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Abstract: In the context of the geometrization philosophy,
a covariant field theory is constructed. The theory satis-
fies the unification principle. The field equations of the
theory are constructed depending on a general differen-
tial identity in the geometry used. The Lagrangian scalar
used in the formalism is neither curvature scalar nor tor-
sion scalar, but an alloy made of both, the W-scalar. The
physical contents of the theory are explored depending on
different methods. The analysis shows that the theory is
capable of dealing with gravity, electromagnetism and ma-
terial distribution with possible mutual interactions. The
theory is shown to cover the domain of general relativity
under certain conditions.
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1 Introduction

It is well known that General Relativity (GR) is the best the-
ory for gravity, so far. However, it suffers from many prob-
lems. Some of these problems are old e.g. singularity, hori-
zons, flatness, ...etc. Other problems concern contradic-
tion between observations and GR predictions e.g. rotation
curves of stars in spiral galaxies, the accelerating expan-
sion of the Universe, ...etc.

Many authors have tried to modify GR or to write new
theories for gravity. This is done in order to account for
problems such as those mentioned above. In order to di-
agnose problems of GR, let us first summarize the main
features of this theory in the following points.

1. The theory is constructed in the context of the ge-
ometrization philosophy.
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2. The theory assumes the validity of two principles:
general covariance and equivalence.

3. GRis constructed in context of a 4-dimensional Rie-
mannian geometry. It contains two sets of equations,

(a) field equations which may be written as:

1 *
Ryv - Egva = _KT‘uv, (1.1)

where Ryy, R are Ricci tensor and scalar re-
*

spectively, Tyy is the material-energy tensor, k
is a conversion constant and gy is the metric
tensor.

(b) The second set comprises the geodesic and
null-geodesic equations which are used as
equations of motion of the theory.

4. Conservation of matter-energy is guaranteed via us-
ing Bianchi identity and the field equations (1.1).

The above points are written for the sake of analysis and
later comparison with the present work.

The field equations of GR, equation (1.1), can be con-
sidered to be composed of two parts: the left hand side
(L.H.S) is pure geometric (i.e. constructed from the build-
ing blocks! of the geometry used, gyv); and the right hand
side (R.H.S) is defined from outside the geometry. In deriv-
ing the field equations (1.1), an action principle is imposed
on a Lagrangian function, the scalar curvature R, produc-
ing the L.H.S. of (1.1).

As stated above, there are many attempts to modify GR
in order to avoid some of the problems mentioned above.
Such modifications can be classified in the following three
classes:

1. Modifications of the L.H.S. of (1.1) (geometric class)
by adding a cosmological constant term (cf. [6]) to
treat the problem of particle horizon or the accel-
erating expansion of the Universe [40]. This type of
modification is carried out in the context of Rieman-
nian geometry. It is successful to some extent since
the cosmological constant has its own problems (cf.
[26]).

1 The building blocks (BB) of any geometry are geometric objects us-
ing which one can construct the whole geometry. The BB for Rieman-
nian geometry are the components of the metric tensor, gyy.
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Another attempt, belonging to this class, is carried
out by replacing the scalar curvature R by a general
function f(R) (cf. [10]). This type of attempt is also
carried out in the context of Riemannian geometry.
Despite its partial success, it has the problem that
the resulting differential equations are of fourth or-
der (cf. [43]) which is not easy to solve and has un-
stable solutions [38].

A third type of attempt, belonging to this class,
is carried out in the context of a wider geome-
try with a non-vanishing torsion scalar T (e.g. the
AP-geometry). In the AP-geometry, a theory is con-
structed using a torsion scalar T, defined by:

T def auv

= 7" Yvua — c’cv, (1.2)

where 7%, is the contortion tensor and cy is the ba-
sic vector of the AP-space, is known as the Telepar-
allel Equivalent of GR (TEGR)(cf. [1, 9]). This is be-
cause, one can easily show that, apart from a diver-
gence term, one can write:

T=R. (1.3)

The type of gravity theories in which f(T) is used,
in place of f(R), is known in the literature as f(T)-
theories (cf. [3, 15, 16, 31, 32]) . An advantage of using
f(T) gravity theories is that the resulting differential
equations are of second order ( cf. [33-36]). But it has
been shown that some theoretical problems appear
in such type of theories (cf. [24, 37]).

2. Modifications of the R.H.S. of (1.1) (physical class).
This class is carried out with or without modifica-
tions given in the 1% class, considered above. It
is carried out mainly to solve the problem of the
SN type Ia observations. It depends mainly on us-
ing an equation of state which allows for matter
with negative pressure, e.g. phantom energy (cf. [7]),
quintessence energy (cf. [8]) and Chaplygin gas (cf.
[12, 23]). Although this class has some success, such
materials do not exist on the Earth or in the Solar
system.

3. Using other scenarios together with orthodox GR.
For example the inflation scenario is used to remove
particle horizons from FRW-cosmology [17, 25]. Also,
MOND is used to remove the problem of rotation
curves of spiral galaxies (cf. [5, 42]).

Now, our point of view is that, on one hand, contradic-
tions between the predictions of any gravity theory and ex-
periments or observation may imply new physics. On the
other hand, modifications of GR-theory using f(R) or f(T)
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may imply quantitative improvement of GR and not quali-
tative improvement. This may not lead to prediction of new
physics, if any.

An important note, concerning the above mentioned
suggestions, is that such modifications (f(R), f(T)) com-
prise the modification of the geometric part of (1.1), its
L.H.S. part, without touching its material distribution
part, the R.H.S of (1.1). This may raise the following objec-
tions:

1. The material distribution outside the Solar system
may be different from that in our laboratories, and

consequently the phenomenological Ty of (1.1) may
not be appropriate to describe such material distri-
bution.

2. The link between the geometry used (e.g. L.H.S. of

(1.1)) and the material distribution given by Ty is ar-
tificial since the geometry used may not allow for the

material distribution given by T}v.

3. A formal difficulty arises as follows. The use of an
action principle produces field equations that are
equal in number to the unknown functions i.e. the

BB of the geometry used. If Ty is defined from out-
side the geometry, it will add more unknown func-
tions to the same set of differential equations. In
general, this set cannot be solved without adding
more conditions, e.g. equations of state, from out-
side the geometry. This violates the philosophy of
geometrization.

We suggest a field theory in which Ty is defined
from the BB of the geometry used. This may remove the
above mentioned objections and makes the theory self-
consistent. The theory obtained in this case will be a pure
geometric theory which would be more consistent with the
geometrization philosophy. This may be achieved by a the-
ory which satisfies the Unification principle. This principle
may be stated as follows:

Unification Principle

In any geometric field theory, “all physical quantities and
fields are to be induced from one geometric entity, the build-
ing blocks of the geometry used". This principle has been
inspired by Einstein’s statement [14]: “A theory in which the
gravitational field and the electromagnetic field do not enter
as logically distinct structures, would be much preferable".

