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Abstract
Al temperatures above the weak phase transition, baryon and lepton number

are badly vioiakd.  We explore the suggestion that the baryon asymmetry might
be produced at lhe transition, if the transition is first order. We find that the
asymmetry is proportional to a CP violating parameter, a large power of the gauge
coupling and to factors which depend on the details of the transition. In extensions
of the standard model, such as multi-Higgs  or supersymmetric models, the result
may be consistent with observations.
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It has long been known that baryon and kpton number are not conserved in
the standard model, as a consequence of anomalies.’ States of dillerent baryon
number are smoothly connected toone another through dillerent conliguralions
of the gauge and Higgs  fields, sebrated by a potential barrier. At extremely
low temperatures, baryon number violation, being a tunneling phenomenon in a
weakly coupled theory, is highly suppressed. On the other hand, in the last few
years, it has become clear that baryon number is badly violated al temperalures
much above Mw (D - L is conserved).)-s Indeed, once the temperalure is large
compared to Mw, the syslem is well described by classical statislical mechanics.
At temperatures below the weak phase transition, the lowest energy barrier is
associated with the “sphakron”, a Eniteenergy aolulion of the classical equations d
motion with a single negative mode.) The rate for barrier penetralion is essentially
the Boltzmann factor for this configuration, which, using the computed values of
the sphakron energy, yields a rate

rNC-3
where LI is a number which depends rather weakly on the Iliggs mass, varying
between about 3 and 6. Above the weak phase transition, the situation is more
complicated. The classical thermodynamics of the system is quivalent to a three
dimensional field theory with no small dimensionless paramekr. On dimensional
grounds, however, the rate must be given by

r = r(owT)‘. (2)

A recent simulation gives K = 0.01 - I.‘ Whik no single classical conliguralion
dominates this rate, we can give a heuristic description in terms d instanton lra-
jectories  which will be useful. It is generally believed that the three dimensional
field theory has a mass gap, QQ~VT, where a is a number of order unity. Corre-
spondingly, the correlation length of the high temperature theory (the so-called
magnetic screening length) is C = (oawT)-‘. Consider now instantons in the high
temperature theory. Tluwe will exist with arbitrary scale size, from p = 0 to p AI C.
The instanton represents a particular tunneling trajectory through configuration
space. The barrier height associated with such a trajectory is necessarily 01 the
form E, = A- where c Nowp’ I. Ckarly, then, the smallest barriers are mi-
ated with the largest possible values of p, i.e. p N t. Such a cot~kguraliou  has a
Uoltzman  factor of order unity, while the prefactor is of order C-‘.

The large rate of haryon number violation has important implicalions for any
baryon nnmber produced at very early times. For example, il IIO uct U - L is
produced, the baryon (and lepton) numbers will contplctcly disappear. It also



raisea the intrir;uing  possibility that the observed baryon number could arise at_ .~
temperaturar of order the scale of weak interactions. This could have significant
implkatba  for our understanding of cosmology. In particular, in inflationary
models, one usually requires significant reheating after inflation in order to produce
buyons. This would not be necessary if baryons could be produced at such low
temperatures.

The pomibility  that the baryon ssymmelry might be produced al the weak
phm transition was first discussed by Kusmin, Rubakov and Shaposhnikov,3  and
has been must extensively explored in subsequent papers of Shaposhnikov and
collaborators.’ Other important works on the subject are those of McLerran,s
‘Arrok sad Zadroxny,’ snd of Cohen, Kaplan and Nelson.r” The main point is
tbat if the phe transition in the Weinberg-Sakrn model is al kasl mildly first
order, then the three conditions enumerated by Sakharov” -y lo obtain
a net asymmetry are satisfied. Buyon violation is provided by the SU(2) gauge
interactions themselves. CP violation is already present in the standard model, and
exknsions of the standard model, such as multi-Higgr systems, supersymmetry or
technicolor tend to yield much larger violations of CP. Deviations from equilibrium
will automatically arise if the transition is first order.

Many of the specific proposak which have been made for the origin of the
baryon asymmetry at the weak phass transition have been based on the minimal
standard model. It is clear from the start, however, that unless the dynamics of
the bigh temperature theory exhibits certain birarre features,’ CP violation in this
theory is simply too small to yield anything like the observed ssymmetry, what-
ever the details of the phase transition might be. Moreover, as recently stressed
in ref. 12, there is another alrong constraint on any such picture of baryon num-
ber production, which rules out the minimal standard model. Once the phase
transition is compkkd, the Higgs field will have some expectation value 41. The
corresponding sphakron  (ha-) energy is proportional to 41. If 41 is too small,
the spbakron rate will be larger than the expansion rak aud any baryon number
produced during the phass transition will be washed out. This almost certainly
rquirar that the Higgs bosou be su light that it would have shown up in recent
LEP experiments.

