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Field-Theoretic Treatment of High Vlomentum Transfer 
Processes. III. Gauge Theories 

The approach developed in the first two parts of the work 
is generalized to include gauge theories, especially quantum 
chromodynamics. The validity of the modified parton model for 
massive lepton-pair production process is proven to all orders 
in perturbation theory. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR, 
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I 
I 

In two previous papers I 1.2/ we have developed 
methods of the unified field-theoretic approach to deep 
inelastic scattering and to massive lepton-pair produc­
tion. Our starting point was the analysis of simple scalar 
theories in the alpha-representation. By explicitly using 
the coordinate representation, the results obtained can be 
easily generalized to include more complicated nongauge 
theories describing spin -1/2 particles. The generaliza­
tion for gauge theories, which is a subject of this paper, 
is less trivial. 

1. DEEP INELASTIC SCATTERING 

The analysis of gauge theories is complicated, in par­
ticular, by the fact that the field Afl (vector potential) 
has zero twist. Hence the upper bound on the asymptotic 
contribution of the subgraph V. related to a parton 
su~rocess, into the structure function W (w, Q 2 ) 

=-W 11 (w, Q 2
) of the deep inelastic scattering 

2 2-f 
W(V)(w,Q ) ::: Q q (1) 

(where f is the number of external quark lines of the 
subgraph q V. see eq. (l.A.12) * ) is independent of the 
number of gluon external lines of the subgraph V (fig.la). 

*~1ljllceforth 7~; (l.N) (or (2.N)) means eq. (N) from 
ref. (or ref. ). 
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To sum over gluon lines, let us fix the form of the 
initial subgraph v 0 (fig. 1 b). To get all allowable combi­
nations, one must join the lines of the subgraph v

0 
with 

those of the subgraph v 0 in all possible ways. Every 
gluo!!_ line adds the field A P. (z) into the matrix element 
<PI t/1 ... t/1 IP>. Furthermore, the propagator corresponding 
to some line of the subgraph v0 is modified: 

c 4 a c p. c 
S (xa -x {3)-. gfd Z!Ap. (z) S (xa-z)y r a S (z-x/3) (2) 

+... , 
where (r a ) AB is the matrix of the gauge group in the 
quark (fundamental) representation. It is easy to note 
that the sum over gluon lines inserted into the (xa , x 

8
) -

line (fig. 2a) gives S c, the propagator of a spinor particle 
in an external gluon field, i.e., the perturbative solution 
to the equation 

(if\ y P.- m)S c (~ ,x {3) =-o 4 (xa -x f3), (3) 

where D P. = ~ -igA P. is the covariant derivative acting 
axiL 

on the quark fleld, and A p. = A~ r a • The solution to this 
equation can be also written in the following form 

cc A C 
o (x ,x/3) = E (x ,x {3) {S (x -x/3) + O(G)l. 

a AB a a (4) 
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Fig. 2 

We use the notation 

"' .x~ 11 
1!.i AB (x, y) = (T c exp1g! A11 (z)dz ) AB , (5) 

where T c means that the integral must be path-ordered 
along the contour of integration, which is straight line 
connecting x and y. An analogous problem was treated 

in an Abelian theory by Gross and Treiman /s~ qG) denotes 
the contribution of operators containing the gluon field 
strength G = .!...[ fi , fi ], for insrance, in an Abelian 

#W g 11 v 

theory O(G) =R(x,y) is the solution to the equation 

./Ld 1111 11 c 1y -R(x,y) + gy (x -y )(R(x,y) + S (x-y)) x 
~11 . 

1 
x f tdtG/D" (y+(x-y)t) =0. 

0 

(6) 

Any operator of the OG ... G type has twist higher than 
that of 0, because the tensor G IW is antisymmetric. 
Hence the terms entering into O(G) give the power correc­
tions (M 2;g2) k into the asymptotical form of the structure 
function W(w, Q ~ . 
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In an Abelian theory the exponential factors E are 
easily summed up: E(x, y) E(y, z) = E(x, z) [ 1 + 0 (G)] 
(the term O(G) is due to the change of the integration 
contour from the broken line xyz to the straight line 
xz ). As a result, we obtain the gauge invariant bilocal 

operator 

- ~ 
t)v<e,7J;p. 2)=N 1/JWyv(expigJ A

11
(z)dz11 )1/J(7J) (7) 

11 2 1] r 

for a subgraph with quark external lines, whereas the 
coefficient function c v

0 
( x, ~. 77 ) remains unchanged. Using 

the Baker-Hausdorf theorem /s, 4 / one can expand t) (~,77) 
ov~r gauge-invari~nt local operators 0 

11 
••• 

11 
= l/1 y 111D fl. 2 ••• D P.n l/1 . . 1 2 

00 v v 
" 2 1 1 m ~+7] 2 t)v(~,7];J1) = ~ -(~-7]) ... (~-7]) Ovv v (-;p. ). 

m=O m! f"' m 2 (
8

) 

For a subgraph having gluonic external lines, the 
exponentials are summed into 1, and only O(G) terms do 
remain. The corresponding contribution is C {~ Gfl>J()G~(17 ). 
Local operators in this case have twist equal to or 
greater than two. This gives a more refined estimate 
W(g):S const valid for a gauge-invariant sum of subgraphs 
in place of a rough estimate W (g) ~ G 2 valid for a se­
parate subgraph. 