Satisfying this principle would imply the following:

1. The use of a geometry more wide than the Rieman-
nian one.
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2. The Lagrangian density, used to construct the field
equations of the theory, is to be composed of the
BB of the geometry and their derivatives. In other
words, this Lagrangian should not be composed, a
priori, from different parts each corresponds to a cer-
tain field, as usually done.

In the domain of theoretical physics, quantization and
geometrization represent the two main important philo-
sophical ideas of the 20" century. They have been fre-
quently used, successfully, to solve many problems, so
far. These two philosophies are not in complete agree-
ment with each other. The main problem between them
is that geometrization depends on continuity (of space-
time) while quantization depends on discreteness. Many
authors thought that in order to quantize geometry one
should first quantize space-time [2], i.e. define minimum
time and minimum length, which is a very difficult task.
Our point of view is different; that is, quantization of grav-
ity starts from trajectories of elementary particles (curves
or paths of the geometry used). Fortunately, it has been
shown [46, 47] that any non-symmetric geometry, includ-
ing absolute parallelism, has such curves as will appear in
Section 2.

The aim of the present work is to construct a pure ge-
ometric field theory, in which fields and material distribu-
tions are described using only the BB of the geometry used;
in other words, a theory satisfying the Unification Princi-
ple. Also we aim to explore whether the suggested theory
has a correct GR-limit. The article is arranged as follows.
In Section 2, we review briefly the bases of the Absolute
Parallelism (AP) geometry that will be used in building the
new theory. In Section 3, we apply a variational method to
the chosen Lagrangian and get the field equations of the
suggested theory. In Section 4, we analyse the field equa-
tions into their symmetric and skew parts and compare
what we get with other non-linear field theories, e.g. GR.
In Section 5, we linearize the field equations and demon-
strate that it meets the limits of well-known linear field the-
ories. In Section 6, we show different field types that can
be described using the new theory and how to differenti-
ate between them. In Section 7, we apply the new theory to
a tetrad vector field having spherical symmetry and show
that the results reduce to that of the Schwarzchild exterior
solution (under certain conditions). Finally, in Section 8,
we point out some important remarks about the suggested
theory that are worthy of noting.
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2 ABrief Review of AP-Geometry

In this Section we give a brief review of AP-space, (for more
details cf. [48], [50], [51] and [52]). The AP-space (M, A)
1

is an n-dimensional differentiable manifold, each point
of which is labelled by n-independent variables x*(u =
0,1,2,...), and at each point we define n-linearly inde-
pendent contravariant vector fields }il" (u= 0,1,2,...)

stands for the coordinate components and i(= 0, 1, 2,...)
stands for the vector numbers). Throughout this paper, we
use Latin indices for vector numbers and Greek indices for
the coordinate components. As a consequence of this in-
dependence the determinant ||/}" || # 0, then we can define

the covariant vector fields A, which are the normalized co-
1

factors of A¥, in the matrix (A¥) such that:
1 1

A, =6, 1)
1 1

and,
AAy =6

i v

(2.2)

Using these vectors, one can define the second order ten-
sor:

def

8uv = éyév- (23)

Since the tensor gy is a covariant second order symmet-
ric tensor and the matrix (g,v) is non-degenerate, then gy
can be used to play the role of the metric of a Riemannian
space associated with the AP-space. Also, we can define its
contravariant tensor by the relation:

def
g™ € AHAV.
11

(2.4)

Imposing a metricity condition on gy, we can construct
Christoffel symbols {,,}, as usual:

def 1 40

{iv} = 58 (2.5)

The AP-space admits a non-symmetric affine connection
Iy, which is defined as:

(8uo,v + Zov,u — 8uv,a) -

def

F.ayv = /}a/}y,v. (2.6)

Using the above connection, one can easily show that:

Ay|v=/}ll,v - I‘.ayvétx =0, 2.7

1
where the stroke and the (+) sign denote tensor differenti-
ation, using (2.6). Some authors call (2.7) the AP-condition
(cf. [27]).

Also, one can define a third order skew tensor:

def

Afxyv = F.ayv - I‘fxvy- (2-8)
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This tensor is the torsion tensor of AP-space. One can also
define another third order tensor by:

o def a
Youv = /} /}}J;V,

2.9
where the semicolon (;) is used for covariant differentia-
tion using (2.5). This tensor is called the contortion of the
space, using which, one can write the relation (cf. [27]):

'V.ayv = F.ayv - {yav} . (2.10)

The contortion is related to the torsion tensor by the rela-
tion [18]:

1
Yauv = 5 (Aayv - Ayav - Avay) . (2-11)
From (2.10) we can write:
Afxyv = ’Y.a‘uv - 'Y.avy- (2.12)

It can be shown that vqv is skew in its first two indices. A
basic vector could be obtained by contraction, using any
of the above third order tensors:

def

e = Alpa =7 (2.13)

Using the contortion, we can define the following symmet-
ric third order tensor:

def

Afxyv = 'Y.auv + 'Y.avy- (2.14)

In AP-space we can define at least four linear connec-
tions and consequently four types of tensor derivatives as
follows:

A L L L
uoodef o pa
A, = AR T A 215
def ~ :
A, S A T A%
def
Ay = A {dV) AT,

where A¥ is an arbitrary contravariant vector and

r ’E ay . are the symmetric part and the dual of the con-
nection I'*,, given, respectively, by:

Fy def 1

.(va) = i (2.16)

(Fflva + Fflav) ’

~ def
m,<r,. (2.17)

In Riemannian space the only second order tensors, de-
fined using the BB of the space, are Ricci tensor Ryy and
the metric tensor gyy. In AP-space there are more second
order tensors as shown in Table 1. It can be easily shown
that there exists an identity between skew-tensors, given
in Table (1), which can be written in the from:

Nuv + Euv — Xuv = 0. (2.18)
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Table 1: Second Order World Tensors [27]

Skew-symmetric Tensors Symmetric Tensors

def 4
‘fﬂV = Ty, |2

def a
Qo = CaYuv.

def
Puv =
def
Yuv = A.ayvm

0 def
w = Cypy + Cypp
+ +

def
Nuv = CaAfxyv
def 4
Xuv = A.],tv|‘i

Cal¥yy

def
Epv = Culy = Cyjp
+ +

def o ¢ a € ~ def o ¢ a €
Kuv = YoueV.av — YveYau  Wuv = YueV.av + VveV.au

def
Wyv = V.eyaW.o\(/e
def
Ouy = ’Y.etxy'}/ﬁ:v
def
ayv = C)JCV

where Af"w‘g =A% lo-
+ ++

We see from this table that the torsion tensor plays an im-
portant role in the structure of AP-space, since all tensors
in this table vanish when the torsion tensor vanishes.

