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Abstract In this paper, we study slowly rotating black hole solutions in Lovelock
gravity (n = 3). These solutions are obtained in uncharged and charged cases, re-
spectively. Up to the linear order of the rotating parameter a, the entropy and gy-
romagnetic ratio of black holes keep invariant after introducing the Gauss-Bonnet
and third order Lovelock interactions.
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1 Introduction

It is believed that Einstein’s gravity is a low-energy limit of a quantum theory
of gravity. Considering the fundamental nature of quantum gravity, there should
be a low-energy effective action which describes gravity at the classical level [1].
In addition to Einstein-Hilbert action, this effective action also involves higher
derivative terms, and these higher derivative terms can be seen in the renormal-
ization of quantum field theory in curved spacetimes [2; 3; 4; 5; 6], or in the
construction of the low-energy effective action of string [7; 8; 9]. In AdS/CFT
correspondence, the higher derivative terms can be regarded as the corrections of
large N expansion in the dual conformal field theory. In general, the higher powers
of curvature can give rise to a fourth or even higher order differential equation for
the metric, which will introduce ghosts and violate unitarity. However, Zwiebach
and Zumino [10; 11] found that the ghosts can be avoided if the higher derivative
terms only consist of the dimensional continuations of the Euler densities, leading
to second order field equations for the metric [12]. This higher derivative theory
is the so-called Lovelock gravity [13], and the equations of motion contain the
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most symmetric conserved tensor with no more than second derivative of the met-
ric. In this paper, we indulge ourselves with the first four terms of the Lovelock
gravity, corresponding to the cosmological constant, Einstein term, Gauss-Bonnet
and third order Lovelock terms respectively. So far, the exact static and spherically
symmetric black hole solutions in third order Lovelock gravity were first found in
[14; 15; 16; 17; 18; 19; 20], and the thermodynamics have been investigated in
[12; 17; 18; 19; 20; 21; 22; 23; 24; 25].

On the other hand, a great many attentions have been focused on the rotation
effect of static and spherically symmetric black hole solutions. In the AdS/CFT
correspondence, the rotating black holes in AdS space are dual to certain CFTs in
a rotating space [26], while charged ones are dual to CFTs with chemical potential
[27; 28; 29]. In general relativity, the higher dimensional rotating black holes have
been recently studied and some exact analytical solutions of Einstein’s equation
are found in [30; 31; 32; 33; 34; 35].

Since the equations of motion of Lovelock gravity are highly nonlinear, it
is rather difficult to obtain the explicit rotating black hole solutions. In order
to find rotating black hole solutions in the presence of dilaton coupling electro-
magnetic field in Einstein-Maxwell theory, Horne and Horowitz [36] first devel-
oped a simple perturbative method by introducing a small angular momentum
into a non-rotating system, and obtained slowly rotating dilaton black hole solu-
tions. Until now, this approach has been extensively discussed in general relativity
[37; 38; 39; 40; 41; 42; 43]. Taking advantage of this crucial tool, Kim and Cai
[44] studied slowly rotating black hole solutions with one nonvanishing angular
momentum in the Gauss-Bonnet gravity. Recently, some numerical results about
the existence of five-dimensional rotating Gauss-Bonnet black holes with angu-
lar momenta of the same magnitude have been presented in [45]. In addition, it
is worth to mention that some rotating black brane solutions have been investi-
gated in the second (Gauss-Bonnet) and third order Lovelock gravity [46; 47; 48].
Nevertheless, these solutions are essentially obtained by a Lorentz boost from
corresponding static ones. They are equivalent to static ones locally, although not
equivalent globally. In this paper, we will analyze slowly rotating black hole solu-
tions in third order Lovelock gravity. Generally, the rotating parameters could be
more than one in high dimensional Einstein-Maxwell theory [33]. Following the
Horne and Horowitz’s perturbative method, we limit on one small rotating param-
eter a case here. The slowly rotating black hole solutions will be studied in both
uncharged and charged cases, and then we analyze some physical properties of
these black holes.