In a non-Abelian theory the gluon propagator is also 
modified (fig. 2b) 

c Ci' c 
g p.v 0 ab D (xa -x{3) 4 j; ab,fl.V (xa, x {3) 

- c 
= Eab (Xrz, Xf3) lg f1.V D (x a-x f3) + O(G) l, 

(9) 

where E ab is defined by eq. (§), but one should take 
there X fl. = ~A~ a a rather than A ; a a is a matrix of 
the gauge group in the gluonic (adJoint) representation. 
The ghost field propagator is also modified 

c - c 
oab D (xa-X {3) 4 Eab (xa, X {3) ID (xa -x& + O(G) l. (10) 
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The factor Eab(x,y) has the property Eab(x,y) = E ba (y, x) 
which follows from (a a) be =-(a a) cb • 

To unite the exponentials corresponding to neighbour­
ing spinor lines, one must commute the exponential with 
the r -matrix: 

E AB(x,y) (r a) BC = ( r b) ABE BJx.y) E ba (x,y) ' (11) 

We have ysed here the well-known formula e ABe-A= 
= B +[~A. B]+ T.[A,[ A,B]]+ ••• and the relation [rb''a l~b)ac'c· 
_ The comm·utation results in an additional exponential 
E in the gluonic representation appeared in the r .h.s. 
of eq. (11). The same factor appears after commuting 
the factor entering into the modified gluon propagator 
~ c with the a -matrix in the 3-gluon vertex: 

- - -
Eab(x,y)(ac)bd =(af)abEbd(x,y)Efc (x,y). (12) 

One can represent a 4-gluon vertex . as · a sum of 
terms containing only Krone~ker deltas. ~l.b and hence 
there is no need to commute anything.Taking into account 
all these remarks one can easily see that tor a subgraph 
with quark external lines all exponentials resulting from 
the commutation (11), (12) are cancelled by those en­
tering into the modified propagators (9), (10) and only 
the factor E(~. 11 ) remains. Analogously, there appears 
the gauge-invariant bilocal operator 

N 2 'G,v. {()(TcexpigJ A11 (z)ctzl)·c~c77he;;>c~.77;f1. 2) (13) 
p. 1] 

for the subgraph with the gluonic external lines. 
It is well known that the presence of the T -ordering 

is esse~tial for eq. (8) to be valid for non-~ommuting 
fields A, A, 

Hence we have seen that the well-known statement 
(see, e.g., ref. 15/ ), that it is necessary to use the 
gauge-invariant local operators in the operator product 
expansion, can be justified in a direct way. 
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To obtain the modified parton description /s/ one 
has to introduce quark (f ~ (x)) and antiquark (L (x)) dis-
tribution functions a 

.n-1 _ 
1 

<P\1/1 ly D ... D lt/1 \P> 
2 a f.1 111 f.ln a 

1 
dx 2 2 

= IP ... P l f -[ f (X, fl. ) +(-1) nr_ (X,f.l )] 
111 11n 0 X a a 

(14) 

as well as gluon ones 

in - - a 
-<P\TriG D ... D G l\P> = 
2 ap.1 112 11n-1 11n 

n 1 
= IP p l 1+(-1) dx 

,.,.1 .. 11n 2 f -f (x,,.,.2) 
0 X g 

(15) 

(cf. eqs. (1.27), (1.32), (1.33)). Spin average is assumed 
in eqs. (14), (15). 

2. MASSIVE LEPTON-PAIR PRODUCTION 

To justify the applicability of the modified parton mo­
del for the process .AB _. 11 + 11 -x it is sufficient to 
demonstrate that for this process also the only difference 
between the gauge theories and the nongauge ones is the 
type of the corresponding local operators. 

Let us remind shortly the scheme of the analysis used 
in refs. /1,2/. We use first the a -representation ana­
lysis to establish that the asymptotical behaviour of the 
function investigated is controlled by the end-point sin­
gularities (i.e., by the small- a integration). For the 

+ -
:AB -+ 11 11 X process these functions are d:J/ dQ 2 at 
Q 2» M 2 and da I d 4 Q at Ql» M 2 (where M is the 
parameter which characterizes the higher twists contri­
bution). For the leading asymptotical behaviour the s,Q2 -
subgraphs are responsible having a minimal possible 
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number of external lines. Hence the factorization pro­
perties of the amplitude with respect to 2-particle divi­
sions in the t -channel play a highly important role for 
an analysis in any representation. These properties are 
almost tri.vial in the coordinate representation. 

Then we construct a subtraction procedure which 
provides an infrared regularization (A v <1/p. 2 ) of the 
contributions due to s, Q 2 -subgraphs V and the ne­
cessary ultraviolet cut-off for subgraphs lying outside 

V (e.g., .\ v > 1/11 2 for subgraphs v which become 
divergent after contraction of V into point). A subtrac­
tion procedure of this type does not spoil the factoriza­
tion properties. The resultant representation 

W =I w(a,b)(Q2/11 2gt .. ))f(a)r .. 2)f'(b)( 2)+R 
n b 11 r ' \1" n \1" n f.1 n a, 

(16) 

allows one to obtain the Q-dependence of w if the 
- n 

f.1 -dependence of f n is known, because w n is fl.-inde-
pendent. The validity of the_ representation (16) in gauge 
theories (with the same· ~ s as used for deep inelastic 
scattering) means.in particular, that the double-logarith­
mic contributions (g 2m2Q2jp. 2)k, which appear in some 
diagrams of gauge theories, are cancelled after summa­
tion over all diagrams of a given order. 

