stable

moduli, inflation or even the possibility of phenomenologically viable cosmic strings

[122], however the particle content and gauge group of the relevant four-dimensional

theories are typically far from the standard model or even quite exotic extensions of

it.

This should not, however, be cause for desperation. Thinking about M-theory

(see section 3.2) it is more common to see the different areas of string theory as

linked, so that a problem that is easy to solve in one ‘corner’ of M-theory may be

dual to a less-easily constructed setup in some other corner. Also, the addition of

new ‘ingredients’ such as fluxes, branes and singularities provides the tools for the

kinds of setup that are likely to be needed for full phenomenological viability.

The particular focus of this work is the role of fluxes in string- and M-theory
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phenomenology. We are more concerned with the scalar potentials that will be

obtained, for use in moduli stabilisation and cosmology, than will realistic particle

content. Still, we hope not to lose sight of the overall goal: the dimensional reduction

of a quantum theory of gravity, that at low energy captures all currently known

physics.
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Chapter 5

M-theory on G2 structure

manifolds

Compactification on manifolds of G2 structure is associated with giving N = 1

supersymmetry in four dimensions. As discussed in chapters 2 and 3, G2 structure

manifolds have exactly one Killing spinor. In fact, it has been shown that given the

assumption of a Poincaré-invariant external space, the only possibilities for N = 1

givenG2 structure are the direct product of flat space and a manifold ofG2 holonomy,

and the direct product of AdS4 with a weak G2 manifold [17]. The assumption of

Poincaré invariance was relaxed in [123].

Nevertheless, in this section we will not specialise to either of these cases, but

will consider the case of general N = 1 compactification of M-theory on G2 structure

manifolds. In section 5.1, we outline some mathematical properties of G2, while in

section 5.2 we construct the N = 1 effective action following compactification.

5.1 Some properties of G2

We shall now state some results for manifolds of G2 structure, in part following

[18, 70]. We pay particular attention to those features of G2 that are of use in

deriving the results we arrive at elsewhere in this work.
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5.1.1 G2 Lie Algebra

In this section we define G2 as a subgroup of SO(7) by defining the G2 3-form ϕ.

We also decompose the Lie algebra of SO(7) into a part in G2 and a perpendicular

part. SO(7) and its Lie algebra are given by

SO(7) :=
{
O ∈ Gl(7,R) ∣∣O = OT & det(O) = 1

}
,

⇒ L (SO(7)) =
{
T
∣∣T T = −T

}
(5.1.1)

= Span {SAB} ,

where the basis of 21 generator matrices is

(SAB)
C
D := δCAδBD − δADδ

C
B . (5.1.2)

G2 is then defined as the subgroup of SO(7) whose action preserves the 3-form ϕ

given in (2.2.15):

ϕ = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 , (5.1.3)

where dxA1...Ap := dxA1∧ . . .∧dxAp . G2 also preserves the Hodge dual of this 3-form,

Φ := ∗ϕ. We may thus write

G2 :=
{
P ∈ SO(7)

∣∣∣PA′

AP
B′

BP
C′

CϕA′B′C′ = ϕABC

}
, (5.1.4)

⇒ L (G2) =
{
T ∈ L (SO(7))

∣∣∣TA′

AϕA′BC + TB
′

BϕAB′CT
C′

CϕABC′ = 0
}
.

We can then split the SO(7) generators into a group of 7 not in L (G2) and a group

of 14 in L (G2), which are given by

FA =
1

2
ϕ BC
A SBC ,

RAB =
2

3
SAB − 1

6
Φ CD
AB SCD , (5.1.5)

respectively. This represents the branching rule

21SO(7) → (14+ 7)G2
. (5.1.6)



52

5.1.2 G2 Projectors

In solving equations containing G2 spinors, vectors, and tensors, it is usually easiest

to project out irreducible representations of the relevant indices. The presence of

a globally defined invariant three-form, together with its dual, project out various

representations from objects on a G2 space. Here we summarize our conventions for

the projectors that we use.

For a 2-form, ξ, decomposing as (7× 7)anti−symm. → 7+ 14, we have

P7ξ =
1

6
(ξyϕ)ϕ , (5.1.7)

P14 = 1− P7 . (5.1.8)

For a 3-form, ζ , decomposing as (7× 7× 7)anti−symm. → 1+ 7 + 27 we have

P1ζ =
1

42
(ϕyζ)ϕ , (5.1.9)

P7ζ = − 1

24
(ζyΦ)yΦ , (5.1.10)

P27 = 1− P1 − P7 . (5.1.11)

For a 4-form, χ, decomposing as (7× 7× 7× 7)anti−symm. → 1+ 7+ 27 we have

P1χ =
1

168
(Φyχ)Φ , (5.1.12)

P7χ =
2

21
(ϕyχ) ∧ ϕ , (5.1.13)

P27 = 1− P1 − P7 . (5.1.14)

For a symmetric rank 2 tensor, t, decomposing as (7×7)symmetric → 1+27, we have

(P1t)AB =
1

7
tCCgAB , (5.1.15)

P27 = 1− P1 . (5.1.16)

For an SO(7) spinor, decomposing under G2 as 8SO(7) → (1+ 7)G2
we have

P1 =
1

8

(1− 1

4!
ΦABCDγ

ABCD

)
, (5.1.17)

P7 = 1− P1 . (5.1.18)
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Note that for each of the irreducible representations, there will be a G2-invariant way

of relating the objects in that representation with different indices. So for example

a G2 vector v in the 7 gives a three form vyΦ in the 7, and so on.

5.1.3 G2 spinors

In this section, we construct a basis set for general spinors on a G2 manifold using

some of the results from earlier appendices. We also consider the action of our Dirac

matrices on these spinors, which is crucial in solving the Killing spinor equations

and indeed performing any fermionic calculation.

The 7-dimensional Dirac matrices can be used to provide a representation of

L (SO(7)) via

ΣAB :=
1

2
γAB , (5.1.19)

which obey the same commutation relations as the SAB above. We can use this

isomorphism to split the ΣAB as for section 5.1.1

fA =
1

2
ϕ BC
A ΣBC , (5.1.20)

ρAB =
2

3
ΣAB − 1

6
Φ CD
AB ΣCD . (5.1.21)

We are then able to define a unique spinor η by

P1η = η , P7η = 0 , ηη = 1 . (5.1.22)

η is then covariantly conserved on the G2 manifold, i.e. ρABχ0 = 0. We further

define a set of seven other spinors {ηA} obeying

ηA := 2
3
fAη , P7ηA = ηA ,

ηηA = ηAη = 0 , ηAηB = δAB ,
(5.1.23)

which represents the branching rule

8SO(7) → (7+ 1)G2
. (5.1.24)
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We therefore have {η, ηA} as a basis for spinors on a G2 manifold. The action of our

Dirac matrices on these spinors is then given by

γAη = igABηB ,

γABη = ϕABCηC ,

γABCη = −iϕABCη + iΦABCDηD ,

γABCDη = −ΦABCDη − 4ϕ[ABCgD]EηE , (5.1.25)

γABCDEη = −i
(
Φ[ABCDgE]F + 4ϕ[ABCϕDE]F

)
ηF ,

γABCDEFη = −
(
Φ[ABCDϕEF ]G + 4ϕ[ABCΦDEF ]G

)
ηG ,

γABCDEFGη = iǫABCDEFGη − i
(
Φ[ABCDΦEFG]H + 4ϕ[ABCΦDEF Iϕ

G]HI
)
ηH .

5.1.4 G2 identities

By using the above, together with (5.1.22), (5.1.23), Fierz identities and Dirac matrix

identities such as those in [124] one can derive some useful formulae relating the forms

ϕ and Φ

ϕABEϕ
ECD = ΦAB

CD + 2δCDAB , (5.1.26)

ϕABFΦFCDE = 6δ
[A
[C ϕ

B]
DE] , (5.1.27)

ΦABCGΦ
DEFG = 6δABCDEF + 9Φ[AB

[DE δ
F ]
C] − ϕABCϕ

DEF , (5.1.28)

36δ
[EF
[AB ϕCD]

G] = ΦABCDϕ
EFG + 4ϕ[ABCΦD]

EFG − ǫABCD
EFG , (5.1.29)

24ϕ[GH
(Aδ

I]
B) = ǫCDEFGHIϕACDϕBEF , (5.1.30)

ΦCDEF gAB = 3ϕ
[CD

(A ϕ
EF ]

B) + 4Φ
[CDE

(Aδ
F ]
B) , (5.1.31)

ǫABCDEFG = 5ϕ[ABCΦDEFG] , (5.1.32)

where δB1...Ba

A1...Aa
:= g[A1

[B1 · · · gAa]
Ba]. Further identities may be derived by contracting

indices in the above. For a 4-form α such that P7α = 0, we have the further result

that

αyΦ = 4(∗α)yϕ , (5.1.33)

(P27α)(A
CDEΦB)CDE = −3(P27 ∗ α)(ACDϕB)CD . (5.1.34)
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Finally, note that one can write the volume of a manifold M7 with G2 structure as

V =
1

7

∫

M7

ϕ ∧ Φ . (5.1.35)

5.2 Effective action for M-theory compactifications

on manifolds with G2 structure

Having described some features of M-theory compactifications and of G2 we can

go and study M-theory compactifications on manifolds with G2 structure in more

detail. In particular, we want to be able to construct the full effective theory for the

N = 1 four-dimensional effective theory that should emerge in the limit of a small

compact space.

In this section we shall perform a general analysis that is valid for any manifold

with G2 structure, and obtain information about the Kähler potential and super-

potential that appear in such compactifications. These will determine the form of

the scalar part of the supergravity (see (4.1.4)). Although the method we use could

be applied to other fermionic terms to yield the gauge kinetic function and other

quantities relevant to the four-dimensional supergravity, here we restrict ourselves

to the scalar sector.

5.2.1 Gravitino mass term

In compactifying string and M-theory down to four dimensions it is usually easier

to derive the bosonic terms in the lower-dimensional action. Computing fermionic

terms is often more involved and the fermionic part of the action is in general inferred

from supersymmetry. There is, however, a specific class of terms that are relatively

easy to compute and which give valuable information about the low energy effective

action. These terms are the gravitino mass terms, and in N = 1 supergravity in

four dimensions they take the form

M3/2 =
1

2
eK/2

(
W ψcµγ

µνψν +Wψµγ
µνψcν

)
, (5.2.1)
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where the superscript c stands for Majorana conjugation. K denotes the Kähler

potential andW is the superpotential. By computing such gravitino mass terms one

can, therefore, obtain information about the Kähler potential and the superpotential.

Similar calculations were performed in [23, 44, 125]. The same information can be

obtained by reducing the supersymmetry transformations as was done for example

in [126, 127].

Before we start the calculation, some comments about the gravitino are in order.

Firstly, its reduction follows the discussion of section 4.2.4, with the spinor η on the

compact space M7 being the only one to produce a low-energy gravitino in the limit

of a small compact space. This gives the following ansatz for the gravitino:

ΨI ∝ (ψI + ψcI)⊗ η . (5.2.2)

Note that η is a Majorana spinor and so is its own conjugate. The four-dimensional

gravitino ψµ is taken to be a Weyl spinor, representing the general result that any

Majorana spinor χ can be expressed in terms of a Weyl spinor ψ by writing χ =

ψ + ψc. Taking ψµ as positive chirality gives ψcµ as negative chirality.

Secondly, upon reduction there will be a Weyl rescaling gµν → V−1gµν . To keep

canonical kinetic terms for the gravitino, the constant of proportionality in (5.2.2)

has to be fixed to give

ΨI = V−1/4 (ψI + ψcI)⊗ η . (5.2.3)

Finally, note that the relation (5.2.3) yields both the four-dimensional gravitino ψµ

and also spin-1
2
fields ψA. Clearly, from the kinetic term in eleven dimensions one ob-

tains a kinetic term for the gravitino, one for the spin-1
2
fields and one mixed kinetic

term between the gravitino and the spin-1
2
fields. In the standard four-dimensional

supergravity, such mixed terms are not present and to obtain the correctly nor-

malised fermionic fields one has to perform a further redefinition of the gravitino

field which in terms of the eleven dimensional field ΨI takes the form

Ψµ → Ψ′
µ = Ψµ + δΨµ , δΨµ ∼ ΓµΓ

AΨA . (5.2.4)
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We note that, since ψµ in the above relation appears linearly, the gravitino mass

term (5.2.1) for ψ′
µ—when written in terms of the uncorrected gravitino field ψµ—

has the same form up to terms which are linear in the field ψµ. Thus, computing the

terms ψµγ
µνψν , one can still deduce the combination eK/2W and so in order to make

the calculation clearer we shall not be concerned with using the correct definition

for the gravitino field (5.2.4).

We can now start to analyse the terms that contribute to the gravitino mass term

in four dimensions. We shall have in mind the most general background compatible

with Poincaré invariance in four dimensions, which includes internal fluxes (F̂4)ABCD

and a flux in the four space-time dimensions (F̂4)µνρσ. Note that the background

values for the fermionic fields are taken to vanish and so the four-fermion terms in

the eleven-dimensional action cannot contribute to the gravitino mass term in four

dimensions. Therefore, we only need to consider the terms that we have kept in the

action (3.1.1), which are bilinear in the gravitino field.

In the following we shall analyse one by one these contributions to the gravitino

mass term.

Contribution from the kinetic term

As also remarked in [44] the kinetic term for the gravitino only produces a con-

tribution to the mass term in the presence of non-trivial structures, which will be

proportional to DAη. Inserting the decomposition (5.2.3) in the gravitino kinetic

term from (3.1.1) and keeping only the terms which are relevant for the gravitino

mass term one finds

ΨIΓ
IJKDJΨK = ΨµΓ

µAνDAΨν + terms not contributing to gravitino mass

= −V−1/2(ψµ + ψcµ)γ
µνγ(ψν + ψcν)ηγ

ADAη + . . . (5.2.5)

We compute the covariant derivative on the spinor η by making use of (2.2.9) and

we find that

ηγADAη = − i

4
ϕABCκABC , (5.2.6)
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where κABC denotes the intrinsic contorsion and the G2 three-form is ϕ. Note that

this quantity picks up the G2 singlet of the intrinsic contorsion and can be written

using the formulæ in chapter 2 as

ϕABCκABC ⋆ 1 =
1

2
dϕ ∧ ϕ . (5.2.7)

Taking into account the Weyl rescaling, the contribution to the gravitino mass com-

ing from the kinetic term of the gravitino in eleven dimensions can be written

M
(k.t.)
3/2 =

(
i

16V3/2

∫
dϕ ∧ ϕ

)
ψµγ

µνψcν + c.c. (5.2.8)

Contribution from the internal flux

The next contribution to the gravitino mass term we discuss is the one that appears

due to the internal fluxes. Before doing this, we should consider the decomposition

of the eleven-dimensional field Â3 into components. We write this as

Â3 = Å3 + A3 + a3 , (5.2.9)

where Å3 is the background value for Â3, which is a form on M7 that depends only

on the internal coordinates and gives rise to the background flux, G := dÅ3, while A3

and a3 represent fluctuations around it. A3 is a purely four-dimensional three-form

field and a3 is a three-form which lives in the internal manifold, but which depends

on the external spacetime coordinates as well. From the point of view of the low

energy action this form, a3, will produce scalar fields in four dimensions. Note that in

general one can consider also fluctuations that from the four-dimensional perspective

are two-forms or vector fields, but as these other fields play no role in the following

discussion we ignore them completely. It is important to note, however, that apart

from these other degrees of freedom, (5.2.9) is the most general expression one can

consider.

The decomposition in (5.2.9) therefore leads to two kinds of fluxes, G and da3,

which we shall absorb into the quantity F4 := G + da3. The term relevant to the
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purely internal flux can be written

ΨIΓ
IJK1K2K3K4ΨJ(F̂4)K1K2K3K4

= ΨµΓ
µνABCDΨν(F̂4)ABCD + . . .

= V−1/2(ψµ + ψcµ)γ
µν(ψν + ψcν)ηγ

ABCDη(F4)ABCD + . . . (5.2.10)

Using (2.2.17) to eliminate the ηγABCDη, and taking into account all the factors in

the action and the Weyl rescaling, the final result is

M
(i.f.)
3/2 =

(
1

8V3/2

∫
F4 ∧ ϕ

)
ψµγ

µνψcν + c.c. (5.2.11)

Flux along the external directions

Having a flux for F̂4 completely in the four space-time directions can also generate

a mass term for the gravitino from the term in (3.1.1) proportional to

ΨIΓJKΨL(F̂4)IJKL . (5.2.12)

Where we parameterise the purely external flux as

(F̂4)µνρσ = fεµνρσ , (5.2.13)

then after all rescalings are taken into account, the contribution to the gravitino

mass is simply given by

M
(e.f.)
3/2 = − i

8
V3/2fψµγ

µνψcν + c.c. (5.2.14)

This form for the contribution is, however, slightly misleading. The reason is that

we have to dualise the three-form A3 in a consistent way. A three-form in four

dimensions is not dynamical and its dual is thus only an arbitrary constant as

discussed in [128] and chapter 8. It is important to stress that even if one chooses

this constant to vanish the dualisation of A3 produces in general a non-trivial result

due to its couplings in the four-dimensional action. Thus, in order to obtain the

correct result we have to derive first the complete action for the four-dimensional

field A3.
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Inserting (5.2.9) into (3.1.1) and also considering the Weyl rescaling we can derive

the terms in the low energy action which contain A3. One is the kinetic term, and

it is easy to see that this has the form

Lkin
A3

=
V3

4
dA3 ∧ ⋆dA3 . (5.2.15)

The second contribution comes from the Chern-Simons term. Integrating this term

over the compact space gives

Lc.s.
A3

=
1

12

∫

M7

F̂4 ∧ F̂4 ∧ Â3 (5.2.16)

=
1

2

∫

M7

(
G ∧ a3 +

1

2
d7a3 ∧ a3 +

1

2
G ∧ Å

)
d4A3 =: Cd4A3 .

Performing a dualisation as in [128] (and also appendix E.2 of [6]) for the terms

(5.2.15) and (5.2.16) gives the condition

1

2
V3 ⋆ d4A3 =

1

2
V3f = λ̃+ C , (5.2.17)

where λ̃ is a genuine constant and C is defined in (5.2.16). We now define one further

constant

λ := 2λ̃+

∫

M7

G ∧ Å , (5.2.18)

since the integral above is just a constant from the point of view of the four-

dimensional theory. Substituting (5.2.18) and (5.2.17) into (5.2.14) then gives

M
(e.f.)
3/2 = − i

8V3/2

[
λ+

∫

M7

(
G ∧ a3 +

1

2
d7a3 ∧ a3

)]
ψµγ

µνψcν + c.c. (5.2.19)

5.2.2 The superpotential

We are now in position to compute the superpotential which appears in M-theory

compactifications on seven-dimensional manifolds with G2 structure. Putting to-

gether the contributions to the gravitino mass term from (5.2.8), (5.2.11) and (5.2.19),

noting that the flux F4 in (5.2.11) is in fact G+ d7a3, one finds

M3/2 = − i

16V3/2
ψµγ

µνψcν

[∫
(da3 + idϕ) ∧ (a3 + iϕ) + 2λ+ 2

∫
G ∧ (a3 + iϕ)

]
+c.c.

(5.2.20)
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Using (5.2.1) one immediately obtains (up to an overall phase which plays no role

in the definition of the superpotential)

eK/2W =
1

8V3/2

[∫
(da3 + idϕ) ∧ (a3 + iϕ) + 2λ+ 2

∫
G ∧ (a3 + iϕ)

]
+ c.c.

(5.2.21)

This is the first main result of this chapter so let us pause to discuss it for a while.

First of all we note that in N = 1 supergravity, the Kähler potential and the

superpotential are not truly independent functions, but the only thing which has a

physical meaning is the combination eK|W |2. Obviously the equation above gives

us this quantity. However we can not resist noting that this formula looks very

suggestive and that it splits up in a natural way in a part which is holomorphic (the

part in the brackets) and an overall real factor. It is thus tempting to argue that

for general compactifications on manifolds with G2 structure the Kähler potential

for the low energy fields is always given by the same formula as in the case of G2

holonomy

K = −3 lnV . (5.2.22)

Establishing this, the superpotential is then given by

W =
1

8

[∫
(dϕ+ ida3) ∧ (ϕ+ ia3) + 2λ+ 2

∫
G ∧ (ϕ+ ia3)

]
. (5.2.23)

One immediately observes in this superpotential that the last term is precisely the

result obtained in [15] for the case of manifolds with G2 holonomy. The second

term, which is just a constant, should always be present and appears from the

correct dualisation of the field A3 in four dimensions. It also appears in [15], but in

that case only as a quantum effect. Here we only limit ourselves to the supergravity

approximation and thus we keep this additional parameter real. Finally one notices

the first term, which appears entirely due to the non-trivial G2 structure (intrinsic

torsion). This term is completely new, and in the next section we will compute it

explicitly for the case of manifolds with weak G2 holonomy and also show that it

reproduces the potential which can be derived from the dimensional reduction when

inserted in the usual N = 1 formula.
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Before we end this section we make one more comment on the way this superpo-

tential was derived. In the original action for M-theory (3.1.1), the fermion bilinears

coupled only linearly to the field strength F̂4. Näıvely one would conclude from this

that the superpotential can depend only linearly on the flux G or the fields which

appear in the low energy spectrum from Â3. However it is clear that the superpoten-

tial (5.2.23) contains also quadratic terms like G∧a3 or da3∧a3. Tracing back these

terms we see that they only appear from the correct dualisation of the three form

A3 in four dimensions (5.2.19). The observation we want to make is that there is a

simpler and more direct way to see such terms appearing by considering the starting

action to be the ‘duality symmetric’ M-theory action [105]. In such a formulation

of M-theory one also has a six-form field Â6 with a seven-form field strength that is

defined like

F̂7 = dÂ6 + Â3 ∧ F̂4 . (5.2.24)

The fermionic action will now contain fermion bilinears which also couple to F̂7

and from such couplings and also the second term in the definition of F̂7 one can

immediately see quadratic terms in Â3 appearing in the superpotential.
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Chapter 6

M-theory on weak G2 manifolds

Having considered general properties of manifolds with G2 structure we now analyse

the main features of the special case of manifolds with weak G2 holonomy in the

following. We will prove some general results about weak G2 spaces, in particular

about their deformation spaces, before considering the relevance of this result for

low-energy physics.

