
entropy

Article

Thermodynamic Implications of
Multiquintessence Scenario

Abdul Jawad 1 , Zoya Khan 1, Shamaila Rani 1 and Kazuharu Bamba 2,*
1 Department of Mathematics, COMSATS University, Islamabad Lahore Campus, Lahore-54000, Pakistan
2 Division of Human Support System, Faculty of Symbiotic, Systems Science, Fukushima University,

Fukushima 960-1296, Japan
* Correspondence: bamba@sss.fukushima-u.ac.jp

Received: 10 July 2019; Accepted: 22 August 2019; Published: 31 August 2019
����������
�������

Abstract: In this paper, we discuss the validity of the generalized second law of thermodynamics in
the presence of a multi-component scalar field (φ) in a spatially flat Friedmann-Robertson-Walker
(FRW) universe. We describe the first-order formalism by defining the Hubble parameter as
H = −W(φi). By using three super-potential models of the Hubble parameter, we analyze
the validity of the generalized law and thermal equilibrium conditions in the presence of the
logarithmically-corrected, Bekenstein-Hawking, Sharma-Mittal and Rényi entropies. It is noticed that
the generalized law and thermal equilibrium conditions hold for some cases.
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1. Introduction

In cosmology, many authors have considered the significance of the scalar field. To clarify the
cosmic acceleration it may be connected to inflation which occurred in the early universe or as a
dark energy (DE) candidate like quintessence [1–3]. Scalar fields may trigger various evolutionary
scenarios of the universe’s expansion like the inflaton (inflationary era), the DE, the component of dark
matter [4–13]. They all are characterized to be coupled to gravity, minimally or non-minimally [14–18].
In particular, in order to depict universe evolution, at least two scalar fields must collaborate over
their kinetic or potential state. The quintom is the most basic multi-scalar field theory in which
quintessence and phantom scalar fields attribute to DE portion of the region [19–22]. It is feasible to
use just a single scalar field to interpret both DE and past inflation in quintessence inflation model [23].
Recently, to analyze the possible cosmic acceleration, quintessence is conjured up as an alternative
of the cosmological constant [24]. For recent reviews on the DE problem including modified gravity
theories, see, for example, References [25–31].

Roy and Bamba [32] explored interacting quintessence model with the quintessence potential,
by utilizing the parametrization of interaction quintessence models, they extended the quintessence
scalar field. Hertzberg et al. [33] investigated the fine-tuning of a quintessence model for dark energy
in the framework of swampland conjectures. Díaz [34] restricted himself to the equation of state to
study the problem of the quintessence potential, thus acquiring the statement of luminosity distance.
By introducing a non-negative cosmological term they generalized the quintessence model, confining
the scalar field energy density. Zlatev et al. [35] presented a form of quintessence tracker field.
Including the new inspiration for the quintessence scheme, they demonstrated how it might clarify
the occurrence. Roy and Banerjee [36] studied the dynamical system consideration of scalar fields.
They checked for late time attractors and defined two examples, exponential and the power-law
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potentials. They examined the stable solutions for a few quintessence models. In the same context,
Kleidis and Oikonomou [37] studied an f (R) theory in the presence of a canonical scalar field φ,
by rendering the corresponding dynamical system autonomous. They accordingly showed that, in this
case, the cosmological dynamical system is led to an unstable de Sitter attractor, which can be viewed
as a graceful exit from inflation.

Scalar fields can also describe both late and early aspects of cosmic acceleration [38,39].
Yang et al. [40] considered different quintessence scalar field models and they found that for the
early deceleration phase to the present cosmic acceleration all models carry out fine transition.
They also found a strong negative relation among the parameters for all quintessence scalar field
models. Shahalam et al. [41] studied the interaction of quintessence with scaling potential in spatially
flat universe. They considered quintessence cosmological models as αρ̇m, βρ̇φ and σ(ρ̇m + ρ̇φ).
They investigated the phase space analysis and dynamic behavior of these models and focused
on the attractor solutions that can give rise to late time acceleration.

