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The orbital period of a compact binary system decays mainly due to quadrupole gravitational radiation,
which agrees with the observation to within 1%. Other types of radiation such as ultralight scalar or
pseudoscalar radiation and massive vector boson radiation also contribute to the decay of the orbital period
as long as the mass of the emitted particle is less than the orbital frequency of the compact binary system.
We obtain an expression of the energy loss due to the radiation of the massive vector field from the neutron
star–neutron star and neutron star–white dwarf binaries. Because of the large chemical potential of the
degenerate electrons, neutron stars (NSs) have large muon charge. We derive the energy loss due to
Uð1ÞLμ−Lτ

gauge boson radiation from the binaries. For the radiation of the vector boson, the mass is

restricted byMZ0 < Ω ≃ 10−19 eV, which are the orbital frequencies of the compact star binaries. Using the
formula of orbital period decay, we obtain constraints on the coupling constant of the gauge boson in
the gauged Lμ − Lτ theory for the four compact binary systems. For vector gauge boson muon coupling,

we find that for MZ0 < 10−19 eV, the constraint on the coupling constant is g < Oð10−20Þ. We also obtain
the exclusion plots of the massive vector Proca field and the gauge field which can couple to muons.

DOI: 10.1103/PhysRevD.100.123023

I. INTRODUCTION

The decrease in the orbital period with time of the Hulse-
Taylor (HT) binary pulsar (PSR B1913þ 16) provided the
first indirect evidence of gravitational wave radiation [1–3].
Although the decay of the orbital period is mainly due to
the quadrupole gravitational radiation [4], radiation of other
massless or ultralight scalar or pseudoscalar particles [5–8]
can contribute about 1% of the observed decay of the
orbital period [9]. Some other recent studies also explain
such excess in orbital period decay [10]. In this paper we
calculate the orbital energy loss due to radiation of the
Proca vector boson and the massive vector gauge boson of
Lμ − Lτ anomaly-free gauge theory [11–14] from the four
compact binary [neutron star–neutron star (NS-NS) and
neutron star–white dwarf (NS-WD)] systems.
The standard model (SM) of particle physics is an

SUð3Þc × SUð2ÞL ×Uð1ÞY gauge theory, and it remains

invariant under four global symmetries corresponding to
the lepton numbers of the three lepton families and the
baryon number. These are not the gauge symmetries;
however, one can construct three combinations in an
anomaly-free way, and they can be gauged in the standard
model. These gauge symmetries are Le − Lμ, Le − Lτ and
Lμ − Lτ. The Le − Lτ and Le − Lμ long-range forces from
the electrons can be probed in neutrino oscillation experi-
ments [15–18]. The Lμ − Lτ gauge force is not generated in
a macroscopic body like the Earth and the Sun, and it
cannot be probed in neutrino oscillation experiments. In
this paper, we point out that the NS can have a large charge
of muons, and, therefore, the NS-NS binaries and NS-WD
binaries can radiate ultralight Lμ − Lτ vector gauge bosons.
Besides neutrons, the neutron star contains a lower

fraction of electrons, protons, and muons. There are around
1055 muons compared to about 1057 neutrons [19–24] in a
typical old neutron star. The main uncertainties in the
following calculations are from the chemical potential and
muon content in NS, which should be at most a factor
of 2 [24–26].
For massive vector gauge boson radiation from the

NS-NS and NS-WD binaries, the orbital frequency of
the binary orbit should be greater than the mass of the
particle which restricts the mass spectrum of the massive
gauge boson to MZ0 < 10−19 eV. An Lμ − Lτ gauge boson
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(Z0) exchange between muons of the neutron star gives rise

to the Yukawa-type potential VðrÞ ¼ g2

4πr e
−MZ0 r. The range

λ of the force is determined by λ ¼ 1
MZ0

. For emission of this

ultralight vector gauge boson of mass MZ0 < 10−19 eV
from NS-NS and NS-WD binaries, the lower bound of the
range of this force is λ ¼ 1=MZ0 > 1012 m. This ultralight
mass or nearly massless gauge boson can mediate a long-
range fifth force between the neutron stars of the binary
system. Since there is no muon charge for the white dwarf,
the fifth force for NS-WD binaries is zero. In this paper we
show that ultralight vector Lμ − Lτ gauge bosons can be
radiated from the NS-NS and NS-WD binaries which
contribute to the decay in the orbital period.
The paper is organized as follows. In Sec. II, we estimate

