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In two previous papers/1-2/ we have developed
methods of the unified field-theoretic approach to deep
inelastic scattering and to massive lepton-pair produc-
tion. Our starting point was the analysis of simple scalar
theories in the alpha-representation. By explicitly using
the coordinate representation, the results obtained can be
easily generalized to include more complicated nongauge
theories describing spin -1/2 particles. The generaliza-
tion for gauge theories, which is a subject of this paper,
is less trivial.

1. DEEP INELASTIC SCATTERING

The analysis of gauge theories is complicated, in par-
ticular, by the fact that the field A" (vector potential)
has zero twist. Hence the upper bound on the asymptotic
contribution of the subgraph V, related to a parton
subprocess, into the structure function W(w, Q%) =
--W.(@,Q % of the deep inelastic scattering

2_.

w(v)(w,qz) <qQ- @ Q)
(where ¢ is the number of external quark lines of the
subgraph V, see eq. (1.A.12)* ) is independent of the
number of gluon external lines of the subgraphV (fig.1a).

*Vle c(efortl} ‘/33/ )(l.N) (or (2.N)) means eq. (N) from
or ref.
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To sum over gluon lines, let us fix the form of the
initial subgraph v, (fig. 1b). To get all allowable combi-
nations, one must join the lines of the subgraph v, with
those of the subgraph Vo in all possible ways. Every
gluon line adds the field A# (z) into the matrix element
<PlyY ..y |P>. Furthermore, the propagator corresponding
to some line of the subgraph Vo 1s modified:

Sc(xa —xB) N gfd4Z!A:(Z) Sc(xa'z)y#’a Sc(z—xB) (2)
YT

where (r*),p is the matrix of the gauge group in the
quark (fundamental) representation. It is easy to note
that the sum over gluon lines inserted into the (xa, X -
line (fig. 2a) gives & °, the propagator of a spinor particle

in an external gluon field, i.e., the perturbative solution
to the equation

WD,y # -m§° (%, x g) =-8%(xq -x B8) (3)

where 13#= ‘gi#——igf\# is the covariant derivative acting
X
a

on the quark field, and A n= Aﬁ Ta . The solution to this
equation can be also written in the following form

(] b (]
S (xa,xﬁ) = EAB(xa,x ﬁ)!S (xa —xB) + O(G)}. (C))
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Fig. 2
We use the notation
X A
B p@y) =T, ewig [ 4, @t &)

where T, means that the integral must be path-ordered
along the contour of integration, which is straight line
connecting x and y. An analogous problem was treated

in an Abelian theory by Gross and Treiman’%, qG) denotes
the contribution of operators containing the gluon field
strength ‘GW =%[D#, D, ], for imsrance, in an Abelian

theory O0(G)=R(x,y) is the solution to the equation

iy#-a—#R(X,Y) rey Gy ) R@y +8°G-y) x
Jx )

(6)
1
tdtG (x-y)t) =0.
xof w y+(

Any operator of the 0G...GC type has twist higher than
that of O, because the tensor G v is antisymmetric.
Hence the terms entering into 0(G) give the power correc-
tions (M ZQ®kinto the asymptotical form of the structure
function W(»,Q%).



In an Abelian theory the exponential factors E are
easily summed up: E(x,y) E(y,2) = E(x,2)[1 + 0(G)]
(the term O0(G) is due to the change of the integration
contour from the broken line xyz to the straight line
xz ). As a result, we obtain the gauge invariant bilocal
operator

_ £
. m:n=N _y @y, (emigf A (2 dzF )y (n) (7
[z 1

for a subgraph with quark external lines, whereas the
coefficient function C, (x,¢£,5), remains unchanged Usmg
the Baker-Hausdorf theorem /3-4/ one can expand C (&)
over gauge-invariant local operators 0 =

=YYpPpgee Dpp e Hpe Fe
G, (& n:p®) = 5 —(f— ) e (&= )Vm 0 (—E+—7" 2)
v \e T, e 0 i Ui . Ui W g e ).

(8)
For a subgraph having gluonic external lines, the
exponentials are summed into 1, and only O(G) terms do
remain. The corresponding contrlbutlon is C {‘g) G (&G, (n)
Local operators in this case have twist equal to or
greater than two. This gives a more refined estimate
W .<const valid for a gauge-invariant sum of subgraphs
in place of a rough estimate W( y < 62  valid for a se-
parate subgraph.
In a non-Abelian theory the gluon propagator is also
modified (fig. 2b)

g;l.l/sab Dc (Xa —XB) g @ Zb,;tV (xa,x ,8) =
} . ©)
=Eab(xarxﬁ) {gPyD (xa_x‘B) +O(G)}’

where E.p, is defined by eq. @), but one should take
there A = »A#oa rather than o, is a matrix of
the gauge group in the gluonic (a(ﬁomt) representation.
The ghost field propagator is also modified

5,, D ° (x —xﬁ)-»E a,xB){D (3, ~%xg + 0(@1. (10)