The connection to thermodynamic evolution is acquired by the idea of additional
thermodynamical variables and entropy. Lymperis and Saridakis [42] utilized the tsallis entropy
and through the application of the first law of thermodynamics (FLT) they constructed several
cosmological scenarios. They showed that with the sequence of DE span and, depending on the
value of the parameter of DE equation of state δ, during the evolution, experience the phantom-divide
crossing and can be quintessence or phantom-like. Debnath et al. [43] investigated the equilibrium
and non-equilibrium picture of the generalized second law of thermodynamics (GSLT) for event and
apparent horizons for flat FRW metric which is filled with n-component fluid. In quintessence and
phantom regimes they acquired constraints on the power-law parameter α. Bamba et al. [44] studied
the GSLT in apparent and future event horizon in f (T) gravity. They also showed the conditions of
the quintessence and phantom epoch in particular scenario by which GSLT will be valid. They also
discussed validity of GSLT for logarithmic corrected entropy and power-law correction. Chakraborty
and Guha [45] analyzed the validity of GSLT in an expanding Firedmann Walker Robertson (FRW)
universe filled with different variants of Chaplygin gases. In the consequent part for the different
models of the Chaplygin gas they investigated the validity of GSLT on the apparent and event
horizons, they discovered that for these models the validity of GSLT on the event horizon depend
on the choice of free parameter in the particular models. Tanisman et al. [46] checked the validity
of GSLT for the D-dimensional Kaluza-Klein-type FRW universe in a thermal equilibrium state.
Additionally, they demonstrated that their results can be reduces to lower dimensional cases in the
restricting conditions.

We discuss the validity of GSLT in multiquintessence for the flat FRW metric. We organize paper
as follows: In Section 2, we discuss the first-order formalism. In Section 3, we observe the behavior
of GSLT and thermal equilibrium condition under various entropies. In Section 4, we summarize
our results.

2. First-Order Formalism of Multi-Quintessence Scenario

We define the first-order formalism [47,48] for the coupled scalar fields with gravity.
The action [49] of four-dimensional gravity is given in the form

S =
∫

d4x
√
|g|
[
−R

4
+

1
2

gab∇aφi∇bφi −V(φi)

]
, (1)

where g is the determinant of metric with signature (+,−,−,−), d4x is the invariant volume element
in four dimensions, R stands for Ricci scalar, φi, i = 1, 2, ..., N, defines real scalar fields, coupled to a set
and V(φi) ≡ (φ1, φ2, ..., φN) is the potential which characterize the theory on the subject of a limited
arbitrary number of scalar fields. The field equations for homogeneous and isotropic FRW metric is
given by
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H2 =
8πG

3
ρ− k

a2 ,

Ḣ + H2 = −8πG
6

(ρ + 3p), (2)

where a(t) is the scale factor, k represents the curvature for flat (k = 0), open (k = −1) and closed
(k = 1) spacetime, but here we only assume the flat case and ρ describes the energy density and p is
the pressure of the system, respectively. The energy density and pressure are defined as [49]

ρ =
N

∑
j=1

φ̇2
j

3
+ V(φi),

p =
N

∑
j=1

φ̇2
j

3
−V(φi). (3)

From the field equations, we have

Ḣ = −φ̇2 +
k
a2 .

