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We study the tensor-optimized antisymmetrized molecular dynamics (TOAMD) as a successive variational 
method in many-body systems with strong interaction for nuclei. In TOAMD, the correlation functions for 
the tensor force and the short-range repulsion and their multiples are operated to the AMD state as the 
variational wave function. The total wave function is expressed as the sum of all the components and 
the variational space can be increased successively with the multiple correlation functions to achieve 
convergence. All the necessary matrix elements of many-body operators, consisting of the multiple 
correlation functions and the Hamiltonian, are expressed analytically using the Gaussian integral formula. 
In this paper we show the results of TOAMD with up to the double products of the correlation functions 
for the s-shell nuclei, 3H and 4He, using the nucleon–nucleon interaction AV8′. It is found that the 
energies and Hamiltonian components of two nuclei converge rapidly with respect to the multiple of 
correlation functions. This result indicates the efficiency of TOAMD for the power series expansion in 
terms of the tensor and short-range correlation functions.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the central issues in nuclear physics is to understand the 
nuclear structure from the nucleon–nucleon (N N) interaction. The 
N N interaction has a strong tensor force at long and intermediate 
distances and a strong repulsion at short distance [1,2]. It is im-
portant to investigate the nuclear structure considering the above 
characteristics of the N N interaction.

The origin of the tensor force is the one-pion exchange inter-
action, which brings the high-momentum components of nucleon 
motion in nuclei. It is necessary to treat the high-momentum com-
ponents induced by the tensor force in the nuclear wave function. 
The tensor force also produces the characteristic D-wave state of a 
nucleon pair in nuclei, which comes from the strong S-D coupling 
of the tensor force. This D-wave state is spatially compact as com-
pared with the S-wave state due to the high-momentum compo-
nent of the tensor correlation [3]. The high-momentum component 
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in nuclei coming from the tensor correlation has been investigated 
experimentally with the (p, d) reaction [4].

So far, we have described the tensor correlation with high-
momentum components on the shell model basis, which we name 
“tensor-optimized shell model” (TOSM) [5,6]. In TOSM, we fully 
optimize the two-particle two-hole (2p2h) states in the wave func-
tion. There is no truncation for the particle states in TOSM. In 
particular, the spatial shrinkage of the particle states is essential to 
achieve convergence of the contributions of tensor force. This prop-
erty is related to the inclusion of the spatially compact D-wave 
state with high momentum in the wave function.

The clustering of nucleons is one of the important aspects in 
the nuclear structure, such as the two-α state in 8Be and the Hoyle 
state in 12C as the triple-α state [7,8]. Those clustering states can 
coexist with shell model-like states in a nucleus such as 12C, the 
ground state of which is considered to be the shell model-like 
state. Theoretically, it is generally difficult to describe the clus-
tering states in the shell model type approach, while the shell 
model-like states are fairly described [6,9,10]. It is also known that 
the α cluster itself contains the large contribution of the tensor 
force [5,11]. The relation between the N N interaction and the co-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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existence of the clustering states and the shell model-like states is 
unclear.

It is important to understand the nuclear clustering phenomena 
from the viewpoint of the N N interaction and the tensor force. 
One of the theoretical approaches to describe the nuclear clus-
tering is the antisymmetrized molecular dynamics (AMD) [12,13]. 
The AMD wave function consists of the Gaussian wave packet for 
each nucleon, which is suitable to express the formation of cluster 
with spatial localization of some of nucleons in a nucleus. So far, 
AMD has shown the successful results in the description of var-
ious clustering states in finite nuclei from light mass to medium 
mass region [8]. However, this model cannot treat the tensor force 
and/or short-range repulsion, and it is necessary for the AMD anal-
ysis to rely on the effective interaction of mild central force and L S
force without the tensor force.