The factor E,(x,y) has the property E_, (xy) = By, (v, %
which follows from (o, )}, ==(0 )y -

To unite the exponentlals corresponding to neighbour-
ing spinor lines, one must commute the exponential with
the r -matrix:

B @) Dag =(ry) ppB 2N E,, 53 an

We have l{sed here the well-known formula eABe' =
=B+[A Bl+ [A,[ABll+... and the relation [r,, ralz—b
. The commutation results in an additional exponentlal
E in the gluonic representation appeared in the r.h.s.
of eq. (11). The same factor appears after commuting
the factor entering into the modified gluon propagator
¢ with the o -matrix in the 3-gluon vertex:

g“ab(x’y) (Uc)bd =(0f)abﬁbd(x’y)éfc (X’Y)' (12)

One can represent a 4-gluon vertex.as-a sum of
terms containing only Kronecker deltas pg,
there is no need to commute anything.Taking into account
all these remarks one can easily see that for a subgraph
with quark external lines all exponentials resulting from
the commutation (11), (12) are cancelled by those en-
tering into the modified propagators (9), (10) and only
the factor E(f n) remains. Analogously, there appears
the gauge-invariant bilocal operator

€.
N#2 G\ (T, expignf A#(z)dz“)'c,)j(q)sé),ff)(f,n:# %) (13)

for the subgraph with the gluonic external lines.

It is well known that the presence of the Tc—ordering
is essential for eq. (8) to be valid for non-commuting
fields A, A.

Hence we have seen that the well-known statement
(see, e.g., ref. ), that it is necessary to use the
gauge-invariant local operators in the operator product
expansion, can be justified in a direct way.

and hence



To obtain the modified parton description /8/ one

has to introduce quark (f,(¥)) and antiquark (f_ (x)) dis-
tribution functions

.n—1
i

<P1Ja{y# ) R D, ly, P> -

={P#1...P#n}({ —[f x,pu By 4 (<) "f_ (X I 3] (14

as well as gluon ones

2N

1 = ~ a

L <pimic D ..D. G% yp>-

5 <PITCG,, D, =D, G, 1

P .P 1+( ) flﬁf (1 9) (15)
pet #n o x gk

(cf. egs. (1.27), (1.32), (1.33)). Spin average is assumed
in egs. (14), (19).

2. MASSIVE LEPTON-PAIR PRODUCTION

To justify the applicability of the modified parton mo-
del for the process AB-u*tu~X it is sufficient to
demonstrate that for this process also the only difference
between the gauge theories and the nongauge ones is the
type of the corresponding local operators.

Let us remind shortly the scheme of the analysis used
in refs./1.¢/, Wwe use first the « -representation ana-
lysis to establish that the asymptotical behaviour of the
function investigated is controlled by the end-point sin-
gularmes (i.e., by the small-a integration). For the
AB-»p p X process these functions are &/dQ? at
Q2%>M? and do¢/d*Q at Qf>>M?2 (where M is the
parameter which characterizes the higher twists contri-
bution). For the leading asymptotical behaviour the s,G2 -

subgraphs are responsible having a minimal possible

number of external lines. Hence the factorization pro-
perties of the amplitude with respect to 2-particle divi-
sions in the t -channel play a highly important role for
an analysis in any representation. These properties are
almost trivial in the coordinate representation.

Then we construct a subtraction procedure which
provides an infrared regularization (A y <1/p 2) of the
contributions due to '8, Qz-subgraphs V and the ne-
cessary ultraviolet cut-off for subgraphs lying outside

V (e.g., A,>1/u®  for subgraphs v  which become
divergent after contraction of V into point). A subtrac-
tion procedure of this type does not spoil the factoriza-
tion properties. The resultant representation

Wo- 3 w;av‘” Q% 2s T PEHT Pw?) 4R, (16)

allows one to obtain the Q-dependence of w, if the

¢ -dependence of f is known, because W; is p-inde-
pendent. The validity of the~representat10n (16) in gauge
theories (with the same f; s as used for deep inelastic
scattering) means,in particular, that the double-logarith-
mic contributions (g2In?Q%2/u?)k, which appear in some
diagrams of gauge theories, are cancelled after summa-
tion over all diagrams of a given order. /2

For nongauge theories treated in ref. our subtrac-
tion procedure exhausts all the possibilities to get
a leading singularity in the complex J- plane of the
Mellin parameter J (say, at J=0). Hence the function

R, @) is regular at J=0 and gives only 0(1/Q %) contri-
bution compared to the leading one.