6.1 Weak G2

Usually not much can be said about generic manifolds with G2 structure. The

characterisation of such manifolds needs in general the introduction of other forms

besides ϕ and Φ in order to parameterise the torsion (see, for example, [73]). However

there is a simple case where such manipulations are not necessary. This is the case

of manifolds with weak G2 holonomy, which holds when only the torsion class W1

of (2.2.20) is nonvanishing. We write this as

dϕ = τΦ ,

dΦ = 0 .
(6.1.1)

The quantity τ is a constant on the manifold with G2 structure and completely

specifies the torsion of a weak G2 manifold. In the context of M-theory compactifi-
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cations, as we shall see later, the parameter τ is not completely constant, but it can

depend on the space-time coordinates through the volume of the internal manifold.

Since the contorsion is a singlet under the G2 structure group, it can be written

κABC = κϕABC , (6.1.2)

where κ is a constant on the manifold with G2 structure. Note that this is the

only possibility we have as ϕABC is the unique three-index object that is a singlet

under G2. It is clear that the contorsion is totally antisymmetric and thus it also

coincides with the torsion tensor TABC = κ[AB]C . Using (6.1.2) and the fact that ϕ

is covariantly constant with respect to the connection with torsion we can compute

the exterior derivative of ϕ

(dϕ)ABCD = 4∇[AϕBCD] = 12κ[AB
EϕCD]E = 12κΦABCD . (6.1.3)

We thus see, as anticipated, that the exterior derivative of ϕ is indeed again a singlet,

namely Φ. It will be more convenient to introduce another parameter τ = 12κ,

obeying

κABC =
τ

12
ϕABC , (6.1.4)

in terms of which the weak G2 condition takes the form (6.1.1).

6.1.1 Weak G2 identities

Starting from (2.2.19) and using the relations (5.1.27) one can show that

∇AϕBCD = 3κA[B
EϕCD]E =

τ

4
ΦABCD . (6.1.5)

Repeating the procedure for Φ one finds

∇AΦBCDE = −4κA[B
FΦCDE]F = −τ

3
φA[B

FΦCDE]F = −τgA[BϕCDE] . (6.1.6)

From the above relation one immediately derives

�ϕ = ∇A∇Aϕ = −τ
2

4
ϕ . (6.1.7)
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In the following we will also need a couple of relations involving the curvature

tensors of weak G2 manifolds. To compute these we start from the fact that the

globally defined spinor is covariantly constant with respect to the connection with

torsion (2.2.18). Since we work with imaginary gamma matrices the spinor γABη

is still a Majorana spinor and thus can be expanded in terms of a basis for Majo-

rana spinors on the weak G2 manifold {η, ηA} as defined in section 5.1. It is then

straightforward to derive that

DAη =
1

4
κABCγ

BCη =
τ

8
ηA . (6.1.8)

Taking the commutator of two covariant derivatives acting on the spinor η one

obtains

RABCDγ
CDη =

τ 2

8
γABη . (6.1.9)

Multiplying this from the left with γB and using the first Bianchi identity for the

Riemann tensor immediately gives the Ricci curvature of weak G2 manifolds as

RAB ≡ RC
ACB =

3

8
τ 2gAB , (6.1.10)

which shows that these manifolds are Einstein. Note, as a matter of fact, that the

scaling behaviour of τ found in (6.2.8) is in agreement with the above relation.

Multiplying again (6.1.9) by γE and contracting with η one obtains

RABCDϕ
CDE =

τ 2

8
ϕAB

E , (6.1.11)

which can be used to prove other identities about the Riemann tensor in weak G2.

6.1.2 Projectors and differential operators

There are some more properties of weak G2 that will be important for the analysis

presented in the paper that we will now prove. We will mainly be interested in

three-forms obeying certain conditions whose significance will come to light later.

Before we start there is a useful remark we should make about three-forms

on seven-dimensional manifolds (see, for example, [48]): the eigenfunctions of the
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Laplace operator corresponding to a non-zero eigenvalue µ2 are in one-to-one cor-

respondence with the eigenfunctions of the operator Q := ⋆d corresponding to the

eigenvalues ±µ. The operator Q will play an important role in our analysis as the

forms that are relevant for the deformations of weak G2 manifolds are eigenfunctions

of this operator corresponding to the eigenvalue −τ . It is these forms we are going

to analyse in the following.

Furthermore the forms we are interested in also do not contain a part which

transforms under the 7 of G2. It would be interesting if one could prove the existence

of such forms, but this goes beyond the scope of this work and so for our purposes

we will just assume that the forms with these desired properties do indeed exist and

prove a result about them.

Let us consider forms Πi that satisfy

∆Πi = τ 2Πi ,

P7Πi = 0 ⇔ ΠiyΦ = 0 ,
(6.1.12)

and prove that for such forms the projectors P1 and P27 commute with the differential

operator Q = ⋆d. For this, we consider the quantity

Πiyϕ , (6.1.13)

and show that it does not depend on the coordinates of the internal manifold. To

see this we compute

(d(ϕyΠi))A = −τ
4
(ΠiyΦ)A − (ϕydΠi)A + 3ϕBCD∇B(Πi)A

CD . (6.1.14)

Using (6.1.12), the first term clearly vanishes. Furthermore, we can choose without

loss of generality that the forms Πi are eigenfunctions of the Q = ⋆d operator with

eigenvalue ±τ . With this the second term becomes proportional to ΠiyΦ, which

again vanishes for the forms we consider. Thus, we are left with

(d(ϕyΠi))A = 3ϕBCD∇B(Πi)A
BC . (6.1.15)
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The right hand side can be computed if we push ϕ through the derivative as d⋆ϕ = 0

and then notice that the combination ϕBCD(Πi)A
CD is symmetric in the indices A,B

which is again a consequence of (6.1.12). We obtain

(d(ϕyΠi))A = 3∇B(φBCD(Πi)A
CD) = 3∇B(φACD(Πi)B

CD) = 3
τ

4
(ΠiyΦ)A , (6.1.16)

which again vanishes upon using (6.1.12). Note that in the last relation we have also

used that d ⋆ Πi = 0, which holds true if we take the forms Π to be eigenfunctions

of the operator Q. This completes the proof of

d(ϕyΠi) = 0 . (6.1.17)

P1Πi is defined as

P1Πi =
1

42
(ϕyΠi)ϕ , (6.1.18)

so we conclude that

[P1, Q]Πi = 0 . (6.1.19)

Since for these forms it also holds that P1Πi + P27Πi = Πi it follows that

[P27, Q]Πi = 0 . (6.1.20)

6.2 Metric deformation space of manifolds with

weak G2 holonomy

So far we have only discussed general features of M-theory compactifications on

manifolds with G2-structure without making any reference to the low-energy field

content of such theories. In order to be able to obtain a specific model in four

dimensions one needs to have some more information about the internal properties

of such manifolds and in particular one needs to get a handle on their moduli space.

In more mathematical literature the word ‘moduli’ stands for fields which are

exactly flat directions of the potential. We shall adopt the more physically motivated

use of ‘moduli’ as fields which appear from gauge-independent metric deformations,
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subject to some constraint, on the internal manifold. Generically, as we shall see in

a while, such fields appear with a potential and it is precisely this feature we are

interested in, i.e. we wish to determine the potential for such fields.

In general the question of the moduli space for G2-structure spaces is quite com-

plicated and a satisfactory answer has not been found yet. For special cases, however,

such as the one we will discuss here, it turns out to be possible to gain information

about the space of deformations of these manifolds and using this information to

compute the low-energy action in four dimensions. It will be our purpose in this

section to solve some of the problems outlined here for the case of manifolds with

weak G2 holonomy.

6.2.1 Deformations of the weak G2 structure

We start by noting that specifying a G2 structure ϕ on a seven-dimensional manifold

uniquely determines the metric, as in section 2.2.5. Thus, as in the case of G2

holonomy, the deformations of metrics on manifolds with G2 structure can be studied

by looking at variations of the invariant form ϕ. For a general G2 structure the

situation is a bit complicated because the torsion itself can vary together with the

structure. For this reason, from now on we shall concentrate on the special class of

manifolds with weak G2 holonomy. From (6.1.1) it is clear that the torsion τ cannot

depend explicitly on the coordinates of the internal manifold but, from what was

said above, it can in principle depend on its moduli and, as we shall see later, in our

case it does.

The strategy we adopt is the following. We consider first a G2 structure ϕ that

satisfies the weak G2 conditions (6.1.1). Then we consider small variations of this

G2 structure by some arbitrary form δϕ and impose that the equations (6.1.1) are

satisfied for some τ ′ = τ + δτ . This will yield some conditions on the variations

δϕ and δτ . It is important to stress here that, by changing ϕ, the metric on the

manifolds changes as well and therefore the action of the Hodge star changes. In

order not to create any confusion we will use the notations from [70]. Proposition
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10.3.5 from [70] gives the form of the Hodge dual of a perturbed G2 structure to be

Θ(ϕ+ δϕ) = ⋆ϕ+
4

3
⋆ P1δϕ+ ⋆P7δϕ− ⋆P27δϕ , (6.2.1)

where Θ(ξ) is a map Θ : Λ3 → Λ4 which maps to the Hodge dual of a three-

form ξ ∈ Λ3 calculated using the metric defined by ξ via (2.2.22). The Hodge star

on the right hand side of (6.2.1) is defined from the old (unvaried) metric as are

P1, P7 and P27, which denote projection operators on the spaces of corresponding

dimensionality. Note that on the space of three-forms P1 + P7 + P27 = 1.
Imposing the first relation in (6.1.1) for the varied form ϕ+ δϕ at the first order

in the perturbations we can write

dδϕ = δτ ⋆ ϕ+ τ

(
4

3
⋆ P1δϕ+ ⋆P7δϕ− ⋆P27δϕ

)
. (6.2.2)

Thus, perturbing a weak G2 structure ϕ by some form δϕ leads again to a weak G2

structure provided the variation δϕ satisfies (6.2.2) for some suitable δτ , which for

now we assume is an eigenform of the Laplacian, although we will justify this later.

At this stage, we make use of the observation that the 7 component of δϕ makes

no contribution to perturbations of the induced metric through the formula (2.2.25).

We shall therefore set such components to zero, which will simplify the analysis

below. It is shown in section 6.1.2 that for eigenforms of the Laplacian which satisfy

P7δϕ = 0, the projectors P1 and P27 commute with the exterior derivative. Since

these projectors also commute with the Hodge star one can break (6.2.2) into two

simpler conditions for the singlet variations P1δϕ and for the ones which transform

as a 27 under G2

dP1δϕ = δτ ⋆ ϕ+
4

3
τ ⋆ P1δϕ ,

dP27δϕ = −τ ⋆ P27δϕ .

(6.2.3)

From here it is clear that the torsion τ depends on the deformations of the weak

G2 manifold only via the singlet deformation P1δϕ. In other words, since such

singlet deformations only rescale the G2 structure ϕ and through it the volume of

the manifold, we conclude that the torsion τ depends on the parameters describing

the weak G2 manifold only via its volume.
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Let us now consider the two equations above separately. We start with the first

one and parameterise the singlet part of the deformation as

P1δϕ = ǫϕ , (6.2.4)

for some arbitrary small ǫ. Then the first equation in (6.2.3) becomes

ǫdϕ = δτ ⋆ ϕ+
4

3
τǫ ⋆ ϕ . (6.2.5)

Using again the weak G2 condition (6.1.1) we obtain

δτ = − ǫ

3
τ . (6.2.6)

From the definition of the volume in terms of the G2 structure ϕ (5.1.35) and (6.2.1),

it is not hard to see that under the deformation (6.2.4) the volume changes by

δV =
7

3
ǫV . (6.2.7)

Dividing the last two equations we obtain that the variation of the torsion τ with

the volume obeys
δτ

τ
= −1

7

δV
V , (6.2.8)

or after integration

τ ∼ V−1/7 . (6.2.9)

Intuitively the above equation can be understood as follows. As mentioned before,

singlet variations rescale the G2 structure ϕ. In its turn, such a rescaling produces a

rescaling of the metric via (2.2.25) and so the scalar curvature R is rescaled. Since

the torsion is directly related to the scalar curvature via (6.1.10) it follows that such

a deformation can only be present if the torsion of the manifold itself changes and

the quantitative measure of this change is captured by the above equation.

Let us now turn our attention to the second equation in (6.2.3). As we said

before, in the case of variations with forms which transform as 27 under G2 the

torsion does not vary. Intuitively, since the torsion is a singlet under G2 we would

need another object which transforms non-trivially under G2 in order to produce a
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singlet out of the deformation δϕ. Since we do not have at our disposal any such

thing it can be understood that the torsion can not change under such deformations.

Thus, the second equation in (6.2.3) only imposes a condition on the variations of

ϕ which are compatible with the weak G2 structure.

So far we have learnt that the non-trivial metric deformations of weak G2 mani-

folds are parameterised by three-forms δϕ satisfying

P7δϕ = 0 ,

dP27δϕ = −τ ⋆ P27δϕ .
(6.2.10)

Note the counter-intuitive minus sign appearing on the right hand side which is

going to be crucial in determining the correct mass of the modes associated with

these variations of the G2 structure.

Let us now try to give a more explicit parameterisation of the deformation space.

Recall that, for the case of manifolds with G2 holonomy, the form ϕ was closed and

coclosed and thus harmonic. Consequently this form is expanded in a basis for

harmonic three-forms with the coefficients being the moduli fields. Then, by general

methods, which we present in section 6.2.2, we can compute the metric on the moduli

space. Let us try to do something similar here. Clearly from the relations (6.1.1) we

see that the form ϕ cannot be harmonic anymore and in fact the torsion τ measures

its failure to be harmonic. However, it is easy to compute the action of the Laplace

operator on ϕ and one obtains

∆ϕ := (⋆d ⋆ d+ d ⋆ d⋆)ϕ = τ 2ϕ , (6.2.11)

and thus ϕ is still an eigenform of the Laplace operator corresponding to the eigen-

value τ 2. Consider a basis Πi for the three-forms satisfying

∆Πi := (⋆d ⋆ d+ d ⋆ d⋆)Πi = τ 2Πi . (6.2.12)

There are some concerns about whether these forms depend on the moduli of the

weak G2 manifold that will be dealt with in section 6.2.4. For now, however, we
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expand the G2 structure ϕ in this basis so that

ϕ = siΠi , (6.2.13)

and, as for manifolds of G2 holonomy, we think of the forms Πi as independent of the

choice of metric. For the parameters si to be truly moduli of the weak G2 structure,

we still need the forms Πi to satisfy the condition (6.2.10). From here on we will

assume that the forms Πi used in the expansion (6.2.13) do satisfy this condition

as well. If this is true, then the coefficients si are indeed the scalar fields which

characterise the possible deformations of the weak G2 manifold.

As one does on a manifold with G2 holonomy, let us further define

ki =

∫
Πi ∧ Φ . (6.2.14)

Using the fact that the forms Πi satisfy (6.2.10) one derives

dΠi = d(P1Πi + P27Πi)

= dP1Πi − τ ⋆ P27Πi (6.2.15)

= −τ ⋆ Πi + 2dP1Πi .

The projector on the singlet subspace P1 is defined by

P1Πi =
1

7V

∫
Πi ∧ Φ =

ki
7V , (6.2.16)

where we have used that Πiyϕ does not depend on the internal manifold, fact which

is also proved in section 6.1.2 above. Using the weak G2 conditions (6.1.1) one

immediately finds

dΠi = −τ ⋆ Πi +
2τki
7V Φ . (6.2.17)

This is the central relation of this section as it will allow us to compute explicitly

the low-energy effective action for compactifications on manifolds with weak G2

holonomy and compare it with the result derived before on general grounds.

It is important to stress one more thing here. At this stage we cannot say much

more about the space of deformations of weak G2 manifolds, apart from the fact
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that it can be characterised in terms of the forms Πi satisfying (6.2.10), which will

be exploited in the next section. One thing is, however, quite important. Note

that the operator (∆− τ 2) is an elliptic operator. It is known in the general theory

of operators that elliptic operators on compact manifolds have a finite dimensional

kernel. This means that at least the space of deformations of weak G2 manifolds is

finite.

Before we move on let us summarise the main results that we derived in this

section. For weak G2 manifolds the invariant form ϕ turns out to be an eigenform of

the Laplace operator (6.2.11). Performing the expansion in terms of the deformations

in the same way as one did on manifolds with G2 holonomy we conclude that the

forms in which we perform this expansion must obey (6.2.10). It is interesting to

note that this relation was obtained in a pretty generic fashion. Similar relations

were derived for half-flat manifolds [73] by using mirror symmetry as an additional

source of information about manifolds with SU(3) structure. Those relations were,

however, valid only in a certain limit which was denoted as the small torsion limit

while the relations above are valid for any torsion. We will see later on that the

torsion cannot be small as it turns out to be of the order of the inverse radius of the

manifold.

6.2.2 Metric on the deformation space

Let us suppose that we have expanded ϕ in terms of some parameters si

ϕ = siΠi , (6.2.18)

where Πi are three forms which further satisfy

P7Πi = 0 , (6.2.19)

and which do not depend on the parameters si. The meaning of the above equation

is that, using the set of forms Πi, one can parameterise the deformations of the G2-

structure ϕ in terms of variations of the parameters si. These parameters, or more
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correctly their variations, are constant on the internal manifold, but from a four-

dimensional perspective they become (scalar) fields. We have seen in the previous

section that variations of the G2 structure induce variations in the metric on the

manifold via (2.2.25) and so we can say that the parameters si describe the metric

fluctuations on the internal manifold. Consequently the kinetic term for these fields

in four dimensions appears from the expansion of the eleven-dimensional Ricci scalar.

From (4.2.8) and (4.2.7), this gives

∫

M11

√−gR11 →
∫

M11

√−g
{
R4 + V−1R7 +

3

2
∂µ(lnV)∂µ(lnV)

+
1

4V g
ABgCD (∂µgAB∂

µgCD − ∂µgAC∂
µgBD)

}
, (6.2.20)

where the arrow involves performing the Weyl rescaling. Inserting (2.2.25) in the

last line of the equation above, we get

∫

M11

√−g 1

4V

[(
1

2
ϕ(A

CD∂µϕB)CD − 1

18
(ϕy∂µϕ)gAB

)2

− 1

81
(ϕy∂µϕ)(ϕy∂

µϕ)

]
,

(6.2.21)

where the ()2 represents contraction over both the A,B indices and the µ index.

Inserting (6.2.18) into (6.2.21) and using (5.1.28), one obtains

S4
kin =

1

4V

∫

M7

Πi ∧ ⋆Πj

∫

M4

√−g ∂µsi∂µsj . (6.2.22)

The sigma-model metric for the scalars si in four dimensions is then given by

gij =
1

4V

∫

M7

Πi ∧ ⋆Πj . (6.2.23)

Since the resulting four-dimensional action is supersymmetric, the above metric has

to be Kähler. This is indeed the case and the Kähler potential was derived on general

grounds in section 5.2.2 is

K = −3 ln(V) , (6.2.24)

where the volume V was defined in (5.1.35). To show that this is the Kähler po-

tential corresponding to the metric (6.2.23) we have to know the dependence of the

volume on the parameters si. From (6.2.18), ϕ depends linearly on si, provided the
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forms Πi are independent of these parameters. For the form Φ this dependence is

more complicated because of the Hodge duality operation which is involved, but its

variation with the parameters si can be read off from (6.2.1). One finds

δV
δsi

=
1

7

∫

M7

Πi ∧ Φ+
1

7

∫

M7

ϕ ∧ ⋆4
3
Πi =

1

3

∫

M7

Πi ∧ Φ . (6.2.25)

With this, one immediately finds the first derivative1 of the Kähler potential (6.2.24)

Ki := ∂iK =
1

2

∂

∂si
(−3 ln(V))

=
−1

2V

∫
Πi ∧ Φ .