the number of muons inside a neutron star. In Sec. III, we
derive an expression for the energy loss due to Proca vector
field radiation. In Sec. IV, we derive the energy loss due to
massive vector gauge boson radiation. In Sec. V, we obtain
constraints on the gauge couplings in the Lμ − Lτ gauge,
for vector gauge boson radiation from two NS-NS binaries
(PSR B1913þ 16: Hulse-Taylor binary pulsar [1–3]; and
PSR J0737 − 3039: double pulsars [27]) and two NS-WD
binaries (PSR J0348þ 0432 [28] and PSR J1738þ 0333
[29]). We also obtain the exclusion plots of vector boson
muon coupling for the Proca and the gauge field from the
four compact binaries. In Sec. VI, we summarize and
discuss our results.
In this paper we use the natural system of units: ℏ ¼

c ¼ 1 and G ¼ 1=M2
pl.

II. ESTIMATION OF MUON CONTENT INSIDE
A NEUTRON STAR

The chemical potential of relativistic degenerate elec-
trons in an NS is

μe ¼ ðm2
e þ k2feÞ

1
2 ¼ ½m2

e þ ð3π2ρYeÞ23�12; ð1Þ

where me is the mass of the electron, kf is the Fermi
momentum, ρ is the nucleon number density, and Ye is the
electron fraction. From the charge neutrality of the neutron
star, Yp ¼ Ye þ Yμ and Yn þ Yp ¼ 1. Above the nuclear
matter density, when μe exceeds the mass of the muon
ð∼105 MeV, nonrelativistic), electrons can convert into
muons at the edge of the Fermi sphere. So e− →
μ− þ νe þ ν̄μ, pþ μ− → nþ νμ, and n → pþ μ− þ ν̄μ
may be energetically favorable. Hence, both muons and
electrons can stay in the neutron star and stabilize through
beta equilibrium. Thus, the β stability condition becomes

μn − μp ¼ μe ¼ μμ ¼ ½m2
μ þ ð3π2ρYμÞ23�12; ð2Þ

where Yμ is the muon fraction inside the neutron star [30].
Muon decay ðμ− → e− þ ν̄e þ νμÞ inside the neutron star is

prohibited by Fermi statistics. The Fermi energy of the
electron is roughly 100 MeV (relativistic), whereas the
Fermi energy of the muon is roughly 30 MeV (non-
relativistic). Hence, the muon decay cannot take place as
the energy levels of the electron are all filled up to the
Fermi surface and the final state electron is Fermi blocked.
For the white dwarf, the Fermi energy of the muon is very
small (∼1 eV), and Fermi suppression does not really
apply. Thus, muon decay is not obstructed in white dwarfs.
From the beta equilibrium condition, the chemical

potentials of muons and electrons inside the neutron star
are equal, which implies

ρμ ¼
m3

e

3π2

�
1þ ð3π2ρYeÞ23

m2
e

−
m2

μ

m2
e

�3
2

: ð3Þ

The electron fraction ðYeÞ is given as [23]

Ye ¼
p1 þ p2ρþ p6ρ

3=2 þ p3ρ
p7

1þ p4ρ
3=2 þ p5ρ

p7
; ð4Þ

where p’s are the parameters which can take different values
for differentQCDequations of state.Assuming there are1057

nucleons, the nucleon number density is ρ ¼ 0.238 fm−3

and Ye ¼ 0.052 (here we use the values of p parameters for
the BSK24 [23] equation of state). From Eq. (3) we obtain
themuonnumber densityρμ ¼ 3.11 × 104 MeV3. Hence the
total number of muons inside the neutron star is ρμ ×
4
3
πR3 ¼ 1.67 × 1055, where we assume the radius of the

neutron star is R ¼ 10 Km. In the following, we take the
muon number as N ¼ 1055.