How one should modify the scheme above to apply it
for gauge theories? First, it is necessary to sum over
gluons taking part in a parton subprocess (fig. 3a). We
have seen that for deep inelastic scattering this results
only in a natural modification of bilocal operators. Se-
cond, we should take into account that the configurations
fig. 3b (corresponding to the R-function) for individual
graphs in_gauge theories give 1) contributions rather
than O(1/Q2) ones. This is due to the fact that in theories
involving massless vector particles there appears a new

9
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possibility to get the leading pole in J as a result of
integration in the region a, - for lines of o, -type
(fig. 3b), which join two parts lying outside the small
@ region (see Appendix 1). This possibility is not rea-
lized if the vector particle has a nonzero mass )\, be-
cause there appears a factor e . Hence for A£0 the
digrgrams 3b give the contribution C(A)O(l/Qz). The poles
J resulting from the region a-e disappear, but they
manifest themselves in that C(A\)> « as A-0. The Kino-
shita-Lee-Nauenberg (KLN)-theorem /1/ asserts that
the inclusive cross sections are finite at A=0. If this
is true, then the sum of configurations shown in fig. 3b
gives 0(1/Q2) contribution in theories with A=0 also.
Unfortunately, the general proof of the KLN-theorem
for QCD has not been given yet. But a particular configu-
ration depicted in fig. 3b was shown/72/ to be finite in
the A-0 limit, if the external lines correspond to colour
singlet currents: the singular part of C(\) is given
by a sum over colour nonsinglet external lines. In our
case, however, we deal with colour singlet clusters of
fundamental coloured fields. Note, however, that the only
condition needed for transition from the auxiliary Green
function <01(I>(a1)...<b(an) «. ( in which the hadron A is

10

described by the set of funda'mental fields P(ay)e.. @, ) )
to the matrix element <F [..is <0[®(ay)..®(a,)[Py># 0,
Hence we may use the gauge-invariant combination

- c
Y(a) S (a,a,)y(a,) =

=y(@a,) Tcexp(iga£ A,@a&")8% -2 )+0@lya,) A7)

rather than l/—l(al)lll(a 2) for description of the hadron
(which is a meson in this example, the generalization for
a three-quark system being straightforward). The change
(17) means that the meson is described here by the pro-
duct of two colour-singlet currents i(a () j(ay). Hence

the assumption needed to prove the finiteness in the

A-»0 limit is fulfilled. Another assumption used in
ref./7/ (that the external momenta p; are nonexceptio-
nal) is necessary to prove the absence of sin.gularities
in the limit mq->0 , p? - 0. In our case we deal with excep-
tional momenta, and there really appear terms like
InQ%p% which become infinite as p?-0. But this pheno-
menon is the same we have faced with when treating
deep inelastic scattering, it is present, moreover, in
nongauge theories also.

Thus, the wee-gluon exchanges which spoil the facto-
rization, give in QCD 0(1/Q% contribut}'o/n (as sugges-
ted by the pomeron-exchange analysis 8 and parton
model ideas /9/ ) and will be ignored hereafter. We are
going now to sum up the contributions of fig. 3a configu-
rations to see whether the factorization is of the sg e
type we have obtained in nongauge models (see ref. . ).

Let us fix the type of an initial subgraph vy (which
has a minimal possible number of external gluon lines).
The initial bilocal operators are y(£)y(y) and l//(f')t{/(n’).
There appears a new possibility: the gluons may be in-
serted into an external quark line (fig. 3c):

G > ¥ =y +8f 4%28°0-2) y#e;:#(z) (D) +one o (18)

1



The function Y(») is the field operator of a spinor
particle in an external gluonic field, i.e., the solution
to the equation (1D y #_mW¥=0. Thus the ‘P-operator can
be written in the form similar to that of eq. (5):

¥ =B, )iyt + oG,y (19a)

with the boundary condition Y(©) =y(0) assumed. One
may however use another boundary condition. The func-
tion

¥(p, 2, ) =T, (E(ze, 0¥ (), (19b)

where z; is a point which can be chosen arbitrarily long
away from the origin, is also the solution of the Dirac
equation. Physical quantities (e.g., cross sections) should
not depend on z,. It is worthwhile to study the way the
cancellation of the -dependence occurs by an explicit
use of ¥(n,z,) rather than ¥Y(»).

Uniting the factors E({,£)E(¢£%,¢°), as we have poin-
ted above, gives additional 0(Qf)) terms, where ¢ lies
inside the triangle ¢£°6”. Due to definition (19), the
triangles having z; as a vertex, will never appear, be-
cause z; can be connected by a straight line with the
origin only. In general, one must take different points
Zy z'0 for VY- fields corresponding to partons from
‘A" or B, respectively. The gluon field of the hadron
A will be denoted as A, whereas that of the B-hadron
as B, .”Vacuum” gluon field, corresponding to the gluon
lines joining only subprocess lines, will be denoted as
C,. Sometimes we will indicate the type of the field
entering into exponential factors, e.g.: E(zxy; B).