Using again the relation (6.2.1) we can compute the second derivative of the Kähler

potential

Kī =
1

4

(
∂V
∂sj

V−2

∫
Πi ∧ Φ− V−1

∫
Πi ∧

(
4

3
⋆ P1Πj − ⋆P27Πj

))

=
1

4V

∫
Πi ∧ ⋆Πj = gij , (6.2.26)

where we have used (6.2.19) and (6.2.25). As anticipated we see now that the metric

(6.2.23) can indeed be derived from the Kähler potential (6.2.24). We should stress

here that this result is quite general and holds as long as the forms Πi do not depend

on the parameters si and satisfy (6.2.19).

6.2.3 Useful formulæ on the deformation space of weak G2

manifolds

Before we perform the compactification we will find it useful to derive some formulæ

which make the calculation on the deformation space of weak G2 manifolds easier.

1Note that a Kähler potential makes sense only in the context of complex geometry. Thus what

we have in mind here is that the Kähler potential (6.2.24) is a function of the complex fields T i

defined in (6.3.13) and thus derivatives are then taken with respect to the fields T i rather then

only their imaginary parts si.
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The presence of the forms Πi which are not closed (although they are co-closed)

allows us to introduce a topological, two-index, symmetric object on these manifolds

kij =

∫
Πi ∧ dΠj = kji . (6.2.27)

Obviously, the appearance of such a matrix is only due to the non-minimal structure

as it depends on dΠi, which would clearly vanish for the case of manifolds with G2

holonomy. As we shall see later on this object will enter the expression of the

superpotential in terms of the low-energy fields.

A straightforward calculation, which we have outlined in section 6.2.2, shows

that for a general expansion of the form (6.2.13), the sigma model metric for the

moduli takes the form

gij =
1

4V

∫
Πi ∧ ⋆Πj . (6.2.28)

Using (6.2.17) and (6.2.27) it is easy to show that

gij = − 1

4τV kij +
kikj
14V2

. (6.2.29)

Furthermore one also has the usual relations

kis
i = 7V ,

ki = 4Vgijsj , (6.2.30)

kig
ij = 4Vsj .

The matrix kij introduced in (6.2.27) can be shown to satisfy

kijs
j = τki ,

kijg
jk = −4τVδki +

8

7
τkis

k .
(6.2.31)

Using these relations we can now proceed and compute the effective action which

arises by compactifying M-theory on manifolds with weak G2 holonomy.

6.2.4 Dependence of forms on moduli

There is one more aspect which is crucial in the whole construction so far, namely

the dependence on the parameters si, introduced in (6.2.13), of the basis of forms we
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consider {Πi}. In principle there is no reason to believe that the three-form solutions

of the equation ∆ = τ 2 are independent of the parameters si of the manifold as the

metric itself depends on such forms. In fact when one does a variation of the metric

the operator ∆ changes and so we expect its eigen-forms to change as well. This also

happens for ordinary manifolds with restricted holonomy like Calabi-Yau manifolds

or manifolds with G2 structure. In these cases however, one can easily show that

such a dependence on the moduli of the harmonic forms is exact. If one assumes

that the same happens for the case of forms that are eigenvalues of the Laplace

operator corresponding to non-zero eigenvalues then it is quite easy to show that

such a ‘mild’ dependence on the parameters is not going to affect the results we have

derived so far.

First of all it is straightforward to see that this dependence drops out completely

from the definition of kij. The other thing to show is that the metric on the de-

formation space does not get an additional dependence on the parameters from the

forms Πi. Indeed, if such a dependence on the parameters si of these forms is only

via an exact form one can immediately see that

∫
δ(sk)Πi ∧ ⋆Πj =

∫
dβi,k ∧ ⋆Πj = −

∫
βi,k ∧ d ⋆ Πj = 0 , (6.2.32)

because the forms Πi are coclosed. We thus conclude that the only relevant depen-

dence on the parameters of the weak G2 manifold si, is via the expansion (6.2.13)

as we considered in the main text.

6.3 M-theory compactifications on manifolds with

weak G2 holonomy

Having discussed in the previous section the possible deformations of weak G2 man-

ifolds we shall now move on and derive the low-energy action which appears when

compactifying M-theory on such manifolds. Then we will show that the resulting

theory is an N = 1 supergravity coupled to chiral multiplets. The corresponding
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Kähler potential and superpotential will turn out to be the ones derived on general

grounds in section 5.2.2.

6.3.1 The compactification

To perform the compactification on manifolds with weak G2 holonomy one has first

to identify the fields which appear in four dimensions. In the previous section we

have argued that the AdS-massless scalars which appear in compactifications on

manifolds with weak G2 holonomy are given by the expansion in forms which satisfy

(6.2.10). Neglecting, as in the usual Kaluza-Klein setup, the rest of the massive

towers of states we can now perform the compactification on weak G2 manifolds and

keep only the modes discussed above.

From the expansion (6.2.13) and the relations in section 2.2.5 one can derive

what will be the kinetic term for the scalars si which comes from the expansion of

the Ricci scalar. As in the case of manifolds with G2 holonomy the sigma-model

metric takes the form

gij =
1

4V

∫
Πi ∧ ⋆Πj . (6.3.1)

In the matter sector we perform a similar expansion to (6.2.13). In this paper

we will only be interested in the scalar fields which arise in the compactification of

M-theory on a manifold with weak G2 holonomy. There can be also other fields like

vectors, but here we will ignore them completely. If we denote again as in (5.2.9)

the internal component of the field A3 by a3, then we write

a3 = aiΠi . (6.3.2)

The full eleven-dimensional three form Â3 then takes the form

Â3 = A3 + aiΠi , (6.3.3)

where A3 is a three-form in four dimensions. This is not dynamical and so it can be

dualised to a constant as we did in section 5.2. The four-dimensional bosonic action
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derived in this way has the form

S4 =
1

2

∫ [√−gR− gijdT
i ∧ ⋆dT j −√−gV

]
. (6.3.4)

The potential V comes from three distinct places. First it comes from the purely

internal part of of F̂4. This will have the form

V1 =
1

8V2

∫
da3 ∧ ⋆da3 , (6.3.5)

where the exterior derivative is understood to be in the internal manifold direction

and the factor 1/V2 comes from the Weyl rescaling in four dimensions. Using (6.2.17)

this can be easily seen to be

V1 =
τ 2

8V2
aiaj

∫
Πi ∧ ⋆Πj =

τ 2

2V a
iajgij . (6.3.6)

From the dualisation of A3 in four dimensions we have already seen that there is a

contribution to the potential (5.2.19). Using (6.3.2) and (6.2.17) we find2

V2 =
1

4V3

(
λ− aiajkij

2

)2

. (6.3.7)

Finally one has to take into account the contribution from the curvature of the

internal manifold. The Ricci scalar of weak G2 manifolds can be easily computed

(6.1.10), and after performing the integration over the internal manifold whilst taking

into account the factor 1/V2 coming from the Weyl rescaling in four dimensions one

obtains

V3 = −21τ 2

16V . (6.3.8)

The potential coming from the compactification thus takes the form

V = V1 + V2 + V3

=
1

16

[
−21

τ 2

V +
1

V3
(aiajkij)

2 + 16
τ 2

V a
iajgij

]
. (6.3.9)

2Note that we now take the dual of A3 in four dimensions to be the constant λ, which can in

principle be independent of the background value for (F̂4)µνρσ as discussed above.
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6.3.2 Comparison with the general result

To conclude this analysis we still have to show that the result obtained in the previ-

ous subsections is indeed an N = 1 supergravity. As we have neglected completely

the gauge fields we only have to find the corresponding Kähler potential and super-

potential. This is not a hard task since we have at our disposal the general result

derived in section 5.2.2. In section 6.2.2 above it was shown that the metric (6.3.1)

is Kähler, i.e. gij = ∂i∂̄K, and the Kähler potential is

K = −3 lnV . (6.3.10)

As we argued in section 5.2.2, the superpotential is given by (5.2.23), which for the

case where a non-trivial structure but no G fluxes are taken into account becomes

W =
1

8

∫

M7

d(a3 + iϕ) ∧ (a3 + iϕ) +
λ

2
. (6.3.11)

Using the field expansions (6.2.13) and (6.3.2) and also the definition (6.2.27) we

obtain the superpotential in terms of the four-dimensional fields

W =
kij
8
T iT j +

λ

2
, (6.3.12)

where the complex fields T i are defined as

T k = ak + isk . (6.3.13)

To show that the action (6.3.4) is the bosonic part of an N = 1 supergravity the-

ory we have to show that the potential (6.3.9) can be derived from the superpotential

(6.3.12) using the general supergravity formula

V = eK
[
DiWD̄Wg ̄i − 3|W |2

]
, (6.3.14)

where as usual D denotes the Kähler covariant derivative.

The calculation is a bit tedious, but completely straightforward and so we will

present only the main steps in the following. First one can derive

DiW =
1

4
kijT

j +
i

2

ki
VW . (6.3.15)
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Using now the formulæ from section 6.2.3 one easily finds that

DiWD̄Wg ̄i =
1

4
(−τVkij +

2

7
τ 2kikj)T

iT
j − i

2
τki(T

iW − T
i
W ) + 7|W |2 . (6.3.16)

Furthermore, one shows that

i

2
τki(T

iW − T
i
W ) = −7τVRe(W ) + 4(Im(W ))2 . (6.3.17)

Finally, one obtains

4|W |2 − i

2
τki(T

iW − T
i
W ) =

1

16

[
(aiajkij)

2 − (sisjkij)
2
]
. (6.3.18)

Putting all the results together one obtains the final form of the potential

V =
1

16

[
−21

τ 2

V +
1

V3
(aiajkij)

2 + 16
τ 2

V a
iajgij

]
, (6.3.19)

which is precisely the potential derived in (6.3.9) from the compactification side.

To conclude, we have shown in this section that the compactification of M-theory

on a manifolds with weak G2 holonomy leads to an N = 1 supergravity coupled

to chiral superfields in four dimensions with Kähler potential defined by (6.3.10)

and superpotential (6.3.12). This is a nice test of the general analysis of M-theory

compactifications on manifolds with G2 structure presented in section 5.2, where

the superpotential was derived from computing the four-dimensional gravitino mass

term.

6.3.3 Mass operators in AdS

In general Kaluza-Klein compactifications one first identifies the massless modes and

truncates away the massive towers of modes which appear. For this it is necessary to

identify correctly the mass terms for the various fields in the theory. For compacti-

fications on G2 manifolds, which are Ricci flat, this is a straightforward exercise and

the masses of the different modes can be obtained by studying the spectrum of the

Laplace operators acting on various degree forms and of the Lichnerowicz operator.
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For the case at hand the situation is a bit more complicated because of the fact

that manifolds with weak G2 holonomy have a non-vanishing Ricci curvature, while

the external space is AdS rather than Minkowski. As discussed in section 3.3.2,

compactifications on manifolds with weak G2 holonomy can be understood in terms

of the Freund-Rubin solution. The general analysis for the compactification of M-

theory in the Freund-Rubin background was performed in [48], and so we will just

adapt the formulæ used there for our own purposes.

In our analysis we will only be interested in the scalar fields which appear in the

four-dimensional effective action. The relevant mass operators were computed for

example in [48] and for the conventions we use in this paper they take the form

M2
0− = Q2 +

3

2
τQ+

1

2
τ 2 = (Q + τ)(Q+

1

2
τ),

M2
0+ = ∆L − 1

4
τ 2 = Q(Q +

1

2
τ) ,

(6.3.20)

where Q stands for the eigenvalue of the operator ⋆d acting on the internal three-

forms in which the scalars are expanded. The first of these operators is for three-

form matter fields. The second is for traceless symmetric variations of the metric and

involves a tedious calculation using the Lichnerowicz operator ∆L on such variations.

The presence of supersymmetry should complexify the G2 structure ϕ by the

matter three-form a3, and therefore to preserve N = 1 supersymmetry in four

dimensions one needs to expand a3 in the same way as ϕ. It is not hard to see that the

above formulæ for the masses of the scalars coming from the metric deformations and

Â3 matches the mass pattern of a Wess-Zumino (chiral) multiplet in AdS space [129],

confirming our expectations about supersymmetry.

Wess-Zumino multiplets are the AdS equivalents of chiral multiplets. From gen-

eral considerations for AdS4, Q < −1
4
τ , however we conjecture that there will be

a more restrictive bound coming from the analysis of weak G2 spaces. There are

already results about the Dirac operator on such spaces, e.g. [130], and the fermionic

components of the multiplet have mass operator

M2
1/2 = (Q+

1

2
τ)2 , (6.3.21)
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where Q is used to label the Wess-Zumino multiplet, since fermions are not expanded

in terms of form fields. We have not proved such a conjecture, but hope that it will

support the idea that Q = −τ corresponds to the appropriate low-energy scalar

degrees of freedom.

6.3.4 Inclusion of non-vanishing flux

In the previous section, we didn’t consider the contributions to the superpotential

arising from the internal flux G, since this has already been covered for G2 holonomy

in [131] and we are confident that the term in the superpotential is correct. It is still,

however, necessary to consider the forms in which it will be appropriate to expand

the flux G. Firstly, note that following the discussion of the previous section, we

have expanded the three-form leading to four-dimensional scalars as

T = ϕ+ ia3 = T iΠi . (6.3.22)

It is then clear that the part of the superpotential arising from G-flux in (5.2.23)

takes the form

Wflux =
1

4

∫
G ∧ T ∝ 〈⋆G, T 〉 , (6.3.23)

where 〈, 〉 denotes the inner product for forms. Clearly, this quantity will vanish

unless ⋆G has the same eigenvalue of Q = ⋆d as T does. 3Now, to be consistent we

can only consider G at linear level, so that we do not have to take the back-reaction

on the geometry into account. In this regime, from [48], we have that

Q ⋆ G = −3

2
τ ⋆ G . (6.3.24)

Our conclusion from this is that the flux decouples from the scalar modes that we

have been considering, i.e. those for which Q = −τ , and only couples to the more

massive modes with Q = −3
2
τ .

3Note that the operator Q acting on 3-forms on a seven-dimensional manifold is self-adjoint as

Q† = (⋆d)† = d†⋆ = ⋆d ⋆ ⋆ = ⋆d = Q.
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Chapter 7

G2 domain walls in M-theory

The plan of this chapter is as follows. In Section 7.1 we derive the first-order dif-

ferential equations describing the G2 domain walls. In Section 7.2, these equations

are solved explicitly in terms of a mode expansion on the G2 space. The inclusion

of membrane and M5-brane sources is discussed in Section 7.3. In Section 7.4, we

review the four-dimensional N = 1 supergravities obtained by compactifying M-

theory on G2 spaces with flux, and find their domain wall solutions. These solutions

are then compared to their eleven-dimensional counterparts.

It can be shown [132,133] that a solution to the Killing spinor equation δǫΨI = 0

which also satisfies the form-field equation of motion (3.1.3) and the Bianchi iden-

tity (3.1.2) provides a solution to the Einstein equation (3.1.4) as well. Since Killing

spinor equations are typically linear, first-order differential equations, in contrast to

the non-linear, second-order equations of motion, our method for finding solutions

shall be the use of Killing spinor equations.
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7.1 Finding supersymmetric G2 domain wall solu-

tions

7.1.1 General considerations

In the absence of flux, the general M-theory backgrounds which lead to four-dimensional

N = 1 supersymmetry consist of a direct product of a G2 manifold and four-

dimensional Minkowski space. The main goal of this chapter is to understand how

these backgrounds are modified in the presence of flux. As is well-known [15], flux

leads to a non-vanishing moduli superpotential in the associated four-dimensional

effective theory. The “simplest” solution of this theory is then a domain wall [134]

rather than four-dimensional Minkowski space. We will return to this four-dimensional

viewpoint later. For the eleven-dimensional Ansatz in the presence of flux, this obser-

vation suggests we should accordingly modify its four-dimensional Minkowski space

part to a domain wall. As we will see, the metric on the G2 space also requires a

correction due to flux.

In practise, we will work with the Killing spinor equations, the equation of mo-

tion (3.1.3) for F̂4 and its Bianchi identity (3.1.2). To simplify the problem, the flux

is regarded as an expansion parameter and we will determine the flux-induced cor-

rections to linear order. The logic of the calculation is somewhat similar to [87,90],

where flux corrections to Calabi-Yau backgrounds were determined. The main re-

sult of this section will be a set of first order bosonic differential equations for these

linearised corrections.

7.1.2 Covariantly constant spinors

As noted above, to obtain supersymmetric solutions we impose that the variation of

the gravitino (3.1.5) should vanish. In the zero-flux regime, where we just consider

the direct product of Minkowski space with a G2 manifold, M4 ×M7, this amounts
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simply to imposing that there should be a covariantly constant spinor, η, obeying

DIη = ∂Iη +
1

4
ωI

IJΓIJη = 0 , (7.1.1)

where ωI
IJ is the spin connection. In Chapter 2, we explained why G2 manifolds will

in general admit such a spinor. When we introduce flux into the equation (3.1.5),

however, the condition on the Killing spinor becomes more complicated. This will

lead us to perturb both the metric and spinor in order to preserve supersymmetry.

7.1.3 Metric Ansatz

Following the earlier discussion, we shall consider solutions to M-theory with line

element corresponding to a warped product of an internal seven-dimensional space

and a domain wall in four dimensions, that is,

ds2 = e2αηµνdx
µdxν + e2βdy2 + gABdx

AdxB . (7.1.2)

The three-dimensional part of the metric corresponds to the domain wall worldvol-

ume X3 spanned by coordinates xµ, and y is a coordinate transverse to the wall. The

seven-dimensional internal space M7 with coordinates xA has a metric gAB. Along

with the warp factors α and β it generally depends on xA and y but not on xµ.

Therefore, we have preserved three-dimensional Poincaré invariance on the domain

wall worldvolume, a general requirement which we will later use to constrain the

flux.

As we have explained, we would like to find a solution with metric of the form

above expanding to linear order in the flux. We should, hence, think of the met-

ric (7.1.2) as a linear perturbation of a direct product of Minkowski space with a G2

space with Ricci-flat metric. To this end, we expand to linear order in the warp fac-

tors α and β and write the internal seven-dimensional metric as gAB = g
(0)
AB + hAB,

where g(0) is a Ricci-flat metric on a G2 space and h is the perturbation. The

metric (7.1.2) then takes the form

ds2 = (1 + 2α)ηµνdx
µdxν + (1 + 2β)dy2 + (g

(0)
AB + hAB)dx

AdxB . (7.1.3)
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Note that to zeroth order—that is setting α, β and h to zero, and in the absence

of flux—this metric indeed provides a supersymmetric solution to M-theory for the

reasons given in chapter 3. When we perturb the metric g 7→ g + h, for linear h, we

also perturb the spinor covariant derivative [87] as

DI 7→ DI − 1

8

(
∇Jh

I
K −∇Kh

I
J

)
ΓJK . (7.1.4)

Hence, if we want (3.1.5) to hold in the presence of flux, we should think of the

corrections α, β and h as being “sourced” by flux. Our goal will be to determine

their explicit form as a function of the flux, such that the corrected solution continues

to preserve some supersymmetry.

7.1.4 Conditions on the flux

We will now write down the general form of the flux and the constraints imposed

on it by the F̂4 equation of motion and the Bianchi identity.

Given that we are asking for Poincaré invariance on the domain wall worldvolume

X3, we are left with the following non-trivial components of F̂4:

(F̂4)ABCD = GABCD , (F̂4)yABC = JABC ,

(F̂4)Aµνρ = VAεµνρ , (F̂4)yµνρ = Kεµνρ .
(7.1.5)

Note that G, J , V , K can be viewed as forms of various degree on the internal space

M7.

Within the context of our expansion scheme, we consider flux as being first order.

At linear order, we can, therefore, neglect the F̂4∧ F̂4 term in the equation of motion

(3.1.3) and work with the zeroth order metric. The F̂4 equation of motion and the

Bianchi identity then simply state that

dF̂4 = d†F̂4 = 0 , (7.1.6)

where the Hodge star is with respect to the zeroth order metric. Inserting the various

components (7.1.5) into (7.1.6) we find from the Bianchi identity

dG = dJ −G′ = dV = dK − V ′ = 0 , (7.1.7)
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and from the equation of motion

d†G− J ′ = d†J = d†V −K ′ = d†K = 0 . (7.1.8)

Here and elsewhere a prime denotes differentiation with respect to y and the opera-

tors d, d† are now taken with respect to the internal space M7 with Ricci-flat metric

g(0). To summarise, the most general flux is described by a four-form G, a three-form

J , a one-form V and a scalar K on the internal space M7 which are subject to the

equations (7.1.7) and (7.1.8).

7.1.5 Spinor Ansatz

A somewhat delicate point in computations of the Killing spinor equations is to find

the most general Ansatz for the supersymmetry spinor ǫ. Sometimes, solutions to

the Killing spinor equations can be missed if, for example, a simple product Ansatz

for ǫ is used. We will, therefore, spend some time discussing this Ansatz for the

spinor and finding its most general structure. All relevant conventions for spinors

and gamma matrices in the various dimensions involved are collected in the appendix

on page 165.