For nongauge theories treated in ref. 121 our subtrac­
tion procedure exhausts all the possibilities to get 
a leading singularity . in the complex J- plane of the 
Mellin parameter J (say, at J "'0 ). Hence the function 
R n (J) is regular at J = 0 and gives only 0 (1/Q

2
) contri­

bution compared to the leading one. 
How one should modify the scheme above to apply it 

for gauge theories? First, it is necessary to sum over 
gluons taking part in a parton subprocess (fig. 3a). We 
have seen that for deep inelastic scattering this results 
only in a natural modification of bilocal operators. Se­
cond, we should take into account that the configurations 
fig. 3b (corresponding to the R-function) for individual 
graphs in gauge theories give CX1) contributions rather 
than 0(1/Q2) ones. This is due to the fact that in theories 
involving massless vector particles there appears a new 
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possibility to get the leading pole in J as a result of 
integration in the region aa 

1
-+ oo for lines of a 

1 
-type 

(fig. 3b), which join two parts lying outside the small 
a region (see Appendix 1). This possibility is not rea­
lized if the vector particle has a nonzero mass A, be­
cause there appears a factor e-M. . Hence for A t- 0 the 
di~~rams 3b give the contribution C(,\) O(l/Q2 ). The poles 
J resulting from the region a-+oo disappear, but they 
manifest themselves in that C(A)-+ oo as A-+0. The Kino­
shita-Lee-Nauenberg (KLN)-theorem 171 asserts that 
the inclusive cross sections are finite at A= 0. If this 
is true, then the sum of configurations shown in fig. 3b 
gives 0(1/Q~ contribution in theories with A=O also. 

Unfortunately, the general proof of the KLN -theorem 
for QCD has not been given yet. But a particular configu­
ration depicted in jig. 3b was shown /7a/ to be finite in 
the A .... o limit, if the external lines correspond to colour 
singlet currents: the singular part of C(A) is given 
by a sum over colour nonsinglet external lines. In our 
case, however, we deal with colour singlet clusters of 
fundamental coloured fields. Note, however, that the only 
condition needed for transition from the auxiliary Green 
function <0 1 Cl>(a 1) ... <fl(a

0
) ... ( in which the hadron A is 
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described by the set of fundamental fields cl>(a 
1
) ... <fl(a n ) ) 

to the matrix element <P 1 ... is <01 <fl(a 1) ... <fl(an) IP A> ":f. 0 . 
Hence we may use th~ gauge-invariant combination 

ical) S c (a1,a2) tjl(a2) = 

al 

=i(a1) Tc e:xp(ig f All (z) dz ll )[ S c(a -a ) + O(G)] tjl(a ) (17) 
a

2 
1 2 2 

rather than tjl(a 1) tjl(a 2) for description of the hadron 
(which is a meson in this example, the generalization for 
a three-quark system being straightforward). The change 
(17) means that the meson is described here by the pro­
duct of two colour-singlet currents j(a 

1
) j(a

2 
). Hence 

the as~umption needed to prove the finiteness in the 
A-+ 0 limit is fulfilled. Another assumption used in 
ref. /7a/ (that the external momenta Pi are nonexceptio­
nal) is necessary to prove the absence of singularities 
in the limit m q .... 0 , p f .... 0. In our case we deal with excep­
tional momenta, and there really appear terms like 
lnQ

2/p ~ which become infinite as pf .... o. But this pheno­
menon is the same we have faced with when treating 
deep inelastic scattering, it is present, moreover, in 
nongauge theories also. 

Thus, the wee-gluon exchanges which spoil the facto­
rization, give in QCD O(l/Q2) contribu~of (as sugges­
ted by the pomeron-exchange analysis 8 and parton 
model ideas /9/) and will be ignored hereafter. We are 
going now to sum up the contributions of fig. 3a configu­
rations to see whether the factorization is of the sare 
type we have obtained in nongauge models (see ref. 12 ). 

Let us fix the type of an initial subgraph v0 (which 
has a minimal possible number Qf external gluq_n lines). 
The initial bilocal operators are t/l(e)t/l(q) and t/l(e)t/l(rJ'). 
There appears a new possibility: the gluons may be in­
serted into an external quark l~ne (fig. 3c): 

4 c ll" tjl(q) .... 'P(TJ) = tjl(q) + gf d zS (TJ-Z) y !A P.(z) t/l(z) +... • (18) 
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The function 'P(7J) is the field operator of a spinor 
particle in an external gluonic field, i.e., the solution 
to the equation (iDJly!l-m)'P=O. Thus the 'P -operator can 
be written in the form similar to that of eq. (5): 

'P (7]) = E(O, 7] ){ 1/1(7]) + (XG '1/1 )I (19a) 

with the boundary condition 'P(O) = 1/1(0) assumed. One 
may however use another boundary condition. The func­
tion 

~ .1\ 

'P(7J,Zo) =Tc(E(z 0 ,0)'P(7])), (19b) 

where Zo is a point which can be chosen arbitrarily long 
away from the origin, is also the solution of the Dirac 
equation. Physical quantities (e.g., cross sections) should 
not depend on z 0 . It is worthwhile to study the way the 
cancellation of the zo -dependence occurs by an explicit 
use of 'P(7J,z 0 ) rather than 'P(7J). 

Uniting the factors E(.;,.;')E((', (''), as we have poin­
ted above, gives additional 0 cql)) terms, where ( lies 
inside the triangle .;.;'.;". Due to definition (19), the 
triangles having z0 as a vertex, will never appear, be­
cause Zo can be connected by a straight line with the 
origin only. In general, one must take different points 
z0 , z'0 for '1'- fields corresponding to partons from 
A or B, respectively. The gluon field of the hadron 
.A will be denoted as !Ap., whereas that of the B -hadron 
as B14 • "Vacuum" gluon field, corresponding to the gluon 
lines joining only subprocess lines, will be denoted as 
c J1 • Sometimes we will indicate thct type of the field 
entering into exponential factors, e.g.: E(x,y; B). 

We consider first an Abelian theory. Let us fix the 
number and type of the !A- and B -lines and sum over 
the C-lines. As a result, we get <0 11 + 0 (G) IO> (namely, 

<OI.E(z0 ,0) E(O,z 0 )E(zij,O) E(O,z 0)[ 1 + O(G)] IO> for subgraphs 
which do not possess gluon divisions in the t -channel, 
and <01 E(z 0,z 0 )E(z0, z'0)[ 1+ ~G)]io> otherwise). The mag­
nitude of these "vacuum" corrections is proportional to 
that . of. the matrix element < 0 1'01411 0

1411 10>. The authors of 
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ref. 1101 investigating the process e+e-.-+ charm have 
established that the corresponding dimensional parameter 
M has a characteristic value of an order of 0.3 GeV, 
hence the power corrections (M 2/G 2

) k are analogous to 
taking account of transverse momentum of partons. Cor­
rections of the same type appear in analysis of the deep 
inelastic scattering: summing over the C-lines (fig. lc) 
gives the matrix element <OIE(z 0,z 0)[1+ O(G)]IO>. 