Since scale factor a(t), scalar field φ(t) and Hubble parameter H(t) are functions of time and from
Einstein’s equation we have to see the potential V as a function of time. We have potential V = V(φ)

for the scalar field from the equation of motion, in this manner to make these two perspectives
equivalent, we at that point need to see Hubble’s parameter as a function of φ. This is the key point
and by introducing a new function W = W(φ), make it efficient. Now, we can understand that the H
depends on time as a function of W[φ(t)] and we see that the potential V does not depend on the sign
of W, thus the change W → −W leads to another possibility. The motivation for much of the above
technique is based on former work [47], in which first-order formalism is used to examine first-order
equations for at least two real scalar fields [50], up to arbitrary dimensions [51]. That is why one can
choose first-order formalism as [47,48]

H = −W(φi). (4)

For a flat FRW universe, Equation (4) leads to

φ̇i = Wφi , i = 1, 2, ..., N. (5)

The above Equations (4) and (5) allow us to write the potential term as follows

V(φi) =
3W(φi)

2

2
− 1

2

N

∑
i=1

W2
φi

. (6)

where φi in subscript defines the derivative with respect to φi, Wφi ≡ dW
dφi

and φi = φi(t). From
Equation (1), the equation of motion for scalar fields is defined as

φ̈i + 3Hφ̇i + Vφi = 0, (7)

where Vφi ≡ dV
dφi

and double dot represents derivative with respect to time.
We consider the three models of Hubble parameter and the corresponding solutions of scalar

fields. The models are:
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2.1. Model 1

First, we choose the superpotential, that is, Z2 model [52] and the direct sum of sine-Gordon [53],
given by

W(φ1, φ2) = λ1

(
φ1 −

φ3
1

3

)
+ λ2 sinh(φ2) + α1, (8)

where λ1, λ2 and α1 are arbitrary constants. The motivation to research this model (mixture of Z2

and sine-Gordon models), begins from the way that those are found in numerous areas of Physics,
including condensed matter physics, field theory and cosmology among many others [49]. Table 1,
shows the first-order equations and corresponding solutions of scalar fields.

Table 1. First-order equations and corresponding solutions.

φ̇i, i = 1, 2 φi(t)

λ1(1− φ2
1) tanh(λ1t)

λ2 cosh(φ2) arcsin h[tan(λ2t)]

2.2. Model 2

The second superpotential is the combination of sine-Gordon, Z2 and BNRT models [49,54],
we have

W(φ1, φ2, φ3, φ4) = λ1

(
φ1 −

φ3
1

3

)
+ λ2 sinh(φ2)

−λ3φ3 +
λ3φ3

3
3

+ µ3φ3φ2
4 + α2, (9)

The first-order equations and solutions of φ1 and φ2 are same as in model 1. The BNRT model [54]
is utilized for modeling a great number of systems [55–59]. By using the so-called configurational
entropy, the rich structure of this model permits the generation of double-kink configuration [60],
as shown in Reference [61]. In Table 2, we show the differential equations and their solutions.

Table 2. differential equations and their solutions.

φ̇i, i = 3, 4 φ
(k)
i (t), k = 1, 2(√

c2
o−4

)
sinh(2µ3t)

(
√

c2
o−4) cosh(2µ3t)−co

,

−λ3(1− φ2
3) + µ3φ2

4 (
√

1−16co

)
sinh(4µ3t)

(
√

1−16co) cosh(4µ3t)+1
,

where co < −2 and λ3 = µ3.
2(√

c2
o−4

)
cosh(2µ3t)−co

,

2µ3φ3φ4
− 2(

√
1−16co

)
cosh(4µ3t)+1

,

where co < 1
16 and λ3 = 4µ3.
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2.3. Model 3

For third model [49,62] the superpotential is as follows

W(φ1, φ2, φ3, φ4) = λ1

(
φ1 −

φ3
1

3

)
+ λ2 sin(φ2)−

λ3φ3
3

3

−φ2
3φ4 + φ4 −

φ3
4

3
+ α3, (10)

where α3 is arbitrary constant. The first-order differential equations and solutions of φ1 and φ2 are
of model 1. The dependence of φ3 − φ4 was inspired in a model examined by Brito and Dutra [62],
where they found interesting analytical solutions of asymmetric two-kink. Table 3, shows the first-order
differential equations and solutions of the equations which satisfied the differential equations.

Table 3. Differential equations and solutions.