We consider first an Abelian theory. Let us fix the
number and type of the :A- and B -lines and sum over
the C-lines. As a result, we get <0{1+0(0|0> (namely,

<0|E(z(,0) E(0,24)E(z§,0) E(0,2 ) [ 1+ O(G)1|0> for subgraphs
which do not possess gluon divisions in the t-channel,

and <0|E(zq,z9)E(zg zp)[1+ XQlie> otherwise). The mag-
nitude of these ”vacuum” corrections 1s proportional to
that . of the matrix element <0lG t0>.The authors of

12

ref./m/ investigating the process e+e_,—» charm have
established that the corresponding dimensional parameter
M has a characteristic value of an order of 0.3 GeV,
hence the power corrections (M %G % ¥ are analogous to
taking account of transverse momentum of partons. Cor-
rections of the same type appear in analysis of the deep
inelastic scattering: summing over the C-lines (fig. Ic)
gives the matrix element <0|E(z,z)[1+ 0(Qlj0>.

It makes sense to investigate what is the formal rea-
son for cancellation of the dependence on Zg that
is, on large distances. To do this, we will treat t?le diag-
ram shown in fig. 3 as a zero- angle scattering ampli-
tude for process AB . A’B’, (it is not assumed here that
:ApA” and B,B° are identical particles). If the particles
'AA’ have different charges (gA—g A’=8g-—Bp=Ag # 0)
then summation over C -fields gives

0 Z0
<0lexp( iAg [ (Cdz)]. expliAg f (Cdz)1(1+ O(G))|0>. (20)
2o

The dependence on large distances does not disappear
as faras z, #z3 and Ag#0.

Now let us sum over the A-lines whereas the B-
lines are fixed. As a result, we obtain the matrix ele-
ment (fig. 3¢)

13 0
<P 1¢ Demlig f(Adz)]exphg f (Adz)] x

Zo

0
xeXp[igb{) (Adz)lexp| ig bJ (Adz) ]y, M{1+0(Q}P, >, (1)
/]

where By B are parton charges.
For Ag#0 there appears the gauge-invariant bilocal
operator (7) whereas for Ag#0 there remains the depen-

0

dence on large distances due to the factor €xliAg [ (Adz)].
29

Summing then over the B-lines gives (for Ag-=() the

second gauge-invariant operator ¢ ((E(£%,n "5 B y(n’) .

13



Using formula (8) one can expand the bilocal operators
over local ones, and the further analysis proceeds just
in the same manner as it was done for nongauge theories
(see ref. /%/).

The summation over the gluonic :A-,B- and C-lines
for non-Abelian gauge theories also results in gauge-
invariant bilocal operators <P,|C(£,7;u®)|P ,> (details
are presented in Appendix 2). It is very essential there
that the contribution of the parton subprocess is pro-
jected onto the colour singlet states in the t -channel.
For hadrons only the projection onto the colour singlet
operators gives nonzero matrix elements whereas for
coloured objects A, B (e.g., for quarks) the colour octet
projection is also nonzero. But in this case the depen-
dence on zy.zy does not disappear, that means that
there is no cancellation of double logarithmic terms.
To eliminate the large-distance dependence, one should
take the colour singlet projection, i.e., to perform

something like colour averaging. For quarks inside the

hadrons this averaging holds automatically.

3. PARTON INTERPRETATION

The results obtained above have a simple interpreta-
tion in the parton language. The deep inelastic structure
function W(w,Q2) is given in the tree approximation by
the diagrams fig. la. This corresponds to the expansion
of the gauge-invariant operator

n-1 = 2 . g .

Oty =1 ¥yp O p,—iBAp ) (@ —ighp Yy (22)
(we tagke here for simplicity the derivative J rather
than J ) over gauge-dependent operators

0 ~gyy™! W+ n£2(_ n—m-— 2 m m1
foyeep TV g % Wy v YNV AC T+,
(23)

where V, = 10# . It is possible to introduce the gauge-
dependent parton distribution functions related to these

14
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Fig. 4
operators. The function f,(x;-x) (fig. 4a) describes
a quark (or an antiquark) with momentum xP. The funF:-
tion f,(x¢, x(1-¢); —x) (fig. 4b) describes an Qutgoxng
quark with momentum x¢P, an outgoing g.luon with mo-
mentum x(1-¢&)P and an incoming quark with momgntum
xP. Figure 4c describes a similar process thh.an
incoming gluon. At the first sight, there exists the evi-
dent relation

fl(xé,x(l-.f); -X) = fl(X;—X(l—f), -x£) (24)

But it holds only as far as the brackets <P| and P>
describe identical particles. Suppose that they really
have different charges (in an Abelian theory) or different
colours (in a non-Abelian one). Then there would be no
reason for such a relation to hold, because the amplitude
for a quark to be accompanied by a gluon depends both
on the quark charge and on that of the spectator quarks.

Eq. (22) means that the cross-sections of different
subprocesses are connected in such a way that the func-
tions fy,f, ... £, . (where f corx:esponds to Fhe
presence of k gluons) appear in the final expression
only in definite gauge-invariant combinations.

The contribution of the diagrams 4b,c is

fldxfldf[fl(xtf,x(l—f);—x)+f1(x;—x(1—.§),—x§)] x
0 0
2 - 25
(5 25—yt s-@®H T, (25)
where 5 =x-2Pq, Q*=-q?.