The outline of this paper is as follows. In Sect. 2, we review the (n = 3) Love-
lock gravity, and derive the equations of gravitation and electromagnetic fields.
Then, we explore slowly rotating uncharged black holes and obtain the slowly
rotating black hole solution f (r) and expression for function p(r) by putting a
new form metric into these equations. Moveover, we discuss some related physi-
cal properties of the black holes. In Sect. 3, we set about learning slowly rotating
black holes in charged case. Section 4 is devoted to conclusions and discussions.
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2 Slowly rotating black holes in uncharged case

2.1 Action and black hole solutions

The third order Lovelock gravity coupled to an electromagnetic field is given by

I =
1

16πG

∫
dDx

√
−g(−2Λ +α1L1 +α2L2 +α3L3−4πGFµν Fµν), (1)

where αi is the i-th order Lovelock coefficients, Fµν = ∂µ Aν − ∂ν Aµ is electro-
magnetic field tensor with potential Aµ . The Einstein term L1 equals to R, and the
second order Lovelock(Gauss-Bonnet) term L2 is Rµνσκ Rµνσκ −4Rµν Rµν +R2.
The third order Lovelock term L3 reads

L3 = 2Rµνσκ Rσκρτ Rρτ

µν +8Rµν

σρ Rσκ
ντ Rρτ

µκ +24Rµνσκ Rσκνρ Rρ

µ (2)

+3RRµνσκ Rµνσκ +24Rµνσκ Rσ µ Rκν +16Rµν Rνσ Rσ
µ−12RRµν Rµν +R3.

Varying the action with respect to gµν and Fµν , the equations for gravitation
and electromagnetic fields are

Λgµν +α1G(1)
µν +α2G(2)

µν +α3G(3)
µν = 8πGTµν , (3)

∂µ (
√
−gFµν ) = 0, (4)

where Tµν = Fµα F α
ν − 1

4 gµν Fαβ Fαβ is the energy-momentum tensor of electromagnetic

field. The G(1)
µν = Rµν − 1

2 Rgµν , G(2)
µν and G(3)

µν are the Einstein tensor, second order
Lovelock(Gauss-Bonnet) and third order Lovelock tensors respectively:

G(2)
µν = 2(Rµσκτ R σκτ

ν −2Rµρνσ Rρσ −2Rµσ Rσ
ν +RRµν )− 1

2
L2gµν ,

G(3)
µν = 3Rµν R2−12RR σ

µ Rσν −12Rµν Rαβ Rαβ +24R α
µ R β

α Rβν

−24R α
µ Rβσ Rαβσν +3Rµν Rαβσκ Rαβσκ −12Rµα Rνβσκ Rαβσκ −12RRµσνκ Rσκ

+6RRµαβσ R αβσ

ν +24Rµανβ R α
σ Rσβ +24Rµαβσ R β

ν Rασ +24Rµανβ Rσκ Rασβκ

−12Rµαβσ Rκαβσ Rκν −12Rµαβσ Rακ R βσ

νκ +24R αβσ
µ R κ

β
Rσκνα

−12Rµανβ Rα
σκρ Rβσκρ −6R αβσ

µ R κρ

βσ
Rκραν −24R βσ

µα Rβρνλ R λαρ

σ s− 1
2
L3gµν .

Usually, the action Eq. (1) is supplemented with surface terms (a Gibbons-
Hawking surface term) whose variation will cancel the extra normal derivative
term in deriving the equation of motion Eq. (3). However, these surface terms
is not necessary in our discussion and will be neglected. Note that for third order
Lovelock gravity, the nontrivial third term requires the dimension(D) of spacetime
satisfying D ≥ 7.