It makes sense to investigate what is the formal rea­
son for cancellation of the dependence on z0 , z 'o ; that 
is, on large distances. To do this, we will treat the diag­
ram shown in jig. 3 as a zero-angle scattering ampli­
tude for process AB _.~A 'B', (it is not assumed here that 
A,!A' and B,B' are identical particles). If the particles 
!A,!A' have different charges (gA-g A'=gB'-gB=~g -1- 0) 
then summation over C -fields g!ves 

0 Zo 

<Oiexp[ i~gf (Cdz)].exp[i~g f (Cdz)](l+ O(G))IO>. (20) 
z

0 
0 

The dependence on large distances does not disappear 
as far as z 0 -1- z '0 and ~g -1- 0. 

Now let us sum over the A -lines whereas the B­
lines are fixed. As a result, we obtain the matrix ele­
ment (fig. 3c) 

.; 0 

<P A I~ ([) exp[ ig f (!Adz)] exp[ ig f (Adz)] x 
a ao a zo 

Zo 0 
xexp[igbf (!Adz)]exp[igbf (:Adz)]l/lbGiH1+0(G)liPA>, (21) 

0 1] 

where ga, g b are parton charges. 
For ~gf-0 there appears the gauge-invariant bilocal 

operator (7) whereas for ~gf-0 there remains the depen­
o 

dence on large distances due to the factor exp [ i~g f (Adz)]. 
Zo 

Summing then over the B -lines_ gives (for ~ g = o) the 
second gauge-invariant operator tf; (,;') E (.;', 7J '; B) 1/1 (7] ') . 
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Using formula (8) one can expand the bilocal operators 
over local ones, and the further analysis proceeds just 
in the same manner as it was done for nongauge theories 
(see ref. 121). 

The summation over the gluonic :A-, B- and C-lines 
for non-Abelian gauge theories also results in gauge­
invariant bilocal operators <PAl t:l(,;,7J;p 2)1P A> (details 
are presented in Appendix 2). It is very essential there 
that the contribution of the parton subprocess is pro­
jected onto the colour singlet states in the t -channel. 
For hadrons only the projection onto the colour singlet 
operators gives nonzero matrix elements whereas for 
coloured objects A, B (e.g., for quarks) the colour octet 
projection is also nonzero. But in this case the depen­
dence on z 0 ,z 0 does not disappear, that means that 
there is no cancellation of double logarithmic terms. 
To eliminate the large-distance dependence, one should 
take the colour singlet projection, i.e., to perform 
something like colour averaging. For quarks inside the 
hadrons this averaging holds automatically. 

3. PARTON INTERPRETATION 

The results obtained above have a simple interpreta­
tion in the parton language. The deep inelastic structure 
function W((L),Q2) is given in the tree approximation by 
the diagrams fig. la. This corresponds to the expansion 
of the gauge-invariant operator 

n-1 - -> -> 
OJL

1 
... Jln =i l/Jyp

1
<ap

2
-igAp 2) ... (apn-igApn)l/J (22) 

... 
(we ~e here for simplicity the derivative a rather 
than a ) over gauge-dependent operators 

0 -
JL l"''JL = l/Jy 'Vn-1 

n 

... 

n-2 - n-m- 2 m m+l 
l/1 + g !. ( l/ly 'V l/1 )( 'V A) C n- 1 + •• • ' 

m=O (23) 

where 'VJL = id JL • It is possible to introduce the gauge­
dependent parton distribution functions related to these 
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Fig. 4 
operators. The function f 0 (x; -x) (fig. 4a) describes 
a quark (or an antiquark) with momentum xP. The func-
tion f 1 (x,;, x(l-,;); -x) (fig. 4b) describes an outgoing 
quark with momentum x,;P, an outgoing gluon with mo­
mentum x(l-,;)P and an incoming quark with momentum 
xP . Figure 4c describes a similar process with an 
incoming gluon. At the first sight, there exists the evi­
dent relation 

f
1
(x,;,x(1-cf); -x) =f

1
(x;-x(1-cf), -x,;) (24) 

But it holds only as far as the brackets <PI and IP> 
describe identical particles. Suppose that they really 
have different charges (in an Abelian theory) or different 
colours (in a non-Abelian one). Then there would be no 
reason for such a relation to hold, because the amplitude 
for a quark to be accompanied by a gluon depends both 
on the quark charge and on that of the spectator quarks. 

Eq. (22) means that the cross-sections of different 
subprocesses are connected in such a way that the func­
tions r0 , f 

1 
, ••• fk, ••• (where f k corresponds to the 

presence of k gluons) appear in the final expression 
only in definite gauge-invariant combinations . 

The contribution of the diagrams 4b,c is 

1 1 
f dxf ct,;[f (x,;,x(1-~;-x)+f 1 (x;-x(l-,;),-x0l x 
0 0 

1 

" 2 " 2 -1 " 2 -1 
xs (~s-Q) (s-Q) , 

(25) 

where s = x·2(Pq), Q 2=-q2. 
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The cross section da/dQ2 for massive lepton-pair 
production is described in the same approximation by 
diagram 5a, b. In an Abelian theory the contribution of 
jig. 5a is as follows 

1 1 1 g ~2 
f dxf dy f ctero(y;-y) f1(ex,(1-e)x;-x) a '(26) 
0 0 0 (1-~;(~ -Q 2) 

where ~ = xy • 2t...P.AP a> and g a is the quark charge. 
Figure 5b gives the analogous contribution 

"2 1 1 1 (-gb)s 
J dx J dy J der0 (y; -y) r 1 <ex, (1-e)x; -x) ,.. "' (27) 
o o o <es-Q2)(1-eJs 

where g b ··is the charge of another quark. If g A= g A, , 
then also g a= g b• an~ as ~ result, the total contribution 
is proportional to ga s 2 l<es-Q~(s-Q 2 ) .The factor (1-er1 

has disappeared, and we have obtained just the same 
structure as in deep inelastic scattering. 