φ̇i, i = 3, 4 φi(t)

4
(
(c2

o(λ
2
3 + 4)− λ2

3 − 5) sinh(2t)

−λ3φ2
3 − 2φ3φ4 +(c2

o(λ
2
3 + 4)− λ2

3 − 3) cosh(2t))

+ 2co

√
λ2

3 + 4
)−1

.(
(c2

o(λ
2
3 + 4)− λ2

3 − 3) sinh(2t)

+(c2
o(λ

2
3 + 4)− λ2

3 − 5) cosh(2t)− 2λ3

)
×

−φ2
4 − φ2

3 + 1
(

c2
o(λ

2
3 + 4)− λ2

3 − 5) sinh(2t)

+(c2
o(λ

2
3 + 4)− λ2

3 − 3) cosh(2t)) + 2co

√
λ2

3 + 4
)−1

.

3. GSLT and Thermal Equilibrium Condition

Inspired by black hole (BH) thermodynamics [63], it was realized that there should be a connection
between gravity and thermodynamics. For this purpose, Jacobson [64] derived a relation between
thermodynamics and the Einstein field equations on the basis of entropy-horizon area proportionality
relation along with first law of thermodynamics dQ = TdS. Here dQ, T and dS indicate the exchange
in energy, temperature and entropy change for a given system. It was found [65] that the field equations
can be expressed in terms of TdS = dE + pdV (E, p and V represent the internal energy, pressure
and volume of the spherical system) for any spherically symmetric spacetime in any horizon. It is a
well-established phenomenon that our universe undergoes accelerated expansion in the presence of
DE. A question arises about the thermodynamical behavior of the universe experiencing accelerated
expansion, in particular, what is the fate of GSLT in this scenario? We provide a review of GSLT for a
system containing a BH. Basically, GSLT for a cosmological system is the generalization of GSLT for a
system containing a BH as proposed by Bekenstein [66]. Bekenstein argued that the common entropy
in the BH exterior plus the BH entropy never decreases. This statement is based on the proportionality
relation between entropy of BH horizon and horizon area.

In next sections, we study the validity of GSLT of the multiquintessence at Hubble horizon for a
flat FRW universe. We find the Hubble horizon calculated by the condition [67,68] hµν∂µRA∂νRA = 0,
this condition gives the Hubble horizon as

RA =
1
H

.
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From the above expression, we get

dRA = HR3
A(ρ + p)dt. (11)

The Bekenstein entropy is defined as S = A
4G , where A = 4πr2 is the area of the horizon [66,69].

By using the Bekenstein entropy, Equation (11) becomes

G
2πRA

dS = HR3
A(ρ + p)dt. (12)

The temperature of the horizon is defined as [70]

Th =
|ksg|
2π

, ksg =
1

2
√
−h

∂µ(
√
−hhµν∂νRA)

= − 1
RA

(1− ṘA
2HRA

) = −RA
2

(2H2 + Ḣ). (13)

Multiplying Th = − 1
2πRA

(1− ṘA
2HRA

) on both sides of Equation (12), we have

ThdS = [−4πHR3
Adt + 2πR2

AdRA](ρ + p). (14)

Now, we define the Misner-sharp energy which is E = RA
4G , we describe the energy density in

terms of the volume V =
4πR3

A
3 , which becomes

Ẽ =
3H2

8πG
V ≡ ρV. (15)

By taking the differential of the energy density, we easily find

dẼ = −4πHR3
A(ρ + p)dt + 4πR2

AρdRA. (16)

Assembling Equations (14) and (16), we can obtain

ThdS = dẼ− 2πR2
A(ρ− p)dRA. (17)

The work density is defined as

W̃ = −1
2
(T(M)µνhµν + T̃(de)µνhµν) =

1
2
(ρ− p), (18)

utilizing the work density in Equation (17), we get

ThdS = dẼ− W̃dV. (19)

Equation (19) shows that first law of thermodynamics (FLT) is satisfied in multi-component
scalar field.