Assume the metric of slowly rotating spacetime to be [44]

ds2 =− f (r)dt2 +
1

f (r)
dr2 +

D

∑
i= j=3

r2hi jdxidx j −2ar2 p(r)h44dtdφ , (5)
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where hi jdxidx j represents the metric of a (D− 2)-dimensional hyper-surface
with constant curvature scalar (D− 2)(D− 3)k and volume Σk, here k is a con-
stant. Without loss of generality, one can take k = 0 or ±1. When k = 1, one
has hi jdxidx j = dθ 2 + sin2

θdφ 2 + cos2 θdΩ 2
D−4 and h44 = sin2

θ ; when k = 0,
hi jdxidx j = dθ 2 + dφ 2 + dx2

D−4 and h44 = 1; when k = −1,hi jdxidx j = dθ 2 +
sinh2

θdφ 2 + cosh2
θdΩ 2

D−4 and h44 = sinh2
θ , where dx2

D−4 is the line element
of a (D− 4)-dimensional Ricci flat Euclidian surface. While dΩ 2

D−4 denotes the
line element of a (D−4)-dimensional unit sphere. For the convenience future, we
introduce new parameters α̃i

α̃0 =
2Λ

(D−1)(D−2)
, α̃i = αi

2i−2

∏
l=1

(D−2− l), (i = 1,2,3). (6)

Firstly, we consider pure gravity case; namely Tµν = 0. substituting Eq. (5)
into Eq. (3) and discarding any terms involving a2 or higher powers, we find that
the rr-component of the equations of motion

0 = (D−7)α̃3( f (r)− k)3− (D−5)α̃2( f (r)− k)2r2 +(D−3)α̃1( f (r)− k)r4

+[3α̃3r( f (r)− k)2 +2α̃2( f (r)− k)r3 + α̃1r5] f ′(r)+(D−1)α̃0r6, (7)

where a prime denotes the derivative with respect to r. Note that the angular mo-
mentum parameter a does not appear in the rr-component. Thus, the slowly rotat-
ing black hole solutions f (r) is identical to the static one in form. Generally, the
Eq. (7) has one real and two complex solutions. (It may has three real solutions
under some conditions.) Here, we only take the real one. This general solution
f (r) for D-dimensional slowly rotating black hole is

f (r) = k +
r2

3α̃3

[
α̃2 + 3

√√
γ +κ2(r)+κ(r)− 3

√√
γ +κ2(r)−κ(r)

]
, (8)

where

γ = (3α̃1α̃3− α̃
2
2 )3, κ(r) = α̃

3
2 −

9α̃1α̃2α̃3

2
−

27α̃2
3

2

[
α̃0+

16πGM
(D−2)ΣkrD−1

]
. (9)

The integral constant M is the gravitational mass. Hereafter, for simplicity, we
take notation m = 16πGM

(D−2)Σk
. It is easy to find that the solution is asymptotically flat

for Λ = 0, AdS for negative value of Λ and dS for positive value of Λ . For the
asymptotically AdS solution, putting α̃0 =−1/l2 in Eq. (9), we obtain

ϕ = (k− f (r))/r2 =− 1
3α̃3

[
α̃2 + 3

√√
γ +κ2(r)+κ(r)− 3

√√
γ +κ2(r)−κ(r)

]
,

κ(r) = α̃
3
2 −

9α̃1α̃2α̃3

2
−

27α̃2
3

2

[
− 1

l2 +
m

rD−1

]
. (10)

Meanwhile, there exists off-diagonal tφ -component of equations of motion,
which is concerned with function p(r). A tedious computation leads to a following
equation

A(r)
2

p′′(r)+
[3A(r)+(D−3)B(r)]

2r
p′(r) = 0, (11)
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where

A(r) = α̃1 +2α̃2ϕ +3α̃3ϕ
2,

B(r) = α̃1 +2α̃2ϕ +3α̃3ϕ
2 +

2rα̃2ϕ ′

D−3
+

6rα̃3ϕϕ ′

D−3
. (12)

It can be changed into a closed form

[log p′(r)]′ = −
[

D
r

+
(α̃1 +2α̃2ϕ +3α̃3ϕ2)′

α̃1 +2α̃2ϕ +3α̃3ϕ2

]
= −[log(rD(α̃1 +2α̃2ϕ +3α̃3ϕ

2))]′. (13)

Therefore, the formal expression for function p(r) in third order Lovelock gravity
is given by

p(r) =
∫ C2dr

rD(α̃1 +2α̃2ϕ +3α̃3ϕ2)
+C1, (14)

where the C1 and C2 are two integration constants.
In fact, the Eq. (7) is same as one in the static black hole solution [17; 18; 19;