-1 n 
The expansion (1-e) =l:e is analogous to eq. (A.7) 

whereas the expansion 

00 _ ~ n n-2 
- n:;2 (xwJ I g m= 

m=O 

(28) 
oo n-2 

= I (xw)n I em~ 1g n-m-2 .(1-.;r 
n=2 m=O n 1 

corresponds to the second term in eq. (23). 
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If the function r(ex. (1-()x;-x) does not vanish at e = 1, 
then one obtains a logarithmic divergence in eqs. (26), 
(27) due to the factor (1-g) - 1, which is, consequently, 
responsible for the presence of the double-logarithmic 
terms. I!_ut when all contributions are summed, the ope­
rators <f yV n-m-2 tjJ )(V m A) make up the necessary part 
of the gauge-invariant operator 0 11 II • The cancel-

rr··r n lation has taken place between the contributions of two 
different diagrams - 5a and 5b. When one treats the gluon 
shown in jig. 5a as an incoming one, then the corres­
ponding contribution is 

1 1 1 (-g ) ~ 2 
Jdxfdyfdgf0 (y1 -y)f

1
(x;-{1-.;1x,-(x) a" ,.. • (29) 

0 0 0 (1-(}s(e s-Q 2) 
If the relation (24) is satisfied, then assuming (26) 

and (29) we obtain the factor g s2 l<e~ -Q2)(;-Q2) again. 
This illustrates once more ho~ important is the neutra­
lity of the t -channel for a cancellation of the double 
logarithmic terms. This note plays an important role 
for the investigation of exclusive processes (e.g., elastic 
form facto:rs) involving colourless objects (i.e., hadrons) 
in QCD Ill/, 

It is clear from the light-cone expansion 

111 lln -
W-Jix ... x <Plt/Jr11 <vii +gA

11 
) ... <vii +gA ) x 

n 1 r2 r2 rn lln 

xt/JIP>eiqx En(x 2)d 4x (30) 

that in the axial gauge defined by ~:A 11 =0 only the first 
term contributes into W. • As a consequence, in the leading 
logarithm approximation only the generalized ladder 
graphs (which include vertex- and self-energy divergent 
parts) are important in this gauge. That is why this gauge 
is especially suited for a parton interpretation. ThiJ: 'ias 
demonstrated first in an Abelian model by Lipatov 12 . 
His analysis possesses the main features of the parton 
language developed by Altarelli and Parisi/la/. The latter 
is equivalent }o the use of such an axial gauge in QCD 
(see also ref. 14

/ ). The gauge (xA) = 0 is essentially 
identical with any gauge defined by ( qA) +a (PA) = 0 (where 
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a is an arbitrary number). Using the gauge (APA)+<l(APB)=O 
one may consider only the generalized ladders for the 
investigation of massive lepton-pair production in the 
leading logarithm approximation /15/. Vector theories in 
such gauges are closer to nongauge models. 

4. PAIR PRODUCTION AT LARGE 
TRANSVERSE MOMENTUM 

The summation over gluons participating in the parton 
subprocess provides a manifest gauge invariance of the 
corresponding operator (')(,;-, 7J ), whereas the coefficient 
function C(x, .;,7J) remains unchanged. Hence, for straight­
forward calculations it is sufficient to consider only sub­
processes with a minimal possible number of participants. 
In such an approach we use, on the one hand, the axial 
gauge, but on the other hand we utilize the gauge invariance 
of the subprocess cross section. The functions w(1, g(Q1 ) , 
r /xy. r+ /x) and w( 1, g(Q ) ,r /xy) are series expansions 
over a 8 , whereas all the logarithmic dependence 

(scaling violation) is accumulated in the functions f(x, Q}) 
or f(x, Q2). 

For instance, the diagrams fig. 6 give the following 
contribution into the differential cross section (see Ap­
pendix 3): 

da 477a 2 T as(Ql) 1 ctx 1 cty e(yxy-yrj-VT+T_l) 
--=------f-f- X 

dQ 2drl 3Q 4 Nc 277 0 X 0 Y .I( )2 
4 -+ v xy- r - xy r ..l. 

2 r 2+ x2 Y 2 2 2 
xlea!2C 2 (R)[ -2]fa/A~·Q..L)f_/ (y,Qj) + 

a xyr l. a B 

C 3 T Xy - T T 2 T 2 2 
+T (R)[1+- + ((-) +0- -) )]f /B(y,Q ) X xy r 1 xy xy g 

( 2 2 
x fa/A(x,Q..l.) +fa/A (x,Q..l.)) +[A~Bl!!1+ O(a

8 
(Q

1 
)) l, (31) 

where c2 (R) = 4/3. T c (R) = 1/2, N c = 3 . 
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"4Q. 
Q I . : rb 

I 
I 

a) 

I 1 I 

I= zs 
1 I 
I I 

b) I c) 
I 
•.d) 

o. 'a 
I b 

~: [ 
I 

I =:t ;1~ 
I 

e) f) g) h) 

Fig. 6 

It is easy to note that the terms containing 1/r ..J. 
(i.e., those giving the logarithmic contribution -Inti~ 
into the da/ dQl after integration over r ..1. in the re-

2 

gion r1 - ~) with the help of the Altarelli-Parisi equa­s 

tion hal can be represented as follows 

1
1

dx d 2.. T 2 - f - [f /A (x,G1 JL/ (-,G1 )+(AHB)]. (32) 
T-1.1/r X dlnQ] a aB X 

From eq. (32) the preference of the choice 11 =Q ..1. in 
eq. (31) is clear. 