For the clustering description of nuclei based on the N N inter-
action, the unitary correlation operator method (UCOM) has been 
developed to treat the short-range and tensor correlations [14,
15]. Using the Fermionic molecular dynamics (FMD) with UCOM, 
they have discussed the clustering phenomena [16]. In UCOM, the 
unitary-transformed Hamiltonian is truncated up to the two-body 
operator, while the exact transformation produces many-body op-
erators. This truncation seems reasonable for short-range repulsion 
because of the short-range character, but tensor force has a long-
range character and many-body operators should be important for 
the tensor correlation to work correctly. The many-body operators 
are also important for the consistent treatment of the variational 
principle starting from the N N interaction.

In our study of TOSM, only the short-range part of UCOM is 
adopted to describe the short-range correlation in the shell-model 
type basis states, while the tensor correlation is explicitly treated 
using the full 2p2h excitation in the wave function. The method of 
TOSM+UCOM nicely works to describe the shell model-like states 
with the correct order of the energy level in the p-shell nuclei, 
while the α clustering states such as those in 8Be and 12C are 
difficult to describe quantitatively [10,17].

Toward the nuclear clustering description from the N N interac-
tion, we have proposed a new variational theory [18]. We employ 
the antisymmetrized molecular dynamics (AMD) [12,13] as the ba-
sis state. We introduce two-kinds of correlation functions of the 
tensor-operator type for the tensor force and the central-operator 
type for the short-range repulsion. This physical concept is simi-
lar to UCOM [15]. The correlation functions are multiplied to the 
AMD wave function as the correlated basis states and superposed 
with the AMD wave function. We name this framework “tensor-
optimized antisymmetrized molecular dynamics” (TOAMD) [18]. In 
TOAMD, the products of the Hamiltonian and correlation functions 
become the series of the many-body operators, which are exactly 
treated using the cluster expansion. We take all the necessary 
many-body operators without any truncation, which enable us to 
determine the correlation functions variationally. The formulation 
of TOAMD is common for all nuclei with various mass numbers. 
The scheme of TOAMD is extendable by taking the series of the 
multiple product of correlation functions as the power expansion. 
This is done systematically and successively in TOAMD and neces-
sary formulas are published [18].

In this paper, we take up to the double products of correla-
tion functions of tensor and short-range types, and investigate the 
convergence of the solutions with respect to the multiples of corre-
lation functions and discuss the role of each term. To demonstrate 
the new successive variational method, we take the s-shell nuclei, 
3H and 4He, using the AV8′ N N interaction.
2. Tensor-optimized antisymmetrized molecular dynamics 
(TOAMD)

We explain the basic formulation of TOAMD, while all the de-
tails are given in Ref. [18]. We start from the AMD wave function, 
which is expressed by using the Slater determinant of the Gaussian 
wave packets of nucleons with mass number A. The AMD wave 
function �AMD is explicitly given as:

�AMD = 1√
A!det

{
A∏

i=1

φi

}
, (1)

φ(�r) =
(

2ν

π

)3/4

e−ν(�r−�D)2
χσ χτ . (2)

The single-nucleon wave function φ(�r) consists of a Gaussian wave 
packet with a range parameter ν and a centroid position �D , the 
spin part χσ and isospin part χτ . In this study of s-shell nuclei, 
χσ is fixed as up or down component and χτ is proton or neutron 
component. The range ν is common for all nucleons and this con-
dition factorizes the center-of-mass wave function from �AMD. The 
range ν also contributes to the spatial size of �AMD.