20] [
rD−1

l2 + rD−1
ϕ(α̃1 + α̃2ϕ + α̃3ϕ

2)
]′

= 0, (15)

and ϕ is a real root of the following 3th-order polynomial equation

α̃1ϕ + α̃2ϕ
2 + α̃3ϕ

3 =
m

rD−1 −
1
l2 . (16)

With the help of Eq. (14) and taking C2 = m(D− 1), C1 = 0, one can find the
function p(r)

p(r) =−ϕ =
1

3α̃3

[
α̃2 + 3

√√
γ +κ2(r)+κ(r)− 3

√√
γ +κ2(r)−κ(r)

]
. (17)

2.2 Physical properties

As shown in Eq. (8), the slowly rotating black hole solution f (r) is independent
of a. Though most interesting physical properties also depend only on a2, one
can still extract some useful information from it. Based on discussions in the last
subsection, we will investigate physical properties of slowly rotating black holes
in this subsection.

According to the solution f (r), the gravitational mass of the solution can be
expressed as

M =
(D−2)ΣkrD−7

+

16πG
(r6

+/l2 + kα̃1r4
+ + k2

α̃2r2
+ + k3

α̃3) (18)
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and the Hawking temperature of the black hole is

T =
f ′(r+)

4π

=
(D−1)r6

+/l2 +(D−3)kα̃1r4
+ +(D−5)k2α̃2r2

+ +(D−7)k3α̃3

4πr+(α̃1r4
+ +2kα̃2r2

+ +3k2α̃3)
. (19)

Thus, the angular momentum of the black hole

J =
2aM
D−2

=
aΣkrD−7

+

8πG
(r6

+/l6 + kα̃1r4
+ + k2

α̃2r2
+ + k3

α̃3). (20)

Another important thermodynamic quantity is black hole entropy. Usually, the
entropy of black hole satisfies the so-called area law of entropy that the black hole
entropy equals to one-quarter of the horizon area [49; 50; 51]. It applies to all kinds
of black holes and black strings of Einstein gravity [52; 53]. However, in higher
derivative gravity, the area law of the entropy is not satisfied in general [54]. Since
black hole can be regarded as a thermodynamic system, it obeys the first law of
thermodynamics dM = T dS + ωHdJ. Through the angular velocity ωH , one can
get the entropy of black hole.

For the slowly rotating solution, the stationarity and rotational symmetry met-
ric Eq. (5) admits two commuting Killing vector fields

ξ(t) =
∂

∂ t
, ξφ =

∂

∂φ
. (21)

The various scalar products of these Killing vectors can be expressed through the
metric components as follows

ξ(t) ·ξ(t) = gtt =− f (r),

ξ(t) ·ξ(φ) = gtφ =−ar2 p(r)h44,

ξ(φ) ·ξ(φ) = gφφ = r2h44.

To examine further properties of the slowly rotating black holes, as well as
physical processes near such a black hole, we introduce a family of locally non-
rotating observers. The coordinate angular velocity for these observers that move
on orbits with constant r and θ and with a four-velocity uµ such that u · ξ(φ) = 0
is given by [34; 35; 44]

Ω = −
gtφ

gφφ

= ap(r)

=
a

3α̃3

[
α̃2 + 3

√√
γ +κ2(r)+κ(r)− 3

√√
γ +κ2(r)−κ(r)

]
. (22)

In contrast to the case of an ordinary kerr black hole in asymptotically flat space-
time, the angular velocity does not vanish at spatial infinity

Ω∞ =
a

3α̃3

[
α̃2 + 3

√√
γ + κ̃2 + κ̃ − 3

√√
γ + κ̃2− κ̃

]
= a∆ . (23)
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where κ̃ = α̃3
2 −

9α̃1α̃2α̃3
2 + 27α̃2

3
2l2 and ∆ a constant.