It has been found that the Ricci tensor Ryy can be written,
using Table (1), in the following equivalent form (cf. [27]):

def 1

Ruv = E (II)]JV - (l)yv - 9}“,) + Wyy. (2.19)

In the AP-space, as stated above, there are at least four
linear connections I'* yy, I'* (), I,y and {,%,}. For each
connection there is a curvature defined by [48]:

def
B.eyva = F.e;w,v - F.eyv,a + F.ayar.eav - F.ayvr.eaa ,
ne def € _ 1€ a € _ra €
B~ uvo d_f T.(ya),v F.(yv),o + F.(ya)r.(zxv) F.(yv)r.(aa) ’
B.eyvo = T.eyo,v - F.eyv,a + F.ayar.eav - F.ayvr.etxa ,
def
Riwo S b —{fvho+ {loHav) - (5 HE)

(2.20)
Due to the AP-condition (2.7), it can be shown that one of
the curvatures given by (2.20) vanishes identically, i.e.

B 46 = 0. (2.21)

It is to be considered that, due to (2.21), many authors have
considered the AP-space as a flat one. In [44] the AP-space
is treated as a non flat one due to the non-vanishing of
other curvature tensors as shown above.
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A new tensor of type (2,2) has been suggested:

def
5= Voo =2 s,

Ao WP (2.22)
i LY

where the double stroke represents tensor differentiation
using a certain linear connection. If one uses the Levi
Civita linear connection in this definition, then W“B

the Riemann-Christoffel curvature tensor. But if we use a
different linear connection the resulting object is not the
conventional curvature. For this reason the W-tensor has
been first called the non-conventional curvature tensor
[28, 44]. Afterwards, it is shown that this tensor is neither
curvature nor torsion, it is a geometric alloy made of the
two tensors and cannot be defined except in the AP-space.
So it has been given the name W-tensor [50]. It has been
used in constructing the Generalized Field Theory (GFT)
using the dual connection (I %v). In the case of GFT the W-
tensor is defined by [28, 44]:

élx W.a%lva =/}’j\va_/}}j|av (2.23)

It has been found that W*¥ , can be written explicitly in

the from:
).

The path equations corresponding to the four linear
connections, mentioned above, have been found to be
[46]:

Wi, A (’}’j‘v"_ (2.24)

dvH

ayp _ _ U a 7B
e +{aﬁ} VaVE = A B VEVE,
dW}l a B _ 1 M a ﬁ
S +{aﬁ}w W == Al W,
dJj* M agp _
as a1 =0,
(2.25)
where S*, S° and S~ are parameters varying along the

curves with tangents V%, W* and J%, respectively, and
A aﬂ’; is given by:

A H

“@. (2.26)

def 1 (Aaﬁ" +Agl ) .
It is to be noted that the coefficient of the torsion term
jumps by a step of one half from an equation to the next
in the set (2.25). Note also that the set (2.25) contains only
three equations, not four as expected. We consider this
property as reflecting some type of natural quantization in
the geometry used.
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3 The Lagrangian Function and
Field Equations

When constructing his theory of GR, Einstein has not used
an action principle to derive the equations of the theory. He
has depended mainly on a differential identity in Rieman-
nian geometry, Bianchi 2" identity, to write these equa-
tions. He considered this identity as a geometric represen-
tation of conservation. Afterwards, Hilbert has suggested
the use of an action principle to reproduce the field equa-
tions of GR. In general, the two procedures, identity and
least action, seem to be equivalent. However, Einstein has
refrained from using the action principle method in deriv-
ing the field equations of other field theories, especially
when using different geometric structures (cf. [14]).

We prefer to use the identity method since it is more
consistent with the geometrization philosophy. In this case
one has to look for appropriate differential identities, in
the geometry used, or to look for a method for deriving
such identities. Fortunately, Dolan and McCrea have sug-
gested such method for Riemannian geometry [13]. This
method has been modified [44] to be appropriate for the
AP-geometry and has been used to construct a field theory,
the GFT [28]. In this modified (Dolan-McCrea) method, the
differential identity derived in the AP-space is of the gen-
eral form:

E¥, =0, (€X))
where 5L
AER % 51,0 (.2)

where £ is the Lagrangian density, 6L is the Hamilto-

SAu /\ y
nian derivative of £, and 7 is the determmant of 1.
1

The identity (3.1) can be considered as a general ge-
ometric representation of conservation of quantities de-
fined by E¥,. Consequently, the field equations of the the-
ory can be written in the form:

Ew=0. (33)

The above procedure is very similar to that used by Ein-
stein in deriving the field equations of GR for the first time.

In the present work we are interested in examining
the consequence of using the symmetric linear connection
(2.16), in place of the dual one, in the definition of the W-
tensor (2.24).

Now we define the W-tensor (2.24) using the symmetric
linear connection (2.16) as:

W def/} (/\o _,}’ﬁlw>, (3.4)
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contracting by setting a = o we get:

Zu def u u
W.yv = /}a (/} ’ lva _/}o \txv) , (3.5)
contracting again by setting y = v we get:
V= wH e i A
w=Ww, —}il"‘<)il |ua —A \au) . (3.6)

Using one of the definitions of the set (2.15) and substitut-
ing from (2.8), (2.10), (2.12) and (2.13), then (3.6) will give,
after necessary reductions:

1 1
W = Eca;a - icaCa + Z’yayvAyav - E’ya}lv’}/uva. (3-7)
So, one can define a Lagrangian density as:
£, ( det ||Ay\|> 58)

i.e. using (3.7):

1 1
7CaCa + 4’}/“#‘//1}1“\/ -

3

1

j’yauv’)/yva:| . (3-9)
As it is well known, the first term of expression (3.9), c%g,
gives no contribution to variation. So, (3.9) can be written
as:

L= {—fc Ca+ = 1 (3.10)

1
ayvA _ 1 _auv
4 uav 2’7 ’via:| .