However it is impossible to calculate correctly the 
O(a 8 ) contribution into da/dQ2 from eq. (31) by in­
tegration over r .1 because the terms of p 2/Qi order 
which provide the necessary infrared cut-off have been 
neglected there. One should keep these terms and then 
integrate over r _L from zero up to kinematical bound. 
In the resultant expression the terms proportional to 
p 2 

/Q 
2 must be omitted. The terms containing In Q2f_p2 
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are absorbed by parton distribution functions ( cf. ref./18() 
whereas the remaining terms give O(a s) correction 

2 1 1 
~~=~-r-J~J~le2 !f (x,Q 2)x 
dQ2 3Q4 Nc 0 X 0 y a a a/ A 

2 T 2 2 xf_ (y,Q )·8(1--)+[f /A(x,Q) +f-1 (x,Q )] x 
a/B xy a a; A 

2 c as (Q) 3 r r 
X f I (y' Q ) • T [ ( 1 + - )( 1 - -) - 2 + 

g B 477 xy xy 

-r 2 r 2 xy(xy-r) 
+2(( -) + (1- -) Hn--] O(xy -r )1!1+ O(a (Q)) l. (33) 

xy xy r2 s 

We have retained only the lowest approximation in 
as (Q) for quark-antiquark and quark-gluon terms. The 
logarithmic term in eq. (33) tends to transform the 
distribution function normalized with the help of Q2 into 

- 2 2 xy xy 
that normalized with the help of Q = Q - (- -1) . That 

T T 

means that the virtuality of the momentum going through 
the quark-gluon vertex depends on an average on x, y . 
One may believe that it is worthwhile to normalize the 
distribution functions with the help of Q to get rid of 
this logarithmic correction. But this procedure cannot 
be justified from the theoretical viewpoint, because 
eq. (33) is really a result of inverting the moment 
relation 

1 2 
2 n-1 - Q - 2 - 2 

JW(Q ,r)r dr=l Wab(-,g(/l),n)f (n./1 )fb(n./1 ). (34) 
ci a,b /12 a 

One can choose in eq. (34) the parameter 11 equal 
to any fixed number. But it is clear that 11 in eq. (34) 
cannot depend on the parameters x, y describing the 
parton subprocess. It is possible, of course, that in some 
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kinematic region (say x y = r ) the terms like 
a 8 (Q) ln (xy - r) xy 1 r 2 give large contribution. Then one 
should either sum up the whole expansion over as ln( ... ) in 
this region (which is as a rule very difficult due to cal­
culational complications) or analyse only the region where 
these factors are small. The formulas with /1""/l(K.Y) can­
not be considered as a rigorous result of QCD. The use 
of the x, y -dependent parameter 112 is also inconve­
nient from the phenomenological viewpoint, mainly due 
to a danger to get into trouble with the region of small 
X, y. 

There exists also just a similar problem. Our analy­
sis performed in section 2 shows that all the double lo­
garithmic terms (g2ln2 Q2//12) P cancel each other both for 
the function w(Q 2/11 2 ,r/xy,g) and w(Qj;11 2,r/xy,r+/xy,g). 
The latter function can possess, however, the terms 
g2In2 (Q} /Q 2 ) = g21n2 r .J. I r , and the existence of these 
terms does not contradict the above statement because 
they do not change with changing 11 • But if one takes 
11 = Q.J. from the very beginning, then the terms g2ln2Q ~¢! 
and g2ln 2r..l_/r are mixed together, and this can lead to 
a confusion. (Say, one can assert that the double logs are 
not cancelled in this case). 

The net result here is the understanding that in the 
region r .L - o a very important role in the expansion of 
the w(1, r/xy, r ,.1. /xy. g(Q..l.)) over a (Q..J.-) play 'e >erms 
(a (Q.J.) ln 2r .J. I r J N which can be susmmed up 15 in an 
expression similar to the Sudakov exponential. It is evi-

a (Q.J.) T,.J. 
dent that the factor like exp(- __ s __ . ln --) suppresses 
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the production of pairs at comparatively small trans­
verse momentum, and hence increases the averaged trans­
verse momentum <Qj> of a pair. It also leads to the 
growth of< G}> with growing Q2 . 

In conclusion we want to express our deep gratitude 
to D.I.Blokhintsev, V.A.Meshcheryakov and D.V.Shirkov 
for their interest in this work, and to Y .L .Dokshitzer, 
D.I.Dyakonov, R.N.Faustov, I.F.Ginzburg, B.L.Ioffe, 
L.N.Lipatov, S.I.Troyan and V.I.Zakharov for stimulating 
discussions and helpful remarks. 
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APPENDIX 1 

The treatment of massive lepton-pair production in 
gauge theories is complicated by double logarithmic terms 
(g2ln2Q2/IL 2) N which appear in some types of the diag­
rams. It was observed via an explicit calculation in the 
lowest orders of perturbation theory lts-t9~that the double 
logs cancel when all diagrams of a given order are 
summed up. 

To illustrate the specifics of the double logarithmic 
situation in the a -representation language, we will 
consider a one-loop correction for the Dirac part of the 
quark. electromagnetic form factor f(Q 2) (fig. 3a). The 
contribution we are interested in can be written with the 
help of the a -representation and Mellin transformation 
as follows 

joo 

f(Q 2) = _.!-:- f f'{l-j)(Q 2)j ¢(j)dj. (A.l) 
2111 -joo 

200 da j-1 g da 1 da2 3 a 1a 2 a 1 a2 rp(j) =-- f ----{--) (1--){1--) X 

8rr 2 o D 2 D D D 

x exp(p 2a 3(a 
1 
+a 2)/D - ..\2 a 3 ) , (A.2) 

where D=a
1
+a +a • We consider the behaviour in 

the Sudakov r~ginfe -p 2= -p' 2» m 2. We treat neverthe­
less both the massless gluon theo¥y and the theory with 
a gluon having nonzero mass ..\ . 