When approaching the black hole horizon, the angular velocity turns to be
ΩH = ap(r+) =−aϕ(r+) =− ak

r2
+

. This ΩH can be thought as the angular velocity

of the black hole. The relative angular velocity with respect to a frame static at
infinity is defined by

ωH = ΩH −Ω∞ =−a
(

k
r2
+

+∆

)
. (24)

Therefore, we get the entropy of slowly rotating black hole up to the linear order
of the rotating parameter a

S =
Σk

4G
rD−2
+

[
α̃1 +

2(D−2)kα̃2

(D−4)r2
+

+
3(D−2)k2α̃3

(D−6)r4
+

]
, (25)

which recovers the results in [17; 18; 19; 20].

3 Slowly rotating black holes in charged case

In this section, we consider slowly rotating black hole solution with charge. In
charged case, the situation is dramatically altered. Since the black hole rotates
along the direction φ , it will generate a magnetic field. Considering this effect, the
gauge potential can be chosen

Aµ dxµ = Atdt +Aφ dφ . (26)

Here we assume Aφ =−aQc(r)h44. As a result, the electro-magnetic field associ-
ated with the solution are

Ftr =−A′t , Frφ =−aQc′(r)h44, Fθφ =−aQc(r)
d(h44)

dθ
. (27)

where Q, an integration constant, is the electric charge of the black hole and a
prime denotes the derivative with respect to r. From t-component of electromag-
netic field equation ∂µ(

√
−gFµν) = 0, one can find Ftr = Q

4πrD−2 , which is the
same as the static form. Unlike the static case, there exist the φ -component of the
electromagnetic field equation, and then the equation for function c(r) reads

(rD−4 f (r)c′(r))′−2k(D−3)rD−6c(r) =
p′(r)
4π

. (28)

To find the black hole solution, one may use any components of the equations
of motion Eq. (3). While, these equations are influenced by charge and the rr-
component reads

− Q2G
2(D−2)π

r10−2D = [3α̃3r( f (r)− k)2−2α̃2( f (r)− k)r3 + α̃1r5] f ′(r)

+(D−7)α̃3( f (r)− k)3− (D−5)α̃2( f (r)− k)2r2

+(D−3)α̃1( f (r)− k)r4 +(D−1)α̃0r6. (29)
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Setting α̃0 = −1/l2, we take the general charged solution f (r) of D-dimensional
slowly rotating black hole in third order Lovelock gravity

f (r) = k +
r2

3α̃3

[
α̃2 + 3

√√
γ∗+κ2

∗ (r)+κ∗(r)−
3

√√
γ∗+κ2

∗ (r)−κ∗(r)

]
, (30)

where

γ∗=(3α̃1α̃3− α̃
2
2 )3, κ∗(r)= α̃

3
2 −

9α̃1α̃2α̃3

2
−

27α̃2
3

2

[
−1/l2 +

m
rD−1−

q2

r2D−4

]
.

We also introduce f (r) = k− r2ϕ∗ with

ϕ∗ =− 1
3α̃3

[
α̃2 + 3

√√
γ∗+κ2

∗ (r)+κ∗(r)−
3

√√
γ∗+κ2

∗ (r)−κ∗(r)

]
. (31)

The integration constant M = (D−2)Σk
16πG m is also gravitational mass and the charge

Q2 is expressed as Q2 = 2π(D−2)(D−3)
G q2.

It is worthy to point out that ϕ∗ satisfies the following equation

1
l2 + α̃1ϕ∗+ α̃2ϕ

2
∗ + α̃3ϕ

3
∗ =

m
rD−1 −

q2

r2D−4 , (32)

which is exact form for charged static black hole in Lovelock gravity [55; 56; 57;
58; 59; 60]. It is not strange. In Einstein equation, the rotating effect is from the
energy-momentum tensor. As shown in Eq. (27), there exist two non-vanishing Frφ

and Fθφ which are proportional to parameter a. Discarding all terms involve a2 and
higher power, Fµν Fµν in action Eq. (1) reduces to FtrF tr which is the same as the
counterpart in static case. Hence, the diagonal components of Einstein equation
keeps invariant.

