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Abstract: In the context of the geometrization philosophy,

a covariant field theory is constructed. The theory satis-

fies the unification principle. The field equations of the

theory are constructed depending on a general differen-

tial identity in the geometry used. The Lagrangian scalar

used in the formalism is neither curvature scalar nor tor-

sion scalar, but an alloy made of both, the W-scalar. The

physical contents of the theory are explored depending on

different methods. The analysis shows that the theory is

capable of dealingwith gravity, electromagnetismandma-

terial distribution with possible mutual interactions. The

theory is shown to cover the domain of general relativity

under certain conditions.
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1 Introduction
It is well known that General Relativity (GR) is the best the-

ory for gravity, so far. However, it suffers from many prob-

lems. Some of these problems are old e.g. singularity, hori-

zons, flatness, . . .etc. Other problems concern contradic-

tion betweenobservations andGRpredictions e.g. rotation

curves of stars in spiral galaxies, the accelerating expan-

sion of the Universe, . . .etc .

Many authors have tried to modify GR or to write new

theories for gravity. This is done in order to account for

problems such as those mentioned above. In order to di-

agnose problems of GR, let us first summarize the main

features of this theory in the following points.

1. The theory is constructed in the context of the ge-

ometrization philosophy.

Mamdouh I. Wanas, Samah N. Osman, Reham I. El-Kholy: De-
partment of Astronomy, Faculty of Science, Cairo University, Giza,

Egypt, Egyptian Relativity Group (ERG): URL: http://www.erg.

eg.net, E-mail: miwanas@sci.cu.edu.eg, samah@sci.cu.edu.eg,

relkholy@sci.cu.edu.eg

2. The theory assumes the validity of two principles:

general covariance and equivalence.

3. GR is constructed in context of a 4-dimensional Rie-

manniangeometry. It contains two sets of equations,

(a) field equations which may be written as:

Rµν −
1

2

gµνR = −κ
*

Tµν , (1.1)

where Rµν, R are Ricci tensor and scalar re-

spectively,

*

Tµν is thematerial-energy tensor, κ
is a conversion constant and gµν is the metric

tensor.

(b) The second set comprises the geodesic and

null-geodesic equations which are used as

equations of motion of the theory.

4. Conservation of matter-energy is guaranteed via us-

ing Bianchi identity and the field equations (1.1).

The above points are written for the sake of analysis and

later comparison with the present work.

The field equations of GR, equation (1.1), can be con-

sidered to be composed of two parts: the left hand side

(L.H.S) is pure geometric (i.e. constructed from the build-

ing blocks¹ of the geometry used, gµν); and the right hand
side (R.H.S) is defined from outside the geometry. In deriv-

ing the field equations (1.1), an action principle is imposed

on a Lagrangian function, the scalar curvature R, produc-
ing the L.H.S. of (1.1).

As stated above, there aremany attempts tomodify GR

in order to avoid some of the problems mentioned above.

Suchmodifications can be classified in the following three

classes:

1. Modifications of the L.H.S. of (1.1) (geometric class)

by adding a cosmological constant term (cf. [6]) to

treat the problem of particle horizon or the accel-

erating expansion of the Universe [40]. This type of

modification is carried out in the context of Rieman-

nian geometry. It is successful to some extent since

the cosmological constant has its own problems (cf.

[26]).

1 The building blocks (BB) of any geometry are geometric objects us-

ing which one can construct the whole geometry. The BB for Rieman-

nian geometry are the components of the metric tensor, gµν .
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Another attempt, belonging to this class, is carried

out by replacing the scalar curvature R by a general
function f (R) (cf. [10]). This type of attempt is also

carried out in the context of Riemannian geometry.

Despite its partial success, it has the problem that

the resulting differential equations are of fourth or-

der (cf. [43]) which is not easy to solve and has un-

stable solutions [38].

A third type of attempt, belonging to this class,

is carried out in the context of a wider geome-

try with a non-vanishing torsion scalar T (e.g. the

AP-geometry). In the AP-geometry, a theory is con-

structed using a torsion scalar T, defined by:

T def

= 𝛾αµν𝛾νµα − cνcν , (1.2)

where 𝛾α
. µν is the contortion tensor and cν is the ba-

sic vector of the AP-space, is known as the Telepar-

allel Equivalent of GR (TEGR)(cf. [1, 9]). This is be-

cause, one can easily show that, apart from a diver-

gence term, one can write:

T ≡ R. (1.3)

The type of gravity theories in which f (T) is used,
in place of f (R), is known in the literature as f (T)-
theories ( cf. [3, 15, 16, 31, 32]) . Anadvantage of using

f (T) gravity theories is that the resulting differential
equations are of secondorder ( cf. [33–36]). But it has

been shown that some theoretical problems appear

in such type of theories (cf. [24, 37]).

2. Modifications of the R.H.S. of (1.1) (physical class).

This class is carried out with or without modifica-

tions given in the 1

st

class, considered above. It

is carried out mainly to solve the problem of the

SN type Ia observations. It depends mainly on us-

ing an equation of state which allows for matter

with negative pressure, e.g. phantomenergy (cf. [7]),

quintessence energy (cf. [8]) and Chaplygin gas (cf.

[12, 23]). Although this class has some success, such

materials do not exist on the Earth or in the Solar

system.

3. Using other scenarios together with orthodox GR.

For example the inflation scenario is used to remove

particle horizons fromFRW-cosmology [17, 25]. Also,

MOND is used to remove the problem of rotation

curves of spiral galaxies (cf. [5, 42]).

Now, our point of view is that, on one hand, contradic-

tions between the predictions of any gravity theory and ex-

periments or observation may imply new physics. On the

other hand, modifications of GR-theory using f (R) or f (T)

may imply quantitative improvement of GR and not quali-

tative improvement. Thismaynot lead to prediction of new

physics, if any.

An important note, concerning the above mentioned

suggestions, is that such modifications (f (R), f (T)) com-

prise the modification of the geometric part of (1.1), its

L.H.S. part, without touching its material distribution

part, the R.H.S of (1.1). This may raise the following objec-

tions:

1. The material distribution outside the Solar system

may be different from that in our laboratories, and

consequently the phenomenological

*

Tµν of (1.1)may

not be appropriate to describe such material distri-

bution.

2. The link between the geometry used (e.g. L.H.S. of

(1.1)) and thematerial distribution given by

*

Tµν is ar-
tificial since the geometry usedmaynot allow for the

material distribution given by

*

Tµν.
3. A formal difficulty arises as follows. The use of an

action principle produces field equations that are

equal in number to the unknown functions i.e. the

BB of the geometry used. If

*

Tµν is defined from out-

side the geometry, it will add more unknown func-

tions to the same set of differential equations. In

general, this set cannot be solved without adding

more conditions, e.g. equations of state, from out-

side the geometry. This violates the philosophy of

geometrization.

We suggest a field theory in which

*

Tµν is defined

from the BB of the geometry used. This may remove the

above mentioned objections and makes the theory self-

consistent. The theory obtained in this case will be a pure

geometric theorywhichwould bemore consistentwith the

geometrization philosophy. Thismay be achieved by a the-

orywhich satisfies theUnification principle. This principle

may be stated as follows:

Unification Principle
In any geometric field theory, “all physical quantities and
fields are to be induced from one geometric entity, the build-
ing blocks of the geometry used". This principle has been
inspired by Einstein’s statement [14]: “A theory in which the
gravitational field and the electromagnetic field do not enter
as logically distinct structures, would be much preferable".

Satisfying this principle would imply the following:

1. The use of a geometry more wide than the Rieman-

nian one.
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2. The Lagrangian density, used to construct the field

equations of the theory, is to be composed of the

BB of the geometry and their derivatives. In other

words, this Lagrangian should not be composed, a

priori, fromdifferent parts each corresponds to a cer-

tain field, as usually done.