However, GSLT states that sum of the black hole entropy and the entropy of the black hole external
region can never be decreased [71,72]. The condition that satisfies the entropy relation, described as

Ṡtot = Ṡ + Ṡin ≥ 0, (20)
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where Ṡtot is the total entropy of the energy and matter inside the horizon, Ṡ relates to the horizon
entropy and Ṡin correspond to the inner horizon with the sum of all entropy components. To study the
GSLT, we now proceed with modified FLT,

TidSi = dEi + pidV, (21)

which can be written as

TinṠin = 4πR2
A(ṘA − HRA)(ρi + pi). (22)

Tin denotes the temperature of the inner horizon for all components. Here ∑i(ρ
i + pi) = ρ + p,

the total entropy inside the horizon becomes

TindSin = 4πR2
A(ṘA − HRA)(ρ + p). (23)

Taking the time derivative of Bekenstein entropy, we find out

Ṡ = −2πḢ
H3G

(24)

The thermal equilibrium set with Tin = Th and Equation (23) leads to

Ṡin =
1
Th

(ρ + p)4πR2
A(ṘA − HRA). (25)

After some calculations, it results

Ṡin =
4π

G

[
Ḣ(Ḣ + H2)

H3(Ḣ + 2H2)

]
. (26)

By putting Equations (24) and (26) in (20), we get

Ṡtot =
π

W2

[16πW2
φ(−W2

φ + W2)

W(−W2
φ + 2W2)

−
2W2

φ

W

]
. (27)

• For Model 1:

In Figure 1, we plot graph of Ṡtot versus time for Bekenstein entropy at Hubble horizon for flat
spacetime. We choose values of parameter λ1 = 8, 8.5, 9, λ2 = −4, α = 5. All trajectories are
decreasing positively with the increasing value of t, which shows the validity of GSLT. In Figure 2,
for λ1 = 8, the trajectory is initially negative, while showing a transition towards negative
direction after some epoch. It means thermal condition holds at the present as well as early epoch
but remains invalid in the later epoch. However, the trajectories remain in the negative phase
which exhibits the validity of the thermal condition for λ1 = 8.5, 9.

• For Model 2:

Figure 3, shows the graph of Ṡtot versus t. With the same values of λ1, λ2, λ3 = 5, c = 5, µ = 5.5
and α = 4. All trajectories are gradually increasing in a positive direction at the present epoch as
well as the later epoch with the increasing value of t which leads to the validity of GSLT. Figure 4,
shows that for λ1 = 8 the trajectory remains in a negative phase at a later epoch which fulfils the
thermal condition and for λ1 = 8.5, 9, trajectories show decreasing behavior towards positive
direction at a later epoch and cannot maintain the stability of thermal condition.
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• For Model 3:

By taking the same values of λ1, λ2, λ3, c and α = −6.5, Figure 5, demonstrate that for λ1 = 9,
GSLT preserved the validity in the later epoch while remains invalid for other two cases of
λ1 = 8, 8.5. Figure 6 shows that the thermal equilibrium condition at the later epoch for λ1 = 8.
However, thermal stability occurs for two other cases λ1 = 8.5, 9 at the present epoch as well as
the later epoch.
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Figure 1. Plot of Ṡtot versus t for model 1.
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Figure 2. Plot of S̈tot versus t for model 1.
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Figure 3. Plot of Ṡtot versus t for model 2.
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3.1. Sharma-Mittal Entropy

The unique entropy measure is the Sharma-Mittal entropy [73,74] that permits a rise to a
thermostatistics. We here introduce this entropy to discuss the validity of GSLT, which is

SSM =
1

1− r
[(1 +

δA
4
)

1−r
δ − 1], (28)

where r is the free parameter. By taking the time derivative of above entropy, we have

ṠSM = 2πRAṘA(1 + δπR2
A)

1−r
δ −1. (29)

For the case of apparent horizon, Equation (29) becomes

ṠSM = −2πḢ
H3 (1 +

δπ

H2 )
1−r

δ −1. (30)

Inserting Equations (26) and (30) in (20), we have

Ṡtot =
π

W2

[16πW2
φ(−W2

φ + W2)

W(−W2
φ + 2W2)

−
2W2

φ

W
(1 +

δπ

W2 )
1−r

δ −1
]

(31)

We check the validity of GSLT and thermal equilibrium condition for Equation (31) at Hubble
horizon by a graphical representation.