In general, the Lagrangian is assumed to be:
L=L (/.114, Apvs AH’VU) .
1 1 1

In this case, using (3.2), we may define a second order ten-
sor Sﬁ o as:

B def 6L
e 5k Ao, (3.11)
where,
0L det 0L d 0L 52 5r
5A;  0Ap 0x'0lg,  OXFOX OApum’ (612
] j j j

is the variational derivative of the function £. It is clear that
S{g o represents the components of a tensor of the character
indicated by their indices. The identity (3.1) is a general-
ization of the Bianchi contracted identity in the AP-space.
It is to be considered that (3.1) is a general identity inde-
pendent of the explicit choice of the Lagrangian. It is just
sufficient to assume that the Lagrangian is of the general
form L = L(Aa, A48, Ag,p+)- If we consider (3.1) as a general
geometric representation of some type of conservation in
the theory suggested, then we can take:

sb. defl 6L o=

(3.13)
A8Ag )
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as the field equations of this theory, as stated above.
Now from the Lagrangian function (3.10), we have:

1 1 1
L = —ZCQCQ + Z’yayvAyav - E’Yayv’}/yva . (3.14)
Using (3.10), we get:
0oL 0(AR)

Mﬁ( ctey + 4A“"V(Am,, Aayv))

oy~ 0hy

N ZM}E (4c"A?€y—4cﬁce+2Am (2/1“‘*7 RN Aﬁ‘”)) ,
(3.15)

where R is the Ricci scalar constructed from Christoffel
symbols, and:

9 ok
379X,

_ 9 (AR
T ox7 olg,
]

FATC (AP B + A (208 - popy _ L ppar
j j i \2 2
+A (/16 (cfg,e - CBF,”W + c”l"‘ﬁm) - Aﬁc_”,v)
] ]

+ M el (%AW L
]

1/1[’“7)

+qﬁ(%wﬁz—A@m—%A%%). (3.16)

It is clear that the last term of (3.12) vanishes identically,
since the Lagrangian chosen is a function of A g and its first
1

derivatives only.
Substituting from (3.15) and (3.16) into (3.12), we get af-
ter some manipulation:

1 1
Sﬁ Gﬁ +6/3 < R CT v 7c Cu+cC \v)

1 1 1 3
+ *’Yayo’Yﬁay + *’Yauﬂ’yayﬁ + *’YOWVWﬁ + *’Yoya’Yﬁau
2 2 2 2
1 1
_ZcHpAB  _p By VB _ B - Bu
ic A gy — Ay c7+5A.0 Cy~=C |‘I+A°" I
1 gw _ 1 up
+5A0) . >4 w (3.17)
where 1
6P, LR - §6§R. (3.18)

The above expression (3.17) can be written in terms of the
second order tensors defined in Table 1 as:

Séa =G€O’ + 5§A - % [eﬁa + Oﬁa - a’?a -3 (w{go

3 Wo=3#a) |+ 3 (Femtla-3e0).
(3.19)

where

< def 1 1 1
A= §<G—a+§0—§w>. (3.20)
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By using equation (3.13) and noting, from (2.3) and (2.7),
that:

g0 =0, (3.21)

we may write the following set of field equations, for the

suggested theory, in the form:

-1 -
Syv = Gyv +gyvA - 3 [eyv + Opv — Wy

-3 (‘UW + %Ebyv - %¢HV):| + % ((yv — v - %SHV)
=0. (3.22)

4 Comparison with Non-linear Field
Theories

In order to gain some physical information about the ge-
ometric constituents of the theory, we are going to com-
pare the field equations (3.22) with the corresponding field
equations of non-linear field theories. To do so, we first
split the suggested field equations (3.22) into their symmet-
ric and skew parts.

The Symmetric Part of Sy
The symmetric part of Syy is defined, as usual, by:

def 1

S(]IV) = E (Syv + Svy) . (4.1)

Evaluating this definition, using (3.22), one gets after some
manipulations:

1 1 1
Sy = Guv = 58w (0‘ —0+sw- 5")
1 ~ 1 1
_ E l:eyv + U}lv - CUHV -3 (wyv + il/)yv - §¢PV):| . (4.2)

From which we write the symmetric field equations (S Q) =
0) as:

1 1 1
Guy = 58w (a— 0+ 5w - 50)
1 . 1 1
+ i eyv + Opy — Wypv — 3 Wyy + Elpyv - §¢HV . (4-3)
or, in a more compact form, it can be written as:

1
Ry - igva = T, (4.4)

where

def 1

T 3 (b 600 S0 ) + B 45
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and

3 (ww - %qbw)} . (4.6)
The significance of the tensor By, will be shown later in §6.

Equation (4.4) is the symmetric field equations of the
suggested theory. They have, apparently, the same form of
Einstein field equations of GR. Since the L.H.S of (4.4) sat-
isfies the contracted Bianchi identity, then we can write:

T, =0, (4.7)

which gives the conservation of the physical quantities
represented by the tensor T,y. Consequently, Ty, can be
used to represent the distribution of matter and energy.
We call this tensor the “geometric material-energy tensor".
Also, the comparison between (4.4) and the field equations
of GR shows that the tensor g,v, defined by (2.3), plays the
role of the gravitational potential. These results will gain
more justification in §5.

The Skew Part of Spy
The skew part, of the tensor Sy given by (3.22), can be writ-
ten in the form:

def 1

S[FV] = E (Syv - Svy) ) (48)
which can be explicitly written as:
1 1
S =5 ((uv —§uv - §SFV> . (4.9)
But, we have from Table 1:
et (4.10)

Euv = Cle - CV”i = Cu,v — Cv,u — Nuv.

Then substituting from (4.10) into (4.9), then the skew part
of the field equations (3.22) can be written as:

Cy’v - Cv,y = Z(VV - 2{11\/ + rlyv. (4.11)

Alternatively, this equation can be written in a more com-
pact form:

Fyv =Cu,y —Cv,p (4.12)
where
def
Fuy = =28 + Zyv (4.13)
and
def
Zuv = 28w + Ny (4.14)
Consequently, F,y will satisfy the relation:
Fyv;o + Fo],t;v + Fvo;],l = Fyv,a + Fay,v + Fvo,y =0. (4.15)
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We can also define the vector density:

g L g (4.16)
where
guv 4 ) v (4.17)
then:
=", =0. (4.18)

since F*V is skew tensor density. Also we can define the

scalar J by:
2 def

J° = 3"
A primary comparison between the skew field equations
(4.12), of the suggested theory, and the corresponding field
equations of Einstein-Maxwell theory [39] shows that:

(4.19)

— The skew tensor (4.13) can be used to represent elec-
tromagnetic filed strength.

— The basic vector ¢y (defined by (2.13)) appearing in
(4.12) represents a generalized electromagnetic po-
tential.

— Equations (4.12) and consequently (4.15) represent a
generalization of Maxwell field equations.

— The vector density J* represents the current density.

— The scalar J represents the charge density.

— The identity (4.18) represents the conservation of
electric charge.