In the domain of theoretical physics, quantization and

geometrization represent the two main important philo-

sophical ideas of the 20

th

century. They have been fre-

quently used, successfully, to solve many problems, so

far. These two philosophies are not in complete agree-

ment with each other. The main problem between them

is that geometrization depends on continuity (of space-

time) while quantization depends on discreteness. Many

authors thought that in order to quantize geometry one

should first quantize space-time [2], i.e. define minimum

time and minimum length, which is a very difficult task.

Our point of view is different; that is, quantization of grav-

ity starts from trajectories of elementary particles (curves

or paths of the geometry used). Fortunately, it has been

shown [46, 47] that any non-symmetric geometry, includ-

ing absolute parallelism, has such curves as will appear in

Section 2.

The aim of the present work is to construct a pure ge-

ometric field theory, in which fields and material distribu-

tions are describedusingonly theBBof the geometryused;

in other words, a theory satisfying the Unification Princi-

ple. Also we aim to explore whether the suggested theory

has a correct GR-limit. The article is arranged as follows.

In Section 2, we review briefly the bases of the Absolute

Parallelism (AP) geometry that will be used in building the

new theory. In Section 3, we apply a variational method to

the chosen Lagrangian and get the field equations of the

suggested theory. In Section 4, we analyse the field equa-

tions into their symmetric and skew parts and compare

what we get with other non-linear field theories, e.g. GR.

In Section 5, we linearize the field equations and demon-

strate that itmeets the limits ofwell-known linear field the-

ories. In Section 6, we show different field types that can

be described using the new theory and how to differenti-

ate between them. In Section 7, we apply the new theory to

a tetrad vector field having spherical symmetry and show

that the results reduce to that of the Schwarzchild exterior

solution (under certain conditions). Finally, in Section 8,

we point out some important remarks about the suggested

theory that are worthy of noting.

2 A Brief Review of AP-Geometry
In this Sectionwe give a brief reviewof AP-space, (formore

details cf. [48], [50], [51] and [52]). The AP-space (M, λ
i
)

is an n-dimensional differentiable manifold, each point

of which is labelled by n-independent variables xµ(µ =

0, 1, 2, . . .), and at each point we define n-linearly inde-

pendent contravariant vector fields λ
i
µ
(µ(= 0, 1, 2, . . .)

stands for the coordinate components and i(= 0, 1, 2, . . .)
stands for the vector numbers). Throughout this paper, we

use Latin indices for vector numbers and Greek indices for

the coordinate components. As a consequence of this in-

dependence the determinant ‖λ
i
µ‖ ≠ 0, then we can define

the covariant vector fields λ
i
µ which are the normalized co-

factors of λ
i
µ
, in the matrix (λ

i
µ
) such that:

λ
i
µλ
i
ν = δµν , (2.1)

and,

λ
i
νλ
j
ν = δij . (2.2)

Using these vectors, one can define the second order ten-

sor:

gµν def

= λ
i
µλ
i
ν . (2.3)

Since the tensor gµν is a covariant second order symmet-

ric tensor and thematrix (gµν) is non-degenerate, then gµν
can be used to play the role of the metric of a Riemannian

space associatedwith theAP-space. Also, we can define its

contravariant tensor by the relation:

gµν def

= λ
i
µλ
i
ν
. (2.4)

Imposing a metricity condition on gµν, we can construct

Christoffel symbols { αµ ν}, as usual:

{ αµ ν}
def

=

1

2

gασ (gµσ,ν + gσν,µ − gµν,σ) . (2.5)

The AP-space admits a non-symmetric affine connection

Γαµν, which is defined as:

Γα
. µν

def

= λ
i
αλ
i
µ,ν . (2.6)

Using the above connection, one can easily show that:

λ
i µ

+

|ν=λi µ,ν
− Γα

. µνλ
i
α ≡ 0, (2.7)

where the stroke and the (+) sign denote tensor differenti-

ation, using (2.6). Some authors call (2.7) the AP-condition

(cf. [27]).

Also, one can define a third order skew tensor:

Λα
. µν

def

= Γα
. µν − Γα. νµ . (2.8)
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This tensor is the torsion tensor of AP-space. One can also

define another third order tensor by:

𝛾α
. µν

def

= λ
i
αλ
i
µ;ν , (2.9)

where the semicolon (;) is used for covariant differentia-

tion using (2.5). This tensor is called the contortion of the

space, using which, one can write the relation (cf. [27]):

𝛾α
. µν = Γα. µν −

{︀ α
µ ν
}︀
. (2.10)

The contortion is related to the torsion tensor by the rela-

tion [18]:

𝛾αµν =
1

2

(Λαµν − Λµαν − Λναµ) . (2.11)

From (2.10) we can write:

Λα
. µν = 𝛾α

. µν − 𝛾
α
. νµ . (2.12)

It can be shown that 𝛾αµν is skew in its first two indices. A

basic vector could be obtained by contraction, using any

of the above third order tensors:

cµ def

= Λα
. µα = 𝛾α

. µα . (2.13)

Using the contortion, we can define the following symmet-

ric third order tensor:

∆α
. µν

def

= 𝛾α
. µν + 𝛾α

. νµ . (2.14)

In AP-space we can define at least four linear connec-

tions and consequently four types of tensor derivatives as

follows:

Aµ
+|ν

def

= Aµ
,ν + Γ

µ
ανAα ,

Aµ|ν
def

= Aµ
,ν + Γ

µ
(αν)A

α
,

Aµ
−|ν

def

= Aµ
,ν + ˜ΓµανAα ,

Aµ
;ν

def

= Aµ
,ν +

{︀ µ
α ν
}︀
Aα ,

(2.15)

where Aµ is an arbitrary contravariant vector and

Γµ
(αν),

˜Γµαν are the symmetric part and the dual of the con-

nection Γµ
. αν given, respectively, by:

Γµ
. (να)

def

=

1

2

(︀
Γµ
. να + Γ

µ
. αν
)︀
, (2.16)

˜Γµαν
def

= Γµ
. να . (2.17)

In Riemannian space the only second order tensors, de-

fined using the BB of the space, are Ricci tensor Rµν and
the metric tensor gµν. In AP-space there are more second

order tensors as shown in Table 1. It can be easily shown

that there exists an identity between skew-tensors, given

in Table (1), which can be written in the from:

ηµν + εµν − χµν ≡ 0. (2.18)

Table 1: Second Order World Tensors [27]

Skew-symmetric Tensors Symmetric Tensors

ξµν def
= 𝛾 α

µν. |α
+

ζµν def
= cα𝛾 α

µν.

ηµν def
= cαΛα. µν ϕµν def

= cα∆α. µν
χµν def

= Λα
. µν|α

+

ψµν def
= ∆α

. µν|α
+

εµν def
= cµ|ν

+

− cν|µ
+

θµν def
= cµ|ν

+

+ cν|µ
+

κµν def
= 𝛾α

.µϵ𝛾
ϵ
.αν − 𝛾

α
.νϵ𝛾

ϵ
.αµ ω̃µν def

= 𝛾α
.µϵ𝛾

ϵ
.αν + 𝛾α

.νϵ𝛾
ϵ
.αµ

ωµν def
= 𝛾ϵ

.µα𝛾
α
.νϵ

σµν def
= 𝛾ϵ

.αµ𝛾
α
.ϵν

αµν def
= cµcν

where Λα
.µν|σ

+

≡ Λα
+µν
++

|σ.

We see from this table that the torsion tensor plays an im-

portant role in the structure of AP-space, since all tensors

in this table vanish when the torsion tensor vanishes.