III. ENERGY LOSS DUE TO RADIATION OF
MASSIVE PROCA VECTOR FIELD

COUPLING WITH MUONS

If there is a mismatch between the observed period loss
of the binary system and its theoretical prediction from the
gravitational quadrupole radiation, then other particles may
also be radiated from the binaries, which gives a hint of new
physics. Neutron stars have a large number of muon
charges (N ≈ 1055), and Z0 massive Proca vector bosons
can be emitted from the NS, in addition to the gravitational
radiation, contributing to the observed orbital period
decay. A NS of typical size 10 Km can be treated as a
point source because the Compton wavelength of radiation
ðλ ¼ 1012 mÞ is much larger than the size of the NS. We
will treat the radiation of the massive Z0 vector bosons from
the NS classically. The classical current of muons Jμ in the
NS is determined from the Kepler orbits and by assuming
the interaction vertex as gZ0

μJμ, where g is the coupling
constant. Therefore, the rate of massive Z0 boson radiation
is given by
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dΓ¼ g2
X3
λ¼1

½Jμðk0ÞJν�ðk0ÞϵλμðkÞϵλ�ν ðkÞ�2πδðω−ω0Þ d3k
ð2πÞ32ω ;

ð5Þ

where Jμðk0Þ is the Fourier transform of JμðxÞ and ϵλμðkÞ
is the polarization vector of the massive vector boson.
The polarization sum is given as

X3
λ¼1

ϵλμðkÞϵλ�ν ðkÞ ¼ −gμν þ
kμkν
M2

Z0
: ð6Þ

Therefore, the emission rate is

dΓ ¼ g2

2ð2πÞ2
Z �

−jJμðω0Þj2 þ 1

M2
Z0
ðjJ0ðω0Þj2ω2

þ Jiðω0ÞJj�ðω0Þkikj þ 2J0ðω0ÞJi�ðω0Þk0kiÞ
�

× δðω − ω0Þω
�
1 −

M2
Z0

ω2

�1
2

dωdΩk: ð7Þ

The momentum four-vectors of the Z0 boson are
kμ ¼ ðω;−k⃗Þ, ki ¼ jk⃗jn̂i, and kj ¼ jk⃗jn̂j. The third term
in the first brackets will not contribute anything because

Z
n̂idΩk ¼ 0;

Z
n̂i n̂j dΩk ¼

4π

3
δij: ð8Þ

Therefore, the rate of energy loss due to massive Z0 boson
radiation is

dE
dt

¼ g2

2π

Z �
−jJ0ðω0Þj2 þ jJiðω0Þj2 þ ω2

M2
Z0
jJ0ðω0Þj2

þ ω2

3M2
Z0
jJiðω0Þj2

�
1 −

M2
Z0

ω2

��

× δðω − ω0Þω2

�
1 −

M2
Z0

ω2

�1
2

dω: ð9Þ

The current density for the binary stars is written as

JμðxÞ ¼
X
b¼1;2

Qbδ
3ðx − xbðtÞÞuμb; ð10Þ

where b ¼ 1, 2 denotes labeling of the two stars in the
binary system. Here,Qb is the total charge of the NS due to
muons, and xbðtÞ denotes the location of the NS. Note that
uμb ¼ ð1; _xb; _yb; 0Þ is the nonrelativistic four-velocity in the
x-y plane of the Kepler orbit. A Kepler orbit in the x-y plane
can be written in the parametric form as

x ¼ aðcos ξ − eÞ; y ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin ξ;

Ωt ¼ ξ − e sin ξ; ð11Þ

where e is the eccentricity, a is the semimajor axis of the
elliptic orbit, and Ω ¼ G½m1þm2

a3 �12 is the fundamental fre-
quency. The angular velocity is not constant in an eccentric
orbit, which means that the Fourier expansion must sum
over the harmonics nΩ of the fundamental. The Fourier
transform of Eq. (10) for the spatial part of Jμðω0Þ with
ω0 ¼ nΩ is