15
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The cross section do/dg® for massive lepton-pair
production is described in the same approximation by
diagram 5a,b. In an Abelian theory the contribution of
fig. 5a is as follows
2

1 1 1
g, s
Jax [ dy [ a6t (vi—9) £, (€5, (1) —x) — 2 , (26)
(1-9s(s-Q%2)
where s-=xy.2P Pp) and g, 1is the quark charge.
Figure 5b gives the analogous contribution

(—g b)'ge

N . @7
(£5-@%)(1-Os
where g, -is the charge of another quark. If g,=g,-,
then also g€2=8) and as a result, the total contribution
is proportional to g,s?/(¢5-Q%(s-Q%) The factor (1-¢)!
has disappeared, and we have obtained just the same
structure as in deep inelastic scattering.

-1
The expansion (1-¢) =3¢ ! is analogous to eq. (A.7)
whereas the expansion

1 1 1
({dx({ dy({ AL, (v;-y) £,(6x,(1-£)x;-x)

a2
8

o0 n -2 m
— ~ =X (x@) X ¢ =
-aA@s-g% "2 m=0

(28)

00 n-2
=n=22 (xw)nmfo CorlERT™™2 (g )"

corresponds to the second term in eq. (23).
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If the function f(¢x, (1-6)x-x) does notvanishat ¢ - 1,
then one obtains a logarithmic divergence in eqs. (26),
(27) due to the factor (1-¢)”!, which is, consequently,
responsible for the presence of the double-logarithmic
terms. But when all contributions are summed, the ope-
rators Jyv™ ™ 2y)y™ a) make up the necessary part
of the gauge-invariant operator Ou.... 0 The cancel-
lation has taken place between the contributions of two
different diagrams - 5a and 5b. When one treats the gluon
shown in fig. 5a as an incoming one, then the corres-
ponding contribution is
(-g,)s ®
(1-€)s(£5-62)

If the relation (24) is satisfied, then assuming (26)
and (29) we obtain the factor g 52 /(¢5-@%)(s-@%) again.
This illustrates once more how important is the neutra-
lity of the t -channel for a cancellation of the double
logarithmic terms. This note plays an important role
for the investigation of exclusive processes (e.g., elastic
form faftO}'s) involving colourless objects (i.e., hadrons)
in Qcp /1Y,

It is clear from the light-cone expansion

81 Bn -
W~fn2x e X <P|1,/1)/#1(V#=2 +gA#2)...(V#n+gA#n) x

1 1 1
Ofdxg dy gdffo (v, -¥) (% «(1~8)x,~£%) . (29)

xy|P>e ' E_(x%)a'% (30)

that in the axial gauge defined by x;A" -0 only the first
term contributes into W." As a consequence, in the leading
logarithm approximation only the generalized ladder
graphs (which include vertex- and self-energy divergent
parts) are important in this gauge. That is why this gauge
is especially suited for a parton interpretation. This was
demonstrated first in an Abelian model by Lipatov/1?/,

His analysis possesses the main features of the parton
language developed by Altarelli and Parisi/13/. The latter
is equivalent }o the use of such an axial gauge in QCD
(see also ref./1%). The gauge (xA) 0 is essentially
identical with any gauge defined by (qA) +a(PA) =0 (where

17



e is an arbitrary number). Using the gauge (AF, )+a(AF)=0
one may consider only the generalized ladders for the
investigation of massive lepton- ))alr production in the
leading logarithm approximation 15/, Vector theories in
such gauges are closer to nongauge models.

4. PAIR PRODUCTION AT LARGE
TRANSVERSE MOMENTUM

The summation over gluons participating in the parton
subprocess provides a manifest gauge invariance of the
corresponding operator C©(¢,7), whereas the coefficient
function C(x,¢,n) remains unchanged. Hence , for straight-
forward calculations it is sufficient to consider only sub-
processes with a minimal possible number of participants.
In such an approach we use, on the one hand, the axial
gauge, but on the other hand we utilize the gauge invariance
of the subprocess cross section. The functions w(l, g@Qy),
/%y, f.|. /%) and Ww(1,8(Q ).7/xy) are seriesexpansions

over a , Whereas all the logarithmic dependence

(scaling violation) is accumulated in the functions f(x,Q/
or f(xQ®),

For instance, the diagrams fig. 6 give the following
contribution into the differential cross section (see Ap-
pendix 3):

do 4ra® ¢ aS(Q-L) ! dx : dy 6(\/7}7_\/7_'1‘ V)
2 4 X 5y
dqQ dry, 3Q Ne 27 o 0 \/(xy_r)z —4xyr_]_
r 24 x2y2 9 9
xZe J12Co(R) [ -2t At ,Q
2(R) — a/a®AL) =/B (v.Q1) +

xy—r

((—)

3
+T"(R)[1+x—y’_ N +(1- -;Ty—)z)]fg/B(y,Qz) «

(x Q -L) +f (x
where C,(R) =4/3, T ‘“R) =1/2, N, =3.
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It is easy to note that the terms containing 1/r |
(i.e., those g1v12ng the logarithmic contribution ~ lnp
into the do/dQ® after integration over 71 in the re-

2

. K .
gion r) ?0) with the help of the Altarelli-Parisi equa-

tion/ 13/ can be represented as follows
1
1 dx
—_ [f (fo_ Z,685)+(A D). 32
’.Ll/frxdanz w/A f) e Dol @2

From eq. (32) the preference of the choice p=Q in
eq. (31) is clear.