It has been found that the Ricci tensor Rµν can be written,
using Table (1), in the following equivalent form (cf. [27]):

Rµν def

=

1

2

(ψµν − ϕµν − θµν) + ωµν . (2.19)

In the AP-space, as stated above, there are at least four

linear connections Γα µν, Γα
(µν), ˜Γα µν and { αµ ν}. For each

connection there is a curvature defined by [48]:

Bϵ
. µνσ

def

= Γϵ
. µσ,ν − Γϵ. µν,σ + Γα. µσΓϵ. αν − Γα. µνΓϵ. ασ ,

¯Bϵ
. µνσ

def

= Γϵ
.(µσ),ν − Γ

ϵ
.(µν),σ + Γ

α
.(µσ)Γ

ϵ
.(αν) − Γ

α
.(µν)Γ

ϵ
.(ασ) ,

˜Bϵ
. µνσ

def

=
˜Γϵ
. µσ,ν − ˜Γϵ. µν,σ + ˜Γα

. µσ˜Γϵ. αν − ˜Γα. µν˜Γϵ. ασ ,
Rϵ
. µνσ

def

= { ϵµ σ},ν − { ϵµ ν},σ + { αµ σ}{ ϵα ν} − { αµ ν}{ ϵα σ} ,
(2.20)

Due to the AP-condition (2.7), it can be shown that one of

the curvatures given by (2.20) vanishes identically, i.e.

Bϵ
. µνσ ≡ 0. (2.21)

It is to be considered that, due to (2.21), many authors have

considered the AP-space as a flat one. In [44] the AP-space

is treated as a non flat one due to the non-vanishing of

other curvature tensors as shown above.
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A new tensor of type (2,2) has been suggested:

λ
i
αWαβ

. . 𝛾δ
def

= λ
i
β
‖𝛾δ − λi

β
‖δ𝛾 , (2.22)

where the double stroke represents tensor differentiation

using a certain linear connection. If one uses the Levi

Civita linear connection in this definition, then Wαβ
. . 𝛾δ is

the Riemann-Christoffel curvature tensor. But if we use a

different linear connection the resulting object is not the

conventional curvature. For this reason the W-tensor has

been first called the non-conventional curvature tensor

[28, 44]. Afterwards, it is shown that this tensor is neither

curvature nor torsion, it is a geometric alloy made of the

two tensors and cannot be defined except in the AP-space.

So it has been given the name W-tensor [50]. It has been

used in constructing the Generalized Field Theory (GFT)

using the dual connection (
˜Γαµν). In the case of GFT theW-

tensor is defined by [28, 44]:

λ
i
αWαµ

. . νσ = λi
µ
−

|νσ − λi
µ
−

|σν . (2.23)

It has been found that Wαµ
. . νσ can be written explicitly in

the from:

Wαµ
. . νσ

def

= λ
i
α
(︂
λ
i
µ
−

|νσ − λi
µ
−

|σν

)︂
. (2.24)

The path equations corresponding to the four linear

connections, mentioned above, have been found to be

[46]:

d Vµ
d S+ +

{︁
µ
α β

}︁
Vα Vβ = −Λ µ

(αβ) . V
α Vβ ,

d Wµ

d So +

{︁
µ
α β

}︁
WαWβ

= −

1

2

Λ µ
(αβ) .W

αWβ
,

d Jµ
d S− +

{︁
µ
α β

}︁
Jα Jβ = 0 ,

(2.25)

where S+, So and S− are parameters varying along the

curves with tangents Vα, Wα
and Jα, respectively, and

Λ µ
(αβ) . is given by:

Λ µ
(αβ) .

def

=

1

2

(︁
Λ µ
αβ .

+ Λ µ
βα .

)︁
. (2.26)

It is to be noted that the coefficient of the torsion term

jumps by a step of one half from an equation to the next

in the set (2.25). Note also that the set (2.25) contains only

three equations, not four as expected. We consider this

property as reflecting some type of natural quantization in

the geometry used.

3 The Lagrangian Function and
Field Equations

When constructing his theory of GR, Einstein has not used

anactionprinciple to derive the equations of the theory.He

has depended mainly on a differential identity in Rieman-

nian geometry, Bianchi 2

nd

identity, to write these equa-

tions. He considered this identity as a geometric represen-

tation of conservation. Afterwards, Hilbert has suggested

the use of an action principle to reproduce the field equa-

tions of GR. In general, the two procedures, identity and

least action, seem to be equivalent. However, Einstein has

refrained from using the action principle method in deriv-

ing the field equations of other field theories, especially

when using different geometric structures (cf. [14]).

We prefer to use the identity method since it is more

consistentwith the geometrizationphilosophy. In this case

one has to look for appropriate differential identities, in

the geometry used, or to look for a method for deriving

such identities. Fortunately, Dolan and McCrea have sug-

gested such method for Riemannian geometry [13]. This

method has been modified [44] to be appropriate for the

AP-geometry and has been used to construct a field theory,

the GFT [28]. In this modified (Dolan-McCrea) method, the

differential identity derived in the AP-space is of the gen-

eral form:

Eµ
. ν|µ

−

≡ 0 , (3.1)

where

λ Eµν
def

=

δL
δ λ
i
µ
λ
i
ν , (3.2)

where L is the Lagrangian density,

δL
δ λ
i
µ
is the Hamilto-

nian derivative of L, and λ is the determinant of λ
i
µ.

The identity (3.1) can be considered as a general ge-

ometric representation of conservation of quantities de-

fined by Eµ
. ν. Consequently, the field equations of the the-

ory can be written in the form:

Eµν = 0 . (3.3)

The above procedure is very similar to that used by Ein-

stein in deriving the field equations of GR for the first time.

In the present work we are interested in examining

the consequence of using the symmetric linear connection

(2.16), in place of the dual one, in the definition of the W-

tensor (2.24).

Nowwedefine theW-tensor (2.24) using the symmetric

linear connection (2.16) as:

¯Wαµ
.. νσ

def

= λ
i
α
(︂
λ
i

µ
o |νσ − λi

µ
o |σν

)︂
, (3.4)
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contracting by setting α = σ we get:

¯Wµ
. ν

def

= λ
i
α
(︂
λ
i

µ
o |να − λi

µ
o |αν

)︂
, (3.5)

contracting again by setting µ = ν we get:

¯W =
¯Wµ
. µ

def

= λ
i
α
(︂
λ
i

µ
o |µα − λi

µ
o |αµ

)︂
. (3.6)

Using one of the definitions of the set (2.15) and substitut-

ing from (2.8), (2.10), (2.12) and (2.13), then (3.6) will give,

after necessary reductions:

¯W =

3

2

cα
;α −

1

2

cαcα +
1

4

𝛾αµνΛµαν −
1

2

𝛾αµν𝛾µνα . (3.7)

So, one can define a Lagrangian density as:

L
def

= λ ¯W ,

(︂
λ def

= ‖λ
i
µ‖
)︂
, (3.8)

i.e. using (3.7):

L = λ
[︂
3

2

cα
;α −

1

2

cαcα +
1

4

𝛾αµνΛµαν −
1

2

𝛾αµν𝛾µνα

]︂
. (3.9)

As it is well known, the first term of expression (3.9), cα
;α,

gives no contribution to variation. So, (3.9) can be written

as:

L = λ
[︂
−

1

2

cαcα +
1

4

𝛾αµνΛµαν −
1

2

𝛾αµν𝛾µνα

]︂
. (3.10)

In general, the Lagrangian is assumed to be:

L ≡ L
(︂
λ
i
µ , λ

i
µ,ν , λ

i
µ,νσ

)︂
.

In this case, using (3.2), we may define a second order ten-

sor Sβ
. σ as:

λ Sβ
. σ

def

=

δL
δ λ
j β
λ
j
σ , (3.11)

where,

δL
δ λ
j β

def

=

∂L
∂ λ
j β
−

∂
∂ xν

∂L
∂ λ
j β,ν

+

∂2
∂ xµ ∂ xν

∂L
∂ λ
j β,µν

, (3.12)

is the variational derivative of the functionL. It is clear that

Sβ
. σ represents the components of a tensor of the character

indicated by their indices. The identity (3.1) is a general-

ization of the Bianchi contracted identity in the AP-space.