In TOAMD we include two-kinds of correlations induced by the 
tensor force and short-range repulsion, which are difficult to treat 
in the AMD wave function �AMD. Following the concept given in 
Ref. [19,20], we introduce the pair-type correlation functions F D

for tensor force and F S for short-range repulsion and multiply 
them to the AMD wave function. This choice of the TOAMD wave 
function is motivated by the success of TOSM [5,10]. We superpose 
these components with the original AMD wave function. Here we 
define the basic TOAMD wave function as:

�basic
TOAMD = (1 + F D)(1 + F S) × �AMD , (3)

F D =
1∑

t=0

A∑
i< j

f t
D(ri j) O t

i j r2
i j S12(r̂i j) , (4)

F S =
1∑

t=0

1∑
s=0

A∑
i< j

f t,s
S (ri j) O t

i j O s
i j , (5)

with relative coordinate �ri j = �ri − �r j , O t
i j = (�τi · �τ j)

t and O s
ij = (�σi ·

�σ j)
s . Here t and s represent the isospin and spin channel of a pair, 

respectively. The correlation functions F D and F S affect only the 
relative motion of nucleon pairs in �AMD, and do not excite the 
center-of-mass motion. The center-of-mass motion is completely 
removed in TOAMD. The function F D induces the relative D-wave 
transition via the tensor operator S12:

S12(r̂i j) = 3(�σi · r̂i j)(�σ j · r̂i j) − �σi · �σ j . (6)

The functions F D and F S are scalar operator and do not change 
the total angular-momentum state of �AMD. In general, two func-
tions F D and F S are not commutable. Physically, the functions F D

and F S can excite two nucleons in the AMD state to the high-
momentum region corresponding to the 2p2h excitation in the 
shell model. This formulation of TOAMD is independent of the 
mass number A and commonly used for all nuclei.

We state here the essential difference of TOAMD from the 
Green’s function Monte-Carlo (GFMC) method [1]. In the GFMC 
method, the standard concept of correlation function is used, 
where it is expressed by a product:

F GFMC
S =

A∏(
1 +

1∑
t=0

1∑
s=0

f t,s
S (ri j) O t

i j O s
i j

)
. (7)
i< j
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for the short-range correlation as an example. This makes the cal-
culation of matrix elements complicated, since full A-body oper-
ators should be calculated with the correlations of every nucleon 
pair. On the other hand, the basic TOAMD wave function given in 
Eq. (3) uses the lowest order term of the standard correlation func-
tion. This truncation of the correlation operators makes the calcu-
lation easier and more systematical. In TOAMD, we can increase 
the necessary terms of explicit calculations with the multiple num-
ber of correlation functions. For the short-range correlation, the 
TOAMD wave function can be extended as:

�short
TOAMD = (1 + F S + F 2

S + · · ·) × �AMD . (8)

We can examine the convergence of the solutions with the power 
of the correlation functions step by step. It is noted that the term 
F 2

S in Eq. (8) has the component of ( f t,s
S (ri j))

2 which does not 
appear in Eq. (7). As for the tensor correlation F D , the same dis-
cussion holds.

In the present study of TOAMD, we include up to the dou-
ble products of the correlation functions consisting of F S and F D . 
The effort of calculating the F D F S term in Eq. (3) is the same as 
calculating further the F S F S , and F D F D terms. This consideration 
brought us to an idea to use the TOAMD as a successive variational 
method with respect to the multiple of correlation functions. Writ-
ing all the possible double products of F D and F S , we come up 
with the next order of the TOAMD wave function as:

�TOAMD = (1 + F S + F D + F S F S + F S F D + F D F S

+ F D F D) × �AMD . (9)

It is noted that the correlation functions in each term in Eq. (9)
are determined independently. This means that each correlation 
function can be different in TOAMD. All the matrix elements are 
summed up for the final results. Hereafter, we call F D and F S
single correlation functions and their double products are double 
correlation functions.