The first point to note is that ǫ must be Majorana, that is

ǫc = ǫ . (7.1.9)

The conjugation is defined in the Appendix. In general any such spinor can be

written in terms of a Dirac spinor ψ like

ǫ = ψ + ψc . (7.1.10)

If a pair of projectors P+, P− can be found such that

(P±)
2 = P± , (P±ψ)

c = P∓ψ
c , P+ + P− = 132 , (7.1.11)
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then we may further write

ǫ = ψ + ψc

= P+(ψ + ψc) + P−(ψ + ψc)

= (P+ψ + (P−ψ)
c) + ((P+ψ)

c + P−ψ)

=: ζ + ζc , (7.1.12)

where ζ = P+ζ . Normally, P± would project onto positive and negative chiralities,

but there is no chirality operator in eleven dimensions so we do not yet have a

physical interpretation of the manipulation above. However, when we decompose

the spinor ζ as

ζ = ξ+ ⊗ χ , (7.1.13)

where ξ+ and χ are four- and seven-dimensional spinors respectively, we can define

a sensible pair of projectors by

P± :=
1

2
(1± γ)⊗ 18 . (7.1.14)

This amounts to imposing that ξ+ is a positive chirality Weyl spinor, that is, ξ+ =

γξ+. Its charge conjugate ξ− := ξc is then a negative chirality spinor satisfying

ξ− = −γξ−. It is possible to show that, for our conventions, we have

γyξ+ = −(ξ−)
∗ , γyξ− = (ξ+)

∗ . (7.1.15)

For an arbitrary complex number z we have z∗ = e−2i arg(z)z. Of course, such a result

will not in general hold for a multi-component complex object like ξ+. However, it

turns out, after solving the Killing spinor equations, there is no loss of generality in

assuming that ξ+ indeed does satisfy such a relation. Consequently, we introduce a

parameter θ such that

γyξ± = e±iθξ∓ . (7.1.16)

Note that the internal part χ of the spinor remains unconstrained by the projection,

and at zeroth order in the flux will simply be the covariantly constant spinor on the

G2 manifold, η.
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We now consider the perturbation of the spinor to linear order. For the four-

dimensional spinor we introduce a complex parameter δ such that

ξ = (1 + δ)ξ+ , (7.1.17)

is the first order four-dimensional spinor. Similarly to the argument about θ above,

this is not the most general perturbation of a multi-component complex object, but

there will be no loss of generality later if we take ξ to be of the above form. We

now use the results of section 5.1.3 to see that the most general linear perturbation

of the seven-dimensional spinor η is given by

χ = (1− v0)η + vAηA . (7.1.18)

Here v0, v
A are complex variables parameterising χ. In the full eleven-dimensional

picture, note that δ and v0 are not really independent degrees of freedom since we

can absorb δ into a new parameter vδ := δ − v0. We note here that this parameter

encodes information about the variation of θ, since basic manipulation of the first

order spinor gives

∂θ = 2Im(∂vδ) . (7.1.19)

Because our conventions for the Dirac matrices allow us to express eleven-dimensional

charge conjugation as

ζc = ξc ⊗ χc , (7.1.20)

our final Ansatz for ǫ is then

ǫ = ξ+ ⊗
(
(1 + vδ)χ0 + vAχA

)
+ ξ− ⊗

(
(1 + v∗δ )χ

c
0 + (vA)∗χcA

)
. (7.1.21)

7.1.6 Bosonic equations

Using the results above, together with the conventions of section 9.1 for the Dirac

matrices and of section 5.1 for the action of these matrices on the G2 spinor, (3.1.5)

leads to a set of bosonic first-order equations. They constitute the main formal
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result in this chapter and are given by

Jyϕ = 12K cos θ +
1

4
GyΦ sin θ , (7.1.22)

12V cos θ = −ϕyG− JyΦ sin θ , (7.1.23)

∂yα =
1

144
GyΦcos θ − 1

3
K sin θ , (7.1.24)

dα =
1

36
JyΦcos θ − 1

3
V sin θ , (7.1.25)

∂yvδ =
1

288

(
e−iθGyΦ− 8iJyϕ− 48ie−iθK

)
, (7.1.26)

dβ = 2∂y (Re(v) sin θ + Im(v) cos θ)

− 1

18
JyΦcos θ +

1

6
V sin θ , (7.1.27)

∂y


 Re(v) cos θ

+Im(v) sin θ


 =

1

72
(ϕyG− 2JyΦ sin θ − 6V cos θ) , (7.1.28)

dvδ =
1

72

(
2iϕyG+ e−iθJyΦ− 12ie−iθV

)
, (7.1.29)

4∇AvB + ie−iθ∂yhAB

−∇ChADϕ
CD

B

=
1

72




8iGACDEΦ
CDE

B + i
5
GCDEF

(
4ΦACDEg

(0)
FB

+ΦCDEFg
(0)
AB + 12ϕACDϕEFB + 8ϕCDEϕFAB

)

−24e−iθJACDϕ
CD

B − 4e−iθJCDE(3ϕACDg
(0)
EB−

ϕCDEg
(0)
AB)− 24ie−iθV CϕABC + 24Kg

(0)
AB



.

(7.1.30)

These equations link the parameters (α, β, h), associated with the metric, to the

various flux components (G, J, V,K) and the quantities (vδ, v
A, θ) which parame-

terise the Killing spinor. We note that the y-derivative of β is unconstrained by

these equations, which is as we would expect from a residual gauge degree of free-

dom after the choice of Ansatz. A solution to these first-order partial differential

equations preserves two real supercharges (N = 1
2
from a four-dimensional point of

view) and represents a warped product of a deformed G2 space and a domain wall

in four-dimensional space-time.
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7.1.7 Ricci flatness

It is a general result [132, 133] that the integrability of the Killing spinor equation

together with the field equations implies that the Einstein equations hold. To linear

order in flux, this implies that our solutions should be Ricci-flat. Let us confirm this

by explicitly computing the components of the Ricci tensor. Using the Ansatz (7.1.2)

we find

Rµν = (∂2yα +∇2
Aα)ηµν

=

(−1

144
(dJ −G′)yΦcos θ − 13(K ′ − d†V ) sin θ

)
ηµν , (7.1.31)

Ryy = 3∂2yα +∇2
Aβ +

1

2
∂2yh

A
A

=
1

72
(dJ −G′)yΦcos θ +

1

6
(K ′ − d†V ) sin θ , (7.1.32)

RAB = ∇A∇B(3α+ β) +
1

2
∂2yhAB +∇A∇[Bh

C
C ] +∇C∇[C hB ]A − 1

2
hCDR

D
ABC

=
−1

72
(dJ −G′)yΦg

(0)
AB cos θ +

1

3
(K ′ − d†V )g

(0)
AB sin θ

+
1

6
(dJ −G′) CDE

(A ΦB)CDE , (7.1.33)

RAy = ∂y(3∇Aα +∇[Ah
B
B ])

= − 1

72
(dG)BCDEFϕ

BC
A ϕDEF − 1

12
(dV )BCϕ

BC
A . (7.1.34)

With the first-order relations (7.1.22)–(7.1.30), together with the conditions on the

flux (7.1.8) and (7.1.7), we find that these components of the Ricci tensor indeed

vanish.

7.2 Explicit eleven-dimensional solution

We now turn to the problem of integrating the bosonic equations (7.1.22)–(7.1.30).

Since we are dealing with the case of a general G2 manifold, this solution will take

the form of a sum over basis sets of forms on the manifold. Although we have

written the bosonic equations above in the ‘raw’ form in which they are obtained,

there is a certain amount of hidden gauge symmetry that we would like to fix in our
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solution before we write down such an expansion. In this section, we also consider

the zero-mode regime and its relation to compactification.

7.2.1 Simplifying the spinor Ansatz

Before we write down a solution to the eleven-dimensional equations, we reconsider

the spinor Ansatz. Our seven-dimensional spinor should be invariant under SO(7)

transformations of the tangent space. Using the results of section 5.1.3 we can write

such transformations as

χ 7→ eθ
ABΣABχ = eν

AfA+µABρABχ , (7.2.1)

where ΣAB are taken in the spinor representation of SO(7) and decompose into

fA, ρAB under G2 and θAB, νA and µAB are real parameters. To first order, this

transformation reads

χ 7→ (1− v0)η + vAηA + νAηA , (7.2.2)

and means that we can ‘gauge away’ Re(vA). The effects of a general coordinate

transformation on χ are similar but will in general yield weaker conditions on vA.

A further point to note is that, since we have a Killing spinor, we are able to

form bilinears in this spinor that will be globally defined. In particular, the global

vector wI = ǭΓIǫ, formed in this way should itself be Killing [132]. At linear order,

the transverse components of this vector are

wy = cos θ + 2(Im(vδ) sin θ − Re(vδ) cos θ) , wA = 4 Im(vA) . (7.2.3)

Since this vector must be Killing, we can then impose

∇(AvB) = 0 , ∂yIm(vA) =
1

2
∇A(Re(vδ) cos θ − Im(vδ) sin θ) . (7.2.4)

These relations allow us to eliminate vA from the Killing spinor equation for β, which

then takes the form

dβ = − 1

36
ϕyG sin θ cos θ − 3

72
JyΦcos θ +

1

6
V sin θ . (7.2.5)
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7.2.2 Simplifying the relations for metric perturbations

We also make a gauge choice for hAB, by putting it in the standard ‘harmonic gauge’

so that

∇Bh
B
A =

1

2
∇Atr(h) . (7.2.6)

Our result (7.1.22)–(7.1.30) can be simplified considerably by splitting into real and

imaginary parts, projecting out the irreducible G2 representations associated with

the two free indices, using the simplifications of the spinor Ansatz as above and

making the harmonic gauge choice for h. We are then able to derive the following

set of physically equivalent first order relations

Jyϕ = 21K cos θ +
5

8
GyΦ sin θ , (7.2.7)

∂ytr(h) = − 5

72
GyΦcos θ +

7

3
K sin θ , (7.2.8)

d tr(h) = 4V sin θ +
1

3
JyΦ , (7.2.9)


 ∂y(P27h)AB−

∇C(P27h)D(Aϕ
CD

B) sin θ


 = −1

6
(P27G)

CDE
(A ΦB)CDE cos θ , (7.2.10)

∇C(P27h)D(Aϕ
CD

B) cos θ = −1

6
(P27G)

CDE
(A ΦB)CDE sin θ

+
1

2
(P27J)

CD
(A ϕB)CD , (7.2.11)

where the projector P27 projects out the 27 representation in the G2 decomposition

of the various tensors, as explained in section 5.1.2.

7.2.3 Zero-mode regime

The field equations (7.1.7) and (7.1.8) imply that

∆7G = G′′ , ∆7J = J ′′ ,

∆7V = V ′′ , ∆7K = K ′′ ,
(7.2.12)

where ∆7 is the seven-dimensional Laplacian with respect to the zeroth order metric

g(0). We call solutions for which both sides of these equations are zero the ‘zero
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modes’ and those for which both are equal to a non-zero constant the ‘massive

modes’.

The physical reasoning behind this is that of chapter 4: operators like ∆7 will

be associated with the inverse of the radius of compactification of M7. When this is

reduced down to small scales, this makes ∆7 produce extremely large constant non-

zero eigenvalues, which are effective masses in the four-dimensional theory. Since

these masses will typically be at the Planck scale, they can be ignored in constructing

the four-dimensional effective theory, and so the zero-mode regime is of particular

interest to us.

We firstly note that on G2 manifolds there are no harmonic one-forms, and so

the following terms in the flux vanish in the zero-mode regime:

ϕyG = JyΦ = V = 0 . (7.2.13)

This also constrains the spinor so that vA = 0, since otherwise the equation (7.1.30)

would make vA a harmonic one-form. Such constraints on seven-dimensional vectors

mean that in the zero-mode regime, using the first-order bosonic equations (7.1.22)–

(7.1.30) we have

dα = dβ = 0 . (7.2.14)

A similar argument to that for the flux can be made for the graviton hAB, which

from (7.1.33), (7.2.6) and (7.2.14) obeys

∆Lh = −∂2yh , (7.2.15)

where

(∆Lh)AB := ∇C∇ChAB + 2RC
(AB)Dh

D
C . (7.2.16)

In this case, we also argue that ∆L will be associated with a Planck-scale effective

mass upon compactification and so can be ignored.

The arguments above allow us to write a ‘zero-mode’ version of the first-order
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eleven-dimensional bosonic equations (7.1.22)–(7.1.30)

∂yα =
1

144
GyΦcos θ − 1

3
K sin θ , (7.2.17)

∂ytr(h) = − 5

72
GyΦcos θ +

7

3
K sin θ , (7.2.18)

∂y(P27h)AB = −1

6
(P27G)

CDE
(A ΦB)CDE cos θ , (7.2.19)

∂yθ = − 1

48
GyΦ sin θ −K cos θ , (7.2.20)

P27J = −P27 ⋆ G . (7.2.21)

We shall use these equations later to compare with the bosonic equations that we

derive from the four-dimensional Killing spinor equations.

7.2.4 Fourier expansion of the flux

We shall now expand each component of the flux as a sum over forms on the G2

manifold M7. At the zero-mode level, this expansion involves the harmonic forms

and is given by

G0 =
∑

iGiπ̃
i , V0 = 0 ,

J0 =
∑

i Ji ⋆ π̃
i , K0 = const.

(7.2.22)

Here Gi, Ji and K0 are constants, and we have introduced a set of harmonic four-

forms on M7, {π̃i}b3(M7)
i=1 where b3(M7) is the 3rd Betti number of M7. Notationally,

we will sometimes adopt implicit summation over i, j-type indices but leave them in

for clarity at present.

In the massive regime, the expansion is slightly more complicated, since we must

introduce a further set of massive four-forms on M7, {Π̃n} satisfying

∆7Π̃
n = (mn)

2Π̃n . (7.2.23)

We can then use the Hodge star to construct a set of 3-forms, {⋆Π̃n}, with

∆7 ⋆ Π̃
n = (mn)

2 ⋆ Π̃n . (7.2.24)
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Then the massive modes of G, J can be expanded in terms of these forms, leading

to

Gmassive =
∑

nGn(y)Π̃
n , Jmassive =

∑
n Jn(y) ⋆ Π̃

n , (7.2.25)

with y-dependent expansion coefficients Gn and Jn. The equations of motion for the

flux then imply

G′′
n = (mn)

2Gn ⇒ Gn(y) = G+
n e

mny +G−
n e

−mny ,

J ′′
n = (mn)

2Jn ⇒ Jn(y) = J+
n e

mny + J−
n e

−mny ,
(7.2.26)

for constant G+
n , G

−
n , J

+
n , J

−
n . The massive expansion of K and V can be done in

a similar way. We can write both in terms of a set of functions {f p} obeying

∆7f
p = (Mp)

2f p so that

Vmassive =
∑

p

1

Mp

(
V +
p e

Mpy + V −
p e

−Mpy
)
df p ,

Kmassive =
∑

p

(
K+
p e

Mpy +K−
p e

−Mpy
)
f p , (7.2.27)

for constant V +
p , V −

p , K+
p and K−

p . We have introduced a factor ofMp in the first of

these relations to compensate for the mass associated with the exterior derivative d.

To see why this is the correct expansion for our solution consider the linear equation

for dα, (7.1.25),

dα =
1

36
JyΦcos θ − 1

3
V sin θ

=
1

36

∑

n

(J+
n e

mny + J−
n e

−mny)(⋆Π̃n)yΦcos θ (7.2.28)

−1

3

∑

p

(
V +
p e

Mpy + V −
p e

−Mpy
)
(df p) sin θ .

From the nilpotency of d this equation implies that the right hand side of this

equation is a closed 1-form and thus can be written uniquely as the sum of an exact

0-form and a harmonic 1-form. As there are no harmonic 1-forms on M7 due to

G2 holonomy, each term on the right hand side must be exact. This justifies our

expansion of V in terms of the {df p}, and also allows us to define a further set of

functions by

dΠn
(0) := mn(⋆Π̃

n)yΦ . (7.2.29)
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7.2.5 Integration of the bosonic equations

After expanding as above, the direct integration of the bosonic equations (7.1.22)–

(7.1.30) is relatively straightforward, particularly as we can take θ as a constant to

linear order. Performing this integration then leads the following complete solution

for the metric components

α(y, xA) =

(
−1

3
K0y −

1

3

∑

p

1

mp

(
(K+

p + V +
p )empy − (K−

p − V −
p )e−mpy

)
f p

)
sin θ

+
1

144

(
∑

i

Giπ̃
iy +

∑

n

1

mn

(G+
n e

mny −G−
n e

−mny)Π̃n

)
yΦcos θ

+
1

36

∑

n

1

mn

(
J+
n e

mny + J−
n e

−mny
)
Πn

(0) cos θ + α0 , (7.2.30)

β(y, xA) =
1

36

(
∑

i

Giπ̃
iy +

∑

n

1

mn

(G+
n e

mny −G−
n e

−mny)Π̃n

)
yΦ sin θ cos θ

+
1

6

∑

p

1

mp

(
V +
p e

mpy + V −
p e

−mpy
)
f p sin θ

− 3

72

∑

n

1

mn
(J+
n e

mny + J−
n e

−mny)Πn
(0) cos θ + β0 , (7.2.31)

tr(h)(y, xA) =

(
7

3
K0y +

∑

p

1

mp

((
7

3
K+
p + 4V +

p

)
empy

−
(
7

3
K−
p − 4V −

p

)
e−mpy

)
f p

)
sin θ

− 5

72

(
∑

i

Giπ̃
iy +

∑

n

1

mn
(G+

n e
mny −G−

n e
−mny)Π̃n

)
yΦcos θ

+
1

3

∑

n

1

mn
(J+
n e

mny + J−
n e

−mny)Πn
(0) cos θ + h0 . (7.2.32)

Here, α0, β0, h0 are constants of integration and we have gauged away the y-dependence

of β. Note that the first term, proportional to y, on each right-hand side represents

the zero-mode contributions while all other terms correspond to heavy modes. The

above expressions make it clear that the massive modes are proportional to the in-

verse effective mass, and so upon compactification we expect them to be negligible.

This means, we should consider only the zero mode regime when we come to the
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four-dimensional effective theory later.

For the traceless part of the metric, the integration is slightly less straightforward,

but proceeds along similar lines so that at zero mode

(P27hzero−mode)AB = −1

6

∑

i

Giy cos θ(P27π̃
i) CDE
(A ΦB)CDE . (7.2.33)

The massive modes can be obtained by solving the equations

∂y(P27hmassive)AB −∇C(P27hmassive)D(Aϕ
CD

B) sin θ =

−1

6

∑

n

(
G+
n e

mny +G−
n e

−mny
)
(P27Π̃

n) CDE
(A ΦB)CDE cos θ ,

∇C(P27hmassive)D(Aϕ
CD

B) cos θ = (7.2.34)

−1

6

∑

n

(
(G+

n sin θ + J+
n )e

mny + (G−
n sin θ + J−

n )e
−mny

)
(P27Π̃

n) CDE
(A ΦB)CDE ,

which can be done explicitly.

7.2.6 Curvature singularities

Analogously to the calculation in [87], we now look for the curvature singularities

that correspond to vanishing volume of the compact space. This quantity is given

by

V := Vol(M7) =

∫

M7

√
g d7x . (7.2.35)

We can then differentiate this to linear order using the relation (7.2.18) so that

∂yV =

∫

M7

1

2
(g(0))AB∂yhAB

√
g(0)d7x

=

∫

M7

(
− 5

144
GyΦcos θ +

7

6
K sin θ

)√
g(0)d7x

=

∫

M7

(
−5

6
ϕ ∧G cos θ +

7

6
⋆ K sin θ

)
. (7.2.36)

We can then use the equations of motion for the flux (7.1.7) and (7.1.8) to show

that

∂2yV =

∫

M7

d

(
−5

6
(ϕ ∧ J) cos θ + 7

6
(⋆V ) sin θ

)
= 0 , (7.2.37)
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sinceM7 has no boundary. The volume must thus depend linearly on the coordinate

y, and so it must be zero for some value of y, which will correspond to a curvature

singularity of the internal space. Of course, as the volume of the compact space be-

comes small, we are no longer entitled to use simply eleven-dimensional supergravity

as our theory. We might also reasonably expect that although the linear terms in

flux in (7.2.37) vanish, the higher-order contributions may not.

7.3 Inclusion of brane sources

In general, we expect (p + 1)-form fields to be sourced by an extended charged p-

brane. In M-theory, there are two sensible choices for p, given that the only form field

present is the three-form field A. These are the ‘fundamental’ membrane (M2-brane)

and the ‘magnetic’ five-brane (M5-brane).

We shall consider each of these in turn, as both may well support the kind of

domain wall solution that we are considering. In the case of the M2-brane, this

would happen by its sitting in the external space, whereas the M5-brane would have

to wrap a three-cycle in the compact space in an appropriate way.

Our approach shall be to solve the brane equations of motion for each system,

and then try to match these solutions to appropriate specialisations of the bulk

solution that we have so far been considering. In doing this, we will find that the

inclusion of a brane source fixes the value of θ in such a way that our bulk solution

can either support the M2-brane or the M5-brane but not both.

We further find that in each case the brane splits the y-direction into two regions,

each with different values of the flux and with a ‘jump’ in certain components of the

flux across the brane proportional to the brane tension.