However it is impossible to calculate correctly the
Olag) contribution into do/dQ> from eq. (31) by in-
tegratlon over ri because the terms of p?/Qf order
which provide the necessary infrared cut-off have been
neglected there. One should keep these terms and then
integrate over r) from zero up to kinematical bound.
In the resultant expression the terms proportional to

p?/Q® must be omitted. The terms containing 1nQ2?/p2
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are absorbed by parton distribution functions (cf. ref./18/)

whereas the remaining terms give O(as) correction

do 4ra® 1 dx

21t xQ9) x

d@2  3Q% Ngy X ¥ @ @ a/a

2 T 2 2
XfE/B (v,Q )-8(1-;y—)+[fa/A(x,Q ) +f§f/A (x,6 ] x

a_(Q)
2y . 5 [(14+ 37y 1o ) -
ng/B (v,Q%) - T ™ [(1+ - 1 xy) 2 +

XY(X_Z;Q]o(xy ~l1+ 0la (@)1, (33)

T2 2
(L) (1= =)

Xy Xy ’

We have retained only the lowest approximation in
a,(Q) for quark-antiquark and quark-gluon terms. The
logarithmic term in eq. (33) tends to transform the
distribution function normalized with the help of G? into
that normalized with the help of @ °- q®-2(== _1). That
means that the virtuality of the momentum going through
the quark-gluon vertex depends on an averageon x,y .
One may believe that it is worthwhile to normalize the
distribution functions with the help of @ to get rid of
this logarithmic correction. But this procedure cannot
be justified from the theoretical viewpoint, because

eq. (33) is really a result of inverting the moment
relation

1 2
— ~ Q ~ ~
Ofw(q 2,7)711 ! d7=azbwab(’;—2" g(#),n) fa (n.llz)fb(n’ﬂz)- (34)

One can choose in eq. (34) the parameter p equal
to any fixed number. But it is clear that u in eq. (34)
cannot depend on the parameters x,y describing the
parton subprocess. It is possible, of course, that in some
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kinematic region (say xy = r ) the terms like
ag(@ln(xy-r)xy/r? give large contribution. Then one
should either sum up the whole expansion over o  In(...) in
this region (which is as a rule very difficult due to cal-
culational complications) or analyse only the region where
these factors are small. The formulas with p=p(Xy) can-
not be considered as a rigorous result of QCD. The use
of the Xy -dependent parameter 2 is also inconve-
nient from the phenomenological viewpoint, mainly due
to a danger to get into trouble with the region of small
X,y.

There exists also just a similar problem. Our analy-
sis performed in section 2 shows that all the double lo-
garithmic terms (g°1r°Q%/42)P cancel each other both for
the function w(Q%u?,r/xy,g) and w(@QF/u2r/xy,) /xy.,8) .
The latter function can possess, however, the terms
gn®(Q#/Q®) = g®w2r /r , and the existence of these
terms does not contradict the above statement because
they do not change with changing u . But if one takes
p=Qy from the very beginning, then the terms g2n2qQ 9,2
and g2In27, /; are mixed together, and this can lead to
a confusion. (Say, one can assert that the double logs are
not cancelled in this case).

The net result here is the understanding that in the
region r .0 a very important role in the expansion of
the w(l,7/xy, r, /xy, 8(Q,)) over a (Q))play t?e erms
(@ (Q)In% /)N which can be summed up /1% in an
expression similar to the Sudakovqexponential. It is evi-

a
dent that the factor like exp( _;( v
m

In i‘£) suppresses
T

the production of pairs at comparatively small trans-
verse momentum, and hence increases the averaged trans-
verse momentum <G@9%> of a pair. It also leads to the
growth of <@> with g'k'owing Q% .

In conclusion we want to express our deep gratitude
to D.I.Blokhintsev, V.A.Meshcheryakov and D.V.Shirkov
for their interest in this work, and to Y.L.Dokshitzer,
D.1.Dyakonov, R.N.Faustov, I.F.Ginzburg, B.L.loffe,
L.N.Lipatov, S.I.Troyan and V.I.Zakharov for stimulating
discussions and helpful remarks.
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APPENDIX 1

The treatment of massive lepton-pair production in
gauge theories is complicated by double logarithmic terms
(g21n2@2%/, &Y which appear in some types of the diag-
rams. It was observed via an explicit calculation in the
lowest orders of perturbation theory /18-19/that the double
logs cancel when all diagrams of a given order are
summed up.