It is to be considered that (3.1) is a general identity inde-

pendent of the explicit choice of the Lagrangian. It is just

sufficient to assume that the Lagrangian is of the general

form L = L(λα , λα,β , λα,β𝛾). If we consider (3.1) as a general
geometric representation of some type of conservation in

the theory suggested, then we can take:

Sβ
. σ

def

=

1

λ
δ L
δ λ
j β
λ
j
σ = 0, (3.13)

as the field equations of this theory, as stated above.

Now from the Lagrangian function (3.10), we have:

L = −1
2

cαcα +
1

4

𝛾αµνΛµαν −
1

2

𝛾αµν𝛾µνα . (3.14)

Using (3.10), we get:

∂L
∂ λ
j β

=

∂ (λ R)
∂ λ
j β

+ λλ
j
β
(︂
1

2

cµcµ +
1

4

Λαµν (Λναµ − Λαµν)
)︂

+

1

4

λλ
j
ϵ
(︁
4cµΛβ

. ϵµ−4cβcϵ+2Λαϵ𝛾
(︁
2Λαβ𝛾 − Λ𝛾αβ

+ Λβα𝛾
)︁)︁

,

(3.15)

where R is the Ricci scalar constructed from Christoffel

symbols, and:

∂
∂ x𝛾

∂L
∂ λ
j β,𝛾

=

∂
∂ x𝛾

∂ (λR)
∂λ
j β,𝛾

+ λΓϵ
. ϵ𝛾

(︂
λ
j
𝛾cβ − λ

j
βc𝛾 + λ

j
α

(︂
1

2

Λ𝛾αβ
− Λαβ𝛾 − 1

2

Λβα𝛾
)︂)︂

+ λ
(︂
λ
j
ϵ
(︁
cβ
. ,ϵ − cβΓ𝛾. ϵ𝛾 + c𝛾Γ

β
. ϵ𝛾

)︁
− λ
j
βc𝛾

. ,𝛾

)︂
+ λλ

j
ϵΓϵ. α𝛾

(︂
1

2

Λ𝛾αβ
− Λαβ𝛾 − 1

2

Λβα𝛾
)︂

+ λλ
j
α

(︂
1

2

Λ𝛾αβ
... ,𝛾 − Λαβ𝛾... ,𝛾 −

1

2

Λβα𝛾
... ,𝛾

)︂
. (3.16)

It is clear that the last term of (3.12) vanishes identically,

since the Lagrangian chosen is a function of λ
i β

and its first

derivatives only.

Substituting from (3.15) and (3.16) into (3.12), we get af-

ter some manipulation:

Sβ
. σ =G

β
. σ + δ

β
. σ

(︂
1

4

𝛾αµν (𝛾µνα − 𝛾αµν) −
1

2

cµcµ + c
𝛾
+

. |𝛾

)︂
+

1

2

𝛾αµσ𝛾
βαµ

+

1

2

𝛾αµσ𝛾
αµβ

+

1

2

𝛾σαµ𝛾
αµβ

+

3

2

𝛾σµα𝛾
βαµ

−

1

2

cµΛβ
. σµ − Λ

. β𝛾
σ c𝛾 +

1

2

Λ𝛾 . β
. σ c𝛾 − c

β
. |σ

+

+ Λ. βµσ .. |µ
+

+

1

2

Λβ. µ
. σ. |µ

+

−

1

2

Λµ. β
. σ. |µ

+

, (3.17)

where

Gβ
. σ

def

= Rβ
. σ −

1

2

δβσR. (3.18)

The above expression (3.17) can be written in terms of the

second order tensors defined in Table 1 as:

Sβ
. σ =G

β
. σ + δ

β
σ ¯A −

1

2

[︁
θβ
. σ + σ

β
. σ − ω̃

β
. σ − 3

(︁
ωβ
. σ

+

1

2

ψβ
. σ −

1

2

ϕβ
. σ

)︂]︂
+

1

2

(︂
ζ β
. σ − ξ

β
. σ −

1

2

εβ
. σ

)︂
,

(3.19)

where

¯A def

=

1

2

(︂
θ − α + 1

2

σ − 1

2

ω
)︂
. (3.20)
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By using equation (3.13) and noting, from (2.3) and (2.7),

that:

gµν|σ
+

= 0, (3.21)

we may write the following set of field equations, for the

suggested theory, in the form:

Sµν = Gµν + gµν ¯A −
1

2

[︁
θµν + σµν − ω̃µν

−3

(︂
ωµν +

1

2

ψµν −
1

2

ϕµν
)︂]︂

+

1

2

(︂
ζµν − ξµν −

1

2

εµν
)︂

= 0 . (3.22)

4 Comparison with Non-linear Field
Theories

In order to gain some physical information about the ge-

ometric constituents of the theory, we are going to com-

pare the field equations (3.22) with the corresponding field

equations of non-linear field theories. To do so, we first

split the suggested field equations (3.22) into their symmet-

ric and skew parts.

The Symmetric Part of Sµν
The symmetric part of Sµν is defined, as usual, by:

S
(µν)

def

=

1

2

(Sµν + Sνµ) . (4.1)

Evaluating this definition, using (3.22), one gets after some

manipulations:

S
(µν) = Gµν −

1

2

gµν
(︂
α − θ + 1

2

ω − 1

2

σ
)︂

−

1

2

[︂
θµν + σµν − ω̃µν − 3

(︂
ωµν +

1

2

ψµν −
1

2

ϕµν
)︂]︂

. (4.2)

Fromwhichwewrite the symmetric field equations (S
(µν) =

0) as:

Gµν =
1

2

gµν
(︂
α − θ + 1

2

ω − 1

2

σ
)︂

+

1

2

[︂
θµν + σµν − ω̃µν − 3

(︂
ωµν +

1

2

ψµν −
1

2

ϕµν
)︂]︂

. (4.3)

or, in a more compact form, it can be written as:

Rµν −
1

2

gµνR = Tµν , (4.4)

where

Tµν def

=

1

2

(︂
gµνψ + θµν −

3

2

ψµν
)︂
+ Bµν , (4.5)

and

Bµν def

=

1

2

[︂
gµν
(︂
α + 1

2

ω − 1

2

σ
)︂
+ σµν − ω̃µν

−3

(︂
ωµν −

1

2

ϕµν
)︂]︂

. (4.6)

The significance of the tensor Bµν will be shown later in §6.
Equation (4.4) is the symmetric field equations of the

suggested theory. They have, apparently, the same form of

Einstein field equations of GR. Since the L.H.S of (4.4) sat-

isfies the contracted Bianchi identity, then we can write:

Tµν
;ν = 0, (4.7)

which gives the conservation of the physical quantities

represented by the tensor Tµν. Consequently, Tµν can be

used to represent the distribution of matter and energy.

We call this tensor the “geometric material-energy tensor".
Also, the comparisonbetween (4.4) and thefield equations

of GR shows that the tensor gµν, defined by (2.3), plays the
role of the gravitational potential. These results will gain

more justification in §5.