7.3.1 General brane action in M-theory

In this section, we will quote some general results about classical membranes in

eleven-dimensional supergravity, following [103]. The easiest to consider is the fun-
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damental membrane, which couples to the 3-form field Â3 by the action

S2 = T2

∫

W3

d3X
(
−1

2

√−γγij∂iXI∂jX
JgIJ−

1

2

√−γ− 1

4!
εijk∂iX

I∂jX
J∂kX

K(Â3)IJK

)
,

(7.3.1)

where XI are the brane coordinates, i, j, . . . = 0, . . . , 2 are brane worldvolume indices

and W3 is the worldvolume of the brane parameterised by the coordinates X i. This

membrane couples to our bulk supergravity action S11 in (3.1.1) to produce the total

action

STotal = S11 +

∫
d11xS2δ(X − x) . (7.3.2)

This modifies the previous equations of motion to give

dF̂4 = 0 , (7.3.3)

d†F̂4 = −2J2 , (7.3.4)

R̂IJ =
1

12

(
(F̂4)IKLM(F̂4)

KLM
J − 1

12
gIJ F̂4yF̂4

)

+
√−g

(
TIJ −

1

9
gIJT

)
. (7.3.5)

The current and stress-energy associated with the brane are

J IJK
2 = T2

∫
d3X εijk∂iXI∂jX

J . . . ∂kX
K δ

11(x−X)√−g , (7.3.6)

T IJ = −T2
∫
d3X√−γγij∂iXI∂jX

J δ
11(x−X)√−g , (7.3.7)

and the membrane worldvolume equations of motion are

∂i
(√−γγij∂jXJgIJ

)
=

1

2

√−γγij∂iXJ∂jX
K∂IgJK

+
1

4!
εijk∂iX

J∂jX
K∂kX

L(F̂4)IJKL , (7.3.8)

γij = ∂iX
I∂jX

JgIJ . (7.3.9)

The coupling of the five-brane to the bulk action is slightly more subtle, and to

be done properly requires the approach of [105]. As we are only interested in the

effect of the five-brane on the equations of motion rather than the duality-symmetric
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formulation of the low-energy M-theory action, we merely state here the five-brane

equations of motion when we set the worldvolume two-form to zero. Analogously to

the magnetic monopole in electrodynamics, the five-brane sources to the dual of the

flux, ⋆F̂4, in the same way that the membrane couples to F̂4. We then have bulk

equations of motion

d†F̂4 = 0 , (7.3.10)

dF̂4 = 2 ⋆ J5 , (7.3.11)

R̂IJ =
1

12

(
(F̂4)IKLM(F̂4)

KLM
J − 1

12
gIJ F̂4yF̂4

)

+
√−g

(
TIJ −

1

9
gIJT

)
. (7.3.12)

In this case the current and stress-energy are

J I1...I6
5 = T5

∫
d6X εi1...i6∂i1XI6 . . . ∂i6X

I6
δ11(x−X)√−g , (7.3.13)

T IJ = −T5
∫
d6X√−γγij∂iXI∂jX

J δ
11(x−X)√−g , (7.3.14)

with worldvolume equations

∂i
(√−γγij∂jXJgIJ

)
=

1

2

√−γγij∂iXJ∂jX
K∂IgJK

+
1

7!
εi1...i6∂i1X

I6 . . . ∂i6X
I6(⋆F̂4)I1...I6 , (7.3.15)

γij = ∂iX
I∂jX

JgIJ . (7.3.16)

We shall now go on to apply these results for the M2-brane and M5-brane in the

context of our existing bulk solution, noting that from the brane equations the flux

is naturally of the order of the brane tension, which we must bear in mind when we

truncate our results to linear order.

We will then solve the membrane equations of motion at linear order, but only

considering the zero-mode part, which will involve ‘smoothing over’ the seven-

dimensional part of the delta functions in the action, essentially for reasons of

simplicity. There is no clear reason why a fuller treatment of the massive modes

should not yield fundamentally the same conclusions as below.
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7.3.2 Fundamental membrane

It is natural to consider the membrane as supporting a domain wall solution by

placing it in the external space with its transverse coordinate along the special

direction, previously called y, of the solution. We implement this with the following

‘static gauge’ choice for the membrane coordinates

Xµ = ξµ , Xy = const. , XA = const. (7.3.17)

If we then consider the linearised eleven-dimensional equations of motion, taking

only the zero mode of the internal space part, we find the following modifications

∂2yα =
−2

3
T2δ(y) , (7.3.18)

∂2ytr(h) =
14

3
T2δ(y) , (7.3.19)

K ′ = 2T2δ(y) . (7.3.20)

The membrane worldvolume equations are

∂yα = −1
3
K , dα = −1

3
V , (7.3.21)

and imposing worldvolume supersymmetry (κ-symmetry) gives the following condi-

tion:

P̃−ǫ = 0 , (7.3.22)

where P̃± := 1
2
(1±iγyγ)⊗1 can be interpreted as projecting out different components

of eight-dimensional chirality. This condition turns out to be equivalent to taking

sin θ = 1 in the Killing spinor Ansatz.

The physical interpretation of this solution is shown in Figure 7.1. Having

smoothed over the compact space, we can consider the remaining four-dimensional

space to be split into two regions by the membrane, each containing different (con-

stant) values for the flux.

Suppose we write the flux in Region I as KI and in Region II as KII, then we

can integrate the equations (7.3.18)-(7.3.20) by writing

K(y) = 2T2(KII −KI)Θ(y) +KI , (7.3.23)
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Figure 7.1: Physical interpretation of the membrane solution showing warp factor

α against transverse coordinate y.

∂yα = −1
3
K , ∂ytr(h) =

7
3
K , (7.3.24)

where Θ is the step function defined by

Θ(x) :=





0 for x < 0 ,

1
2
for x = 0 ,

1 for x > 0 .

(7.3.25)

This solution is consistent with taking the sin θ = 1 specialisation of the zero-mode

bosonic equations (7.1.22)–(7.1.30) above in each of the bulk regions. The ‘jump’

in flux from one region to another is proportional to the membrane tension. It is

worth noting that membranes could be stacked to make this jump proportional to

the number of membranes times the tension.

7.3.3 Magnetic five-brane

The situation for the M5-brane is slightly more complicated than for the M2-brane,

given that it has three more worldvolume dimensions than the domain wall. For this

reason, three of the worldvolume dimensions should be wrapped on some three-cycle
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Σ3 with in the G2 space M7. For the solution that arises from this configuration

to be supersymmetric, this cycle must be calibrated by the G2 three-form ϕ, which

means that

Vol(Σ3) =

∫

Σ3

ϕ . (7.3.26)

Three-forms that are calibrated by ϕ are called associative cycles, and four-forms

calibrated by Φ are called co-associative. The appropriate choice for the brane

coordinates is given by

Xµ = ξµ , Xy = const. , Xa = σa , X Ã = const. , (7.3.27)

where we let σa be the coordinates of Σ3 and use the indices Ã to denote directions

perpendicular to Σ3. Considering the equations of motion for this system in the zero

mode regime then gives

∂2yα =
−1

3
T5δ(y) , (7.3.28)

∂2ytr(h) =
10

3
T5δ(y) , (7.3.29)

G′ =
2

7
T5δ(y)Φ , (7.3.30)

with worldvolume equations

6∂yα +
3

7
∂ytr(h) =

−1

84
GyΦ . (7.3.31)

Imposing κ-symmetry gives the following condition:

P y
−ǫ = 0 , (7.3.32)

where P y
± := 1

2
(1±γy)⊗1 can be interpreted as projecting out different components

of ‘y-chirality’. This condition turns out to be equivalent to taking cos θ = 1 in the

Killing Spinor Ansatz.

Our four-dimensional picture then looks very similar to that of the membrane,

with two separated regions containing different values for the flux, such that

G(y) = 2T5(GII −GI)Θ(y) +GI . (7.3.33)
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Note that only the singlet part of G is shifted by the brane since, from (7.3.30), the

difference GII −GI is proportional to the G2 invariant four-form Φ. As a result, we

need not consider the traceless part of h and can thus simply integrate (7.3.28) and

(7.3.29) to give

∂yα =
−1

144
GyΦ , ∂ytr(h) =

5

72
GyΦ . (7.3.34)

Similarly to the M2-brane case, this is consistent with the cos θ = 1 specialisation of

the bosonic equations (7.1.22)–(7.1.30). We also have the partition of the external

space into two separate regions each with different constant values for the flux, with

the jump in flux between these regions proportional to the brane tension. In contrast

to the M2-brane, however, the relevant component of flux is the singlet of G rather

than the K. It will also be possible to stack branes so that the jump in flux is

proportional to the number of stacked branes.

Note that although both the membrane and five-brane very naturally couple to

our bulk solution, at the order we are considering, the existence of supersymmetric

configurations with two real supercharges containing both types of brane is ruled

out.

7.4 Four-dimensional effective theory

When eleven-dimensional supergravity is compactified on aG2 manifold, the effective

field theory is given by four-dimensional N = 1 supergravity. In this section, we

outline how the quantities in the four-dimensional action are related to the eleven-

dimensional quantities. We then present the conditions for a supersymmetric domain

wall solution in four dimensions, and integrate these equations. Finally, we uplift the

four-dimensional equations to eleven dimensions, and check that the result indeed

matches our earlier one, obtained directly from the eleven-dimensional theory.

The action for the four-dimensional theory is given in section 4.1.1, and we use

the notation from that section.
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7.4.1 Four-dimensional supergravity from M-Theory on a

G2 space

The relationship between the theory above and eleven-dimensional supergravity on

a compact G2 manifold was covered in [15, 49] and discussed above in chapter 5.

Throughout this section we use just the zero-mode part of form field strength G

which is written in terms of a set of harmonic four-forms {π̃i} as

G = Giπ̃
i , (7.4.1)

where we now use implicit summation rather than the explicit notation of Section

7.2. Our first step is to expand both the 3-form field Â3 and the G2 3-form ϕ in

terms of a dual set of harmonic three-forms {πi}b3(M7)
i=1 obeying

∫

M7

πi ∧ π̃j = δji , (7.4.2)

so that

ϕ = ϕiπi , (7.4.3)

Â3 = Aiπi + Å , (7.4.4)

where G = dÅ in a simplification of (5.2.9), so that F̂4 = dÂ3 still holds. Detailed

consideration of the compactification of the eleven-dimensional theory shows that

the ϕi are the metric moduli of the G2 manifold, M7, and the moduli Ai appear as

axions in the 4-dimensional theory. This means that we can write the superfields as

T i = ϕi + iAi . (7.4.5)

In our conventions, the superpotential is then

W =
73/2

4

∫

M7

G ∧ T =
73/2

4
GiT

i . (7.4.6)

We shall now consider the idea from [15, 58] that each term in (7.4.6) is ‘sourced’

by the wrapped M5-brane and M2-brane respectively. From (3.1.3)—the equation

of motion for the flux—it can be shown that
∫

M7

(
⋆K +

1

2
A ∧G

)
= 0 ⇒ GiA

i = −VK , (7.4.7)
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where V is the volume of the compact space as defined in (7.2.35). Also, as G is

harmonic, the projector of its singlet must be constant over M7 and so

GyΦ =
1

V

∫

M7

√−gGyΦ ⇒ Giϕ
i =

1

24
VGyΦ . (7.4.8)

We can thus substitute (7.4.7) and (7.4.8) into (7.4.6) to rewrite the superpotential

as

W =
73/2V
4

(
1

24
GyΦ− iK

)
. (7.4.9)

Clearly, this expression contains a term proportional to the singlet of G as well as

one proportional to K. As we saw in section 7.3, the wrapped M5-brane acts as

a source for the singlet of G and the M2-brane acts as a source for K. Therefore,

we can interpret the moduli superpotential for the four-dimensional effective theory

associated with M-theory on G2 manifolds as being sourced by contributions from

the wrapped M5-brane and the M2-brane.

The Kähler potential for this theory and its derivatives with respect to the su-

perfields is given by

K = −3 ln (7V) , (7.4.10)

⇒ Ki =
∂K
∂T i

=
−1

2V

∫

M7

πi ∧ Φ = −2ϕi , (7.4.11)

⇒ Kī =
1

4V

∫

M7

πi ∧ ⋆πj . (7.4.12)

Using these expressions, we can write G in terms of the dual set of four-forms like

G =
1

4VG
i ⋆ πi . (7.4.13)

This is all the input from eleven dimensions that we need to write down and

solve the appropriate four-dimensional Killing spinor equations. We will return to

the links between four and eleven dimensions later.

7.4.2 Four-dimensional Killing spinor equations

We shall now set up the conditions for supersymmetric domain wall solutions in

the four-dimensional supergravities derived from our eleven-dimensional theory as
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above. We start with a warped metric Ansatz

ds24 = ea(z)ηµνdx
µdxν + dz2 , (7.4.14)

and z-dependent scalar fields T i = T i(z). For such a field configuration the first-

order relations 1 derived from the Killing spinor equations are given by [134]

∂za = e−iθe
1

2
KW , (7.4.15)

∂zT
i = −eiθe 1

2
KKī D̄W , (7.4.16)

∂zθ = −Im
[
(∂zT

i)Ki

]
. (7.4.17)

Here, θ parameterises the four-dimensional Killing spinor in a similar way to the

quantity θ we have used to parameterise the earlier eleven-dimensional spinor. When

we consider the links between four and eleven dimensions later, we will find that

they are in fact the same at zero mode level in eleven dimensions.

Solutions to these equations are BPS states, which preserve half of the maximum

number of supercharges possible in the N = 1, D = 4 theory, and automatically

satisfy its equations of motion. Using the expressions for T i, W and K from eleven

dimensions above allows us to write the first-order relations as

∂za =
V−3/2

4

(
Giϕ

i cos θ +GiA
i sin θ

)
, (7.4.18)

GiA
i cos θ = Giϕ

i sin θ , (7.4.19)

∂zϕ
i =

V−3/2

4

(
(2Gjϕ

jϕi −Gi) cos θ + 2GjA
jϕi sin θ

)
, (7.4.20)

∂zA
i =

V−3/2

4

(
(2Gjϕ

jϕi −Gi) sin θ − 2GjA
jϕi cos θ

)
, (7.4.21)

∂zθ = −V−3/2

2
Giϕ

i sin θ . (7.4.22)

It is also worth noting that the relation

∂zV =
V−1/2

6

(
5Giϕ

i cos θ + 7GiA
i sin θ

)
(7.4.23)

1There is one further equation that constrains the four-dimensional Killing spinor but it does

not really impact on our calculation.
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can be derived from (7.4.18)–(7.4.22). This will be important later when we find

explicit solutions.

We now consider how to integrate these four-dimensional equations in purely

four-dimensional language, before uplifting them to compare with the eleven-dimensional

equations.

7.4.3 Integrating the four-dimensional equations

We now present the most general solution to equations (7.4.15)–(7.4.17), which are

the conditions for a supersymmetric domain wall to four-dimensional supergravity,

given that the supergravity descends from M-theory on a G2 manifold. The solution

can be written, in terms of new moduli fields f i, as

a =
1

2
ln | cot θ|+ C , (7.4.24)

ϕi = tan(θ)fi , (7.4.25)

Ai =
−1

4Vf cot−7/3 θ
Giu+ bi , (7.4.26)

where the new transverse coordinate u is related to z by

∂u = (V1/2
f cot1/2 θ cosec θ)∂z . (7.4.27)

Here, C and bi are constants of integration. Recall, that once the Kähler potential

is explicitly given, the volume V is known, via (7.4.10), as a function of the moduli

ϕi. By Vf we mean this function but with the fields ϕi replaced by f i. Since the

volume is a homogeneous function of degree 7/3 in its arguments this means V and

Vf are related by

Vf = V cot7/3 θ . (7.4.28)

The angle θ is fixed by

cos θ cot6 θ =

(Vf
V0

)3/2

, (7.4.29)

where V0 is another constant of integration. Finally, the new fields fi are linear

functions

fi =
1

4
Giw + ki , (7.4.30)
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in the transverse coordinate w defined by

∂w = (V3/2
f tan9/2 θ sec θ)∂z , (7.4.31)

and ki are further constants of integration. This completes the most general domain

wall solution to four-dimensional N = 1 supergravity theories from M-theory flux

compactifications on G2 spaces.

Note that the above solutions display some apparent singularities in the cases

sin θ = 1 or cos θ = 1 which we have previously encountered when matching to

membrane and five-brane sources. However, these singularities are not real but

can be removed by introducing a new quantity n defined by either one of the two

equivalent relations

n =
3ln| cot θ|

7ln| cos θ| − 5ln| sin θ| ,
( V
V0

)n
= |cot θ| . (7.4.32)

In the above solution, we can in general eliminate θ in favour of n.

In this new form one can explicitly consider the cases sin θ = 1 and cos θ = 1

without encountering any singularities. They lead to the particularly simple solu-

tions

cos θ = 1 sin θ = 1

∂w = V9/10∂z ∂u = V1/2∂z

fi = V3/5ϕi =
1
4v
Giw + ki fi = V3/7ϕi = const.

Ai = const. Ai = − 1
4V
Giu+ bi

a = a0 + lnV3/10 a = a0 + lnV3/14

(7.4.33)

The results in this section represent the most general supersymmetric domain wall

solution to four-dimensional supergravities that arise from compactification of M-

theory on G2 manifolds with flux. In particular, the solution with cos θ = 1 in the

above table is the appropriate one to match to a wrapped fivebrane source while the

solution for sin θ = 1 can be matched to a membrane source. We note the linear

dependence of the moduli fields on the natural transverse coordinate w or u, which

will have the effect of causing fields to diverge at large distances. In particular, the
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solutions do not approach four-dimensional Minkowski space asymptotically. This

behaviour is typical for supergravity domain walls supported by potentials without

a minimum at any finite field value [135]. We will discuss curvature singularities in

section 7.4.5 below.

7.4.4 Comparison with eleven dimensions

As a check of our results, we shall now test for compatibility between the four-

and eleven-dimensional relations derived from the Killing spinor equations. Our

strategy will be to link the four- and eleven-dimensional quantities and then uplift

the four-dimensional equations to eleven dimensions, and see if they agree.

We firstly relate the quantities. By comparing the four-dimensional and eleven-

dimensional line elements ds24 and ds211 we see that

∂y = ±
√
V∂z , (7.4.34)

α = a− 1

2
ln(V) . (7.4.35)

Using the result from chapter 2 it is clear that to first order

∂yhAB =
1

2
(P27∂yϕ)

CD
(A ϕB)CD +

1

63
(∂yϕ)yϕg

(0)
AB . (7.4.36)

Making use of relations (7.4.8) and (7.4.7), we simply substitute these results into

the four-dimensional bosonic equations for appropriate sign choice in (7.4.34) and

get the following

∂yα =
1

144
GyΦcos θ − 1

3
K sin θ , (7.4.37)

∂ytr(h) = − 5

72
GyΦcos θ +

7

3
K sin θ , (7.4.38)

∂y(P27h)AB = −1

6
(P27G)

CDE
(A ΦB)CDE cos θ , (7.4.39)

∂yθ = − 1

48
GyΦ sin θ −K cos θ , (7.4.40)

GyΦ = 24K cos θ , (7.4.41)

Jyϕ = 21K cos θ +
5

8
GyΦ sin θ . (7.4.42)
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Although the equations linking components of the flux are superficially different

from the eleven-dimensional ones, they are easily shown to be equivalent.

We note here that while the four-dimensional equations did not involve linearision

in the flux while the eleven-dimensional ones did. Nevertheless, it turns out by

comparing (7.4.37)–(7.4.42) with (7.2.17)–(7.2.21) that the two sets of equations are

equivalent at the zero mode level.

7.4.5 Curvature singularities

Another feature of the four-dimensional equations that we should compare with

eleven-dimensions is the variation of the volume as a function of the transverse

coordinate. A zero of this volume at any particular point in the transverse space

implies, of course, a curvature singularity of the internal space. However, it can

be shown that such a vanishing internal volume also leads to a four-dimensional

curvature singularity.

The z-variation of the volume is described by (7.4.23) which uplifts to give the

following

∂yV =

[
− 5

144
GyΦcos θ +

7

6
K sin θ

]
V . (7.4.43)

This is the generalisation to all orders in flux of the eleven-dimensional result (7.2.36)

in the zero-mode regime. When we consider the second derivative of (7.4.43), using

our four-dimensional equations, we get

∂2yV =
−1

12V

[
(Giϕ

i)2(2 sin2 θ − 5) +
1

2
GiG

i(2 sin2 θ + 5)

]
, (7.4.44)

which is quadratic in the flux. Writing this in eleven-dimensional language gives

∂2yV =
−1

12V (2 sin2 θ − 5)

[∫

M7

ϕ ∧G
]2

− 1

6
(2 sin2 θ + 5)

∫

M7

⋆G ∧G . (7.4.45)

This vanishes at linear order in flux which is consistent with our earlier findings in

(7.2.37). These implied a linear behaviour of the volume and, therefore, its vanishing

at some finite coordinate y. However, the above result, good to all orders in flux,

shows that, in fact, the volume varies in a more complicated way. In particular, the
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vanishing of the volume at some finite y cannot be deduced generically at this stage.