In addition, the off-diagonal tφ -component of the equation of motion is con-
cerned with functions p(r) and c(r)

rD(α̃1 +2α̃2ϕ∗+3α̃3ϕ
2
∗ )p(r)′ = 4GQ2c(r)+C3, (33)

where C3 is a constant.
Thanks to the Eqs. (28), (32) and (33), we eventually find these explicit solu-

tions for functions p(r) and c(r)

c(r) = − 1
4π(D−3)rD−3

p(r) = −ϕ∗

=
1

3α̃3

[
α̃2 + 3

√√
γ∗+κ2

∗ (r)+κ∗(r)−
3

√√
γ∗+κ2

∗ (r)−κ∗(r)

]
. (34)

In the rest of this section, let us explore some physical properties of charged
black holes. From Eq. (30), the charged solutions get no corrections from the ro-
tation up to linear order of a, and the introduction of charged Q does not alter
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asymptotic behavior of the metric. Therefore, the expressions for the mass and
angular momentum for two cases do not change. Another particular characteristic
of charged black hole is its gyromagnetic ratio. In general relativity, one of the
remarkable facts about a Kerr-Newman black hole in asymptotically flat space-
time is that it can be assigned a gyromagnetic ratio g, just as an electron in the
Dirac theory [34; 35; 61]. For example, the gyromagnetic ratio g of a charged
rotating black hole is g = 2 in four-dimensional spacetime [62; 63]. For slowly
rotating third order Lovelock black holes, the magnetic dipole moment is µ = Qa.
According to J = 2aM

D−2 , the gyromagnetic ratios is obtained

g =
2µM
QJ

= D−2.

It is clear that the value of g is the same as the case in general relativity [34; 35]
and in Gauss-Bonnet gravity [44], and it only depends on the number of spacetime
dimensions.

4 Conclusion and discussion

Based on the non-rotating charged black hole solutions, we have successfully de-
rived the slowly rotating (charged) black hole solutions by introducing a small
rotating parameter a in third order Lovelock gravity. In the new metric, we choose
gtφ = −ar2 p(r)h44 and discard any terms involving a2 and higher powers, and
then get the expression for function p(r), while the function f (r) still keeps the
static form. In charged case, the vector potential has an extra non-radial compo-
nent Aφ =−aQc(r)h44 due to black hole rotation. Since the off-diagonal compo-
nent of the stress-tensor of electro-magnetic field was related to c(r), the equa-
tions for p(r) and c(r) become two coupled differential equations. However, the
exact solution for c(r) and p(r) can be expressed as c(r) = − 1

4π(D−3)rD−3 and
p(r) = −ϕ∗. Up to the linear order of the rotating parameter a, the expressions
of the mass, temperature, and entropy for the black holes got no correction from
rotation in both uncharged and charged cases. The above discussion is based one
rotating parameter. In general, there exist some black hole solutions with more
than one rotating parameters in higher dimensional gravity [33; 34; 35]. We hope
such kind of solution could be studied in a same procedure.

In third order Lovelock gravity, the Lagrangian L3 involves eight terms consti-
tuted by the Ricci and the Riemann curvature tensors. Moreover, the resulting field
equations, obtained after variation with respect to the metric tensor, have thirty-
four terms. Considering a higher order Lovelock term, for instance the quartic
Lovelock tensor, it involves twenty-five terms and each contains the product of
four curvature terms. A general expression of the corresponding field equations
was obtained in [64], while this work is very complicated. Therefore, taking into
account all the relevant terms of the Lovelock action, then obtaining slowly rotat-
ing black hole solutions by solving the field equations for general space-times in
high dimensions, is a formidable task. Note that the exact static and spherically
symmetric black hole solutions of the Gauss-Bonnet gravity have been found by
working directly in the action [14; 15; 16; 65; 66; 67; 68; 69], even higher order
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Lovelock gravity [55; 56; 57; 58; 59; 60]. Then, this simple method has been pop-
ularized in studying slowly rotating black holes in third order Lovelock gravity
[17; 18; 19; 20]. However, the metric should be taken a proper form. By using the
same approach, the generalization of the present work may be further simplified
and is now under investigation.
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