The above physical attributions, to geometric objects, will
be more supported in the next Section.

5 Comparison with Linear Field
Theories

From the above Section, it appears that the field theory
suggested in the present work may be used to describe a
unified gravitational and electromagnetic fields since both
fields are generated from one entity, the BB of the AP-
geometry. Also, the theory represents a material distribu-
tion given by Tyy. Recalling that the theory suggested is
highly non linear in the unified potential (the tetrad vec-
tor), one can conclude that the separation of gravity and
electromagnetism, appeared in Section 4 is apparent (not
complete). In order to obtain a real separation between the
two fields, one has to go to low energy limits. This goal
may be achieved by examining the case of weak and static
fields and a slowly moving test particle. In other words,
one has to linearize the theory in order to support the
physical meaning attributed, in Section 4, to the geometric
objects and also to gain more physics. This linearization
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will enable us to compare the suggested theory with cor-
responding linear field theories in which physics is more
clear.

The linearization scheme may be as follows:
On one hand the tetrad vector field A , represents the build-

ing blocks of the AP-geometry. On ihe other hand, in view
of the present theory, it represents the unified potential
generating both gravitational and electromagnetic poten-
tials, guv and cy, respectively. Also a material distribution
is induced by this tetrad. So we are going to assume that:

A.'y:(sill+€hl" (51)
1 1

where 5,-y is Kronecker delta, l} u are functions of the co-
ordinates representing deviations of the tetrad vector field
from its flat space values and € is a dimensionless param-
eter. Weak field can be achieved by neglecting terms of the
second order in € in the expansion formulae as follows. We
expand any geometric object S in the form:

o @ 2(2) r(r)
S=S+eS+e"S+...+€S+....

(5.2)
(r) . . . .
where S is the coefficient of €” in the above expansion for-
mula. For example, the metric tensor g,v, using (2.3) and

(5.1), can be written as:

gyv=‘suv+€)’yv+€2hyhv (5.3)
1 1
where
def
Yuv = ﬁv*’cly- (5.4)
Thus,
(0) (1) )
g”\/:éyv, gyv=yHV’ g,uv=}i1HhV‘ (5'5)

1

So, we can express each of the tensors in the field equa-
tions (3.22) in ascending powers of the parameter €. Table
2 gives the results of expansion for different AP-geometric
objects [44], using their definitions given in Table 1 and
the expansion formula (5.1). Confining ourselves to linear
terms only (O(e)), we get the following results for the sym-
metric and skew parts of the field equations.

The Symmetric Part
The linearized form of the symmetric equations (4.4) is
given by:

@ 1. O

R‘uv_z(sl,lvR = T‘uv, (5-6)
which is equivalent to:

O o 1. @

R}IV = Tyv - Esyv T (57)
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Table 2: Expansion of AP Geometric Objects [44]

Unification Principle and a Geometric Field Theory =——— 255

Geometric Object Order of €
0Order 15 Order 2" Order 3" & Higher Orders
Ay 4 v/ X X
1
Suv Vs 4 v X
1
Suv v 4 v /
{l‘av} X v v /
'Y.ayv X v/ v/ v
Afxyv b 4 v v/ v
Afxyv b 4 v v/ v
Cu b 4 v v v
§FV X v v v
Xuv X v V4 /
Epv b ¢ v/ v v
Cuv X X v/ v
NMuv b 4 X v/ /
Kuv X ) 4 v v
0}“/ X v v v
l/))“/ X v v /
¢]1V b 4 ) 4 V4 /
G)VV X ) 4 v v
Wy X ) 4 v v
Opv X ) 4 v v
Ay X ) 4 V4 v
R]"V X v v v
FVV X v V4 v

v represents the existence of the term, and X represents its absence.

Using (2.5), the conventional definition of Ricci tensor, and
the contraction of R¢),,; given in the set (2.20), we get:

()

Ryv = 5 ()’yv,tm + Yaa,uv — Yua,va — Ysz,,ua) . (5.8
From (4.5) and Table 2, we have:
(1) 1 1 @ 3 1)
T}“/:j 5yvl/)+ eﬂv_jl,byv > (5.9)
(1) 3 (1)
T=39, (5.10)

since P = -6.
Substituting from (5.8), (5.9) and (5.10) into the linear equa-

tions (5.7), we get:

1
3 ()’yv,aa + Yaa,uv — Yua,va — YVa,;ux)

1 n @ 3@ 3 (1)
=§ Sﬂvlp+0ﬂv_§lpyv _gauvll), (5~11)
or
1 1
Yuv,aa + (EJ/aa,y - y;ux,a) vt (E)’aa,v -}/va,a> U
(1) 3D 1 1)
= G}lv—zl/)yv‘*'zéyvl/)- (5-12)

In the case of classical mechanics, weak and static field,
the only non-zero component of the material energy tensor
is the 00-component. In order to compare with the classi-
cal field equation we write the above field equation (5.11)
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for u, v = 0, in the form:

1) €Y 1)

1 (@
vzJ’OO:Z (l/‘11+¢22+‘/)33—51/)oo> . (5.13)

The 6o term disappears since, for a static field, we have:

(1)
000 ="ho,a0 +ho,a0 = 2h 4,00 = 0.
a a a

It is clear that the symmetric field equations, in its lin-
earized form (5.13), relates the gravitational potential ygq
(thelinear part of g,y (5.3)) to its source, represented by the
R.H.S. of (5.13). To gain more physics, let us examine the
R.H.S. of (5.13). It seems that 1,y is the tensor responsible
for static material distribution. Now we take into account
the following points:

(€9
1. if we take 1, as a geometric representation of the

density of a static fluid, then the spatial compo-
o o @
nents ¥, , ¥,,, ;5 canbe considered as geomet-

ric representations of the hydrostatic pressure of the
fluid,

2. classically speaking, and considering slowly mov-
ing particles of the fluid, the pressure would be of
the 2" order in the velocity. So the effect of the spa-

(1)
tial components i ., (wherea, b = 1, 2, 3) could be
neglected in the linearization regime,

3. it is well-known classically, that pressure has no ef-
fect on the gravitational potential. So to compare
with classical known results, one has to neglect the

1) (1) 1)
effectof ,,, ¥P,,, P35in(513).
Considering the above points we can write the lin-
earized symmetric field equations (5.13) in the form:

€))

5
VYoo = -7 Yoo (5.14)

In classical hydrodynamics, the gravitational potential ¢
within a fluid of density p is given by Poisson equation (cf.
[4]):

Vip=tavp, (5.15)

where ~ is the universal gravitational constant.