The total energy in TOAMD is given as:

ETOAMD = 〈�TOAMD|H|�TOAMD〉
〈�TOAMD|�TOAMD〉 = 〈�AMD|H̃|�AMD〉

〈�AMD|Ñ|�AMD〉 . (10)

We calculate the matrix elements of the correlated Hamiltonian H̃
and the correlated norm Ñ with the AMD wave function, where 
H̃ and Ñ include the products of correlation functions, such as 
F †

D H F D and F †
D F D . These correlated operators become the series 

of many-body operators according to the particle index of each 
operator. In the case of the two-body interaction V , F †

D V F D is 
expanded from two-body to six-body operators with various com-
binations of particle index. Similarly, F †

D F †
D V F D F D gives ten-body 

operators at maximum. We classify these many-body operators 
fully in terms of the cluster expansion method, the detailed proce-
dure of which is given in Ref. [18]. We take the matrix elements of 
all the resulting many-body operators with the AMD wave function 
without any truncation. This treatment is important to retain the 
variational principle. The procedure is performed systematically for 
all the correlated operators with multiple correlation functions in 
TOAMD. In general, many-body operators produce larger number 
of terms of the cluster expansion for larger mass systems and the 
calculation of their matrix elements becomes much more demand-
ing.

The TOAMD wave function has three-kinds of variational func-
tions, two-kinds of correlation functions F D , F S and the AMD wave 
function �AMD. We determine them using the Ritz variational prin-
ciple with respect to the TOAMD energy δETOAMD = 0.

The radial forms of F D and F S are optimized in each spin-
isospin channel to minimize the total energy ETOAMD in Eq. (10). 
We use the Gaussian expansion method to express the relative mo-
tion of the pair functions f t

D(r) in Eq. (4) and f t,s
S (r) in Eq. (5), 

respectively, which are given as:

f t
D(r) =

NG∑
n=1

Ct
n exp(−at

nr2) , (11)

f t,s
S (r) =

NG∑
n=1

Ct,s
n exp(−at,s

n r2) . (12)

Here, at
n , at,s

n , Ct
n and Ct,s

n are variational parameters for Gaussian 
basis functions. We employ the common value for the Gaussian 
basis number NG , which is taken seven at most until the solutions 
are converged. For the ranges at

n , at,s
n , we search for the optimized 

values from short to long ranges to express the spatial correla-
tion adequately, which gain the total energy. The coefficients Ct

n

and Ct,s
n are linear parameters in the TOAMD wave function and 

are determined variationally by diagonalization of the Hamiltonian 
matrix elements. In the double correlation functions in Eq. (9), 
the products of two Gaussian functions in Eqs. (11) and (12) are 
treated as the basis functions and the products of Ct

n and Ct,s
n are 

variational parameters for these basis functions. The centroid po-
sitions of the Gaussian wave packets, { �Di} (i = 1, · · · , A) in Eq. (2)
for �AMD are determined variationally by using the cooling method 
[12,13].

In the calculation of matrix elements of many-body operators, 
we express also the N N interaction as a sum of Gaussian functions. 
Technically, we adopt the Fourier transformation of the Gaussian 
form of the correlation functions and the N N interaction into 
the momentum space [18,21]. This transformation decomposes the 
many-body operators expressed with the various relative coordi-
nates in the exponent into the separable form with respect to the 
single particle coordinates. In the momentum space, the matrix 
elements of the many-body operators in H̃ and Ñ result in the 
products of single-particle matrix elements with the AMD basis 
functions, which is easily calculated even for various combinations 
of particle index in the operators. In this study, we use the real-
istic N N interaction, AV8′ [2] consisting of central, tensor and L S
terms.

3. Results

To demonstrate the TOAMD as a successive variational method 
in many-body systems with strong interaction, we take the s-shell 
nuclei, 3H and 4He, where a large number of theoretical results in 
various few body methods are available [11]. We discuss first the 
TOAMD results for 3H and 4He with the single correlation function 
as �TOAMD = (1 + F S + F D) �AMD. In the variation of the AMD 
wave function, it is found that the centroid positions of nucleons 
�D are zero for all nucleons in both nuclei. This result indicates that 
even with the realistic N N interaction, the s-wave configurations 
are favored in the AMD wave function, which is equivalent to the 
shell-model states of (0s)3 for 3H and (0s)4 for 4He, respectively.