To illustrate the specifics of the double logarithmic
situation in the a -representation language, we will
consider a one-loop correction for the Dirac part of the
quark electromagnetic form factor f(Q2) (fig. 3a). The
contribution we are interested in can be written with the
help of the « -representation and Mellin transformation
as follows

(@® = 21— | ra-1@®)’ $Ga A
i} j Ndj, (A.1)

dal da2da3 ( ala'.?’)J
D2 D

2 oo 1
. g a o
- 1- 11— -2
14)) 2 ({ ( %

87

x exp(p2a3(a [+ 2)/D -2 3) , (A.2)

where D=a +a_+a We consider the behaviour in
the Sudakov reégime -p2=-p’ 2>> 2  We treat neverthe-
less both the massless gluon theo?y and the theory with
a gluon having nonzero mass \.

“The pole 1/j results from the integration over three
regions 1) p~.0, where p=a ,+az+agy; 2) a,~0 3a .
Thus, the maximal singularity is j =3, It correspond?s to
the well-known contribution -gZ2In2(Q2/p2)/16+~ 2. If
the gluons are massless (A=0), there appears the
fourth region 4) ag + o which produces the pole 1/j

after integration. Combining 2), 3) and 4) we get an extra
j % . This results in

(1) 2 . g% 20?
£27@%) | - =—In* =2
e o pardie (A.3)
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In massless theory we have the double logarithmic con-
tribution twice as greater as in the massive gluon
theory. In the theory where A £ 0 there appears the
term - 1InA®
2
{3z 82 2Q% g%, Q% p? (A.4)
1672 p? 1672 p2 )R

which gives infinity in the limit A - 0. This infinity sig-
nalizes that for A = 0 there exists an ”infrared” pole
i~! which have not been taken into account.

The subtraction procedure for X £ 0 is constructed
in the following way. We integrate first in the region
0<p <1/p2  and obtain the pole ¢F . =7 ;71 ()
The function y(j) has the poles j-1 as a result of in-
tegration over g,.0, 8 ,~0 (B8;=a;/p)-This gives a contri-
bution . 1n2Q2/u2 . we subtractp“;bfgole from the func-
tion ¢ and then integrate in queg over p, ~0,(p,=a 1+ %)
Th . P P1 2y-j . -1 . :
e result is P roe pol =@ ) T, The coeffi-
cient x, (j) ha€ Poie 1/; from the region B,-0 (or
B, ~0). The “hanging” part (fig. 7b) gives a factor
~Inp2/ 22 whichptends to ~ as A-0. In the regular con-

tribution ¢/ = '} we integrate over a, ~0 (or
a, ..o,respectlvely%. This gives

o

P Py ay

~1 2 ~j -2
reg reg pole ~i W) J da daa(a2+a3) x
a,>1/p2
a2+a3>1/;12
a -1
2 asa
x(—=—) exp@® 22 _ )% ), (A.5)
+a a +a 3
2 3 2 3

If there were no lower bounds on the region of integra-

tion in eq. (A.5), there would appear divergences both
for a,~0 and for ay+ay~0. The divergence atayia -0
is the ordinary ultraviolet divergence resulting from the
contraction of the «; -line into point (fig. 7c). It leads

to Inp -dependence of the regular part (i.e., the matrix
element). Fig. 7c looks like the well- known diagram
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a) b) c)
Fig. 7
contributing to the anomalous dimension of the operator
¢y Dpge Dy, ¥ The expansion

in conjunction with the fact tha{ the factor (a3/a g+a 3)'k
corresponds to the vertex A, d, ..d, ¢ - justifies this
analogy. The only difference is that for the operator
¢yD"™ 1y  the sum over k goes only up to k=n-2.
The divergence at small a, converts into the divergence

of the sum X 1/k. The cut-off at a ~1/u® corresponds
to the cut-off of the sum at k-Inp®. As a result, the re-

gular part (A.5) has In? p -dependence on . Further-

more if one takes A =0, the infrared pole 1/j which
has not been taken into account reveals itself: the expres-
sion (A.5) is divergent at A =0. p by ay

In the remaining regular contribution ¢regre re it
is impossible to get pole j~! if one uses’a &eoﬁg with
A #0, and the corresponding contribution is 0(1/Q )-Q(A)
But the factor C(\) approaches infinity as A0, which
corresponds to the missed infrared pole. In a theory with
A =0 one should single out the infrared pole 1/j re-
sulting from the region a«,-»= to construct the subtra(;-
tion procedure. Then all tile results obtained will be fi-
nite because an infrared regularization is provided by
p2| > m ;3, but the subtraction procedure has a very
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. complicated form. When investigating the processAB -

+p'n "X we use a simplified subtraction procedure (i.e.,
introduce A £0). According to arguments given in Sec. 2,
all the singularities in A (or the infrared poles in j in
the theory with ) -0) should cancel and the sum of all
the contributions like ¢ P :;1 ‘:1 gives 0(1/Q%)

contribution for inclusive €ross rséctions, just like it was
in nongauge theories, provided the hadrons are colourless.