Jiðω0Þ ¼
Z

1

T

Z
T

0

dteinΩt _xibðtÞ

×
X
b¼1;2

Qbd3x0e−ik0:x0δ3ðx0 − xbðtÞÞ: ð12Þ

We expand eik
0:x0 ¼ 1þ ik0:x0 þ… and retain the leading

order term as k0:x0 ∼Ωa ≪ 1 for binary star orbits. Hence,
Eq. (12) becomes

Jiðω0Þ ¼ Q1

T

Z
T

0

dteinΩt _xi1ðtÞ þ
Q2

T

Z
T

0

dteinΩt _xi2ðtÞ: ð13Þ

In the center-of-mass (c.m.) coordinates, we have xi
1 ¼

m2xi

m1þm2
¼ M

m1
xi and xi

2 ¼ − m1xi

m1þm2
¼ − M

m2
xi. Note that M ¼

m1m2=ðm1 þm2Þ is the reduced mass of the compact
binary system. Hence, we rewrite the spatial part of the
current density as

Jiðω0Þ ¼ 1

T

�
Q1

m1

−
Q2

m2

�
M

Z
T

0

dteinΩt _xiðtÞ: ð14Þ

The Fourier transform of the velocity in the Kepler orbit can
be evaluated as follows:

_xn ¼
1

T

Z
T

0

eiΩnt _xdt

¼ Ω
2π

Z
2π

0

einðξ−e sin ξÞð−a sin ξÞdξ; ð15Þ

where T ¼ 2π=Ω and, from Eq. (11), we have used the fact
that _xdt ¼ −a sin ξdξ. Similarly, we write

_yn ¼
1

T

Z
T

0

eiΩnt _ydt: ð16Þ

From Eq. (11) we use the fact that _ydt ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cos ξdξ,

and we obtain
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_yn ¼
Ωa

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

2π

Z
2π

0

einðξ−e sin ξÞ cos ξdξ

¼ Ωa
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

2πe

Z
2π

0

einðξ−e sin ξÞdξ: ð17Þ

Using the identity of the Bessel function,

JnðzÞ ¼
1

2π

Z
2π

0

eiðnξ−z sin ξÞdξ; ð18Þ

in Eqs. (15) and (17), we obtain the velocities in Fourier
space as

_xn ¼ −iaΩJ0nðneÞ; _yn ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Ω

e
JnðneÞ; ð19Þ

where the prime over the Bessel function denotes the
derivative with respect to the argument. Hence, we have

Jxðω0Þ ¼ Ω
�
Q1

m1

−
Q2

m2

�
M

1

2π

Z
T

0

dteinΩt _xiðtÞ

¼ −iaΩ
�
Q1

m1

−
Q2

m2

�
MJ0nðneÞ: ð20Þ

Similarly,

Jyðω0Þ ¼ Ω
�
Q1

m1

−
Q2

m2

�
M

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e
JnðneÞ: ð21Þ

Hence, the square of the spatial part of Jμðω0Þ becomes

jJiðω0Þj2 ¼ jJxðω0Þj2 þ jJyðω0Þj2

¼ a2Ω2M2

�
Q1

m1

−
Q2

m2

�
2

×

�
J02n ðneÞ þ

ð1 − e2Þ
e2

J2nðneÞ
�
: ð22Þ

From Eq. (10), we have the temporal component of Jμðω0Þ
as

J0ðωÞ ¼ 1

2π

Z
eik

0:x0e−iωt
X
b¼1;2

Qbδ
3ðx0 − xbðtÞÞd3x0dt:

ð23Þ

Moving to the c.m. frame, the integral results in

J0ðωÞ ¼ ðQ1 þQ2ÞδðωÞ þ iM

�
Q1

m1

−
Q2

m2

�
ðkxxðωÞ

þ kyyðωÞÞ þOððk:rÞ2Þ; ð24Þ

where xðωÞ¼aJ0nðneÞ=n and yðωÞ¼ia
ffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
JnðneÞ=ne

are the Fourier transforms of the orbital coordinates. The
first term in Eq. (24) does not contribute due to the delta
function δðωÞ. Therefore, considering the second term as
the leading order contribution, we obtain

jJ0ðωÞj2 ¼ 1

3
a2M2Ω2

�
1 −

M2
Z0

n2Ω2

��
Q1

m1

−
Q2

m2

�
2

×

�
J02nðneÞ þ

1 − e2

e2
J2nðneÞ

�
; ð25Þ

where we have used hk2xi ¼ hk2yi ¼ k2=3 and ω ¼ nΩ.
Using Eqs. (22) and (25) in Eq. (9), we obtain the rate
of energy loss,

dE
dt

¼ g2

3π
a2M2

�
Q1

m1

−
Q2

m2

�
2

×

�
Ω6

M2
Z0

X
n>n0

n4
�
J02n ðneÞ þ

ð1− e2Þ
e2

J2nðneÞ
��

1−
n20
n2

�3
2

þΩ4
X
n>n0

n2
�
J02n ðneÞ þ

ð1− e2Þ
e2

J2nðneÞ
��

1−
n20
n2

�1
2

×

�
1þ 1

2

n20
n2

��
; ð26Þ

where n0 ¼ MZ0=Ω < 1.
We define

K1ðn0; eÞ ¼
X
n>n0

n4
�
J02n ðneÞ þ

ð1 − e2Þ
e2

J2nðneÞ
��

1 −
n20
n2

�3
2

ð27Þ

and

K2ðn0; eÞ ¼
X
n>n0

n2
�
J02n ðneÞ þ

ð1 − e2Þ
e2

J2nðneÞ
�

×

�
1 −

n20
n2

�1
2

�
1þ 1

2

n20
n2

�
; ð28Þ

and use these notations to rewrite Eq. (26) as

dE
dt

¼ g2

3π
a2M2

�
Q1

m1

−
Q2

m2

�
2

×Ω4

�
Ω2

M2
Z0
K1ðn0; eÞ þ K2ðn0; eÞ

�
: ð29Þ

This is the energy loss due to radiation of the Proca vector
massive boson from NS-NS binaries. For NS-WD binaries,
the energy loss is the same as Eq. (29) withQ2 ¼ 0 because
white dwarfs do not have any muon charges.
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IV. ENERGY LOSS DUE TO RADIATION OF
MASSIVE Lμ −Lτ GAUGE BOSONS

If the Z0 boson is a gauge field, then from gauge
invariance kμJμ ¼ 0, and consequently, the second term
in the polarization sum of Eq. (6) will not contribute to the
energy loss formula. Using the same procedure described in
the previous section, we obtain the rate of energy loss,

dE
dt

¼ g2

6π
a2M2

�
Q1

m1

−
Q2

m2

�
2

Ω4
X
n>n0

2n2

×

�
J02n ðneÞ þ

ð1 − e2Þ
e2

J2nðneÞ
�

×

�
1 −

n20
n2

�1
2

�
1þ 1

2

n20
n2

�
ð30Þ

or

dE
dt

¼ g2

3π
a2M2

�
Q1

m1

−
Q2

m2

�
2

Ω4K2ðn0; eÞ; ð31Þ

where K2ðn0; eÞ is defined earlier in Eq. (28). Since
K2ðn0; eÞn0¼0 ≥ K2ðn0; eÞn0≠0 the massless limit gives a
stronger bound on the energy loss. This is the energy loss
due to massive vector gauge boson radiation, which has a
similar form to the one previously obtained in [31]. Our
method in obtaining the formula is different, where we can
differentiate between the radiation rate of massive vector
gauge bosons from the massive Proca fields.
The rate of change of the orbital period due to energy

loss is

dPb

dt
¼ −6πG−3=2ðm1m2Þ−1ðm1 þm2Þ−1=2a5=2

×
�
dE
dt

þ dEGW

dt

�
; ð32Þ

where dEGW
dt is the rate of energy loss due to the quadrupole

formula for the gravitational radiation and it is given by [4]

dEGW

dt
¼ 32

5
GΩ6M2a4ð1 − e2Þ−7=2

�
1þ 73

24
e2 þ 37

96
e4
�
:

ð33Þ
In the massless limit of the vector gauge boson (i.e.,MZ0 ¼
0 implies n0 ¼ 0), the rate of energy loss from Eq. (30)
becomes

dE
dt

¼ g2

3π
a2M2

�
Q1

m1

−
Q2

m2

�
2

Ω4
X∞
n¼1

n2

×

�
J02n ðneÞ þ

ð1 − e2Þ
e2

J2nðneÞ
�

¼ g2

6π
a2M2

�
Q1

m1

−
Q2

m2

�
2

Ω4
ð1þ e2

2
Þ

ð1 − e2Þ52 : ð34Þ

If the orbit is circular, then the angular velocity is a constant
over the orbital period and the Fourier expansion of the
orbit contains only one term for ω ¼ Ω. In an eccentric
orbit the angular velocity is not constant, and that means the
Fourier expansion must sum over the harmonics nΩ of the
fundamental.
In the following we will put constraints on the mass of

the vector gauge boson and on the Lμ − Lτ coupling
constant from the decay of the orbital period of four
compact binary systems using Eqs. (31), (32), and (33).

V. CONSTRAINTS ON GAUGE BOSON MASS
AND ITS COUPLING FOR DIFFERENT

COMPACT BINARIES

A. PSR B1913 + 16: Hulse-Taylor binary pulsar

This was the first binary pulsar which was discovered by
Hulse and Taylor in 1974 [1–3]. The observed value of
the orbital period of PSR B1913þ 16 decays at the rate
of _Pb ¼ 2.4225 × 10−12 ss−1 and GR predicts its value as
_Pb ¼ 2.4025 × 10−12 ss−1 [31,32]. The masses of the two
neutron stars are m1 ¼ 1.42 M⊙ and m2 ¼ 1.4 M⊙. The
orbit is highly eccentric (e ¼ 0.617127) [5]. The average
orbital frequency is Ω ¼ 1.48 × 10−28 GeV. Massive
gauge bosons can radiate from the neutron star if
nΩ > MZ0 , where n ¼ 1 stands for the fundamental mode.
This implies, for the radiation of the gauge boson, that the
mass is constrained as MZ0 < 1.48 × 10−19 eV. The semi-
major axis a of the orbit is obtained from Kepler’s law
T2¼4π2=Gðm1þm2Þa3, and it is a¼1.087×1025GeV−1.
Here ðQ1=m1 −Q2=m2Þ ¼ 10−4 GeV−1, where Q ¼ N, N
is the number of muons which is roughly 1055 [24]. From
Eq. (31) it is clear that the radiation of the vector gauge boson
is possible if the charge-to-mass ratio is different for the
two neutron stars. The contribution from the radiation of
some vector gauge boson particles must bewithin the excess
of the decay of the orbital period, i.e., _PbðvectorÞ ≤
j _PbðobservedÞ − _PbðgwÞj. Since K2ðn0;eÞn0¼0>K2ðn0;eÞn0≠0,
themassless limit gives the stronger bound.Weget the bound
of the gauge boson coupling constant from the orbital decay
period in the massless limit as

g ≤ 2.21 × 10−18: ð35Þ

From the fifth-force constraint, the ratio of the fifth force
to the gravitational force should be less than unity, which
implies

g2N2

4πGm1m2

≤ 1: ð36Þ

This gives the upper bound on g as g ≤ 4.99 × 10−17 for the
HT binary.
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B. PSR J0737− 3039: Double binary pulsars

