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Abstract 
 
Measuring Strain Using X-Ray Diffraction. JAMES BELASCO (Villanova University, 
Villanova, PA, 19085) APURVA MEHTA (Stanford Linear Accelerator Center, Menlo Park, 
CA, 94025) 
 
Determining the strain in a material has often been a crucial component in determining the 

mechanical behavior and integrity of a structural component. While continuum mechanics 

provides a foundation for dealing with strain on the bulk scale, how a material responds to strain 

at the very local level—the understanding of which is fundamental to the development of a 

cohesive framework for the behavior of strained material—is still not well understood. One of 

the critical components in determination of the behavior of materials under strain at a local scale 

is an understanding how global average deformation, as a response to an externally applied load, 

gets distributed locally.  This is critical and very poorly understood for a polycrystalline 

materials—the material of choice for a large variety of structural components.  We studied this 

problem for BCC iron using x-ray diffraction. By using a nanocrystalline iron sample and taking 

x-ray diffraction patterns at different load levels and at different rotation angles, a complete 2nd 

rank strain tensor was determined for the three sets of crystallites with three distinct 

crystallographic orientations. The determination of the strain tensors subsequently allowed the 

calculation of the elastic modulus along each crystallographic plane.  When compared to 

measured values from single crystal for the corresponding crystal orientations, the data from our 

polycrystalline sample demonstrated a higher degree of correlation to the single crystal data than 

expected. The crystallographic planes demonstrated a high degree of anisotropy, and therefore, 

to maintain displacement continuity, there must be a secondary mode of strain accommodation in 

a regime that is conventionally thought to be purely elastic. 
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Introduction 
 
Every successful major bridge builder for half a century has used continuum mechanics 

to analyze the response of materials to strain. However, while continuum mechanics can 

model the deformation of materials at large scales, at the very local scale materials 

invariably deform and fail, (even in large structures failure is often initiated by a single 

crack). At the very local scale, materials are not the homogeneous and isotropic structures 

continuum mechanics assumes them to be, but instead are composed of an anisotropic 

arrangement of discreet atoms and molecules. Thus, a more complete understanding of 

mechanical behavior is necessary to reconcile the discrepancy between the two views of 

the behavior of materials as they are subjected to stress. 

 The two types of strain, classified as plastic, or irreversible strain, and elastic, or 

reversible strain, produce two different types of perturbations in the lattice structure of a 

material. Elastic strain causes a stretching in the lattice bonds while plastic strain results 

in dislocation and motion of slip-bands. The ideal method for measuring such changes is 

X-ray diffraction, which produces a distinctly different pattern for the two different types 

of strains.  Elastic strain, which is the primary focus of this paper, alters the spacing of 

the crystalline lattice and therefore results in shifting of the diffraction peaks [2]. Thus, as 

a sample is strained along a particular axis, X-ray diffraction patterns can be taken that 

will elucidate the deformation in the lattice structure. Using BCC iron, a ring pattern can 

be obtained that can be mathematically analyzed to generate the full second order strain 

tensor. These tensors thereby indicate the particular deformation of the sample under 

strain as it responds along multiple axes. By calculating the strain tensors for each of the 

three diffraction rings of iron, the (110), (200), and (211), (each of which corresponds to 
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a different crystallographic orientation) and comparing them to one another the 

deformation of the crystallites with those crystallographic orientations can be determined. 

Ultimately, the elastic modulus of each lattice plane can be calculated through an analysis 

of the change in the strain level for increasing load levels. 

 

Materials and Methods 
 

Sample Preparation 

 BCC iron samples with a thickness of 13.5 microns were prepared for x-ray 

diffraction by cutting them into dog bone shapes that were then inserted into a 

displacement controlled tensile rig. The dog bone shape is used to facilitate purely tensile 

loading and limit the amount of out of plane strain in the material 

Data collection Procedure 

X-ray diffraction patterns (see Figure 1) were taken with a set wavelength of 0.975 Å as 

the prepared iron samples were rotated from 0 degrees to + 45 degrees with a diffraction 

pattern taken every 9 degrees. To study the elastic deformation, the sample was strained 

to the onset of plastic deformation (the plastic strain limit taken to be that determined by 

traditional continuum mechanics sources) and the diffraction patterns were taken at set 

intervals as the sample was unloaded, to ensure that at least under conventional 

mechanics model the subsequent deformation is purely elastic. Patterns were taken at five 

separate load levels as well as at the initial zero load level. 

Pattern Analysis 

 An unstrained lattice produces a diffraction pattern with circular rings. When a 

sample is under elastic tensile stress, the lattice spacing elongates in the direction of the 

applied load and contracts in the orthogonal directions. This results in an elliptical 
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distortion of the diffraction rings. The eccentricity of these ellipses directly corresponds 

to how the sample has deformed under strain. In order to analyze the nature of this 

ellipse, the 2-D diffraction images were converted to diffraction coordinates (Q, chi) from 

pixel positions using Fit2D. Fit2D itself was calibrated for specific measurements using 

LaB6 samples that have standardized diffraction parameters. The eccentricity of the 

ellipse and the resulting magnitude of all the six independent components of the 2nd rank 

strain tensor were determined from this converted data by the procedure outlined below. 