The comparison between the two equations (5.14) and
(5.15) justify the assumption that ¥ represents the fluid
density and yqo is the gravitational potential.
Consequently we can arrive to the following physical re-
sults:

1. The symmetric field equation (4.4) is a generaliza-
tion of Poisson equation.

2. The tensor ¥,y is a geometric representation of a
static material distribution, while the tensor 6, will
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offer a contribution to this distribution in the non-
static case. The tensor By (4.6) will give non-linear
effects.

3. The tensor Tyy (4.5), composed of the above men-
tioned components, can be used to represent the en-
ergy and material distribution.

4, In the case of vanishing material distribution, i.e.
1)
Yoo = 0, equation (5.14) will reduce to:

szoo =0 N (5.16)

which is the well known Laplace equation.

In addition to the above justification for attributing
material distribution to the tensor Tyy, let us add one more.
The generalized conservation law of material-energy (4.7)
can be written as:

T, €T T (BT (Y =0, (B7)

Now in the linearization regime, this law is reduced to:

(1)

TW,=0, (5.18)

since other terms are of the 24 and higher orders. Equation
(5.18) is the well known classical conservation law imply-

(1)
ing that T *¥ represents conserved quantities.

The Skew Part
The skew part of the field equations (3.22), in its linearized
form, can be written as:

ey oY) (1)

uw = Cuv— Cypu, (5.19)
where,

D gef D

Fu S -2&,,. (5.20)

Note that Z,y, given by (4.14), vanishes in the first approx-
imation scheme (see Table (2)).

It is to be noted that, in the linearized form, raising
and lowering of indices are carried out using Kronecker
deltas; and the determinant A will have, to the first order,
the value:

A=1+e(go+}111+1212+213).

So, substituting from (5.19) into (4.16), we can write the
current vector Jy in the following linearized form:

@ o)

u=Cuw— Cvyu. (5.21)
Contracting (5.12), using (5.1) and Table 1, we get:
hava=hv,aa. (5.22)
v 14
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Expanding c, using (5.1), we get:
(1)

Cup= (f}y,v - }vlv,u) M

So using (5.22), we get:

1
(C)'u,y = 0.

(5.23)

(5.24)
Substituting from (5.24) into (5.21), we get, for a static field:

1) 1)
VZCP= ]I'l'

(5.25)
In order to compare with the classical static field equa-
tions, we write the above equations for u = 0; we get:

,(1) (1)

v C0=]0. (526)

It is clear that the skew-symmetric field equation, in the

1
linearized form (5.26), relates the electric potential (c)o to
its source, represented by the R.H.S. of (5.26). To gain more

physics, let us examine the R.H.S. of (5.26). It seems that
1)
J o is the vector component responsible for the electric

charge distribution, in the static case.
In classical electrostatics, the electric potential ¢ in an
electric charge distribution of an electric charge density g
is given by Poisson equation (cf. [22]):
4mq

v2¢ = ? > (5.27)

where ¢ is the dielectric constant.
The two equations (5.26) and (5.27) would be the same if,

apart from some conversing constants, ((1:)0 and (})o are the
electric potential and the electric charge density, respec-
tively.

Consequently we can arrive at the following physical
results:

1. The skew-symmetric field equations (4.12) are a gen-
eralization of Poisson equations (5.27).

2. The vector component ] is a geometric representa-
tion of a static electric charge distribution while the
components J1, J», J3 have contributions to the non-
static case and the tensor Z,, (4.14) will give non-
linear effects in the non-static case.

3. The tensor Fyy (4.13) can be used to represent the
strength of the electromagnetic field; and conse-
quently ¢y (2.13) can be considered as the general-
ized electromagnetic potential.

4. Inthe case of a vanishing electric charge density, i.e.
Jo = 0, equation (5.26) will reduce to:

1
V4%=0,

(5.28)
which is the well known Laplace equation for the

1
electromagnetic potential (c)o.
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In addition to the above justifications for attributing
the electric charge distribution to the tensor Fyy, here is
one more. The linearized form of the identity (4.18) can be
written as:

(}) u (1)

-F", =0, (5.29)

which is the well known classical conservation law indi-
cating that Fy, represents conserved quantities.

M

6 Transition to Physical Application

The two methods given in Sections 4 & 5 can be used for
any geometric field theory to explore its physical contents
before solving its field equations. In the present Section,
we review a third important method, not well known in
the literature, for analysing any geometric field theory, be-
fore confronting its predictions with observations or ex-
periments. This method was suggested in 1981 [29] and has
been used in many applications (cf. [11, 30, 45, 49]). This
method is known as “Type Analysis". It measures the capa-
bilities of a certain geometric structure to represent physi-
cal systems in the context of the theory concerned.

In order to confront a covariant field theory with obser-
vations or experiments, one has to solve its field equations.
It is well known that there is no general solution of any ge-
ometric covariant field equations (e.g. Ryv = 0 of GR) un-
less one constraints the building blocks of the geometry
to certain symmetries (spherical symmetry, axial symme-
try, ...). This is usually done via Killing equations which
contain the building blocks of the geometry together with
the generators of certain group of motion or more. Let us
call the resulting geometric model a “geometric structure".
The main idea of type analysis is very simple. Let us give an
example in the case of Riemannian geometry. It is impor-
tant to carry out the following test: if one uses a geometric
structure, a line element, for which all the components of
the curvature tensor vanish identically, then one can con-
clude that this structure cannot be used to study gravita-
tional systems in the context of GR. This test can be applied
before solving the field equations of GR. Consequentially,
one can classify Riemannian geometric structures, in the
context of GR, into two classes. The first is characterized by
a vanishing curvature tensor (not appropriate for gravity)
and the second is characterized by a non-vanishing curva-
ture (appropriate for gravity applications).

This idea has been extended for theories constructed
in wider geometries than the Riemannian one. For ex-
ample, in the AP-geometry, the identical vanishing of all
second-order skew tensors for a certain geometric AP-
structure indicates that this structure cannot be used to
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represent electromagnetism, even if the field theory con-
sidered has an electromagnetic sector.

In the context of the present work we give examples of
what the term strength means. We can see from (4.6), and
Table 2, that By, when expanded, includes only terms of
the second and higher orders in €. So, we can take By as
an indicator of the strength of the gravitational field. Also,
from (4.14), it is clear that the expansion form of Z, in-
volves only terms of the second and higher orders in €.
It follows that we can consider Zy, as an indicator of the
strength of the electromagnetic field. The identical vanish-
ing of such tensors, in any AP-structure, indicates that the
corresponding fields are weak.

As a result, we can specify some distinct classes of
gravitational fields (denoted by the letter G) and elec-
tromagnetic fields (denoted by the letter F) according to
Table 3.