The correlation functions F D and F S are optimized for each 
nuclei. The energies are −5.34 MeV for 3H and −15.68 MeV for 
4He, which are underbound in comparison with the GFMC results; 
−7.76 MeV for 3H and −25.93 MeV for 4He. Here, the range pa-
rameters in �AMD are ν = 0.14 fm−2 for 3H and ν = 0.17 fm−2 for 
4He, which are a little bit different from the values of TOAMD opti-
mized with double correlation functions to be discussed later. It is 
noted that both of the tensor and short-range correlations are nec-
essary to make nuclei bound like in the case of the deuteron [3].

In the variational calculation, the many-body operators with up 
to three-body for 3H and up to four-body for 4He are to be in-
cluded in the correlated Hamiltonian H̃ and norm Ñ . If we perform 
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Fig. 1. Energy surface of 3H with AV8′ as function of the range parameter ν in 
TOAMD with single correlation function (solid line). Dotted line represents the re-
sults with up to the two-body operators in the correlated Hamiltonian H̃ . Dashed 
line represents the GFMC result.

Fig. 2. Energy convergence of 3H with AV8′ by adding each term of TOAMD succes-
sively. Dashed line represents the GFMC result.

a limited calculation with up to the two-body operators in the cor-
related Hamiltonian H̃ , which is the similar treatment as UCOM 
[15], the energies of two nuclei continue to decrease with respect 
to large ν and we do not obtain the physical energy minimum. In 
this limited calculation in which higher-body operators than two-
body are omitted, the variational principle is not satisfied. In Fig. 1, 
we confirm this fact by showing the energy surface of 3H as func-
tion of the range parameter ν in TOAMD with single correlation 
function. The full treatment of many-body operators in H̃ provides 
the energy minimum properly as shown by solid line. On the other 
hand, when we omit the three-body operators of H̃ , there is no en-
ergy minimum in 3H as shown by dotted line. This result indicates 
the inevitable role of the many-body operators in the correlated 
Hamiltonian to obtain the energy minimum properly. The similar 
result is obtained in the Brueckner–Bethe–Goldstone approach for 
nuclear matter [22], in which the three-body correlation terms in-
duced by the G-matrix are shown to be necessary to obtain the 
proper saturation point for density of nuclear matter. As seen in 
Fig. 1, our TOAMD approach is very powerful for studying the im-
portant roles of many-body operators in finite nuclei because it is 
the variational calculation. The detailed analysis of many-body op-
erators will be published in the forthcoming paper.

Next we include the double correlation functions in TOAMD 
given in Eq. (9). We keep the nucleon positions �D = 0 for all nu-
cleons. In Fig. 2, we show the energy of 3H successively obtained 
by adding the single and double correlation functions one by one, 
where ν = 0.095 fm−2 determined variationally in the full cal-
culation. In each calculation, this value of ν is common but the 
correlation functions are optimized independently. In the figure, 
the labels D and S indicate F D and F S , respectively, and “+S” is the 
result obtained with the wave function of (1 + F S ) × �AMD. “+SS” 
Fig. 3. Hamiltonian components of 3H by adding each term of TOAMD successively. 
Dashed lines represent the GFMC results for each component. For the kinetic energy, 
a half value is shown with the symbol “K/2”. The symbols C, T and LS indicate the 
central, tensor and L S forces, respectively.

is the result by adding F S F S component as (1 + F S + F D + F S F S ) ×
�AMD in total. The components of F S F D and F D F S are found to 
give almost identical effect on the solutions, and the combined en-
ergy is provided for “+SD+DS”. “+DD” is the full calculation with 
the double correlation functions in TOAMD. The final energy up to 
F D F D (+DD) is −7.68 MeV, which almost reproduces the GFMC 
results within 80 keV.

Fig. 2 shows clearly the effect of each term on the energy. At 
the level of pure AMD the nucleus is not bound, while the addi-
tion of F S decreases the energy and further addition of F D finally 
brings the nucleus bound. Adding further the double correlation 
functions step by step, the energy curve shows converging behav-
ior and eventually converges to the GFMC value. In this sense we 
are able to say that the TOAMD is a successive variational method 
in many-body systems with strong interaction.