• For Model 1:

In Figure 7, by taking the same values of λ1, λ2, α and r = 1, δ = 0.1, the graph demonstrates
that all trajectories gradually decreasing towards negative direction and remain in the negative
phase at later epoch, which cannot fulfills the stability condition for GSLT. With the same values of
λ1, λ2, α, r and δ and λ1 = 8, 8.5, 9, the thermal stability remain invalid as all trajectories remain
in a positive phase at the present epoch as well as the later epoch Figure 8.

• For Model 2:

All trajectories are increasing in a positive direction at the present epoch as well as the later epoch
with the increasing value of t. By taking the same values of all parameters λ1, λ2, λ3, r, c, µ, α,
which confirms the validity of GSLT (Figure 9). In Figure 10, the thermal equilibrium condition
satisfies the same values of all parameters as all trajectories for λ1 = 8, 8.5, 9 remain in the negative
phase at present as well as in the later epoch.

• For Model 3:

With the same values of all parameters, the left trajectories (Figure 11) show that for λ1 = 8, 8.5 it
remains in the positive phase and for λ1 = 9 it gradually decreases towards a negative phase at a
later epoch. Thus, the validity of GSLT confirms only for two cases λ1 = 8, 8.5. As we increase the
value of λ1 the stability condition cannot maintain. The right side trajectory λ1 = 8 increasing
towards a positive phase at present as well as the later epoch (Figure 12) and for λ1 = 8.5, 9,
trajectories show increasing behavior at the later epoch and remain in the positive phase which
cannot preserve the thermal condition.
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3.2. Logarithmic Corrected Entropy

The entropy-area relation including quantum corrections conduct curvature corrections within
Einstein-Hilbert action. The Bekenstein-Hawking logarithmic corrected entropy is defined by
the relation

S =
A

4G
+ α ln

A
4G

+ β
4G
A

+ γ, (32)

where α, β and γ are dimensionless constants, apart from the exact values of these constants are still
checked. The thermodynamics of BH is modified by the thermal fluctuations and emerge as more
important for smaller size BHs with adequately high temperature. In this mode, entropy can be
modified as above. Now, by taking the time derivative of logarithmic corrected entropy, we easily get

Ṡ =

(
Ȧ
A

)
A

4G

[
1 + α

4G
A
− β

(
4G
A

)2]
. (33)

In the case of apparent horizon, Equation (33) becomes

Ṡ = −2πḢ
H3

[
1 + α

GH2

π
− β(

GH2

π
)2
]

. (34)

Putting the values of Ṡin and Ṡ in Equation (20), we have

Ṡtot =
π

W2

[16πW2
φ(−W2

φ + W2)

W(−W2
φ + 2W2)

−
2W2

φ

W

[
1 + α

W2

4π2 − β

(
W2

4π2

)2]]
. (35)

Equation (35) graphically representing to observe the validity of GSLT and thermal equilibrium
condition at Hubble horizon.

• For Model 1:

In Figure 13, with the same values of λ1, λ2, α and α1 = 2, β = 1.5, the trajectories decreasing
towards positive direction at later epoch with the increasing value of t, which shows the validity
of GSLT. The trajectories of (Figure 14) show that for λ1 = 8 trajectory increasing in positive phase
at present epoch as well as later epoch. For λ1 = 8.5, 9 the trajectory remains in the negative phase
at present epoch and later epoch. Hence, with the increasing value of λ1 the stability condition
maintain and the thermal condition satisfies.
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Figure 13. Plot of Ṡtot versus t for model 1.
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Figure 14. Plot of S̈tot versus t for model 1.