·The pole 1/j results from the integration over three 
regions 1) p-0, where p=a 1+a 2 +a 3 ; 2)a 1-0; 3)a 2 ...0. 
Thus, the maximal singularity is j -3. It corresponds to 
the well-known contribution -g 2ln 2(Q 2fp2) /16 77 2. If 
the gluons are massless (..\=0), there appears the 
fourth region 4) a$ ... oo which produces the pole 1/j 
after integration. Combining 2), 3) and 4) we get an extra 
j - 3 . This results in 

f ( 1) (Q 2) I A= 0 
2 2 

;;;:_ ~ln2 ..2_ 
8rr2 p 2 

(A.3) 
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In massless theory we have the double logarithmic con­
tribution twice as greater as in the massive gluon 
theory. In the theory where ..\ -J 0 there appears the 
term -ln..\ 2 

f(l) (Q 2
) ~- ~ln2 ~ - ~ln ~:ln ~ 

16 rr 2 p2 16rr 2 p 2 ..\ 2 
(A.4) 

which gives infinity in the limit ..\ ... 0. This infinity sig­
nalizes that for ..\ = o there exists an "infrared" pole 
j - 1 which have not been taken into account. 

The subtraction procedure for ..\ -J 0 is constructed 
in the following way. We integrate first in the region 
O::: p ::: 1/IL 2 and obtain the pole <t>:Ole =(IL 2)-j r 1x(j) . 
The function x (j) has the poles j-1 as a result of in­
tegration over {3 1 -0, f!_~-0 ({3i =a/p).This gives a contri­
bution -ln2Q2fll2 . We subtract ~¢Pole from the func­
tion ¢ and then integrate in ¢ feg o~er p 1 -o·, (p

1
=a 1+~). 

p Pl 2 -j -1 
The result is ¢ = (IL ) j · x (j) . The coeffi-
cient x 1 (j) hftel PPble 1/j from lhe region {3

2 
-0 (or 

{3 1 - 0 ). The "hanging" part (fig. 7b) gives a factor 

-lnll2/ ..\2 which tends to oo as ..\ ... 0. In the regular con­
tribution ¢ fa ~1 we integrate over a 1 - o (or 
a2 -O,respectfvely). This gives 

p Pt a1 

¢reg reg pole 
. -1 2 -j 

00 
-2 

-J (IL) f da
2

da
3

(a
2
+a

3
) x 

a2 > 1/ IL2 

a2+a3 > 1/ 1!2 

a2 -1 2 a2a3 2 
x ( --- ) exp (p - ..\ a 

3
) . 

a +a a +a 
2 3 2 3 

(A.5) 

If there were no lower bounds on the region of integra­
tion in eq. (A.5), there would appear divergences both 
for a 2 -0 and for a2+a 3 -0. The divergence at a2+a 3-0 
is the ordinary ultraviolet divergence resulting from the 
contraction of the a 1 -line into point (fig. 7c). It leads 
to loll -dependence of the regular part (i.e., the matrix 
element). Fig. 7c looks like the well- known diagram 
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f p' 
a) b) c) 

Fig. 7 

contributing to the anomalous dimension of the operator 
¢ Yp. 

1 
D

112 
••• D 11 n t/1 • The expansion 

a 
2 

-1 oo a 3 n 
(---) = ~ (--) (A.6) 

a2+a3 k=O a2+a3 

in conjunction with the fact tha! the q.ctor (a 3 I a 2 + a 3 ) k 

corresponds to the vertex A 111a 112 ... a 11 k t/1 · justifies this 
analogy. The only difference is that for the operator 
;jyD 0 - 1t/J the sum over k goes only up to k = n -2. 
The divergence at small a 2 converts into the divergence 

00 

of the sum ~ 1/k. The cut-off at a -1/p.2 corresponds 
to the cut-off of the sum at k-lnp. 2 • As a result, the re­
gular part (A.5) has ln 2 

11 -dependence on 11 • Further­
more if one takes A = 0. the infrared pole 1/j which 
has not been taken into account reveals itself: the expres­
sion (A.5) is divergent at A= 0. 

In the remaining regular contribution ¢ P P 1 a 1 it reg reg reg 
is impossible to get pole j -I if one uses a meory with 
A .;, 0 , and the corresponding contribution is o (1/Q 2) .C(A} 
But the factor C(A) approaches infinity as A ... o . which 
corresponds to the missed infrared pole. In a theory with 
A =0 one should single out the infrared pole 1/j re-
sulting from the region a ... oo to construct the subtrac­
tion procedure. Then all ite results obtained will be fi­
nite because an infrared regularization is provided by 
jp2j » m 2 , but the subtraction procedure has a very 

Q 
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complicated form. When investigating the process ~AB .... 
-.p. +P. -x we use a simplified subtraction procedure (i.e., 
introduce A.;, 0). According to arguments given in Sec. 2, 
all the singularities in A (or the infrared poles in j in 
the theory with A = 0 ) should cancel and the sum of all 
the contributions like ¢ P P1 a1 gives 0{1/Q 2) 
contribution for inclusivere8rb~s r~#ctions, just like it was 
in nongauge theories, provided the hadrons are colourless. 

APPENDIX 2 

In this appendix we will demonstrate how the sum 
over the gluon ~A-,B-, C -lines in the diagrams 3a in 
a non-Abelian theory leads only to the appearance of the 
gauge-invariant operators. 