The Skew Part of Sµν
The skewpart, of the tensor Sµν givenby (3.22), can bewrit-
ten in the form:

S
[µν]

def

=

1

2

(Sµν − Sνµ) , (4.8)

which can be explicitly written as:

S
[µν] =

1

2

(︂
ζµν − ξµν −

1

2

εµν
)︂
. (4.9)

But, we have from Table 1:

εµν def

= cµ|ν
+

− cν|µ
+

= cµ,ν − cν,µ − ηµν . (4.10)

Then substituting from (4.10) into (4.9), then the skew part

of the field equations (3.22) can be written as:

cµ,ν − cν,µ = 2ζµν − 2ξµν + ηµν . (4.11)

Alternatively, this equation can be written in a more com-

pact form:

Fµν = cµ,ν − cν,µ , (4.12)

where

Fµν def

= −2ξµν + Zµν , (4.13)

and

Zµν def

= 2ζµν + ηµν . (4.14)

Consequently, Fµν will satisfy the relation:

Fµν;σ + Fσµ;ν + Fνσ;µ = Fµν,σ + Fσµ,ν + Fνσ,µ ≡ 0 . (4.15)
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We can also define the vector density:

Jµ
def

= F
µν
,ν , (4.16)

where

Fµν
def

= λ Fµν , (4.17)

then:

J
µ
,µ = F

µν
,νµ ≡ 0 . (4.18)

since Fµν is skew tensor density. Also we can define the

scalar J by:

J2
def

= JµJµ (4.19)

A primary comparison between the skew field equations

(4.12), of the suggested theory, and the corresponding field

equations of Einstein-Maxwell theory [39] shows that:

– The skew tensor (4.13) can be used to represent elec-

tromagnetic filed strength.

– The basic vector cµ (defined by (2.13)) appearing in

(4.12) represents a generalized electromagnetic po-

tential.

– Equations (4.12) and consequently (4.15) represent a

generalization of Maxwell field equations.

– The vector density Jµ represents the current density.

– The scalar J represents the charge density.

– The identity (4.18) represents the conservation of

electric charge.

The above physical attributions, to geometric objects, will

be more supported in the next Section.

5 Comparison with Linear Field
Theories

From the above Section, it appears that the field theory

suggested in the present work may be used to describe a

unified gravitational and electromagnetic fields since both

fields are generated from one entity, the BB of the AP-

geometry. Also, the theory represents a material distribu-

tion given by Tµν. Recalling that the theory suggested is

highly non linear in the unified potential (the tetrad vec-

tor), one can conclude that the separation of gravity and

electromagnetism, appeared in Section 4 is apparent (not

complete). In order to obtain a real separation between the

two fields, one has to go to low energy limits. This goal

may be achieved by examining the case of weak and static

fields and a slowly moving test particle. In other words,

one has to linearize the theory in order to support the

physicalmeaning attributed, in Section 4, to the geometric

objects and also to gain more physics. This linearization

will enable us to compare the suggested theory with cor-

responding linear field theories in which physics is more

clear.

The linearization scheme may be as follows:

Ononehand the tetradvector field λ
i
µ represents thebuild-

ing blocks of the AP-geometry. On the other hand, in view

of the present theory, it represents the unified potential

generating both gravitational and electromagnetic poten-

tials, gµν and cµ, respectively. Also a material distribution

is induced by this tetrad. So we are going to assume that:

λ
i
µ = δiµ + ϵ hi µ

. (5.1)

where δiµ is Kronecker delta, hi µ
are functions of the co-

ordinates representing deviations of the tetrad vector field

from its flat space values and ϵ is a dimensionless param-

eter. Weak field can be achieved by neglecting terms of the

second order in ϵ in the expansion formulae as follows.We

expand any geometric object S in the form:

S =
(0)

S + ϵ
(1)

S + ϵ2
(2)

S + . . . + ϵr
(r)
S + . . . . (5.2)

where

(r)
S is the coefficient of ϵr in the above expansion for-

mula. For example, the metric tensor gµν, using (2.3) and
(5.1), can be written as:

gµν = δµν + ϵ yµν + ϵ2 h
i
µ h
i
ν (5.3)

where

yµν def

= h
µ
ν + h

ν
µ . (5.4)

Thus,

(0)

g µν = δµν ,
(1)

g µν = yµν ,
(2)

g µν = hi µ
h
i
ν . (5.5)

So, we can express each of the tensors in the field equa-

tions (3.22) in ascending powers of the parameter ϵ. Table
2 gives the results of expansion for different AP-geometric

objects [44], using their definitions given in Table 1 and

the expansion formula (5.1). Confining ourselves to linear

terms only

(︀
O(ϵ)

)︀
, we get the following results for the sym-

metric and skew parts of the field equations.

The Symmetric Part
The linearized form of the symmetric equations (4.4) is

given by:

(1)

R µν −
1

2

δµν
(1)

R =

(1)

T µν , (5.6)

which is equivalent to:

(1)

R µν =
(1)

T µν −
1

2

δµν
(1)

T . (5.7)
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Table 2: Expansion of AP Geometric Objects [44]

Geometric Object Order of ϵ

0 Order 1

st Order 2

nd Order 3

rd & Higher Orders

λ
i
µ 3 3 8 8

gµν 3 3 3 8

λ
i
µ 3 3 3 3

gµν 3 3 3 3

Γαµν 8 3 3 3{︀ α
µ ν
}︀

8 3 3 3

𝛾α
. µν 8 3 3 3

Λα
. µν 8 3 3 3

∆α
. µν 8 3 3 3

cµ 8 3 3 3

ξµν 8 3 3 3

χµν 8 3 3 3

εµν 8 3 3 3

ζµν 8 8 3 3

ηµν 8 8 3 3

κµν 8 8 3 3

θµν 8 3 3 3

ψµν 8 3 3 3

ϕµν 8 8 3 3

ω̃µν 8 8 3 3

ωµν 8 8 3 3

σµν 8 8 3 3

αµν 8 8 3 3

Rµν 8 3 3 3

Fµν 8 3 3 3

3 represents the existence of the term, and 8 represents its absence.

Using (2.5), the conventional definition of Ricci tensor, and

the contraction of Rϵ
. µνσ given in the set (2.20), we get:

(1)

R µν =
1

2

(yµν,αα + yαα,µν − yµα,να − yνα,µα) . (5.8)

From (4.5) and Table 2, we have:

(1)

T µν = 1

2

(︃
δµν

(1)

ψ +

(1)

θ µν − 3

2

(1)

ψ µν

)︃
, (5.9)

(1)

T =

3

4

(1)

ψ , (5.10)

since ψ = −θ.
Substituting from (5.8), (5.9) and (5.10) into the linear equa-

tions (5.7), we get:

1

2

(yµν,αα + yαα,µν − yµα,να − yνα,µα)

=

1

2

(︃
δµν

(1)

ψ +

(1)

θ µν −
3

2

(1)

ψ µν

)︃
−

3

8

δµν
(1)

ψ , (5.11)

or

yµν,αα +

(︂
1

2

yαα,µ − yµα,α
)︂
,ν +

(︂
1

2

yαα,ν − yνα,α
)︂
,µ

=

(1)

θ µν −
3

2

(1)

ψ µν +
1

4

δµν
(1)

ψ . (5.12)

In the case of classical mechanics, weak and static field,

the only non-zero component of thematerial energy tensor

is the 00-component. In order to compare with the classi-

cal field equation we write the above field equation (5.11)
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for µ, ν = 0, in the form:

∇2y
00

=

1

4

(︃
(1)

ψ
11

+

(1)

ψ
22

+

(1)

ψ
33

− 5

(1)

ψ
00

)︃
. (5.13)

The θ
00

term disappears since, for a static field, we have:

(1)

θ
00

= h
α 0,α0 + hα 0,α0 − 2hα α,00 = 0.

It is clear that the symmetric field equations, in its lin-

earized form (5.13), relates the gravitational potential y
00

(the linear part of gµν (5.3)) to its source, representedby the
R.H.S. of (5.13). To gain more physics, let us examine the

R.H.S. of (5.13). It seems that ψµν is the tensor responsible
for static material distribution. Now we take into account

the following points:

1. if we take

(1)

ψ
00

as a geometric representation of the

density of a static fluid, then the spatial compo-

nents

(1)

ψ
11

,

(1)

ψ
22

,

(1)

ψ
33

canbe considered as geomet-

ric representations of the hydrostatic pressure of the

fluid,

2. classically speaking, and considering slowly mov-

ing particles of the fluid, the pressure would be of

the 2

nd

order in the velocity. So the effect of the spa-

tial components

(1)

ψ ab (where a, b = 1, 2, 3) could be

neglected in the linearization regime,

3. it is well-known classically, that pressure has no ef-

fect on the gravitational potential. So to compare

with classical known results, one has to neglect the

effect of

(1)

ψ
11

,

(1)

ψ
22

,

(1)

ψ
33

in (5.13).