Table 3: Type Analysis

Indicator Field Represented Type
Fuw=0 No electromagnetic field Fo
Fuw #0 Electromagnetic field, FI
Zy =0 not strong
Fuy #0 Strong electromagnetic Fll
Zyv #0 field

R%5=0 No gravitational field GO

R%,6 #0 Gravitational field in empty Gl
Tuww =0 space, not strong

R%0 #0  Gravitational field within
Tuv #0 a material distribution, Gll
By =0 not strong

R%,6 #0  Strong gravitational field
Ty #0 within a material Gl
By #0 distribution

The type of a unified field is specified by its electromagnetic class (de-
noted by F) and its gravitational class (denoted by G). For example, a
pure weak gravitational field within a material distribution is denoted
by FOGII.

It is to be considered that the procedure of type analy-
sis is generally covariant since it depends on the vanishing
of certain tensors. This procedure in the AP-geometry de-
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pends on two elements: the geometric field theory and Ta-
ble 2 which is independent of the field theory used. It can
be established for any field theory constructed in the AP-
geometry. The application of the scheme of type analysis
will be more clear in Section 7, which gives a clear exam-
ple illustrating how to use this scheme in physical appli-
cations.

7 A Solution with Spherical
Symmetry

In this section, we apply the present theory to the tetrad
vector field having spherical symmetry. This tetrad, which
has been derived by Robertson [41], can be written in the
coordinates (x° = t,x! =r, x> = 0, x> = ¢) as:

u=0,1,2,3
—
A Dr 0 0
) 0 Bsinfcos¢p —cosfOcos¢p -— sin ¢
M= 2 r sin@
RS
> . B . cos ¢
w 0 Bsinfsing 7cos@smqb < sind
B .
0 Bcos6 —7sm0 0
(71)

where A, B, and D are unknown functions of r only. From
(7.1) we can get the metric tensor of the associated Rieman-
nian space, using (2.3):

1 2.2 2 Dr
yE) (D*r* + B?) B 0 0
Dr 1
AB? B ° 0
Suv = 2
0 0 B 0
2
0 0 0 —-sin’f

(72)
Evaluating the required second-order tensors (relevant to
the field equations (3.22)) using Table 1 and substituting
into (4.5), (4.6), (4.13), and (4.14), we find that the tetrad
(7.1) corresponds to type FIIGIII, following Table 3. This
means that the tetrad vector field (7.1) is capable of repre-
senting strong unified field within a material distribution,
in the context of the present theory.
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Now substituting into the field equations (3.22), we get

the following set of differential equations:

A 1" D A/Z B/Z D/Z
§% :[D?r} (2= + 14— +2— +3—= - 35— + —
S0 D7 A D A? B2 D?
A'B’ A'D’ B'D’ A’ B’ D 21
+6 -4 -8—+56—-6—-—)
AB AD BD Ar Br Dr r?
AN " A/Z BIZ A/B/ AI B/
+B2(-25— +16— +3—— - 26— +2 4= +32-)]
A2 B2 AB Ar Br
=0,
o A// B/I D/I A/Z B/Z A/B/
SO (-7 - - 47— -10
) A B D A? B2 AB
A/D/ B/D/ A/ B/ D/
+ +3 +11—-7—-4—)=0,
AD BD Ar Br Dr
A/Z B/Z D/Z A'B’ A'D’
S D (== - 21— + — - 14 -2
: A2 B2 D? AB AD
B'D’ A’ B’ D 21
+14 + 14— + 42— - 14— - )
BD Ar Br Dr r?
A/Z B/Z AIBI Al B/
+B* (= -6— -16 +16—+12=—)]=0
A2 B? AB Ar Br
A B D" A/Z 12 D/Z
52, =833 : [D*r’ (8= + 14— -8—— - 17— -35— -9 —
=551 ( A D A2 B2 D2
A'B’ A'D’ B'D’ A’ B’ ro21
- 24 +26 +38 +32°- 456 —46— - =)
AB AD BD Ar Br Dr r?
Al/ B// AIZ B/Z AIBI Al B/
+B2(8= +6— 17— —6— +2 +8—+6=—)]=0,
A B A2 B? AB Ar Br
(73)

where the prime represents first derivative w.r.t. r and the

double prime represents the second derivative.

It can be shown that, on choosing D = 0, the type
of the model (7.1) will change to FOGIII, since this choice
will switch off all second-order skew tensors relevant to
the present theory. In this case the above set of differen-
tial equations (7.3) reduces to:

A B AIZ B/Z A’B’ Al B’
% i -2— +16— +3°—— -26— +2 -4=—+32— =0,
: A B A2 B2 AB Ar Br
A/Z B/Z A'B’ Al B’
sl i -6—-16 +16— +12=— =0,
T A2 B2 AB Ar Br
A B A/Z B/Z A'B’ Al B’
§2,=8%,:8 +6— 17— -6— +2 8 — +6— =
’ B A? B2 AB Ar Br

The above equations can be written in the compact form:

" 12 /
L(r) + 8% - 12%—2 + 16% =0,

BIZ A/B/ A/ B/
M(r)—ltﬁ—S 1B +8m+8§—0,

A// B// A/2 B/2 A/ B/
N(r)+47+4f_8ﬁ_4§+4ﬂ+4§ =0,

(7.5)
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where,

d_ef A B A”? B2 A'B A’ B’
L(r) = 2% +8% + 3%y — 145 + 255 — 44, + 164,
d_ef A2 B”? A'B’ Al B’
M) = %z - 2% -8%p + 85 + 45,
d_ef A B A/Z B/z A’'B’ A B’
N(r) = 45 + 2% 9% — 275 + 255 + 455 + 25
(7.6)

This set (7.5), corresponding to the type FOGIII, repre-
sents a pure strong gravitational field within a material dis-
tribution. This situation has no successful correspondence
in the domain of the classical non-linear field theories. So,
let us reduce this set to match the type FOGI, which can be
compared with GR. We found that if we take:

L(n=0 , M(r)=0 , Nr) =0, (77)

all the components of Ty, vanish and the field equations

(7.5) will correspond to FOGI and are reduced to:

B// B/Z B/
2F ~3F t4E =0,
_B/Z _ A/B/ A/ B/ _ 7.8
B —24E +24 428 <0, (7.8)
A// B// A/Z B/Z A/ B,_
Tt B 2o mEtate=0

This set represents pure gravitational field with spheri-
cal symmetry outside material distribution. The resulting
solution can be compared with the corresponding GR so-
lution.