The double binary pulsar system (PSR J0737 −
3039A=PSR J0737 − 3039B) [27] consists of two neutron
stars, and both of them are pulsars emitting electromagnetic
waves in the radio wavelength range. This compact binary
system has an average orbital period Pb ¼ 2.4h. The
masses of the two stars are M1 ¼ 1.338 M⊙ and M2 ¼
1.25 M⊙, and the eccentricity of the orbit is e ¼ 0.087.
Its observed orbital period decays at a rate _Pb ¼
1.252 × 10−12 ss−1, whereas its expected value from GR
is 1.24787 × 10−12 ss−1. The orbital frequency is Ω ¼
4.79 × 10−28 GeV, and the semimajor axis of the orbit
is a ¼ 4.83 × 1024 GeV−1. Here, the difference between
the charge-to-mass ratio is ðQ1=m1 −Q2=m2Þ ¼
5.27 × 10−4 GeV−1. Since the massless limit gives the
stronger bound, we get the bound of the muon gauge
boson coupling constant in the massless limit as

g ≤ 2.17 × 10−19: ð37Þ
From the fifth-force constraint we can write the upper

bound on g as g ≤ 4.58 × 10−17 for PSR J0737 − 3039.

C. PSR J0348 + 0432: Pulsar white dwarf binary

PSR J0348þ 0432 [28] is a pulsar white dwarf binary
system which consists of a pulsating NS and a low-mass
WD companion. The orbital period of this very low
eccentric compact binary system is Pb ¼ 2.46h. The mass
of the pulsar is M1 ¼ 2.01 M⊙, and the mass of the white
dwarf is M2 ¼ 0.172 M⊙. The observed orbital period
decay rate is _Pb ¼ 0.273 × 10−12 ss−1, and its GR pre-
dicted value is _Pb ¼ 0.258 × 10−12 ss−1. The semimajor
axis of the orbit is obtained from Kepler’s law, and it is
a ¼ 4.64 × 1024 GeV−1. The orbital frequency is Ω ¼
4.67 × 10−19 eV. The muon content in the white dwarf
is negligible, so Q2 ¼ 0 and ðQ1=m1 −Q2=m2Þ ¼
4.97 × 10−3 GeV−1. Since the massless limit gives the
stronger bound in the mass scale M0

Z < 10−19 eV, the
muon gauge boson coupling in the massless limit is

g ≤ 9.02 × 10−20: ð38Þ

D. PSR J1738 + 0333: Pulsar white dwarf binary

PSR J1738þ 0333 [29] consists of a pulsar and a low-
mass white dwarf companion. The orbital period is
Pb ¼ 8.5h. The eccentricity of the orbit is very small,
e < 4 × 10−7. The mass of the pulsar is M1 ¼ 1.46 M⊙,
and the mass of the white dwarf is M2 ¼ 0.181 M⊙. The
intrinsic orbital period decay is _Pb ¼ −25.9 × 10−15 ss−1,
and its GR predicted value is _Pb ¼ −27.7 × 10−15 ss−1.
The semimajor axis of the orbit is calculated from Kepler’s
law, and it is a ¼ 9.647 × 1024 GeV−1. The orbital fre-
quency is Ω ¼ 1.35× 10−19 eV. Here ðQ1=m1−Q2=m2Þ¼
6.85×10−3GeV−1. Since the massless limit gives the

stronger bound in the mass scale M0
Z < 10−19 eV, the

muon gauge boson coupling in the massless limit is

g ≤ 4.24 × 10−20: ð39Þ

In Table I we show the bounds on g from the fifth force
and orbital period decay for the four compact binary

TABLE I. Summary of the upper bounds on gauge boson-muon
coupling g for PSR B1913þ 16, PSR J0737 − 3039, PSR
J0348þ 0432, and PSR J1738þ 0333. We take the mass regime
as M0

Z < 10−19 eV.

Compact binary
system g (fifth force)

g (orbital period
decay)

PSR B1913þ 16 ≤4.99 × 10−17 ≤2.21 × 10−18

PSR J0737 − 3039 ≤4.58 × 10−17 ≤2.17 × 10−19

PSR J0348þ 0432 � � � ≤9.02 × 10−20

PSR J1738þ 0333 � � � ≤4.24 × 10−20

10 21 10 20 10 19 10 18 10 17

10 20

10 15

10 10

10 5

MZ' in eV

g

10 33 10 30 10 27 10 24 10 21 10 18

10 30

10 25

10 20

10 15

10 10

10 5

MZ' in eV

g
PSR B1913+16

PSR J0737-3039

PSR J0348+0432

PSR J1738+0333

PSR B1913+16

PSR J0737-3039

PSR J0348+0432

PSR J1738+0333

(a)

