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Abstract

The method of renormalization group equations is used for the calculation of infrared
asymptotic of the propagator in scalar quantum field models with ¢3-, ¢*- and ¢%-interactions
in logarithmic dimensions. Most accurate results are based on the 5-loop approximation of
the S-function and 4-loop one for self-energy operator.

We investigate the asymptotic behavior of the propagator of the theories ¢, ¢* and ¢° in
their logarithmic dimension using the renormalization group technique [1, 2, 3]. The renormal-
ization group equation is the following [1, 2, 3]:
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where p is a monentum, g is a renormalized coupling constant (or its function), 5(g) is the beta
function, v(g) is the anomalous dimension of field, D is a propagator.
A solution of (1) has the form [3]:
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where the following notation is used: s = £; ® = p?D; u is a parameter of renormalization
with the dimension of mass; g(s,g) is the invariant charge which is defined implicitly by the

equation:
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To find ®(1, g) we have to solve the Dyson equation:

D™ (p,g) = A" (p) — Z(p,g) (4)

where A(p) is the bar propagator, X(p, g) is the self-energy operator — the sum of 1-irreducible
diagrams.
We make all the calculations within the minimal subtractions (MS) scheme. It holds:
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We introduce another dimensionless variable: = = p~23. Solving (4) we obtain:

®(1,9) = 151(19)

Thus, the expression for the propagator (2) takes the form:
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To find =(1, g) we have to calculate some of the Feynman diagrams.
It is convenient to introduce the functions p(g) and V(g) defined as:
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Then we can rewrite the equation (3) as follows:

Ins = p(g) — p(9)

or
p(g) = In(e9)s).

We denote the combination in the logarithm argument as s;. Then we obtain:

p(g) = Insi.

Thus, the invariant charge g(s,g) depends on s and g not separately, but only on the
combination e?¥)s.
The exponent in the formula (5) can be rewritten as follows:
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and the expression (5) takes the form:
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We will use this formula in the future.

We are interested in the asymptotic behavior of the propagator at low or high momentum.
Using the renormalization group equation we can calculate only one of the two asymptotics: for
some theories we find the infrared (IR) asymptotic, for other - ultraviolet (UV) one. In theories
which we will consider the beta function starts in the logarithmic dimension with the quadratic
term: B(g) = bag? + ..., and the type of the asymptotic is determined by the sings of by and g:
if bog > 0 then it is IR type, if bog < 0 then it is UV one.

Our aim is to calculate corrections to the main approximation. Suppose, we know 3 terms:

B(g) = bag? + bzg® + bag* + ...



Then from (3) we obtain:
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where s, = 9 s and p(g) is defined uniquely by 2 conditions:
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We use this expression for the calculation of asymptotic behavior of the propagator. Suppose,
we know the following approximation for the functions 3(g), v(g) and Z(1, g):

Blg) = bzg2 + b393 + b4g4 + ...
v(g) = c19 + 0292 + 0393 + ...
=(1,9) =a19+ agg2 + ...

Then from (6) we receive the following expression for the propagator in terms of the invariant
charge:
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And substituting (7) in this formula we obtain the propagator in terms of the momentum:
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The function V' (g) is uniquely determined by 2 conditions:
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We can try to simplify more the expression (8) by using so = es;.
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If it holds ¢; # 0, then choosing A = QbBCl_b;b(22§12+b2a1) we receive:
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If ¢; = 0, then we have:
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and it is convenient to choose A = — . In this case we obtain:
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The ¢3-theory in the Euclidian space has the following lagrangian:
1 2, A3
L=5(00)"+ 5;¢

where ¢ is a scalar field, A is a coupling constant.
The logarithmic dimension for this theory is d = 6. The beta function and the anomalous
dimension of field have been calculated in the 3-loop approximation [4]:
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where ((z) is the Riemann’s zeta function, g = 61)1\%'

We have by < 0. If the coupling constant A is real then it holds g > 0, bog < 0 and we get
the ultraviolet asymptotic. But one usually takes A to be imaginary that we obtain g < 0 and
we get the infrared asymptotic.



To find the desired accuracy for the propagator, we have to compute three Feynman dia-
grams:
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Here, the line is the bar propagator # and the vertex is the coupling constant A.
All these diagrams diverge in the logarithmic dimension (d = 6). In our calculations we use

the dimensional regularization (d = 6 — 2¢) and the R-operation. The result is the following:

X(p.g) = {_8 i 3(ng 2In s)g 1789 + 1116(7 — 251111;1 +180(7 — 21In 3)292 e
and
=(1,g) = 337, 1789+ 11167 + 18072 ,
36 5184
where 9 = %7 7 =Indnw — vg, and g is the Euler’s constant.

From the formula (9) we obtain the infrared asymptotic of the propagator:
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The lagrangian of the O(N)-symmetric ¢*-theory in the Euclidian space has the form:
1 A
L= 2(06)2 + 2 (2)2
S(00) + 2(6%)

¢ is an N-component field, A is a coupling constant, A > 0.
The logarithmic dimension for this theory is d = 4. The beta function and the anomalous
dimension of field have been computed up to 5 loops [5], see too [3]:
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where g = ﬁ > 0.
We have by > 0 and g > 0, we therefore get the infrared asymptotic. We need to calculate
the self-energy operator ut to 4 loops:
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All these graphs are diverged in the dimension d = 4. We apply the dimensional regulariza-
tion d = 4 — 2¢ and the R-operation. The result is the following:
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where 7 =Indm — vg, g = 16%.
From the formula (10) we receive the following result for the infrared asymptotic of the
propagator:
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The lagrangian of the ¢5-theory is the following:
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where ¢ is a scalar field, A is a coupling constant, A > 0.
The logarithmic dimension is d = 3. For this model two terms of the beta function and the
anomalous dimension of field have been calculated [3]:
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where g = 64% > 0.
Using the renormalization group equation we get the IR-asymptotic. We need only 1 diagram

for X:
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where 7 = Indm — vg.
Using the formula (10) we get:
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Conclusion.

Using the renormalization group equation we have calculated the infrared asymptotic of
the propagator for the ¢3-, ¢*- and ¢®-theories. The equation includes a beta function and
an anomalous dimension of field. These data are not enough for calculation of the asymptotic
behavior of the propagator. One needs also to know a self-energy operator as a function of a
coupling constant with a fixed value of momentum. To find this function it required to calculate
Feynman diagrams of self-energy operator.

For the ¢3-theory the propagator in the main approximation is power with logarithm (scaling
is violated), and in the ¢*- and ¢%-theories in the main approximation scaling is not violated.
Corrections in all these cases are expressed in terms of the logarithm and the logarithm logarithm
of the momentum. Asymptotic contains both universal and non-universal terms with respect
to renormalization scheme.
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