Strain Tensor Determination 

The change in ellipticity of a diffraction ring under load is seen as a noticeable 

fluctuation (termed “wiggle”) in the normally straight line of the Q vs. chi polar plot (see 

Figure 2). Using a program developed in MATLAB®, a Gaussian fit was used to 

determine the location of the high intensity points of the wiggle (Figure 3), the magnitude 

of the intensity, and the width of the intensity curve. The resulting Q and chi coordinates 

of the intensity peaks were then transformed into the psi and phi coordinates used in the 

standard sin2Ψ technique [1]. These calculated values were then used to generate the 

coefficients for the strain tensors equation according to: 
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And the change in d is the displacement of the sample as it stretches under strain. For 

each load level, the MATLAB® program takes data from all the diffraction patterns as 

output by Fit2D and then uses the collective data points from each strain level in a least-

squares fit, weighted by widths provided by the intensity curves, to solve for the second 
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order strain tensors (εij) as well as generate the error values for each calculated tensor. 

This process was then repeated for each of the three diffraction rings produced by BCC 

iron. 

Results 
 

The strain tensor data for each ring at each load level was tabulated (see Table 4,5,6) and 

for each ring the calculated strain tensor in the ε22 direction (the load axis of the dog bone 

sample which will demonstrate the most dramatic stain) was plotted in Origin against the 

stress at each load level as demonstrated in Figure 4. Assuming the elastic deformation is 

linear with stress and strain, a linear fit of the strain data was taken for each ring. The 

slope of this fit provided the elastic modulus along each crystallographic direction.  

The theoretical values for the elastic modulus along each of the crystallographic planes of 

the BCC iron were calculated using: 
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Where l1, l2, l3 are the direction cosines for the particular lattice plane as given in Table 1, 

and the s values are the stiffness constants specific to a given material, shown in Table 2 

for iron. 

These values are compared to the single crystal values for the elastic modulus in the 

chosen crystallographic directions in Table 3. 

 

Discussion 
 

The tabulated values for the strain tensor data demonstrate what is expected in terms of 

sample deformation along particular axes. As the strain increases in the ε22 direction, the 
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strain values in the ε33 become negative as would be expected from a material elongating 

in one direction while contracting in the other direction. 

 The data as plotted in the ε22 graph produces a pretty good linear fit, providing credible 

elastic modulus values along the different crystallographic directions. The error bars on 

the individual points, while present, are too small to be noticeable demonstrating a high 

confidence in the method developed for obtaining strain from 2D diffraction pattern. 

However, the plotted ε22 data sets and fitted lines do not have intercepts at zero because 

their location on the y-axis depends on the particular unstrained lattice spacing (d0). The 

data was manually shifted closer to the origin to compensate for the inaccurate estimation 

of d0 values. Ideally the actual d0 value could be determined by analyzing calibration 

parameters. In any case, the shifted data does not impact the calculation of the elastic 

modulus for the different lattice directions. 

 The measured values for the elastic modulus along the three crystallographic directions 

are surprisingly dissimilar from each other, and similar to the single crystal values. In 

fact, the measured value for the (211) plane is exceptionally close to the single crystal 

value. Rather than exhibiting the behavior expected by continuum mechanics—including 

the averaging out of strain values as the material was stretched—such a correlation 

indicates that in the polycrystalline sample used the strain is distributed along the 

different crystallographic directions in highly anisotropic manner. Thus, although the 

sample is polycrystalline, the high anisotropy of the crystallographic orientations of iron 

has a large effect as the sample reacts to stress.  

Such a conclusion is problematic because this high anisotropy would seem to indicate 

that the crystalline structure would deform differently in the same direction depending on 
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crystallographic orientation resulting in discontinuities between grains in the material, if 

they are not accommodated by a secondary mode of strain distribution.  But the loading 

procedure utilized is supposed to result in purely elastic – single mode deformation. 

Certainly continuum mechanics is proven on a larger scale, and the degree of anisotropy 

demonstrated indicates that more research must be done to determine by what mechanism 

crystalline structures distribute strain to accommodate the anisotropy observed here while 

still demonstrating elasticity. 
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Figure 1. Diffraction pattern for BCC iron highlighting the three analyzed rings. 

 
Figure 2. Results of Fit2D coordinate transformation of diffraction pattern to Q/chi space. a) the 
transformed pattern of an unstrained sample b) the pattern from a strained sample 
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Figure 4. Stress-strain plot for each crystallographic plane along the principle loading direction.
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Comment [DJB1]: Parenthesis when 
talking about planes, brackets when 
talking about direction. 