APPENDIX 2

In this appendix we will demonstrate how the sum
over the gluon A-B-, C -lines in the diagrams 3a in
a non-Abelian theory leads only to the appearance of the
gauge-invariant operators.

First we sum up over the C -lines. In a non-Abelian

theory the operator corresponding to a gluon external
line is also modified

A, &) - @#(fi,C)ﬂ;E(zO,O;C) E(0,§i;C)zA#(§i), (A.T)

For a B-field one should change z_ -z~ ,'A>B in eq.
(A.7). We commute all the exponentials towards the had-
ron A, say. This gives the expression (fig. 3¢0)

W EOBGG 2,108, @ o, 8°EE, (22,10
- - - A~

ENY G AL Gy B, (22050 ..

B G EG], 2 ;0w ()] (A.8)

in which all the fields A have a factor E(zg,2y5 ©C)
Summing then over the gluon A-fields with account of
the change B $(£ () and commuting the exponentials
towards the hadron A, we obtain (fig. 3¢)

v (E)E(zg,2 1O)EE, 20:E@] .2 ;CuA)y#B #(E)‘.,,l/,(g'),

- -~ s - ) (A.9)
Y. By (n)y E(29.7:E(29,25; M) E (29,24 Oy ().
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Using the relation E(zo’,ZO:C)i‘(a,b;E(za,zo:C)fA)=@a,b:A)?3(26,z0;©,
and summing over B-fields we obtaif the final expres-
sion
[C, &t N 2 OB,z .M B (2
v 2367, 5 W) (ef,zo,A)E(ZO,ZO;C)iA
> ’ ’ ’, B — N D ’ ’
g 8By EN W0 IB0, 281

{E(Zo'zé;c)ﬁ(zo,nm) wm® . (A.10)

Using the analog of the Fierz identity for : -matrices
of the SU(3) , -group

, ’

A.C° 1_.C’_A a, A c
80 . = EBA,BC +2§.(r )C (ra)A, (A.11)

we see that the dependence on Z,y, 23 disappears for
singlet projections, and there appear two gauge invariant
operators <P,| O(£,);:4)|P ><Pg| O(¢%9*;B)|P >The gene-
ralization for subgraphs ?mving gluonic exPernal lines,
is straightforward.

APPENDIX 3

Here we calculate the cross section of producing the
massive lepton-pair having large transverse momen-
tum, in the lowest approximation for a parton subprocess
(fig. 6). Remember that we use the renormalization group
improved perturbation theory, hence the approximation
used here is equivalent to the leading logarithm appro-
ximation of the ordinary perturbation expansion.

The cross section is related to the form factor
W’W(:A,B,Q) by the formula

47 a® dﬁa

7

Q4 (2m)¢

do =

(-w: (A.B,Q)) . (A.12)
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The contributions of the diagrams 6 a) -h) in the Feyn-
man gauge are g2/N,-8(s+t+u-@ multiplied by the fol-
lowing factors (see also ref. /20/):

sQ? sQf q?
a) ZCz(R) b) 2CZ(R) c) +d) 4———02(R)
T - 2
t u QJ_
c s c -t c Qzﬁ
e 2T (R) — f) 2T (R)— g +h) 4T (R) =YL
-t S ~-Sst

(A.13)

where N.=3,C,(R) =4/3, T°(R)=1/2, u=(Q -b)2 ,¢ =
ng:a)z , S =£atb)2A= Xys ; a=xA,, b=yB. The formulas
ut/s = Q% ,s+t+u=Q° are very helpful to simplify
the calculation. As a result we have

1

-2
2 g%Q) 1 A~ n
1 - S 2P P L
0 o Y

do _ 4nd .
d*q 3Q* (2m% N,

X

s gt

x3 e2{2C_(R)I -21p%(x,y,Q2) + (A.14)
2 8 2 ~ 1 4
sQ_L
~2 4
+ 2T (R) [ 1_1;+’£Q +2]p2(x,y,Q_2L)¥{1+ O(aS(Q_L))},
where

a 2y 2 2 <R 1.
el(x,y,# )—{fa/A(x,# ) f /B(y,# ) + (A <>B)};

a,
p;(x,y,yz) =1 fa/A(x,y 2)+fE/A (x,uz)}fg/B(y'#zh(:AwB) .
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To

get the cross section o/ szdr_L we represent qQ -

=XA+pB+Q, .Then

a* Qou+trs-Q2) = isb‘((x—)\)(y—p)— ", ya*q -

a’ sz_L 4 d(p—p_)dlp—p )
= V (y-r)i-dayr (A.15)
=—;rd02d11 1+{tesul

V (xy-r)2 ~4xyr

We have used here that after applying [1+{t « ul] to
square brackets in eq. (A.14) one obtains the function

which depends only on s

and Q2. Substituting eq.

(A.15) into eq. (A.14) we obtain eq. (31).
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