We provide the contributions of each term in the Hamiltonian 
of 3H: the kinetic energy (K), central (C), tensor (T) and L S (LS) 
forces in Fig. 3. We see how each term in the Hamiltonian changes 
as the correlation functions are added successively. The contribu-
tions of the tensor and L S forces are found to have the values 
after adding the tensor correlation (+D). Again each term con-
verges to the corresponding results of the GFMC calculation. The 
matter radius is obtained as 1.746 fm. From these results, we can 
learn the accuracy and power of TOAMD and the efficiency of cor-
relation functions F D and F S to treat the N N interaction. Good 
reproduction of Hamiltonian components of 3H including the L S
force indicates that the tensor and short-range correlations are es-
sential and sufficient in the description of the 3H wave function. 
This is similar to the case of the deuteron, where the D-wave 
component brought by the tensor force provides the L S energy. 
In Fig. 3, it is found that the “AMD+S” calculation does not pro-
vide the enhancement of the kinetic energy from the AMD result 
in spite of the inclusion of the short-range correlation. This is be-
cause F S can represent not only the short-range character but also 
the intermediate- and long-range ones.

We discuss now the case of 4He. Fig. 4 shows the total en-
ergy obtained by adding successively the correlation functions in 
TOAMD wave function in Eq. (9), where the range parameter of 
the AMD wave function is ν = 0.22 fm−2. We see quite a similar 
behavior of the total energy as that of 3H. We see a good conver-
gence pattern with the correlation functions. With full components 
up to F D F D , the energy is obtained as −24.74 MeV in TOAMD. The 
energy difference between TOAMD and GFMC is about 1.2 MeV.

Fig. 5 shows the Hamiltonian components. Each component as 
kinetic energy (K), central (C), tensor (T) and L S (LS) forces show 
gradual convergence with successive addition of the multiple of 
the correlation functions. These energies deviate slightly from the 
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Fig. 4. Energy convergence of 4He with AV8′ by adding each term of TOAMD suc-
cessively. Dashed line represents the GFMC result.

Fig. 5. Hamiltonian components of 4He by adding each term of TOAMD successively. 
Dashed lines represent the GFMC results for each component. For the kinetic energy, 
half value is shown with the symbol “K/2”. The symbols C, T, LS indicate the central, 
tensor and L S forces, respectively.

GFMC results. The matter radius is obtained as 1.497 fm, which is 
very close to the GFMC value of 1.490 fm.

We compare the present results of 4He with TOSM using short-
range UCOM [5], which gives the energy of −22.30 MeV. Regard-
ing the short-range UCOM as 1 + F S and the 2p2h excitations in 
TOSM as the role of F S or F D in TOAMD, TOSM corresponds to 
TOAMD without the F D F D term, which gives the energy of 4He as 
−22.44 MeV. This value is close to the TOSM result. In this sense, 
TOAMD includes the tensor correlation more than that of TOSM, 
owing to the F D F D term.

In TOAMD, the correlation functions F S and F D are optimized 
independently in each term of Eq. (9). It is interesting to see this 
effect on the energy, and we perform the following calculation. 
First, F S and F D are determined in the single correlation function 
of TOAMD as (1 + F S + F D) ×�AMD. Second, keeping the functional 
form of F S and F D with Gaussian expansion, we perform the cal-
culation including double correlation functions, where the weights 
of the double correlation functions are variational parameters. This 
calculation provides the energies of 3H and 4He as −6.26 MeV and 
−22.40 MeV, respectively. The energy loss from the full calculation 
is 1.44 MeV for 3H and 2.34 MeV for 4He. These amounts indicate 
the importance of the independent optimization of the correlation 
functions in each term of TOAMD, contributing to the rapid energy 
convergence.