• For Model 2:

The left side trajectories increasing positively at present epoch as well as later epoch with
the increasing values of t, for all constant parameters, which shows that the GSLT is valid
(Figure 15). With the same values of all parameters, the thermal equilibrium condition satisfies,
as all trajectories decreases at present as well as the later epoch and remain in the negative phase
for λ1 = 8, 8.5, 9 (Figure 16) .

• For Model 3:

Figure 17, demonstrate that by taking the same values of λ1, λ2, λ3, c and α = −6.5, for λ1 = 9,
GSLT preserved the validity in the later epoch while remains invalid for other two cases of
λ1 = 8, 8.5. In Figure 18, we plot three graphs for λ1 = 8, 8.5, 9, in first graph for λ1 = 8 shows
that trajectory decreasing towards positive direction at present as well as later epoch, for λ1 = 8.5
the trajectory is remain in negative phase at present epoch as well as later epoch and for λ1 = 9 the
trajectory decreasing negatively. Hence, the thermal equilibrium condition satisfies for λ1 = 8.5, 9
and is invalid for the case λ1 = 8.
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Figure 15. Plot of Ṡtot versus t for model 2.
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Figure 17. Plot of Ṡtot versus t for model 3.
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Figure 18. Plot of S̈tot versus t for model 3.

3.3. Rényi Entropy

Recently Rényi generalized entropy has been extensively used in order to study various
gravitational and cosmological frameworks. The Rényi entropy is also important in quantum
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information where it can be used as a measure of tangle [75]. Here we define Rényi entropy to
check the validity of GSLT, we have

S =
1
δ

ln(1 +
δA
4
), (36)

where δ = 1−Q, time derivative of Equation (36) is

Ṡ =
2πδRAṘA

δ(1 + δπR2
A)

, (37)

Rényi entropy written in apparent horizon case as

Ṡ = − 2πḢ
H(H2 + δπ)

, (38)

with given entropy Equation (20) becomes

Ṡtot = 16π2
[ W2

φ(−W2
φ + W2)

W3(−W2
φ + 2W2)

]
−

2πW2
φ

W(W2 + δπ)
. (39)

Form Equation (39) we check the validity of GSLT and thermal equilibrium condition for Rényi
entropy at Hubble horizon.

• For Model 1:

Figure 19, shown that the trajectory decreases in positive phase for λ1 = 8 and for other two cases
λ1 = 8.5, 9 trajectories increases toward positive direction at present as well as later epoch, which
confirms the validity of GSLT. In Figure 20, the trajectories for λ1 = 8, 8.5, gradually decreases at
present epoch as well as later epoch and preserved the thermal condition and for the decreasing
trajectory in the positive phase for λ1 = 9 the stability condition cannot maintain and the thermal
equilibrium condition is invalid for this case.
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Figure 19. Plot of Ṡtot versus t for model 1.

• For Model 2:

In Figure 21, by taking the same values of λ1, λ2, λ3, α, c, µ and δ, for all cases of λ1 all trajectories
remain in the positive phase at present as well as later epoch which demonstrate that the GSLT
is valid. In Figure 22, the trajectory remain constant in positive phase (λ1 = 8) which cannot
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preserved the thermal condition and for other two cases (λ1 = 8.5, 9) trajectories remain constant
in negative phase which confirms the thermal condition.
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Figure 20. Plot of S̈tot versus t for model 1.
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Figure 21. Plot of Ṡtot versus t for model 2.
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Figure 22. Plot of S̈tot versus t for model 2.
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• For Model 3:

Figure 23, for λ1 = 9, GSLT preserved the validity in the later epoch while remains invalid for
other two cases of λ1 = 8, 8.5, by taking the same values of all parameters. Figure 24, demonstrate
that with the same values of all parameters the thermal condition cannot satisfies for all cases of
λ1 at present epoch as well as later epoch as all trajectories remain in the positive phase.
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Figure 23. Plot of Ṡtot versus t for model 3.
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Figure 24. Plot of S̈tot versus t for model 3.