Considering the above points we can write the lin-

earized symmetric field equations (5.13) in the form:

∇2y
00

= −

5

4

(1)

ψ
00

. (5.14)

In classical hydrodynamics, the gravitational potential ϕ
within a fluid of density ρ is given by Poisson equation (cf.
[4]):

∇2ϕ = 4 π 𝛾 ρ , (5.15)

where 𝛾 is the universal gravitational constant.

The comparison between the two equations (5.14) and

(5.15) justify the assumption that ψ
00

represents the fluid

density and y
00

is the gravitational potential.

Consequently we can arrive to the following physical re-

sults:

1. The symmetric field equation (4.4) is a generaliza-

tion of Poisson equation.

2. The tensor ψµν is a geometric representation of a

staticmaterial distribution, while the tensor θµν will

offer a contribution to this distribution in the non-

static case. The tensor Bµν (4.6) will give non-linear
effects.

3. The tensor Tµν (4.5), composed of the above men-

tioned components, can be used to represent the en-

ergy and material distribution.

4. In the case of vanishing material distribution, i.e.

(1)

ψ
00

= 0, equation (5.14) will reduce to:

∇2y
00

= 0 , (5.16)

which is the well known Laplace equation.

In addition to the above justification for attributing

material distribution to the tensor Tµν, let us addonemore.

The generalized conservation law of material-energy (4.7)

can be written as:

Tµν
;ν

def

= Tµν
,ν + Tαν

{︀ µ
α ν
}︀
+ Tµα

{︀ ν
ν α
}︀
= 0 . (5.17)

Now in the linearization regime, this law is reduced to:

(1)

T µν
,ν = 0 , (5.18)

since other termsare of the 2

nd

andhigher orders. Equation

(5.18) is the well known classical conservation law imply-

ing that

(1)

T µν
represents conserved quantities.

The Skew Part
The skew part of the field equations (3.22), in its linearized

form, can be written as:

(1)

F µν =
(1)

c µ,ν −
(1)

c ν,µ , (5.19)

where,

(1)

F µν def

= −2

(1)

ξ µν . (5.20)

Note that Zµν, given by (4.14), vanishes in the first approx-
imation scheme (see Table (2)).

It is to be noted that, in the linearized form, raising

and lowering of indices are carried out using Kronecker

deltas; and the determinant λ will have, to the first order,
the value:

λ = 1 + ϵ
(︂
h
0

0
+ h

1

1
+ h

2

2
+ h

3

3

)︂
.

So, substituting from (5.19) into (4.16), we can write the

current vector Jµ in the following linearized form:

(1)

J µ =
(1)

c µ,νν −
(1)

c ν,νµ . (5.21)

Contracting (5.12), using (5.1) and Table 1, we get:

h
ν
α,να = h

ν
ν,αα . (5.22)
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Expanding cµ using (5.1), we get:
(1)

c µ,µ =
(︁
h
ν
µ,ν − h

ν
ν,µ
)︁
,µ . (5.23)

So using (5.22), we get:

(1)

c µ,µ = 0 . (5.24)

Substituting from (5.24) into (5.21), we get, for a static field:

∇2

(1)

c µ =
(1)

J µ . (5.25)

In order to compare with the classical static field equa-

tions, we write the above equations for µ = 0; we get:

∇2

(1)

c
0
=

(1)

J
0
. (5.26)

It is clear that the skew-symmetric field equation, in the

linearized form (5.26), relates the electric potential

(1)

c
0
to

its source, represented by the R.H.S. of (5.26). To gainmore

physics, let us examine the R.H.S. of (5.26). It seems that

(1)

J
0
is the vector component responsible for the electric

charge distribution, in the static case.

In classical electrostatics, the electric potentialϕ in an

electric charge distribution of an electric charge density q
is given by Poisson equation (cf. [22]):

∇2ϕ =

4 π q
ε , (5.27)

where ε is the dielectric constant.
The two equations (5.26) and (5.27) would be the same if,

apart from some conversing constants,

(1)

c
0
and

(1)

J
0
are the

electric potential and the electric charge density, respec-

tively.

Consequently we can arrive at the following physical

results:

1. The skew-symmetric field equations (4.12) are a gen-

eralization of Poisson equations (5.27).

2. The vector component J
0
is a geometric representa-

tion of a static electric charge distribution while the

components J
1
, J

2
, J

3
have contributions to the non-

static case and the tensor Zµν (4.14) will give non-
linear effects in the non-static case.

3. The tensor Fµν (4.13) can be used to represent the

strength of the electromagnetic field; and conse-

quently cµ (2.13) can be considered as the general-

ized electromagnetic potential.

4. In the case of a vanishing electric charge density, i.e.

J
0
= 0, equation (5.26) will reduce to:

∇2

(1)

c
0
= 0 , (5.28)

which is the well known Laplace equation for the

electromagnetic potential

(1)

c
0
.

In addition to the above justifications for attributing

the electric charge distribution to the tensor Fµν, here is
one more. The linearized form of the identity (4.18) can be

written as:

(1)

J µ
,µ =

(1)

F µν
,νµ ≡ 0 , (5.29)

which is the well known classical conservation law indi-

cating that Fµν represents conserved quantities.

6 Transition to Physical Application
The two methods given in Sections 4 & 5 can be used for

any geometric field theory to explore its physical contents

before solving its field equations. In the present Section,

we review a third important method, not well known in

the literature, for analysing any geometric field theory, be-

fore confronting its predictions with observations or ex-

periments. Thismethodwas suggested in 1981 [29] and has

been used in many applications (cf. [11, 30, 45, 49]). This

method is knownas “TypeAnalysis". Itmeasures the capa-

bilities of a certain geometric structure to represent physi-

cal systems in the context of the theory concerned.

In order to confront a covariant field theorywith obser-

vations or experiments, onehas to solve its field equations.

It is well known that there is no general solution of any ge-

ometric covariant field equations (e.g. Rµν = 0 of GR) un-

less one constraints the building blocks of the geometry

to certain symmetries (spherical symmetry, axial symme-

try, . . . ). This is usually done via Killing equations which

contain the building blocks of the geometry together with

the generators of certain group of motion or more. Let us

call the resulting geometricmodel a “geometric structure".

Themain idea of type analysis is very simple. Let us give an

example in the case of Riemannian geometry. It is impor-

tant to carry out the following test: if one uses a geometric

structure, a line element, for which all the components of

the curvature tensor vanish identically, then one can con-

clude that this structure cannot be used to study gravita-

tional systems in the context of GR. This test canbe applied

before solving the field equations of GR. Consequentially,

one can classify Riemannian geometric structures, in the

context of GR, into two classes. The first is characterized by

a vanishing curvature tensor (not appropriate for gravity)

and the second is characterized by a non-vanishing curva-

ture (appropriate for gravity applications).

This idea has been extended for theories constructed

in wider geometries than the Riemannian one. For ex-

ample, in the AP-geometry, the identical vanishing of all

second-order skew tensors for a certain geometric AP-

structure indicates that this structure cannot be used to
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represent electromagnetism, even if the field theory con-

sidered has an electromagnetic sector.

In the context of the present work we give examples of

what the term strengthmeans. We can see from (4.6), and

Table 2, that Bµν, when expanded, includes only terms of

the second and higher orders in ϵ. So, we can take Bµν as
an indicator of the strength of the gravitational field. Also,

from (4.14), it is clear that the expansion form of Zµν in-
volves only terms of the second and higher orders in ϵ.
It follows that we can consider Zµν as an indicator of the

strength of the electromagnetic field. The identical vanish-

ing of such tensors, in any AP-structure, indicates that the

corresponding fields are weak.