To decide whether or not the volume vanishes one may study specific examples of

G2 manifolds where V is given as an explicit function of the fields, as in [66].
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Chapter 8

(massive) IIA on SU(3)-structure

manifolds

The outline of this chapter is as follows. In section 8.1 we perform a Kaluza-Klein

reduction of massive Type IIA supergravity to an N = 2 effective four-dimensional

theory by deriving the gravitino mass matrix. In section 8.2 we will go on to derive

the superpotential and Kähler potential of the resulting N = 1 effective theory and

show how the N = 2 multiplets break to N = 1 superfields. In section 8.3 we will

go through an explicit example of such a compactification on the SU(3)-structure

manifold SU(3)/U(1)×U(1). We will derive the effective theory for compactification

on this coset and find an explicit supersymmetric minimum where all the fields are

stabilised at non-trivial vacuum expectation values.

8.1 Reduction of the IIA action

In this section we will consider reducing the ten-dimensional action for massive

Type IIA supergravity on a general manifold with SU(3) structure. We will begin

by summarising Romans’ massive Type IIA supergravity. We will then show how to

decompose the ten-dimensional metric, Ricci scalar, dilaton, form fields and grav-

itino. Reducing the terms that give gravitino mass terms will lead to an effective
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N = 2 theory, which will be specified by the four dimensional gravitino mass matrix.

8.1.1 Action and field content

The action for massive Type IIA supergravity, first outlined in [136], in the Einstein

frame reads

S10
IIA =

∫ (
1

2
R̂ ⋆ 1− 1

4
dφ̂ ∧ ⋆dφ̂− 1

4
e−φ̂F̂3 ∧ ⋆F̂3 −

1

4
e

1

2
φ̂F̂4 ∧ ⋆F̂4

− m2e
3

2
φ̂B̂2 ∧ ⋆B̂2 −m2e

5

2
φ̂ ⋆ 1

+
1

4
dĈ3 ∧ dĈ3 ∧ B̂2 +

1

6
mdĈ3 ∧ B̂2 ∧ B̂2 ∧ B̂2 +

1

20
m2B̂2 ∧ B̂2 ∧ B̂2 ∧ B̂2 ∧ B̂2

)

+

∫ √
−ĝd10X

[
− Ψ̂MΓMNPDNΨ̂P − 1

2
λ̂ΓMDM λ̂− 1

2
(dφ̂)N λ̂Γ

MΓN Ψ̂M

− 1

96
e

1

4
φ̂(F̂4)PRST

(
Ψ̂
M

Γ[MΓPRSTΓN ]Ψ̂
N +

1

2
λ̂ΓMΓPRST Ψ̂M +

3

8
λ̂ΓPRST λ̂

)

+
1

24
e−

1

2
φ̂(F̂3)PRS

(
Ψ̂
M

Γ[MΓPRSΓN ]Γ11Ψ̂
N + λ̂ΓMΓPRSΓ11Ψ̂M

)

+
1

4
me

3

4
φ̂B̂PR

(
Ψ̂
M

Γ[MΓPRΓN ]Γ11Ψ̂
N +

3

4
λ̂ΓMΓPRΓ11Ψ̂M +

5

8
λ̂ΓPRΓ11λ̂

)

− 1

2
me

5

4
φ̂Ψ̂MΓMNΨ̂N − 5

4
me

5

4
φ̂λ̂ΓMΨ̂M +

21

16
me

5

4
φ̂λ̂λ̂

]
. (8.1.1)

This action is a generalisation of the Type IIA supergravity that is obtained from

the low-energy limit of Type IIA string theory, although some care must be taken

when taking the massless limit m→ 0 [136].

We now turn to notation and field content. The indices M,N . . . run from 0 to

9, and the ten dimensional space-time coordinates are XM . In the Neveau-Schwarz-

Neveau-Schwarz (NS-NS) sector the action contains the bosonic fields φ̂, B̂2, ĝ, which

are the ten-dimensional dilaton, a massive two-form and the metric, together with

the fermionic fields Ψ̂, λ̂, which are the gravitino and dilatino. The Ramond-Ramond

(RR) sector contains the three-form Ĉ3 and a one-form Â0 which is eliminated by a

gauge transformation of B̂2 as in [136]. The field strengths in the action are given
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by

F̂4 := dĈ3 +mB̂2 ∧ B̂2 , (8.1.2)

F̂3 := dB̂2 . (8.1.3)

Note that, in contrast to the massless case, F̂4 will not in general be closed, and that

due to the equations of motion neither field strength will in general be co-closed.

8.1.2 Decomposing the metric

We now consider reducing the ten dimensional action on a manifold endowed with

SU(3) structure. We split the ten-dimensional space-time coordinates as (XM) =

(xµ, yn) with external indices µ, ν . . . = 0, 1, 2, 3 and internal indices m,n . . . =

4 . . . 9. Reflecting the fact that we want the internal space to be compact with

compactification radii significantly smaller than any length scales we wish to consider

in four dimensions, we decompose the ten-dimensional metric into a sum of four-

dimensional and six-dimensional metrics

ĝMN(X)dXMdXN = ∆(y)gµν(x)dx
µdxν + gmn(x, y)dy

mdyn. (8.1.4)

∆(y) is a possible warp factor which will give the four dimensional metric dependence

on the internal coordinates. In section (8.2.1) we will discuss the most general

solution of massive Type IIA supergravity on manifolds with SU(3) structure [46]

that preserves N = 1 supersymmetry, where it was shown that ∆(y) is in fact

constant. We therefore consistently set it to unity. We note, however, that in

the case where supersymmetry is completely broken this warp factor may be non

vanishing. (8.1.4) also determines how the Dirac matrices decompose and so we have

Γµ := γµ ⊗ γ7 , Γm := γ ⊗ γm , (8.1.5)

where {γµ}, {γm} furnish representations of the four- and six-dimensional Dirac

matrices respectively.
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8.1.3 Ricci scalar reduction

Given the choice of metric ansatz above, the ten-dimensional Ricci scalar can be

written as

R̂ = R +R6 − gmn∇2gmn −
1

4
gmngpq (∂gmn · ∂gpq − 3∂gmp · ∂gnq) , (8.1.6)

where R,R6 are the four- and six-dimensional Ricci scalars respectively. ∂,∇ are

four-dimensional derivatives, with · representing contraction over four-dimensional

indices. We shall reduce both the Einstein-Hilbert and dilaton kinetic terms at the

same time, which are given from (8.1.1) as

S10
EH,D =

∫
d10x

√−g
(
1

2
R̂− 1

4
∂M φ̂∂

M φ̂

)
. (8.1.7)

Following the reduction of these terms, there are three field redefinitions for the

effective four-dimensional action that are needed to put the kinetic terms in canonical

form

gµν → V−1gµν , (8.1.8)

gmn → e−φ̂/2gmn , (8.1.9)

φ := φ̂− 1

2
lnV , (8.1.10)

where φ is the four-dimensional dilaton. This gives a final form for the four-

dimensional action of

S4
EH,D =

∫
d4x

√−g
(
1

2
R +

1

2
e3φ/2V−1/4R6 − ∂φ · ∂φ +

1

8V

∫
d6x

√
g∂gmn · ∂gmn

)
.

(8.1.11)

Our task is then to evaluate the internal integral in terms of the SU(3)-structure

forms, which is possible via the induced metric, as discussed in section 2.2.5. This

allows us to write

1

2
∂gmn · ∂gmn = −∂Jmn · ∂Jmn +

1

8
∂Ωmnp · ∂Ωmnp

, (8.1.12)

which we will use later in finding the Kähler potential.
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8.1.4 The Kaluza-Klein expansion forms

It was suggested in [73], and later developed in [137, 138] that a suitable basis for

Kaluza-Klein reduction on manifolds of SU(3) structure is given by two-forms ωi,

three-forms αA, β
A and four-forms ω̃i obeying the algebraic relations

∫
ωi ∧ ω̃j = δji ,

∫
αA ∧ βB = δBA ,

∫
αA ∧ αB =

∫
βA ∧ βB = 0 (8.1.13)

and the differential relations

dωi = EiAβ
A − FA

i αA ,

dαA = EiAω̃
i ,

dβA = FA
i ω̃

i ,

dω̃i = 0 , (8.1.14)

where the matrices EiA and FA
i are constant. In the limit where EiA, F

A
i → 0,

we recover the usual set of harmonic forms for a Calabi-Yau compactification:

{ωi, ω̃j}h1,1i,j=1, α0, β
0, {αa, βb}h2,1a,b=1, where the hp,qs are the Hodge numbers of the

manifold. For the case where EiA, F
A
i 6= 0, however, it has been shown in [138]

that the relevant forms do not carry topological information, and so there is no

metric-independent interpretation of the expansion forms.

Forms satisfying (8.1.13) and (8.1.14) were shown to be the correct basis for the

case of half-flat manifolds with Calabi-Yau mirror manifolds. It is natural to extend

their use to general half-flat manifolds, and it has been conjectured that such forms

could in fact be applied to general SU(3)-structure compactifications [138]. With

this understood, we shall proceed to make use of them whilst bearing in mind that

other bases for Kaluza-Klein reduction are not mathematically excluded.
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8.1.5 Decomposing the form fields and fluxes

We decompose the ten-dimensional form fields in the following way:

B̂2(X) = B(x) + B̊(y) + b(x, y) , (8.1.15)

Ĉ3(X) = C(x) + C̊(y) + c(x, y) . (8.1.16)

Here B and C are external two and three-forms respectively. B̊ and C̊ are internal

two and three-forms with no dependence on external co-ordinates. They give rise to

NS-NS and RR flux respectively. b and c are two and three-forms that depend on

both the internal and external manifolds. Using the basis (8.1.13) we can expand

them as

b(x, y) = bi(x)ωi(y) , (8.1.17)

c(x, y) = ξA(x)αA(y)− ξ̃A(x)β
A(y) + Ai(x) ∧ ωi(y) , (8.1.18)

where Ai are space-time vectors. Given our decomposition of the form fields, the

field strengths introduced in (8.1.3) can be written as

F̂4 := dĈ3 +mB̂2 ∧ B̂2

= d4(C + c) + d6(C̊ + c) +m(B + B̊ + b) ∧ (B + B̊ + b) ,

F̂3 := dB̂2

= d4(B + b) + d6(B̊ + b) , (8.1.19)

where d4 and d6 denote exterior derivatives on the external and internal spaces

respectively. We shall usually suppress these subscripts. Of particular interest are

the internal parts of the field strengths (fluxes) which are given by

F3 := d(B̊ + b) =: dB2 , (8.1.20)

F4 := d(C̊ + c) +m(B̊ + b) ∧ (B̊ + b) . (8.1.21)

In contrast to the usual situation for flux compactifications where fluxes obtain

their values entirely from the ‘background’ field strengths B̊ and C̊ (whose precise
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form is typically not known) the fluxes here can receive contributions from the

vacuum expectation values (vevs) of the fields b and c.1 This difference comes

partly because the exterior derivative does not automatically vanish on these fields

and partly because the flux F4 has a non-exact contribution from the second term

in (8.1.21). To distinguish between those fluxes that arise in the traditional way and

those that arise from vevs, we further define

H3 := dB̊ , G4 := dC̊ +mB̊ ∧ B̊ . (8.1.22)

Now, to preserve Poincaré invariance of the four-dimensional theory, all external

components of the field strengths must be proportional to the four-dimensional vol-

ume form. This restricts us to the only allowed external field strength of

(F̂4)µνρσ = fǫµνρσ , (8.1.23)

where, due to its similarity with a similar parameter in the eleven-dimensional case,

we will call f a Freud-Rubin parameter. The Freud-Rubin parameter can be cal-

culated in terms of the matter fields by considering the dualisation of the external

three-form C(x), which proceeds in a similar manner to chapter 5. Reducing the

relevant terms in (8.1.1) gives the four-dimensional action for C(x)

S
(4)
C =

∫

X4

[
−1

4
Ve 1

2
φ̂(dC +mB ∧ B) ∧ ⋆(dC +mB ∧B) +

1

2
AdC

]
, (8.1.24)

where

A :=

∫

Y

[
dC̊ ∧ B̊ + b ∧ dC̊ + dc ∧ B̊ +

1

3
mB̊ ∧ B̊ ∧ B̊ +mB̊ ∧ B̊ ∧ b

+mB̊ ∧ b ∧ b+ 1

3
mb ∧ b ∧ b

]
. (8.1.25)

1We note here that, as can be seen from (8.1.20) and (8.1.21), the splitting of the two types of

contribution to the flux is arbitrary. We could have defined B̊ and C̊ to include the vevs of the

scalars and then the scalars would have zero vevs by definition. We have, however, chosen to keep

the distinction between the two types more apparent by considering B̊ and C̊ as arising only from

sources other than the scalar vevs.
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To dualise C we follow the discussion in [139] and add a Lagrange multiplier λ

S
(4)
C =

∫

X

[
−1

4
Ve 1

2
φ̂(dC +mB ∧B) ∧ ⋆(dC +mB ∧ B) +

1

2
AdC +

1

2
λdC

]
.

(8.1.26)

Taking the equation of motion for C and substituting in (8.1.23) then gives

⋆(dC +mB ∧B) = V−1e−
1

2
φ̂ (A + λ) = −f , (8.1.27)

which allows us to write f in terms of the four-dimensional constant λ and the

integral (8.1.25). We note here that we do not need to perform a similar dualisation

for B̂2, since although a massless two-form would have been dual to a scalar, a

massive two-form will be dual to a massive vector, which we are not considering in

our analysis.

8.1.6 The geometrical moduli

We now turn to the fields arising from metric deformations. From general N = 2

supergravity considerations in chapter 4 and [107, 140], we know that the complex

structure deformations za span a special Kähler manifold Mcs with a unique holo-

morphic three-form Ωcs, which has periods ZA and FA(Z
A), that are homogeneous

functions of the zas. The Kähler potential is then given by the symplectic inner

product

Kcs := − ln i
〈
Ωcs,Ω

cs〉
= − ln i

[
Z̄AFA − ZAF̄A

]
=: − ln(||Ωcs||2V) . (8.1.28)

We can then use the forms in section 8.1.4 to expand Ωcs and re-write the Kähler

potential as below

Ωcs = ZAαA − FAβ
A , (8.1.29)

Kcs = − ln i

∫
Ωcs ∧ Ω

cs
. (8.1.30)

We are now interested in relating Ωcs to the holomorphic three-form Ω in (2.2.13).

Writing

Ωcs =
1√
8
||Ωcs||Ω , (8.1.31)
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gµν , A
0 gravitational multiplet

ξ0, ξ̃0, φ, B tensor multiplet

bi, vi, Ai vector multiplets

ξa, ξ̃a, z
a hypermultiplets

Table 8.1: Table showing the N = 2 multiplets in Type IIA theory

we see that inserting (8.1.31) into (8.1.30) and using (2.2.10) we recover (8.1.28). As

a check on this process, we note that inserting the relation (8.1.31) into (2.2.24) and

going to a local patch where we can write global holomorphic and anti-holomorphic

coordinates, the usual relations for metric variations are obtained

δgαβ = −iδJαβ , δgαβ = − 1

||Ωcs||2
(
δΩ

cs)
α
γδ(Ωcs)βγδ . (8.1.32)

The Kähler structure deformations vi arise in the usual way, after we expand J in

the forms from section 8.1.4, which gives

J = viωi , (8.1.33)

K = − ln
4

3
J ∧ J ∧ J . (8.1.34)

Inserting (8.1.17) into (8.1.1) and (8.1.33) into (8.1.11) we see that the Kähler struc-

ture deformations vi combine with the NS-NS scalars bi to span a special Kähler

manifold MSK with Kähler potential (8.1.34).

In summary, the geometrical moduli fields combine with the massless modes of

the matter fields to form N = 2 multiplets as shown in Table 8.1. The hypermulti-

plets span a quaternionic manifold MQ with a special Kähler submanifold Mcs and

the vector multiplets span the special Kähler manifold MK .

8.1.7 Decomposing the gravitino

Before we write down the mass matrix for the gravitini, we have to choose an ap-

propriate ansatz for the ten-dimensional gravitino. As discussed in section 2.2.3 the

internal manifold, which has SU(3) structure, supports a single globally defined,
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positive-chirality Weyl spinor η+ and its charge conjugate η−, which will have nega-

tive chirality. From standard arguments, we expect terms involving other spinors on

the internal space to lead to four-dimensional masses at the Kaluza-Klein scale, and

so they can be ignored. Given N = 2 supersymmetry, we further expect the external

degrees of freedom for the gravitino to be given by a single Dirac spinor which can

be decomposed as two independent Weyl spinors. The most general spinor ansatz

for the ten dimensional gravitino that involves these degrees of freedom is then

Ψ̂M = ψMα ⊗ (aαη+ + bαη−) + ψαM ⊗ (cαη+ + dαη−) , (8.1.35)

where the indices α, β are SU(2) indices, which imply positive chirality of a spinor

when lowered and negative chirality when raised. aα, bα, cα, dα are complex num-

bers. ψµ1,2 are thus four-dimensional gravitini with positive chirality and charge

conjugates ψ1,2
µ , while ψm1,2 are four-dimensional spin-1/2 fields with charge conju-

gates ψ1,2
m . Note that, as previously mentioned in chapter 5, in order not have cross

terms between the gravitini and the spin-1/2 fields the gravitini need to be redefined

with some combination of the spin-1/2 fields. This does not affect the mass of the

gravitini, however, and so will not be considered here.

There are two physical constraints that we impose on the ansatz (8.1.35) to re-

strict it. The first of these is that the ten-dimensional gravitino should be Majorana.

This gives the conditions

c1,2 = −(b1,2)∗ , d1,2 = −(a1,2)∗ . (8.1.36)

The second constraint is that the gravitino ansatz should yield canonical kinetic

terms when reduced, which in this case look like

S4
k.t. = −

∫ √−gd4x
(
ψ1
µγ

µρνDρψν2 + ψ2
µγ

µρνDρψν2

)
+ c.c. , (8.1.37)

where c.c. stands for charge conjugate. The kinetic term for the ten-dimensional

gravitino reads

S10
k.t. =

∫ √
−ĝd10X

[
−Ψ̂MΓMNPDNΨ̂P

]
. (8.1.38)
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Substituting (8.1.35) into (8.1.38) and performing the Weyl rescaling (8.1.8) we get

the result that the four-dimensional gravitino kinetic terms will only take the correct

form when

(aα)∗(aβ) + (bα)∗(bβ) =
1

2
V−1/2δαβ . (8.1.39)

Imposing (8.1.36) and (8.1.39), together with the absorption of a constant phase

into one of the spinor degrees of freedom, gives the following form for the gravitino

ansatz

Ψ̂M =
1

2
V−1/4

[
ψM1 ⊗

(√
1/2 + ε η+ +

√
1/2− ε eiθη−

)
(8.1.40)

+ ψM2 ⊗
(√

1/2− ε η+ −
√
1/2 + ε eiθη−

)]
+ c.c.

ε can be chosen at convenience by making a further spinor redefinition, while θ is

a phase that is not fixed by physical considerations and cannot be absorbed into a

spinor redefinition.

Rather than leave these remaining parameters in, we note that upon performing

the reduction of terms that give a gravitino mass, it is most convenient to choose

ε = 0, while θ can be eliminated by making the redefinitions below, which will not

affect the four-dimensional physics

Ω → eiθΩ , M3/2 → eiθM3/2 , (8.1.41)

where M3/2 is a gravitino mass. This gives us the working ansatz for the gravitino

Ψ̂M =
1

2
√
2
V−1/4 [ψM1 ⊗ (η+ + η−) + ψM2 ⊗ (η+ − η−)] + c.c. (8.1.42)

8.1.8 Gravitino mass matrix

We are interested in the gravitino mass matrix of theN = 2 four-dimensional theory.

The terms in the ten-dimensional action (8.1.1) which will contribute to the gravitino
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masses are

S10
mass =

∫ √
−ĝd10X

[
− Ψ̂µΓ

µnνDnΨ̂ν

− 1

96
e

1

4
φ̂(F̂4)prstΨ̂

µ

Γ[µΓ
prstΓν]Ψ̂

ν

− 1

96
e

1

4
φ̂(F̂4)ρσδǫΨ̂

µ

Γ[µΓ
ρσδǫΓν]Ψ̂

ν

+
1

24
e−

1

2
φ̂(F̂3)prsΨ̂

µ

Γ[µΓ
prsΓν]Γ11Ψ̂

ν

+
1

4
me

3

4
φ̂B̂prΨ̂

µ

Γ[µΓ
prΓν]Γ11Ψ̂

ν

− 1

2
me

5

4
φ̂Ψ̂µΓ

µνΨ̂ν

]
. (8.1.43)

Using the ansatz (8.1.42), the definitions of J and Ω and the relations in section

2.2.3 as well as the discussion in section 8.1.5 we can derive the resulting four-

dimensional masses. After performing the appropriate rescalings as in section 8.1.3

the mass terms can be written as

S4
mass =

∫ √−gd4x
[
Sαβψµαγ

µνψβν + (Sα
β)∗ψαµγ

µνψνβ
]
, (8.1.44)

where α, β = 1, 2 label the gravitini. The mass matrix S is given by

S =


 M1 D

D M2


 (8.1.45)

with terms defined as below

M1 :=
−i
8
e2φV− 1

2

[
λ+

∫

Y

(
dC̊ ∧ B̊ +

1

3
mB̊ ∧ B̊ ∧ B̊

)
+

∫

Y

(dT +H3) ∧ U

+

∫

Y

(
1

3
mT ∧ T ∧ T +mB̊ ∧ T ∧ T +G4 ∧ T

)]
,

M2 := −M1|U→U ,

D :=
−i
8
e2φV− 1

2

∫

Y

(dT +H3) ∧ (iV− 1

2 e−φΩ+) ,

T := b− iJ ,

U := c+ iV− 1

2 e−φΩ− = c+ i
√
8V− 1

2 ||Ωcs||−1e−φΩcs− , (8.1.46)

where Ω+ and Ω− are the real and imaginary parts of Ω respectively. The four di-

mensional effective theory will be an N = 2 gauged supergravity. Taking the general



127

form for a gauged supergravity found in [107] we see that using their conventions

the gravitino mass matrix is given by

Sαβ =
i

2
P x
Aσ

x
αβL

A , (8.1.47)

where the P x
A are prepotentials, σxαβ are Pauli matrices and LA := e

1

2
Kcs

ZA, where

Kcs, ZA are defined in section 8.1.6. Comparing (8.1.47) with (8.1.46) we can com-

pletely determine the Kähler potential of the vector multiplet sector and the prepo-

tentials of the hypermultiplet sector. We will not go on to do this because in the

next section we will see that quite generally this theory will not preserve N = 2

supersymmetry in the vacuum and we will instead have to consider specifying an

N = 1 effective theory.