4. Summary

We examined the validity of GSLT in multiquintessence at Hubble horizon for flat FRW universe.
Throughout we follow the first-order formalism and choose the Hubble parameter H = −W(φi).
We take three different superpotential models of the Hubble parameter. Model 1 is the direct sum of
Z2 and sine-Gordon, Model 2 is the combination of Z2, BNRT and sine-Gordon and in Model 3 we
consider the modified BNRT model along with Z2 and sine-Gordon models. We also check the stability
condition of the thermal equilibrium and GSLT at present epoch and later epoch for Bekenstein entropy
at Hubble horizon along with three different Hubble parameter models for flat spacetime. We also
choose three different entropies as an example which are Sharma-Mittal, logarithmic corrected and
Rényi entropies, to observed the stability condition for each models of the W(φi) at Hubble horizon
for flat spacetime. We also analyzed that FLT satisfied in multiquintessence at Hubble horizon for
flat spacetime. To checked the stability condition we plot graphs by taking the same values of all
parameters and for different cases of λ1 by choosing three different values for flat spacetime along
with different W(φi) in the constructed model of each entropy at Hubble horizon.
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The stability of GSLT validity and thermal condition at Hubble horizon for flat spacetime with all
entropies are given below:

• For Bekenstein entropy

For Model 1 and Model 2 the stability condition preserved the validity of GSLT for Bekenstein
entropy and thermal equilibrium condition only satisfied for λ1 = 9 for Model 1 and in Model
2 the stability condition for thermal equilibrium satisfied only for λ1 = 8 at later epoch, while
for Model 3 GSLT is valid at later epoch only for λ1 = 9 and condition of thermal equilibrium
satisfied for all cases of λ1.

• For Sharma-Mittal entropy

For Model 1 validity of GSLT cannot hold at later epoch as all trajectories remain in the negative
phase and the thermal equilibrium condition cannot occurs for all cases, for Model 2 the stability
condition of GSLT and thermal equilibrium maintained at present as well as later epoch and for
Model 3 GSLT is valid only for two cases λ1 = 8, 8.5 and the thermal equilibrium condition cannot
satisfied for any case.

• For Logarithmic corrected entropy

The validity of GSLT at Hubble horizon for Model 1 confirms at later epoch and the stability
condition of thermal equilibrium maintained for λ1 = 9, for Model 2 GSLT validity and thermal
equilibrium condition confirmed at present epoch as well as later epoch and for Model 3 with
the increasing value of λ1 the stability condition of GSLT preserved and the thermal condition is
invalid for λ1 = 8 and the thermal equilibrium condition occured for other two cases λ1 = 8.5, 9.

• For Rényi entropy

The stability condition of GSLT for Model 1 is satisfied for all cases at present as well as later
epoch and the thermal equilibrium condition confirmed at present epoch as well as later epoch
only for two cases λ1 = 8, 8.5 and the stability of thermal equilibrium condition cannot preserved
with the increasing value of λ1. For Model 2 GSLT is valid for all values of λ1 at present as well as
later epoch and with the increasing value of λ1 the thermal equilibrium condition satisfied and
for Model 3 GSLT maintained the validity at later epoch for λ1 = 9 and the stability of thermal
equilibrium condition cannot satisfied for each case.

The stability of GSLT and thermal equilibrium condition for each model satisfied only for some
cases at present as well as later epoch.

Physically some results are not valid as it is not possible that GSLT and thermal equilibrium
condition satisfies at the same time. We shown the validity of GSLT and thermal equilibrium condition
mathematically only.
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