As a result, we can specify some distinct classes of

gravitational fields (denoted by the letter G) and elec-

tromagnetic fields (denoted by the letter F) according to

Table 3.

Table 3: Type Analysis

Indicator Field Represented Type

Fµν = 0 No electromagnetic field F0

Fµν ≠ 0 Electromagnetic field, FI
Zµν = 0 not strong

Fµν ≠ 0 Strong electromagnetic FII
Zµν ≠ 0 field

Rα
. µνσ = 0 No gravitational field G0

Rα
. µνσ ≠ 0 Gravitational field in empty GI
Tµν = 0 space, not strong

Rα
. µνσ ≠ 0 Gravitational field within
Tµν ≠ 0 a material distribution, GII
Bµν = 0 not strong

Rα
. µνσ ≠ 0 Strong gravitational field
Tµν ≠ 0 within a material GIII
Bµν ≠ 0 distribution

The type of a unified field is specified by its electromagnetic class (de-

noted by F) and its gravitational class (denoted by G). For example, a

pureweak gravitational fieldwithin amaterial distribution is denoted

by F0GII .

It is to be considered that the procedure of type analy-

sis is generally covariant since it depends on the vanishing

of certain tensors. This procedure in the AP-geometry de-

pends on two elements: the geometric field theory and Ta-

ble 2 which is independent of the field theory used. It can

be established for any field theory constructed in the AP-

geometry. The application of the scheme of type analysis

will be more clear in Section 7, which gives a clear exam-

ple illustrating how to use this scheme in physical appli-

cations.

7 A Solution with Spherical
Symmetry

In this section, we apply the present theory to the tetrad

vector field having spherical symmetry. This tetrad, which

has been derived by Robertson [41], can be written in the

coordinates (x0 ≡ t, x1 ≡ r, x2 ≡ θ, x3 ≡ ϕ) as:

λ
i
µ
=

i
=
0
,
1
,
2
,
3

−
→

µ = 0, 1, 2, 3

−→⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A D r 0 0

0 B sin θ cosϕ B
r cos θ cosϕ −

B
r
sinϕ
sin θ

0 B sin θ sinϕ B
r cos θ sinϕ

B
r
cosϕ
sin θ

0 B cos θ −

B
r sin θ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(7.1)

where A, B, and D are unknown functions of r only. From
(7.1) we can get themetric tensor of the associated Rieman-

nian space, using (2.3):

gµν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

A2B2 (D
2r2 + B2) −

Dr
AB2 0 0

−

Dr
AB2

1

B2 0 0

0 0

r2
B2 0

0 0 0

r2
B2 sin

2 θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(7.2)

Evaluating the required second-order tensors (relevant to

the field equations (3.22)) using Table 1 and substituting

into (4.5), (4.6), (4.13), and (4.14), we find that the tetrad

(7.1) corresponds to type FIIGIII, following Table 3. This

means that the tetrad vector field (7.1) is capable of repre-

senting strong unified field within a material distribution,

in the context of the present theory.
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Now substituting into the field equations (3.22), we get

the following set of differential equations:

S0
. 0

:[D2r2(−2
A′′

A
+ 14

B′′

B
+ 2

D′′

D
+ 3

A′2

A2
− 35

B′2

B2
+

D′2

D2

+ 6

A′B′

AB
− 4

A′D′

AD
+ 8

B′D′

BD
− 8

A′

Ar
+ 56

B′

Br
− 6

D′

Dr
−

21

r2
)

+ B2(−2
A′′

A
+ 16

B′′

B
+ 3

A′2

A2
− 26

B′2

B2
+ 2

A′B′

AB
− 4

A′

Ar
+ 32

B′

Br
)]

= 0,

S0
. 1

:(

A′′

A
− 7

B′′

B
−

D′′

D
−

A′2

A2
+ 7

B′2

B2
− 10

A′B′

AB

+

A′D′

AD
+ 3

B′D′

BD
+ 11

A′

Ar
− 7

B′

Br
− 4

D′

Dr
) = 0,

S1
. 1

:[D2r2(
A′2

A2
− 21

B′2

B2
+

D′2

D2
− 14

A′B′

AB
− 2

A′D′

AD

+ 14

B′D′

BD
+ 14

A′

Ar
+ 42

B′

Br
− 14

D′

Dr
−

21

r2
)

+ B2(
A′2

A2
− 6

B′2

B2
− 16

A′B′

AB
+ 16

A′

Ar
+ 12

B′

Br
)] = 0

S2
. 2

=S3
. 3

: [D2r2(8
A′′

A
+ 14

B′′

B
− 8

D′′

D
− 17

A′2

A2
− 35

B′2

B2
− 9

D′2

D2

− 24

A′B′

AB
+ 26

A′D′

AD
+ 38

B′D′

BD
+ 32

A′

Ar
+ 56

B′

Br
− 46

D′

Dr
−

21

r2
)

+ B2(8
A′′

A
+ 6

B′′

B
− 17

A′2

A2
− 6

B′2

B2
+ 2

A′B′

AB
+ 8

A′

Ar
+ 6

B′

Br
)] = 0,

(7.3)

where the prime represents first derivative w.r.t. r and the
double prime represents the second derivative.

It can be shown that, on choosing D = 0, the type

of the model (7.1) will change to F0GIII, since this choice

will switch off all second-order skew tensors relevant to

the present theory. In this case the above set of differen-

tial equations (7.3) reduces to:

S0
. 0

: − 2

A′′

A
+ 16

B′′

B
+ 3

A′2

A2
− 26

B′2

B2
+ 2

A′B′

AB
− 4

A′

Ar
+ 32

B′

Br
= 0,

S1
. 1

:

A′2

A2
− 6

B′2

B2
− 16

A′B′

AB
+ 16

A′

Ar
+ 12

B′

Br
= 0,

S2
. 2

=S3
. 3

: 8

A′′

A
+ 6

B′′

B
− 17

A′2

A2
− 6

B′2

B2
+ 2

A′B′

AB
+ 8

A′

Ar
+ 6

B′

Br
= 0.

(7.4)

The above equations can be written in the compact form:

L(r) + 8B
′′

B − 12

B′2
B2 + 16

B′
Br = 0,

M(r) − 4B
′2

B2 − 8
A′B′
AB + 8

A′

Ar + 8
B′
Br = 0,

N(r) + 4A
′′

A + 4

B′′
B − 8

A′2

A2 − 4
B′2
B2 + 4

A′

Ar + 4
B′
Br = 0,

(7.5)

where,

L(r) def= −2 A
′′

A + 8

B′′

B + 3

A′2

A2
− 14

B′2

B2 + 2

A′B′

AB − 4
A′

Ar + 16
B′

Br ,

M(r) def= A′2

A2
− 2

B′2

B2 − 8
A′B′

AB + 8

A′

Ar + 4
B′

Br ,

N(r) def= 4

A′′

A + 2

B′′

B − 9
A′2

A2
− 2

B′2

B2 + 2

A′B′

AB + 4

A′

Ar + 2
B′

Br .

(7.6)

This set (7.5), corresponding to the type F0GIII, repre-

sents apure stronggravitational fieldwithin amaterial dis-

tribution. This situation has no successful correspondence

in the domain of the classical non-linear field theories. So,

let us reduce this set to match the type F0GI, which can be

compared with GR. We found that if we take:

L(r) = 0 , M(r) = 0 , N(r) = 0 , (7.7)

all the components of Tµν vanish and the field equations

(7.5) will correspond to F0GI and are reduced to:

2

B′′

B − 3
B′2

B2 + 4

B′

Br = 0,

−

B′2

B2 − 2
A′B′

AB + 2

A′

Ar + 2
B′

Br = 0,

A′′

A +

B′′

B − 2
A′2

A2
−

B′2

B2 +

A′

Ar +
B′

Br = 0.