From the numerical results of 3H and 4He shown in Figs. 2
and 4, it is found that the convergence of energies with respect to 
the correlation functions is rapid in TOAMD. This fact indicates the 
validity of the present expansion of the wave function in power 
of the tensor and short-range correlations. Considering the con-
vergence of the solutions in the present analysis, we can expect 
that we reach the precise energy further by increasing the multi-
ples of correlation functions to the next order. This extension of 
more correlation functions is handled systematically in TOAMD by 
taking all kinds of many-body operators emerging from the corre-
lated Hamiltonian and norm. The next order is the triple products 
of the correlation functions consisting of F D and F S . We can put 
a priority on the basis functions involving the tensor and short-
correlations at the same time, which leads to the F D F D F S and 
F D F S F S products in TOAMD. Increasing the power of correlation 
functions, the analysis of the results at each power is physically 
meaningful to get a knowledge of the role of correlation func-
tions. This successive variational method in many-body systems 
with strong interaction is important when we calculate heavier nu-
clei, since we are able to see how we approach the convergence.

One of the advantages of TOAMD is the clustering description 
based on the AMD basis states. It is interesting to consider the 
system consisting of several clusters such as 8Be with two 4He. 
It is found that each 4He nucleus needs the double products of 
the correlation functions to get the sufficient binding energy. This 
fact naively suggests that the spatially separated two-4He state will 
need fourth power of the correlation functions totally in TOAMD. 
It is an interesting problem how the cluster states are described in 
TOAMD with the increase of the power of correlation functions.

4. Summary

We have developed a new variational theory “tensor-optimized 
antisymmetrized molecular dynamics” (TOAMD) to describe the 
nuclear structure using the nucleon–nucleon (N N) interaction, in 
particular, toward the nuclear clustering description. In TOAMD, 
the tensor- and central-type correlation functions are introduced 
considering the characteristics of the N N interaction. These cor-
relation functions are multiplied to the AMD wave function to 
express the effects of tensor force and short-range repulsion ex-
plicitly and the correlated basis states are superposed with the 
AMD wave function. This scheme of TOAMD is independent of 
the mass number and extendable by increasing the power of the 
multiple products of the correlation functions successively. In the 
calculation of matrix elements, the products of the Hamiltonian 
and the correlation functions produce the many-body operators in 
principle, which are exactly treated without any truncation using 
the cluster expansion. This is important to keep the variational 
principle starting from the N N interaction. The genuine three-
nucleon interaction such as Fujita–Miyazawa type can be tractable 
in TOAMD in the same manner as treating many-body operators.

In this study, we take up to the double products of correla-
tion functions in TOAMD and show the effect of each term step by 
step successively. Using the AV8′ N N interaction, we show the ef-
ficiency of TOAMD in the description of s-shell nuclei. The TOAMD 
results reproduce the 3H energy and provide a good binding en-
ergy for 4He in the scheme of the double correlation functions. 
The radius is also reproduced for two nuclei. These results indicate 
that the essential correlations induced by the N N interaction is 
sufficiently included in the present order of TOAMD for s-shell nu-
clei, which is physically meaningful and also useful when we treat 
the system of heavier mass nuclei. In addition, the convergence of 
the solutions with respect to the multiples of correlation functions 
is rapid. This indicates the validity of the present expansion ap-
proach of TOAMD. We believe that it is important to obtain the 
precise energy for 4He, since it is a building block of light nuclei. 
In order to reduce the energy difference from the GFMC value, we 
shall increase the multiples of correlation functions with the triple 
products such as F D F D F S as the next order. Based on the success 
for the s-shell nuclei, we shall apply TOAMD to the p-shell nuclei 
with the three-nucleon interaction.



218 T. Myo et al. / Physics Letters B 769 (2017) 213–218
Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 
JP15K05091, JP15K17662, JP16K05351.

References

[1] S.C. Pieper, R.B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51 (2001) 53.
[2] S.C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Phys. Rev. C 64 (2001) 

014001.
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