8.2 Breaking to N = 1

In this section we will explore the implications of the form of the gravitino mass

matrix found in the previous section. In order to do this we will specialise to the

case where the internal manifold is a particular class of half-flat manifolds. To

motivate this choice we will review the most general supergravity solution of massive

Type IIA on manifolds with SU(3) structure that preserves some supersymmetry

constructed in [46]. We will then go on to show that for that class of manifold the

low energy theory will not preserve N = 2 supersymmetry in the vacuum and in

fact will exhibit spontaneous partial supersymmetry breaking to N = 1. In section

8.2.3 we will derive the effective action of the resulting N = 1 theory.

8.2.1 Ten-dimensional massive IIA solutions

In general, the reduction of Type-II supergravities on spaces of SU(3) structure

should yield an N = 2 supergravity. There are, however, solutions to (massive) IIA

supergravity on manifolds of SU(3) structure that preserve supercharges consistent

with N = 1 supersymmetry in four dimensions. These were first considered in
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[35, 39, 45], and later generalised in [46]; we shall therefore refer to them as BCLT

(Behrndt-Cvetic-Lust-Tsimpis) solutions. We present here a brief summary of the

more general solution in ten-dimensional language.

The metric takes the form of (8.1.4), with ∆ constant, while the fluxes and form

fields for the solution take the values

mB̂2 =
1

18
fe−φ̂/2J +mB̃ ,

F̂3 =
4

5
me7φ̂/4Ω+ ,

F̂4 = f ⋆ 14 + 3

5
meφ̂J ∧ J , (8.2.1)

where f and φ̂ are constant. B̃ encodes the non-singlet part of B̂2 and so obeys

B̃ ∧ J ∧ J = 0, but is otherwise quite general. A key feature of the solution is that

all torsion classes of the compact space vanish except for

W1 = −i4
9
feφ̂/4 ,

W2 = −2ime3φ̂/4B̃ . (8.2.2)

Manifolds specified by the torsion classes (8.2.2) are half-flat, and will play an im-

portant role in upcoming sections where we will restrict the internal manifold to lie

in this class. We note here that we can always use this type of ‘internal’ information

from a solution in constructing four-dimensional effective actions.

It is informative to see how the fluxes arise in this solution. Considering the

torsion classes (8.2.2) and the relation (8.1.14) and comparing the fluxes (8.1.20) and

(8.1.21) with (8.2.1), we see that the solution corresponds precisely to the case where

the fluxes arise purely from the scalar vevs. This will be an important observation

later on when we consider what types of fluxes break supersymmetry. A further

result of the solution that we shall make use of is that

M3/2 = ∆

(
α

|α|

)−2 [
−1

5
me5φ̂/4 +

i

6
feφ̂/4

]
, (8.2.3)

where M3/2 is the value of the four-dimensional gravitino mass for this solution and

α is a constant related to the spinor phase θ that we discussed in section 8.1.7 and

can be consistently set to unity.
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8.2.2 Spontaneous partial supersymmetry breaking

We now want to consider the case where the D terms in the mass matrix vanish.

From (8.1.46) and (8.2.2) we see that for half flat manifolds dΩ+ = 0 and so the D

terms indeed vanish. The mass matrix diagonalises under this constraint and we see

that there appears a mass gap ∆M2 between the two gravitini given by

∆M2 = |M2|2 − |M1|2 ,

=
1

32
e3φV−1

[∫

Y

F3 ∧ Ω−

∫

Y

(
1

3
mJ ∧ J ∧ J + F4 ∧ J

)

+

∫

Y

dJ ∧ Ω−

∫

Y

(
1

6
feφ̂/2J ∧ J ∧ J +mB2 ∧ J ∧ J

)]
. (8.2.4)

It is interesting to consider how this mass gap depends on the fluxes. In massless

Type IIA supergravity such a mass gap requires both RR and NS-NS fluxes to

be non-vanishing [141] (despite the usual subtleties in doing so, is it possible to

see this by taking the limits dJ,m → 0 in (8.2.4) above). We see that this is

not the case here. Either type of flux by itself will generate a mass gap due to a

non-vanishing Freud-Rubin parameter 2. Hence, given general fluxes, the masses

of the gravitini are non-degenerate. This implies that we no longer have N = 2

supersymmetry. Indeed such a mass gap corresponds to partial supersymmetry

breaking with N = 2 → N = 1 for a physically massless lighter gravitino or full

supersymmetry breaking with N = 2 → N = 0 for a physically massive lighter

gravitino

In a Minkowski background, physically massless particles simply have zero mass.

In anti-de Sitter (AdS) backgrounds, however, physically massless particles can have

non-zero masses [142–144]. This is the case here and so although the masses M1 and

M2 in (8.1.46) are non-zero for non vanishing fluxes one of them may still be physi-

cally massless. As we saw in section 8.2.1 fluxes which arise from vevs can preserve

N = 1 supersymmetry and therefore have a physically massless gravitino. We can

2The case where the Freud-Rubin parameter vanishes will not be a proper supergravity solution

and so we do not consider it here.
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then check that one of our gravitini is indeed physically massless by substituting the

solution described in section 8.2.1 into our mass matrix (8.1.46) and checking that

one of the gravitini has a mass corresponding to the gravitino mass found in the

solution.

Putting the solution (8.2.1) into the gravitino mass matrix and taking care with

the rescalings in section 8.1.3, we find firstly that D = 0. This means that ψ1,2 are

both mass eigenstates, with eigenvalues that obey

M1 =
1

5
me5φ̂/4 − i

6
feφ̂/4 ,

M2 = −3M1 . (8.2.5)

Comparison with (8.2.3) gives that |M1| = |M3/2|. We therefore see that for the

BCLT background, a mass gap opens up for the two gravitini such that the ψ1
µ is

physically massless and ψ2
µ is physically massive. With a slight abuse of terminology

we shall therefore refer to the lower mass gravitino as massless and the higher mass

one as massive.

For an inexhaustive list of literature discussing partial supersymmetry breaking

see [108, 141, 145–149]. Following their discussions we briefly summarise how the

matter sector of the theory is affected by the breaking. In the N = 2 theory the

fields were grouped into multiplets as described in Table 8.1. Once supersymmetry

is broken these multiplets should split up into N = 1 multiplets. The N = 2 gravi-

tational multiplet will need to split into a N = 1 ‘massless’ gravitational multiplet

and a ‘massive’ spin-3
2
multiplet

(
gµν , ψ1, ψ2, A

0
)
→ massless (gµν , ψ1) + massive

(
ψ2, A

0, A1, φ1, φ2

)
. (8.2.6)

Here A1 is a vector field which has to come from one of the vector multiplets and φ1

and φ2 are spin-
1
2
fermions which come from a hypermultiplet. The NV N = 2 vector

multiplets break into nv massless N = 1 vector multiplets and nc massless chiral

multiplets (with the other fields forming massive multiplets) such that the scalar

components of the chiral multiplets span a Kähler manifold MKV ⊂ MSK. The NH
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N = 2 hypermultiplets break into nh massless N = 1 chiral multiplets and NH −nh

massive chiral multiplets with nh ≤ 1
2
NH . The scalar components of the massless

chiral multiplets span a Kähler manifold MKH ⊂ MQ. With mass gaps appearing

throughout the matter spectrum we can consider working with an effective N = 1

theory by integrating out the higher physical mass modes. For the case of scalars

and fermions this amounts to setting them to zero thereby truncating the matter

spectrum of the theory. It is not immediately clear from the above considerations

exactly which fields to truncate, however we will return to this question in section

8.2.3 when we construct the N = 1 effective theory.

It is interesting to consider the case where B̊ = 0 = C̊ and the flux arises solely

from the vevs of the scalar fields. Then any vacuum of the truncated N = 1 theory

where the scalars have non-vanishing vevs for which ∆M2 6= 0 will indeed be a valid

vacuum of the full N = 2 theory. We will use this observation to find such vacua in

section 8.3.2.

A further reason for taking B̊ = 0 = C̊ comes from the consideration of section

6.3.4. Since in that section, the flux G decoupled from the low-energy degrees of

freedom, we might reasonably expect the fluxes to do the same here, although a

full analysis of mass operators in the BCLT background would involve a lengthy

calculation. We further believe that the tadpoles discussed in [92] can be avoided

by this decoupling.

8.2.3 The N = 1 effective theory

We are interested in constructing the effective N = 1 theory of the physically mass-

less modes. To do this we must explicitly determine how the N = 2 multiplets in

Table 8.1 break into N = 1 superfields and which of these superfields are physically

massive or massless. The form of (8.1.46) suggests that T and U are the correct

variables to expand in the chiral superfields. To prove this is the case we will need

to show that these superfields span a Kähler manifold with a Kähler potential which

matches the one that will be derived from the gravitino mass.
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We now turn to the calculation of theN = 1 superpotential and Kähler potential.

In the effective N = 1 theory the remaining gravitino mass can be written as

M3/2 = e
1

2
KW , (8.2.7)

where K is the Kähler potential andW is the superpotential of the theory. It is only

this Kähler-invariant combination of W and K that has any physical significance,

although it is still natural to decompose (8.2.7) as

e
1

2
K =

e2φ√
8V 1

2

, (8.2.8)

W =
−i√
8

[
λ+

∫

Y

(
dC̊ ∧ B̊ +

1

3
mB̊ ∧ B̊ ∧ B̊

)
(8.2.9)

+

∫

Y

(
1

3
mT ∧ T ∧ T +mB̊ ∧ T ∧ T +G ∧ T + (dT +H) ∧ U

)]
.

This gives a general form for the superpotential and Kähler potential coming from

the N = 1 effective action following spontaneous breaking of the N = 2 theory for

massive IIA on manifolds of SU(3) structure. The theory will also have D-terms

corresponding to the off-diagonal elements of the N = 2 gravitno mass matrix, D

in (8.1.46), which vanish for half-flat manifolds. We will now express W and K in

four-dimensional language, assuming that we can expand in the forms of section

8.1.4 so that

T = T iωi , U = UAαA − ŨAβ
A . (8.2.10)

We can then interpret T i, UA, ŨA as the scalar components of chiral superfields, of

which the superpotential should be a holomorphic function. Substituting (8.2.10)

into (8.2.9), we can write the superpotential as

W =
−i√
8

[
λ′ +GiT

i +BijT
iT j + kijkT

iT jT k +HAU
A + H̃AŨA

+(FA
i ŨA −EiAU

A)T i
]
, (8.2.11)

where λ′, Gi, Bij, kijk, HA, H̃
A are four-dimensional constants given by six-dimensional
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integrals

λ′ = λ+
∫
Y
(dB̊ ∧ C̊ + 1

3
mB̊ ∧ B̊ ∧ B̊) , kijk = 1

3
m
∫
Y
ωi ∧ ωj ∧ ωk ,

Bij = m
∫
Y
B̊ ∧ ωi ∧ ωj , Gi =

∫
Y
G ∧ ωi ,

HA =
∫
Y
H ∧ αA , H̃A =

∫
Y
H ∧ βA .

(8.2.12)

As was discussed in section 8.2.2 turning on fluxes B̊, C̊ 6= 0 will, in general, break

supersymmetry further. In the case where supersymmetry is completely broken it

does not make sense to talk about superpotentials and superfields. If these fluxes are

small relative to the flux originating from the scalar vevs, however, then they can

be perturbatively included in the superpotentials (8.2.9) and (8.2.11). We therefore

display (8.2.11) as an indication of the class of effective theories that can be obtained

from the compactification of massive IIA supergravity on spaces of SU(3) structure.

These may be of use in, for example, studying 1
2
-BPS states of such theories as in [1].

To be sure of retaining N = 1 supersymmetry we will only consider fluxes origi-

nating from scalar vevs from now on. In that case the superpotential can be written

as

W =
−i√
8

[
λ+

∫

Y

(
1

3
mT ∧ T ∧ T + dT ∧ U

)]
. (8.2.13)

Having determined the superpotential of the effective theory we can consider the

Kähler potential. To prove that (8.2.8) is indeed the correct Kähler potential of

the truncated theory we need to explicitly perform the truncation and show that

the remaining fields form N = 1 superfields, T i, UA, ŨA, with the corresponding

metric. In the Kähler moduli sector it was shown in section 8.1.5 that indeed the

scalars bi and vi combine into T i = bi − ivi with Kähler potential (8.1.34). In the

hypermultiplet sector we have NH hypermultiplets with 4NH real scalar components

which are to be truncated to nh chiral multiplets with 2nh real components. It seems

that the correct superfields to form are then

UA = ξA + i
√
8V− 1

2 e−φIm
(
||Ωcs||−1ZA

)
, (8.2.14)

ŨA = ξ̃A + i
√
8V− 1

2 e−φIm
(
||Ωcs||−1FA

)
. (8.2.15)



134

Indeed this form for the superfields has been proposed in [150], and also derived

in [151] for the case where the partial supersymmetry breaking is induced through

an orientifold projection. In our case, however, things are more simple. The internal

manifold is a half-flat manifold which has torsion classes

Re(W1) = Re(W2) = W3 = W4 = W5 = 0 , (8.2.16)

so the general relations for the proposed Kaluza-Klein basis (8.1.14) reduce to

dωi = Eiβ0 ,

dα0 = Eiω̃
i ,

dω̃i = 0 = dβA = dαA 6=0 , (8.2.17)

for Ei := E0i. Applying (8.2.17) to (2.2.14) we arrive at

dJ = Eiv
iβ0 = −3

2
Im (W1) Re

(
Ω
)
, (8.2.18)

dΩ = Z0Eiω̃
i = iIm (W1) J ∧ J + iIm (W2) ∧ J . (8.2.19)

Equation (8.2.18) is the motivation behind the statement that the special class of half

flat manifolds under consideration do not have any complex structure deformations

associated with them. This means that we only have the tensor multiplet and so

we only have one chiral superfield left in the truncated theory. This superfield will

contain the dilaton φ and either ξ0 or ξ̃0. To decide which of the two is to be truncated

we can refer to (8.2.19). We see that for our case, Re(Ω) ∝ β0 and Im(Ω) ∝ α0. And

therefore since only the imaginary part of Ω appears in the effective N = 1 theory

we should truncate the field associated with β0, that is ξ̃0. Using the restrictions

discussed above we can write the remaining superfield as

U0 = ξ0 + ie−φ
(−4iZ0

F0

) 1

2

. (8.2.20)

Now inserting (8.1.18) into (8.1.1) we get the kinetic term

SUkin =

∫ √−gd4x
[
−
(

F0

−4iZ0

)
e2φ∂µ

(
ξ0 + ie−φ

(−4iZ0

F0

) 1

2

)

×∂µ
(
ξ0 − ie−φ

(−4iZ0

F0

) 1

2

)]
. (8.2.21)
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We see that taking the second derivatives,

−∂U0∂Ū0 ln

[
e4φ

8V

]
=

(
F0

−4iZ0

)
e2φ , (8.2.22)

and so (8.2.8) is indeed the correct Kähler potential and (8.2.20) is the correct

superfield.

8.3 An example: SU(3)/U(1)× U(1)

Having derived in section 8.2.3 the form of the N = 1 effective theory on a general

manifold with torsion classes (8.2.16), in this section we will look at an explicit

example of such a manifold. Denoting the internal manifold by Y we will consider

the coset space

Y =
SU(3)

U(1)× U(1)
. (8.3.1)

In section 8.3.1 we will derive explicit expressions for J , Ω and the expansion forms

on Y . We will then consider the effective theory and derive the superpotential

and Kähler potential. Finally we will find supersymmetric minima where all the

superfields have non-trivial expectation values.

8.3.1 Geometry of the coset

In general, a coset manifold Y := G/H, where H ⊂ G, can be given a non-coordinate

basis by taking the generators of G and removing the generators of H in a way that

is consistent with the embedding of H in G. We can then construct tensor products

of this basis, and it turns out that tensors on the coset are heavily restricted by

imposing that they remain invariant under the action of any element of G. This

restriction allows us to write the most general G-invariant tensors that can exist on

the coset.

The particular case SU(3)/U(1)× U(1) has been considered in [152], where the

two U(1) subgroups are naturally identified with the diagonal Gell-Mann matrices.
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It was shown that the most general G-invariant two- and three-forms can be written

as

A(2) = αe12 + βe34 + γe56 ,

A(3) = δ(e136 − e145 + e235 + e246) + ǫ(e135 + e146 − e236 + e245) , (8.3.2)

where the {em} form a basis on the coset space, α . . . ǫ are complex coefficients and

we define em1...mp ≡ em1 ∧ . . . ∧ emp . Furthermore, by considering the most general

G-invariant symmetric two-tensor on Y , we can define the metric on the coset space

to be

gmne
m⊗en := a(e1⊗e1+e2⊗e2)+b(e3⊗e3+e4⊗e4)+c(e5⊗e5+e6⊗e6) , (8.3.3)

where a, b, c are real. These three real parameters are the metric moduli of the space

Y , and we would like to relate them to the Kähler and Complex Structure forms. Our

first step in doing this will be to construct specialisations of the two- and three-forms

in (8.3.2) that obey (2.2.10), and will therefore be suitable for interpretation as the

SU(3)-structure forms. Since some of the conditions of (8.3.2) involve the metric,

constructing suitable forms also involves (8.3.3), and in fact uniquely determines the

Kähler and Complex Structure forms in terms of a, b, c. A check on this procedure

comes from (2.2.21). Imposing these constraints the SU(3)-structure forms are given

by

J = −ae12 + be34 − ce56 , (8.3.4)

Ω = eiϕ
√
abc
[(
e135 + e146 − e236 + e245

)
− i
(
e136 − e145 + e235 + e246

)]
,

where ϕ is an arbitrary phase which we can set to zero with no loss of generality, a

choice that corresponds to choosing the torsion class conventions in (2.2.14). Now,

since the basis on Y is just a subset of the generators of G, their derivatives will

be given in terms of the structure constants for G, and provided the division by H
has been performed adequately these derivatives should remain within Y . Taking
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derivatives of the forms in (8.3.5) thus gives—as a specialisation of the result in [152]

dJ = −(a + b+ c)(e135 + e146 − e236 + e245) ,

dΩ = 4i
√
abc(e1256 − e1234 − e3456) . (8.3.5)

Comparing (8.3.5) with (2.2.14), we see that Y belongs to the special class of half-

flat manifolds defined in (8.2.16). Having found the appropriate forms and relations

for J and Ω we can go on to look for a basis of expansion forms that satisfy (8.1.13)

and (8.2.17). A consistent set of forms is given by

ω1 = −e12, ω2 = e34, ω3 = −e56 , (8.3.6)

ω̃1 = −e3456, ω̃2 = e1256, ω̃3 = −e1234 , (8.3.7)

α0 = −e136 + e145 − e235 − e246 , (8.3.8)

β0 = −1

4

(
e135 + e146 − e236 + e245

)
. (8.3.9)

Note that we have made the choice E1 = E2 = E3 = 4, however it would have been

possible to choose different values for these parameters had we redefined the forms

accordingly, and so this choice is simply for convenience. We have also chosen the

normalisation convention
∫
Y
e123456 = 1 so that the volume of Y is given by

V = abc . (8.3.10)

The structure forms J and Ω can be written in terms of this basis as

J = aω1 + bω2 + cω3 ,

Ω =
√
abc
(
iα0 − 4β0

)
. (8.3.11)

It is also worth noting that the torsion classes can be evaluated explicitly in this

example, and are given by

W1 =
2i

3

a + b+ c√
abc

, (8.3.12)

W2 =
4i

3

1√
abc

[
a(2a− b− c)e12 − b(2b− a− c)e34 + c(2c− a− b)e56

]
.
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We have therefore been able to derive all the physically relevant quantities in terms

of the real metric parameters a, b, c. We can now derive the effective theory arising

from a compactification on the space Y .