Integration of the 1% equation of the set (7.8) gives:

B &
B3/2 2
where ¢ is a constant of integration. Integrating again, we
get:
C1 -2
B- (T—Cz) . (79)
Substituting into the 2™ equation of the set (7.8), we get:
A, aca
A T(ct-ar)’
which can be integrated to get:
cy— G
A=c;3 2 Cr s (7-10)
Cy + 71

where c1, ¢, and c3 are arbitrary constants of integration.
The solution given by (7.9) and (7.10) satisfies the 3" equa-
tion of the set (7.8) without any further condition.
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Now we write the metric of the associated Riemannian
space. Using (7.9) and (7.10), noting that D = 0, we can
write the metric using (7.2) in the form:

n (%1 - c2>4 [dr2 +1r? (d@z + sin? 92d2¢i)} (7.11)

Choosing the arbitrary constants tobe c; = Z, c; = -1,
and c3 = i, the above metric becomes:

ds* = (1 + %)4 [dr2 +r (de2 +sin’ 6d2¢)}

1-2N\?
- (73,{) at, (712)

4
- (1 + %) [dr2 +7° <d62 +sin? 6d2¢>>} (7.13)
where 7 is the proper time. This represents the metric of the
well known Schwarzchild exterior solution in the GR case.
The solution given in the present section will be discussed
in Section 8.

8 Concluding Remarks

1. Inthe present work we have constructed a pure geo-
metric unified field theory in the sense that all phys-
ical quantities and fields are defined from the build-
ing blocks of the AP-geometry, the tetrad vector field
components. The theory is constructed depending
on two principles

(a) The general covariance principle,
(b) The unification principle as mentioned in the
introduction.

2. The suggested theory has two main sectors: field and
motion. In the geometrization philosophy, motion of
test particles is described by curves of the geometry
used. According to the curves of the AP-geometry,
given by (2.25), trajectories of elementary particles
are already quantized. Consequently, the field de-
scribed by the theory is implicitly quantized. The ex-
plicit quantization of the field is not yet explored. As
far as we see, it needs much effort.

3. The theory has, in general, sixteen field equations
(3.22) to be solved for the sixteen field variables, the
tetrad vectors, )ll e
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. The Lagrangian density (3.8) used to construct the

field equations of the theory depends mainly on the
W-scalar. The philosophy of using the W-tensor is
inspired by Einstein’s statement and the unification
principle given in the introduction. In general, and
as stated above, the W-tensor is neither curvature
nor torsion. It is a geometric alloy made of curva-
ture and torsion. Now, if curvature represents grav-
ity, as agreed upon by most of the authors, and tor-
sion represents other physical interactions, as many
authors pointed out, then it is better, to construct a
general field theory to use a geometric object as the
W-tensor. The advantage of using this tensor is that
both curvature and torsion are not artificially com-
bined in it. This is in agreement with the geometriza-
tion philosophy and the unification principle.

. Another point in favour of using the W-tensor in

the formalism is that: if we start composing the La-
grangian from two added terms one depends on the
curvature and the other depends on the torsion,
then mutual interactions between the correspond-
ing physics of these two objects are not guaranteed.
It is preferable to use the geometric alloy, called the
W-tensor, in order to explore such interactions, if
any, without adding it by hand.

. Itis well known that pure geometric objects have no

physical meaning unless we have a theory. Any geo-
metric field theory should be analysed in order to ex-
plore its physical contents, before applying the the-
ory to real physical problems. In the present work,
the field theory suggested is theoretically analysed
by two methods given in Sections 4 & 5. The third
method, given in Section 6, can be considered as lo-
cated in the midway between theory and applica-
tion.

. The application of the theory in a spherically sym-

metric case (FOGI), given in Section 7, produces a
unique solution (7.9), (7.10). This solution gives rise
to the well known Schwarzchild exterior solution of
GR (7.13). The treatment given in Section 7 shows
that:

(a) The suggested theory covers the successful
domain of GR in a similar case.

(b) The important role of the scheme of type anal-
ysis in solving the field equations of the the-

ory.

. Table 4 gives a brief comparison between the present

theory and other field theories: general relativ-
ity (GR), the teleparallel equivalent of GR (TEGR),
Einstein-Cartan theory (EC), Metric-Affine Gauge
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Table 4: Comparison with Non-linear Field Theories

10.
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No. of field Momentum-energy Minimal- Poisson
Theory Geometry , . R
variables tensor coupling Equation
GR [14] Riemannian 10 Phenomenological Yes No
TEGR (cf.[1]) AP-space 16 Phenomenological Yes No
EC[19, 21] Riemann-Cartan 16+24=40 Phenomenological Yes No
MAG [20, 21] Metric-Affine 10+16+64=90 Phenomenological Yes No
GFT [28] AP-space 16 Geometric No No
Present Theory AP-space 16 Geometric No Yes

theory (MAG) and the generalized field theory (GFT).
The criteria used for this comparison are: the geome-
try used in construction (2™ column), the number of
field variables or the building blocks of the geometry
(3™ column), the type of energy-momentum tensor
used (4™ column), the use of minimal coupling (5)
and the appearance of geometric Poisson equations
(last column).

It is clear that the present theory is not, in general,
a gauge field theory. However its skew part (4.12)
is invariant under gauge transformation. It is well
known, in the domain of electrodynamics, that in or-
der to solve Maxwell’s equations, it is necessary to
impose some conditions to fix the gauge. The most
famous of these conditions is the Lorentz condition.
In the present work Lorentz condition (5.24) is ob-
tained from the theory and not imposed from out-
side. The condition is obtained as a consequence of
the symmetric part of the field equation of the the-
ory (4.4) in its linearized form. This simply means
that according to the present theory, gauge in elec-
tromagnetism is fixed by the gravitational field. This
gives the effect of gravity on electromagnetism. In
other words it gives a type of interaction between
the two fields even in low energy. This supports our
choice of the Lagrangian of the theory.

A new feature of the present theory is the appear-
ance of Poisson’s equations, for material distribu-
tion (5.14) and for charge distribution (5.26), from
pure geometric considerations. This supports our
choice of the tensor T#¥ (4.5) to represent the ma-
terial distribution and the tensor Fyy (4.13) to repre-
sent the electromagnetic field. Also it supports our

choice of the tensors gy and cy to represent the
potentials of gravity and electromagnetism, respec-
tively. The appearance of the geometric Poisson’s
equations is a consequence of two features:

(a) choosing geometric objects to represent the
properties of matter.

(b) the non-minimal coupling guaranteed by the
theory.

From Table 4, it is clear that although the GFT satis-
fies the two features given above, yet no Poisson’s
equation appeared. This is because in the low en-
ergy limit GFT has no geometric representatives for
the material distribution.
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