(7.8)

This set represents pure gravitational field with spheri-

cal symmetry outside material distribution. The resulting

solution can be compared with the corresponding GR so-

lution.

Integration of the 1

st

equation of the set (7.8) gives:

B′

B3/2
=

c̃
1

r2

where c̃
1
is a constant of integration. Integrating again,we

get:

B =

(︁ c
1

r − c2
)︁
−2

. (7.9)

Substituting into the 2

nd

equation of the set (7.8), we get:

A′

A = −2

c
1
c
2(︀

c2
1

− c2
2

r2
)︀ ,

which can be integrated to get:

A = c
3

(︂
c
2
−

c
1

r
c
2
+

c
1

r

)︂
, (7.10)

where c
1
, c

2
and c

3
are arbitrary constants of integration.

The solution given by (7.9) and (7.10) satisfies the 3

rd

equa-

tion of the set (7.8) without any further condition.
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Nowwewrite themetric of the associated Riemannian

space. Using (7.9) and (7.10), noting that D = 0, we can

write the metric using (7.2) in the form:

ds2 =
(︂
c
3

(︂
c
2
−

c
1

r
c
2
+

c
1

r

)︂)︂
−2

dt2

+

(︁ c
1

r − c2
)︁
4
[︁
dr2 + r2

(︁
dθ2 + sin2 θ2d2ϕ

)︁]︁
(7.11)

Choosing the arbitrary constants to be c
1
=

m
2

, c
2
= −1,

and c
3
= i, the above metric becomes:

ds2 =
(︁
1 +

m
2r

)︁
4
[︁
dr2 + r2

(︁
dθ2 + sin2 θd2ϕ

)︁]︁
−

(︂
1 −

m
2r

1 +

m
2r

)︂
2

dt2 , (7.12)

or

dτ2 =
(︂
1 −

m
2r

1 +

m
2r

)︂
2

dt2

−

(︁
1 +

m
2r

)︁
4
[︁
dr2 + r2

(︁
dθ2 + sin2 θd2ϕ

)︁]︁
(7.13)

where τ is theproper time. This represents themetric of the

well known Schwarzchild exterior solution in the GR case.

The solution given in the present section will be discussed

in Section 8.

8 Concluding Remarks
1. In the present work we have constructed a pure geo-

metric unified field theory in the sense that all phys-

ical quantities and fields are defined from the build-

ing blocks of the AP-geometry, the tetrad vector field

components. The theory is constructed depending

on two principles

(a) The general covariance principle,

(b) The unification principle as mentioned in the

introduction.

2. The suggested theory has twomain sectors: field and

motion. In the geometrization philosophy,motion of

test particles is described by curves of the geometry

used. According to the curves of the AP-geometry,

given by (2.25), trajectories of elementary particles

are already quantized. Consequently, the field de-

scribed by the theory is implicitly quantized. The ex-

plicit quantization of the field is not yet explored. As

far as we see, it needs much effort.

3. The theory has, in general, sixteen field equations

(3.22) to be solved for the sixteen field variables, the

tetrad vectors, λ
i
µ.

4. The Lagrangian density (3.8) used to construct the

field equations of the theory depends mainly on the

W-scalar. The philosophy of using the W-tensor is

inspired by Einstein’s statement and the unification

principle given in the introduction. In general, and

as stated above, the W-tensor is neither curvature

nor torsion. It is a geometric alloy made of curva-

ture and torsion. Now, if curvature represents grav-

ity, as agreed upon by most of the authors, and tor-

sion represents other physical interactions, asmany

authors pointed out, then it is better, to construct a

general field theory to use a geometric object as the

W-tensor. The advantage of using this tensor is that

both curvature and torsion are not artificially com-

bined in it. This is in agreementwith the geometriza-

tion philosophy and the unification principle.

5. Another point in favour of using the W-tensor in

the formalism is that: if we start composing the La-

grangian from two added terms one depends on the

curvature and the other depends on the torsion,

then mutual interactions between the correspond-

ing physics of these two objects are not guaranteed.

It is preferable to use the geometric alloy, called the

W-tensor, in order to explore such interactions, if

any, without adding it by hand.

6. It is well known that pure geometric objects have no

physical meaning unless we have a theory. Any geo-

metric field theory should be analysed in order to ex-

plore its physical contents, before applying the the-

ory to real physical problems. In the present work,

the field theory suggested is theoretically analysed

by two methods given in Sections 4 & 5. The third

method, given in Section 6, can be considered as lo-

cated in the midway between theory and applica-

tion.

7. The application of the theory in a spherically sym-

metric case (F0GI), given in Section 7, produces a

unique solution (7.9), (7.10). This solution gives rise

to the well known Schwarzchild exterior solution of

GR (7.13). The treatment given in Section 7 shows

that:

(a) The suggested theory covers the successful

domain of GR in a similar case.

(b) The important role of the scheme of type anal-

ysis in solving the field equations of the the-

ory.

8. Table 4gives abrief comparisonbetween thepresent

theory and other field theories: general relativ-

ity (GR), the teleparallel equivalent of GR (TEGR),

Einstein-Cartan theory (EC), Metric-Affine Gauge
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Table 4: Comparison with Non-linear Field Theories

Theory Geometry No. of field Momentum-energy Minimal- Poisson
variables tensor coupling Equation

GR [14] Riemannian 10 Phenomenological Yes No

TEGR (cf.[1]) AP-space 16 Phenomenological Yes No

EC [19, 21] Riemann-Cartan 16+24=40 Phenomenological Yes No

MAG [20, 21] Metric-Aflne 10+16+64=90 Phenomenological Yes No

GFT [28] AP-space 16 Geometric No No

Present Theory AP-space 16 Geometric No Yes

theory (MAG) and the generalized field theory (GFT).

The criteria used for this comparison are: the geome-

try used in construction (2

nd

column), thenumber of

field variables or the building blocks of the geometry

(3

rd

column), the type of energy-momentum tensor

used (4

th

column), the use ofminimal coupling (5

th

)

and the appearance of geometric Poisson equations

(last column).

9. It is clear that the present theory is not, in general,

a gauge field theory. However its skew part (4.12)

is invariant under gauge transformation. It is well

known, in the domain of electrodynamics, that in or-

der to solve Maxwell’s equations, it is necessary to

impose some conditions to fix the gauge. The most

famous of these conditions is the Lorentz condition.

In the present work Lorentz condition (5.24) is ob-

tained from the theory and not imposed from out-

side. The condition is obtained as a consequence of

the symmetric part of the field equation of the the-

ory (4.4) in its linearized form. This simply means

that according to the present theory, gauge in elec-

tromagnetism is fixed by the gravitational field. This

gives the effect of gravity on electromagnetism. In

other words it gives a type of interaction between

the two fields even in low energy. This supports our

choice of the Lagrangian of the theory.

10. A new feature of the present theory is the appear-

ance of Poisson’s equations, for material distribu-

tion (5.14) and for charge distribution (5.26), from

pure geometric considerations. This supports our

choice of the tensor Tµν (4.5) to represent the ma-

terial distribution and the tensor Fµν (4.13) to repre-
sent the electromagnetic field. Also it supports our

choice of the tensors gµν and cµ to represent the

potentials of gravity and electromagnetism, respec-

tively. The appearance of the geometric Poisson’s

equations is a consequence of two features:

(a) choosing geometric objects to represent the

properties of matter.

(b) the non-minimal coupling guaranteed by the

theory.

From Table 4, it is clear that although the GFT satis-

fies the two features given above, yet no Poisson’s

equation appeared. This is because in the low en-

ergy limit GFT has no geometric representatives for

the material distribution.
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