8.3.2 The effective theory

In section 8.3.1 above we showed that the space Y has three moduli associated with

Kähler structure deformations. By comparing (8.1.33) with (8.3.11), we are able to

relate them to the metric parameters

v1 = a, v2 = b, v3 = c . (8.3.13)

There were no geometric moduli associated with complex structure deformations.

In the effective theory we therefore have three superfields T 1, T 2, T 3 from the Kähler

structure sector and the superfield U0 coming from the tensor multiplet. Using the

decomposition of Ωcs in (8.1.29), together with (8.1.31) and (8.3.11), gives F0 =

−4iZ0, and so the superfields are

T i = bi − ivi ,

U0 = ξ0 + ie−φ . (8.3.14)

Our knowledge of the coset space also allows us to evaluate the superpotential

(8.2.13) and the Kähler potential (8.2.8), which become

W =
−i√
8

[
λ+ 2mT 1T 2T 3 − 4

(
T 1 + T 2 + T 3

)
U0
]
, (8.3.15)

K = −4 ln

[
−i1

2

(
U0 − Ū0

)]
− ln

[
−i
(
T 1 − T̄ 1

) (
T 2 − T̄ 2

) (
T 3 − T̄ 3

)]
.

(8.3.16)

We have now completely specified the N = 1 low energy effective theory on the

space Y . It is then natural to ask whether this theory has a stable vacuum. It is

a well known result that supersymmetric minima are stable vacua. We therefore
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look for such a minimum by examining the F-term equations for the superpotential

(8.3.15), which read

DT 1W = 2mT 2T 3 − 4U0 − W

T 1 − T̄ 1
= 0 ,

DT 2W = 2mT 1T 3 − 4U0 − W

T 2 − T̄ 2
= 0 ,

DT 3W = 2mT 1T 2 − 4U0 − W

T 3 − T̄ 3
= 0 ,

DU0W = −4
(
T 1 + T 2 + T 3

)
− 4W

U0 − Ū0
= 0 , (8.3.17)

where the Kähler covariant derivative is given by DT := ∂T + (∂TK). A solution

to these equations can be found by setting T 1 = T 2 = T 3 =: T . In this case the

equations simplify to the form

U0 =
1

24TT

(
−T (λ+ 2mT

3
) + 3T (λ+ 2mT 3)

)
, (8.3.18)

0 = −6mT 2T
3 − λTT − 2mTT 4 + 3λT 2 − 2λT

2 − 4mT 3T
2
+ 12mTT

4
.

A physically sensible solution to (8.3.18) should satisfy m, eK, e−φ > 0. Imposing

these conditions gives a unique solution with λ > 0 where the vacuum expectation

values for the superfield components are

〈
b1
〉
=
〈
b2
〉
=
〈
b3
〉

= −5
2

3

20

(
λ

m

) 1

3

,

〈
v1
〉
=
〈
v2
〉
=
〈
v3
〉

=

√
35

1

6

4

(
λ

m

) 1

3

,

〈
ξ0
〉

= −5
1

3

20

(
mλ2

) 1

3 ,

〈
e−φ
〉

=

√
35

5

6

20

(
mλ2

) 1

3 . (8.3.19)

It is easily shown that these values for the scalars satisfy the BCLT equations (8.2.1).

The scalar potential is

V = eK
[
KIJDIWDJW − 3 |W |2

]
, (8.3.20)

where I, J . . . = 0, 1, 2, 3 label the superfields and KIJ̄ := ∂I∂J̄K has inverse KIJ̄ .

Substituting (8.3.19), (8.3.16) and (8.3.15) into (8.3.20) we see that the cosmological
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constant in the vacuum is given by

〈V 〉 = −3eK|W |2 =: Λ ≃ −29.0

(mλ5)
1

3

, (8.3.21)

and so the solution has an anti-de Sitter background. Having found a stable vacuum

of the effective N = 1 theory the discussion in section 8.2.2 further implies that this

is also a stable vacuum of the full N = 2 theory. The fact that it is a supersymmetric

anti-de Sitter vacuum means that it is stable even if it is a saddle point [142, 143].

The moduli are therefore all stabilised without the use of any non-perturbative

effects like instantons and gaugino condensation, or orientifold projections. To our

knowledge this is the first example of such a vacuum. Because the stable vacuum

arises from vevs of the scalar fields there is no freedom in choosing the flux parame-

ters. The vacuum is in fact determined in terms of only two real parameters λ and

m. This sits in contrast with the case of fluxes arising from branes, where the only

handle on the generation of flux parameters comes from statistical ‘landscape’-type

considerations.

We may, however, eventually wish to consider uplifting the vacuum to a Minkowski

or a de Sitter vacuum through a mechanism similar to the one used in the KKLT

model [12]. Because such a possible uplift will most probably involve non-perturbative

effects and new terms in the superpotential it may not leave the form of our solution

unchanged. Nevertheless if an uplift leaves the solution unchanged the question of

whether it is a full minimum or a saddle becomes important. We will therefore try

to answer this question. We can construct a Hermitian block matrix from the second

derivatives of the potential with respect to the superfields evaluated at the solution

H :=


 VIJ VIJ

VIJ VJI


 , (8.3.22)

VIJ = eKKLM∂L (DIW ) ∂M
(
DJW

)
− 2eKKIJ |W |2 , (8.3.23)

VIJ = −WeK∂I (DJW ) . (8.3.24)

Then for the solution to be a local minimum in all the directions associated with

the components of the superfields the matrix H must be positive definite. Inserting
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Figure 8.1: Plot showing the scalar potential for the directions ξ0 and e−φ (denoted

as xi and D respectively).

the solution (8.3.19) into (8.3.24) we find that out of the eight real eigenvalues

only six are positive. This means that there are two real directions for which the

potential is at a maximum. We can determine these directions by looking at plots

of the potential. Figure 8.1 shows the scalar potential for the two components of

the U0 (axio-dilaton) superfield at constant T i with λ = m = 1. We see that the

potential forms a minimum with respect these directions and so the maxima must

be in directions associated with the T i superfields. This raises the possibility that

internal spaces with different geometrical structure to Y may evade this problem. To

illustrate this we may consider the potential with the constraint T 1,2,3 =: T̃ =: b̃− iṽ
imposed. This would correspond to an internal space with a single Kähler modulus,

an example of which might be the coset G2/SU(3). Figure 8.2 shows the scalar

potential for the directions associated with T at constant U0. We see that again the

potential forms a full minimum. Hence, although this is only an indication of how

things might go, it provides motivation for the possibility of other spaces giving full

minima and not saddles.
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Figure 8.2: Plot showing the scalar potential for the directions b̃ and ṽ (denoted as

b∼ and v∼ respectively).
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Chapter 9

Conclusions

In this thesis, we have outlined some of the relatively new mathematics of G-

structures as well as the more established concepts of special holonomy, both of

which are relevant for the compactification of string- and M-theory. The use of tor-

sion classes to classify supersymmetric supergravity solutions was shown, as was the

relationship between G-structures and supersymmetry, and also the relationship be-

tween the G-structures, orientation and metric on a manifold. While the formalism

of G-structures does not ‘do the work’ of solving either the equations of motion or

the Killing spinor equations, they provide an elegant language in which to discuss

such solutions.

We presented eleven-dimensional supergravity, which is both the dimensionally

maximal supergravity and may be the low-energy limit of an eleven-dimensional

quantum gravity obtained from the supermembrane worldvolume theory. This the-

ory should be linked to the five known string theories by a set of dualities that we

discussed. As well as membranes, a large number of different branes exist within

string- and M-theory, and these play a crucial role in both considerations of non-

perturbative formulations of string theory and in string- and M-theory phenomenol-

ogy.

From the two main M-theory compactifications—Ricci-flat and Freund-Rubin—

we selected the G2 cases as the most interesting due to their preservation of N =



144

1 supersymmetry in four dimensions. This amount of supersymmetry has many

phenomenological advantages, including solution to the hierarchy problem and more

readily obtained stable vacua, without the problems of higher supersymmetries such

as lack of chiral representations.

There was a discussion in chapter 4 of both N = 1 and N = 2 supergravity,

with emphasis on the scalar sector. There was discussion of generic Kaluza-Klein

reductions of fields in higher dimensions, together with discussion of many of the

problems faced in string- and M-theory phenomenology. A variety of different so-

lutions to these problems exist, with fluxes (sometimes via the branes that source

these fluxes) playing an important role.

We went on to present some formal results about G2, then analysed M-theory

compactifications on manifolds with G2 structure. Using the globally defined spinor

which exists on such manifolds one can define the four-dimensional gravitino and

compute explicitly the terms which give rise to the gravitino mass term in four

dimensions. From this we were able to derive the general form for the superpo-

tential which appears in M-theory compactifications on manifolds with G2 structure

(5.2.23). This formula generalises in a natural way the one that was derived for man-

ifolds with G2 holonomy in [15] which was derived based on the conjecture made

in [83].

Even if a compact formula can be written for the superpotential, however, its

expression in terms of the low energy fields is not known unless one specifies further

the structure of the internal manifold. This was the purpose of chapter 6 where

we derived the effective action that appears from compactifications of M-theory on

manifolds with weak G2 holonomy. It turns out that the possible metric variations

on such manifolds are in one to one correspondence with the three-forms {α} on the

weak G2 manifold satisfying dα = −τ ⋆ α
Furthermore, fluctuations of the three-form field Â3 that are proportional to such

forms lead to scalar fields in four dimensions that are massless in the background

AdS solution. Thus, as for the case of manifolds with G2 holonomy, the metric
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fluctuations compatible with the structure and the massless modes of the three-form

field Â3 pair up into complex fields which will be the scalar components of the chiral

superfields in four dimensions. The superpotential appears to be quadratic in the

superfields (6.3.12) and we have shown by an explicit calculation that the potential

which can be derived from this superpotential matches the one which appears from

the compactification on the weak G2 manifold.

In chapter 7, we studied M-theory compactifications on G2-holonomy spaces

in the presence of flux, both from the viewpoint of the eleven-dimensional theory

and the associated four-dimensional supergravity theories. We solved the eleven-

dimensional Killing spinor equations to linear order in flux and obtained G2 domain

walls, consisting of a warped product of a deformed G2 space and a domain wall

in four-dimensional space-time. The zero-mode parts of these solutions were repro-

duced, to all orders in flux, by solving the Killing spinor equations of the associated

effective four-dimensional N = 1 supergravity theories, obtained by reducing M-

theory on G2 spaces with flux. From this four-dimensional perspective, the solutions

are domain walls which couple to the flux superpotential and with moduli varying

non-trivially along the transverse direction. This transverse variation of the scalar

fields can be seen as a path in the moduli space of G2 metrics or, in other words, a

variation of the internal G2 space as one goes along the transverse direction.

We have also shown that these domain wall solutions can be sourced by either

a membrane in four-dimensional space-time or an M5-brane wrapping a 3-cycle

within the G2 space. This leads to an interpretation of our solutions as the simplest

manifestation of an M-theory ‘topological defect’ membrane or wrapped fivebrane

appearing in a four-dimensional universe. We believe that studying such defects,

arising from wrapped branes, in the context of M-theory cosmology is an interesting

problem.

In chapter 8 we showed how the N = 2 four-dimensional effective action for

(massive) IIA supergravity on manifolds of SU(3) structure can be constructed from

the reduction of fermionic terms. We then went on to show that it is possible to
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break N = 2 → N = 1 spontaneously by having the scalar fields pick up vevs. We

derived the most general N = 1 effective theory that can be obtained from such

breaking.

Using an example manifold we showed how it is possible to stabilise all the

fields in the vacuum without the use of any non-perturbative effects or orientifold

projections. This is the first example we are aware of where moduli are stabilised in

this manner. The real quantities λ,m are the only free parameters in our solution,

which is far fewer than are usually required in moduli stabilisation.

9.1 Directions for future work

For all of the compactifications under consideration, it would be worth looking

through (further) explicit examples of the manifolds under consideration to give

some idea as to the possibilities for quantities derived in general.

The phenomenological viability of the models considered in chapters 6 and 8 is

not very clear at the moment, mainly because of the large AdS curvatures of the four-

dimensional spaces involved. Explicit examples of weak G2 compactifications may,

however, still be relevant in the process of obtaining the Standard Model spectrum

from M-theory. It is well known that for chiral fermions to appear one needs conical

singularities on the internal space [53, 54, 69]. However, until now there was no

explicit construction of a compact manifold with G2 holonomy which contains such

singularities. On the other hand, the only explicit example of a compact manifold

with G2 structure which has such singularities is the case constructed in [72], which

is a weak G2 manifold. Considering an explicit example of such a space would be

interesting both in terms of looking for supersymmetric minima and BPS states in

that model and also for studying anomaly cancellation.

A further task for looking at phenomenology from these models would be to look

at getting a realistic physics either through the use of intersecting branes or through

the use of the A-D-E singularities needed to obtain gauge bosons.
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It would also be of interest, for models where the moduli are stabilised, to study

the cosmology of the scalars as they roll towards the vacuum. There are also the ques-

tions discussed earlier in this paper as to whether the inclusion of non-perturbative

effects could lift the vacuum to a de Sitter background.

Our four-dimensional domain walls diverge away from the wall and, in particular,

do not approach Minkowski space. This is a common feature of supergravity domain

walls [135]. It would be interesting to see how these solutions are modified by the

inclusion of a non-perturbative superpotential in four dimensions and whether this

can remove the divergences.

Furthermore there is the possibility of paying more attention to BPS states in the

scenarios, in particular the cosmic string, which should appear in the M-theory case

from wrapping the fivebrane on a co-associative cycle on the G2 holonomy space,

in the same way that a domain wall appeared from wrapping the fivebrane on an

associative cycle on the G2 holonomy space.

There are several other less immediately phenomenological directions which are

worth investigating. The first of these would be a systematic study of the mass

operators (6.3.20) in AdS backgrounds, which will be more complicated for the

(massive) IIA case, and which may also admit stable states of mass2 ≤ 0 that we

have not considered here.

Another open question is whether there are any systematic ways to study the

moduli spaces of G-structure manifolds that would determine whether our assump-

tions and results about the basis for Kaluza-Klein reduction can be proved or ex-

tended for a more general case.

Although the results of chapter 8 depend on some specific features of the massive

IIA supergravity, it may be possible to obtain similar N = 2 → N = 1 spontaneous

breaking for other theories, for example IIB and M-theory on manifolds of SU(3)

structure or Type I and Heterotic string theories on manifolds of SU(2) structure.

These manifolds offer several globally defined forms in terms of which vev-derived

fluxes could be written that might drive the super-Higgs mechanism.
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Conventions

Here we outline the conventions that we use throughout this work.

Indices

Although it is almost impossible to avoid some use of the same type of index for

different purposes, we list here the most common uses of each type of index, in the

rough order of use.

a, b . . . Generic indices; subset of seven-dimensional spacetime indices; non-

zero complex-strucutre moduli-space indices; gauge indices.

A,B . . . Seven-dimensional spacetime indices; complex-strucutre moduli-space

indices; spinor labels.

i, j . . . G2 moduli space indices; Kähler moduli-space indices; brane worldvol-

ume indices.

I, J . . . Eleven-dimensional spacetime indices; Kähler and complex-strucutre

moduli-space indices;

m,n . . . Six-dimensional spacetime indices; D-dimensional spacetime indices

M,N . . . Ten-dimensional spacetime indices; (4 +D)-dimensional spacetime in-

dices

α, β . . . SU(2) indices; holomorphic indices

α, β . . . anti-holomorphic indices

µ, ν . . . Four-dimensional spacetime indices; three-dimensional spacetime in-

dices; generic spacetime indices.
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Underlined indices denote directions in the corresponding tangent space.

Metric and volume element

Throughout this work we have used the space-time metric signature (−,+,+, . . .).
We define the ǫ symbol such that ǫ̂0123.. := +1 with

ǫ01...D−1 = +
√

|det (g)| . (9.1.1)

Indices are raised and lowered with the metric. We have used g throughout to

denote various metrics—which one is meant can be determined from the indices

used or from context.

Forms

The relation between index-free and index notation is given by

A(p) =
1

p!
Aµ1...µpdx

µ1 ∧ . . . ∧ dxµp . (9.1.2)

In our conventions, the standard operations on forms in D dimensions are given by

(dA)µ1...µp+1
= (p+ 1)∇[µ1Aµ2...µp+1] ,

(d†A)µ1...µp−1
= −∇νAνµ1...µp−1

, (9.1.3)

(⋆A)µ1...µD−p
=

(−1)p(D−p)

p!
ǫµ1...µD−p

ν1...νpAν1...νp .

Furthermore, y denotes the contraction of indices, so that for a p-form ωp and a

q ≥ p form Ωq

(ωpyΩq)µ1...µq−p
= (ωp)

ν1...νp(Ωq)ν1...νpµ1...µq−p
. (9.1.4)

We also use the symbol ‘·’ for this contraction when carried out over four-dimensional

Minkowskian indices.
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Dirac matrices

General properties

Generic Dirac matrices {Γµ}dµ=1 are defined to obey

{Γµ,Γν} =





δµν for Euclidian signature,

ηµν for Minkowskian signature.
(9.1.5)

The curved-space Dirac matrices then obey

Γµ = eµµΓ
µ ⇒ {Γµ,Γν} = gµν , (9.1.6)

where eµµ is the d-dimensional vielbein. Multiple indices are defined to mean

Γµ1...µp = Γ[µ1...Γµp] . (9.1.7)

For the rest of this section, we will work in flat space, and will give conventions for

the various sets of Dirac matrices used.

Three dimensions

In our conventions, the 3-dimensional Minkowskian Dirac matrices are given by

ρ0 = −iσ2 ,

ρ1 = σ1 ,

ρ2 = −σ3 . (9.1.8)

These obey the following

ρ0ρ1ρ2 = −12 , (9.1.9)

(ρµ)∗ = ρµ , (9.1.10)

{ρµ, ρν} = 2ηµν . (9.1.11)
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Four dimensions

The four-dimensional Minkowskian Dirac matrices are constructed from the above

by

γµ = ρµ ⊗ σ1 ,

γy = 12 ⊗ σ2 . (9.1.12)

We can define a 4D chirality operator γ = iγ0γ1γ2γy so that

{γ, γy} = {γ, γµ} = {γµ, γy} = 0 ,

{γµ, γν} = 2ηµν ,

(γ)2 = (γy)2 = 1 . (9.1.13)

These matrices further obey the following

ε̂µνργ
µγνγρ = 6iγyγ , (9.1.14)

ε̂µνργ
νγρ = 2iγyγγµ , (9.1.15)

(γµ)∗ = γµ , (γ)∗ = γ , (γy)∗ = −γy . (9.1.16)

Six dimensions

In six-dimensional Euclidean space it is possible to define a set of Dirac matrices

{γm}m=1...6 that are purely imaginary so that

(γm)∗ = −γm , (9.1.17)

{γm, γn} = 2δmn . (9.1.18)

Seven dimensions

In seven-dimensional Euclidean space it is possible to define a set of Dirac matrices

{γA}A=1...7 that are purely imaginary so that

(γA)∗ = −γA , (9.1.19)
{
γA, γB

}
= 2δAB . (9.1.20)
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Clearly, the seventh matrix can be written as a product

γ7 = iγ1γ2γ3γ4γ5γ6 . (9.1.21)

γ7 is also the six-dimensional chirality operator.

Ten dimensions

We define the set of ten-dimensional Dirac matrices

{
ΓI
}
I=0...9

= {Γµ,Γm}µ=0...3,A=1...6 , (9.1.22)

by the relations

Γµ = γµ ⊗ γ7 ,

Γm = γ ⊗ γm . (9.1.23)

Eleven dimensions

Finally, we define the set of eleven-dimensional Dirac matrices

{
ΓI
}
I=0...10

=
{
Γµ,ΓA

}
µ=0...3,A=1...7

, (9.1.24)

by the relations

Γµ = γµ ⊗ 18 ,
ΓA = γ ⊗ γA . (9.1.25)

Spinors

ψ conjugation

Our conventions for spinor conjugation are that, for general spinor ψ, in Minkowskian-

signature spaces we have

ψ := ψ†γ0 , (9.1.26)
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where † denotes Hermitian conjugation, and in Euclidean-signature spaces

ψ := ψ† . (9.1.27)

Majorana conjugation

For a general spinor ψ, we define its Majorana conjugate in terms of the matrix B

ψc = B−1ψ∗ . (9.1.28)

Imposing that this operation should commute with Lorentz transformations and

square to unity gives the conditions

BΓIB−1 = ±(ΓI)∗ , B∗B = 1 . (9.1.29)

We are interested in imposing the Majorana condition mainly in eleven-dimensional

compactifications to four dimensions. Let us therefore decompose B11 as B−1
11 =

B−1
4 ⊗ B−1

7 into four- and a seven-dimensional conjugation matrices B4 and B7.

They must satisfy the relations

B4γ
µB−1

4 = ±(γµ)∗ , B7γ
AB−1

7 = ∓(γA)∗ , (9.1.30)

where µ = 0 . . . 3, in order to reproduce Eq. (9.1.29). In our conventions, these

matrices can be represented as

B−1
4 = γyγ B−1

7 = 1 . (9.1.31)