First we sum up over the C-lines. In a non-Abelian 
theory the operator corresponding to a gluon external 
line is also modified 

.A (~.) ... a (~.,C)=TE(z0 ,0;C) E(O.~ .;C)~A (~.). i1 1 p. 1 <: 1 p. 1 (A.7) 

For a B- field one should change z 
0 

... z ~ , 'A .... B in eq. 
(A.7). We commute all the exponentials towards the had­
ron A, say. This gives the expression (fig. 3c) 

-- ~ ~ - f1 b - v-
[t/J(~)E(z0' ,z 0 ;C)B (~)y .••• (r ~A (~')y E (z' z ·C))x 

f1 a v ba 0' 0 • 
- - d - A -

xt/J(e)Ht/1(77 ')(r A, (77 ')y · E (z , z'; C)) ••• 
c 1\ de 0 0 

~ - p ~ 
••• Bp(7])y E(z~,z 0 ;C)t/J(ry)] (A.8) 

in which all the fields A IJ have a factor E (z0, z
0

; C ) . 
Summing then over the gluon A -fields with account of 
the change B ... 51(~, a) and commuting the exponentials 
towards the hadron A , we obtain (fig. 3c) 

~([)E(z~,z 0 ;C)E(~,z0 ;E(z~,z 0 ;C)~A)yf1B (~). •• tjl(~'), 
p. 

- _ P ~ _ _ ~ (A.9) 
t/1( 77 ') ••• Bp (77 ) y E(z0 • 7]; E(z0 ,z 0; C)~A) E (z

0 
,z 0; C)t/1(

77 
). 

25 



Using the relation E(z;,z0;C)E{a,b;E(z~,z 0;C}A)=E{a,b;A)Exz~,z0;C). and summing over B -fields we obtain the~ final expres-
sion 

CD - A A 

[Cv 0(x.~,7];~',7]')] AB {I/J(~E(~,z0;A)E{z~,z0;C)I A 

~ B - ~ 

IE (z' t: ' · B)·'·("= ') I !-'- ( ') E ( ' z '· B I 
o'"' · · '~-' '- '+' 17 17 ' o' c 

A " D 
IE(z 0 ,z~;C)E(z0 ,7];A) I/J(7])! • (A.lO) 

Using the analog of the Fierz identity for r -matrices 
of the SU( 3) c -group 

o~oc'=_!_oC:oA +2!(ra)A(r )c: 
AC 3AC a CaA (A.ll) 

we see that the dependence on z 0 , z 0 disappears for 
singlet projections, and there appear two gauge invariant 
operators <PAl B((,7];!A)!Pa><P8 J B<C, 77 ';B)JP

8
>.Thegene­

ralization for subgraphs naving gluonic external lines, 
is straightforward. 

APPENDIX 3 

Here we calculate the cross section of producing the 
massive lepton-pair having large transverse momen­
tum, in the lowest approximation for a parton subprocess 
(fig. 6). Remember that we use the renormalization group 
improved perturbation theory, hence the approximation 
used here is equivalent to the leading logarithm appro­
ximation of the ordinary perturbation expansion. 

The cross section is related to the form factor 
Wpv (!A, B, Q) by the formula 

da= 
477 a 2 rd~ (-Wp.(A,B,Q)). 
3Q4 (2rr)4 fl. (A.12) 
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The contributions of the <Jiair!-ms 8 a) -h) in the Feyn­
man gauge are g 2 /N c ·o(S+ t+u -ri> multiplied by the fol­
lowing factors (see also ref. /20/): 

A 2 
sQ..!. s{l 2 Q2 

a) 2C 2(R)-- b) 2C
2

(R) __ ...1. c) +d) 4-C (R) 
t2 ~2 Qi 2 

A 
A 

2" e) 2Tc (R) ~ f) 2T c (R) ..::..!_ g) +h) 4'Ic(R) ~, 
A 

A 

"" -t s -st 

(A.l3) 

c A 2 A where Nc ~ 3 , C2 (R) = 4/3 , T (R) = 1/2, u = (Q -b) , t = 

~{Q;:-a) 2 
, s =.(a~b)2,..:o:xys ; a= xA,, b=yB. The formulas 

u t /s = Q 1. , s + t + u = Q2 are very helpful to simplify 
the calculation. As a result we have 

da 

d4Q 

-2 

= 4rra
2 

1 _1_ g (G...I.) f ~ / ~O(S+t+~-Q 2) .X 

3Q 4 ( 2rr) 3 N c 0 X 0 y 

2 ~2+Q4 
x! ea I2C 2(R) [ ~- 2]pa

1
(x,y,Qj) + 

a sQ 
...!. 

(A.l4) 

"2 4 

+2Tc(R)[ u +Q +2]pa(x,y,Q7)111+ O(a (Qt))}, 
"" 2 ~ s ~ - s t 

where 

pa(x,y,p.
2
)=1f/ (x,p. 2 )r_

1 
(y,p. 2)+(A-.B)l; 

1 a A a B 

p 2a(x,y,p.
2
)=1f I (x,p. 2 )+L/ (x,p. 2)lfg/ (y,p. 2 )+(A .. B)l. 

a A a A B 
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To get the cross section cb I dQ2dr...L we represent Q = 

= A:A + p B +'!!. .Then 

4 ~~~ 2 1 4 
d Qo(u+t+s-Q) =-o{(x-..\)(y-p)-r )d Q = 

s .J._ 

d~ d2
Q...L o(p-p_)+O(p-p +) 

----~dp~====~==~ 
2s ..; (xy-r )2-4xyr.J. 

(A.l5) 

11 2d l+lt~ul 
=- dQ ':! --===:;:==== 2 

.j (xy-r) 2 -4xyr ..1. 

We have used here that after applying [l+lt ..-. ull to 
square brackets in eq. (J\..14) one obtains the function 
which depends only on s and Q2. Substituting eq. 
(A.l5) into eq. (A.l4) we obtain eq. (31). 
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