(b)

FIG. 1. (a) Exclusion plots to constrain the coupling of the
gauge field and (b) the Proca field in a gauged Lμ − Lτ scenario
for four compact binary systems. The regions above the colored
lines are excluded.
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systems in the mass rangeM0
Z < 10−19 eV. Here we use the

fact that the fifth force should be subdominant over gravity
so as not to destabilize Kepler’s orbit. On the other hand,
the bound on g comes from the radiation of the vector
boson as described in detail in this paper. The constraint on
the coupling from radiation loss is much more stringent
compared to the fifth-force constraint.
In Fig. 1 we show the exclusion plots to constrain the

coupling g for the gauge field and the Proca field using
Eq. (29) in a gauged Lμ − Lτ scenario for four compact
binary systems. The regions above the colored lines are
excluded for the corresponding binary systems. Here, larger
parameter space of g is excluded for the Proca field. There
is a 1=M2

Z0 term in the polarization sum of massive vector
bosons (both Proca and gauge bosons). Due to gauge
invariance this term does not contribute in the gauge boson
calculation; however, it is present in the Proca field
calculation, and we compare the radiation of the Proca
and the gauge fields separately in the plots. The regions
above the colored lines are excluded for the corresponding
binary systems.
Figure 1(a) shows, for the gauge boson, that the coupling

g is almost constant in the mass rangeM0
Z < 10−19 eV. The

coupling g will increase with MZ0 in the mass range
MZ0 > 10−19eV, as only higher modes ðn > n0 > 1Þ con-
tribute to K2ðn0; eÞ. For low eccentric binary orbits, the rise
in g with respect to MZ0 is sharp. Note that for circular
binary orbits, only the n ¼ 1 mode can contribute. As a
result, for MZ0 > Ω, there is no constraint on g.
In Fig. 1(b), g varies linearly with respect to MZ0 ð<

10−19 eVÞ due to the contribution of the Ω2=M2
Z0K1ðn0; eÞ

term for the Proca field. We obtain the upper bounds on
MZ0=g for a Proca field in the small MZ0 limit. From the

orbital period decay, for PSR B1913þ 16, we get
MZ0=g ≤ 0.306 eV, for PSR J0737 − 3039, we get
MZ0=g ≤ 2.307 eV, for PSR J0348þ 0432, the bound is
MZ0=g ≤ 5.13 eV, and for PSR J1738þ 0333, the bound
is MZ0=g ≤ 3.19 eV.

VI. DISCUSSIONS

Due to the presence of a significant number of muons in
the neutron stars, we can put bounds on the ultralight vector
gauge boson mass in the Lμ − Lτ gauge and on the gauge
coupling from the observations of orbital period decay of
the four compact binary systems. Mainly, the gravitational
quadrupole radiation contributes to the decay in the orbital
period. The radiation by other ultralight particles also
contributes to the orbital period decay to less than 1%.
From the decay of the orbital period, we obtain the Lμ − Lτ

gauge coupling for PSR B1913þ 16 as g ≤ 2.21 × 10−18,
for PSR J0737 − 3039, it is g ≤ 2.17 × 10−19, for PSR
J0348þ 0432, the coupling is g < 9.02 × 10−20, and for
PSR J1738þ 0333, the coupling is g < 4.24 × 10−20 in the
massless limit, and this is true up to M0

Z < 10−19 eV. Due
to the fact that K2ðn0; eÞn0¼0 ≥ K2ðn0; eÞn0≠0, the massless
limit gives a stronger bound for the radiation of the massive
vector gauge boson. The radiation of vector gauge boson
particles is possible if the charge-to-mass ratio is different
for two neutron stars. We have shown the exclusion plots of
g vsMZ0 for the radiation of the massive vector gauge boson
and Proca field from the NS-NS and NS-WD binaries. The
main uncertainty of the gauge coupling bound comes from
the number of muons in the neutron star, which depends on
different QCD equations of state.
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