Since there are numerous possibk extensions of the standard model, it is nec-
emary to make simplifying assumptions. Those we make here are not, we believe,
essential; our analysis is easily extended to a wide variety of situations, includingsu-
persymmetry, technicolor, and multi-Higgs theories. In particular, we will assume
in the discussion which follows that the new physics responsibk lor CP violation
is associated with energy scales large compared lo T,, the transition temperature,
and that the elkctive theory at T, contains the usual quarks and leptons, and a

Higgs doublet, 4. For reasons which will become ckar shortly, we will also sllow
lor the pauribility  of au additional scalar singlet, s. In the effective lagrangian, CP
will be broken not only by the usual phase in the KM matrix, but also by various
non-renormalixable operators. We will focus on the dimension-six operalor7~’

Here js is the baryon current, and we have used the auomaly equation. In theories
with singlets, we will consider the dimension-5 operator

0' = &&*jp. (4)

in the minimal supemymmetric standard model, for exampk, 0 would be generated
al one loop by a diagram with gruginar and higgsincw in the iakrmediate elate.
& would thus be of order sume combination d CP violating phases, 6, divided by
some typical supersymmetry  breaking mam-squared. There are no strong limits on
6. In a non-minimal supersymmetric model with a compkx gauge siagkt geld, S,
s could be some component d tbis geld. It could possess tree kvel, CP violating
couplings to the higgsino fields. The coefficient, b, would be d order 6 divided
by a super-symmetry breaking mus.

Already, we can ICC the poteolial for buyon number creation. ladeed, cousider
two extreme cases. First, supposs  the Higgs field is changing very slowly with lime,
so that the system can respond adiabatically, in the seuse that at each irmlanl the
baryon number violation rate, I’(d,T), is that appropriate to the value d the
temperature and Higgs held at tbat monenl. Since the dominant p- are
sssociated with gauge barou wavelengths d order t, rapid chauge mearu change on
a lime scale much shorter than <. For small 4 (gd < awT), I’ is unknown. Since
r falls exponentially for & ) o?‘, a simple model for l’ is to talre J’ = (owT)'
for g# < owT and F = 0 for larger d! At each instant, the system will tend
to that value of the baryon number which minimires the free energy. The CP
violating operator corresponds to a term in the free energy linear in the baryon
number or the corresponding chemical potential. (This is a realisation d the idea
of “spontaneous baryogenesis.“” ) We are interested in the minimum of the free
energy, ni, subject to the constraint that all of the doublet species have equal

I For large 4, the rate baa been computed in ref. 13. For rn~ - my, ud emall 4, their  rault
is similar to the # = 0 rem& with IC - I.
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densities. For three generations, an elementary calculation gives

43 = &&J,“2, “og = -T2 i&s’12M

for the doublet or singlet case, respectively. The baryon number then obeys an
equation

dne- = -181’TB3(nr,  - nt)di

which can be obtained from considerations of detailed balance.3e4 Because of the
four powers of a~ appearing in f, we can neglect ng relative to nk, on the right
hand side of this equation, provided 9 is large enough. We will see shortly that
this is the case for a broad range of model parametem. Substituting our expression
for nk, and using our simple model for f yields for the baryon number

3a6w T’
nB - a292M2

Here, in the singkt came we have assumed that gS N aT when baryon violation
turns off: These numbers need not be so small. In the singlet case, if we suppose
the CP violating phe is of order one, and M’ N T, then the baryon to photon
ratio is of order IO-s! In models with only doublets, this result is suppressed by
an additional power of a~. These estimates are rather rough. It is already clear,
though, that potentially one can obtain a baryon asymmetry as large as that which
is observed.

If nk in changing much more elowly in time, nB(t) w n;(f) until I’ becomes
exponentially small. In this case, one obtains a result suppressed by more powers

’of aw, due to the time derivative in nB. The extreme case of this type arises if
the transition is second order. Then the asymmetry is suppressed by the Hubble
constant.3

Before describing the case where the transition occurs suddenly, it is helpful
to understand these results in another way. Consider the operator 0 written in
the form containing Fp. As in our heuristic discussion above, consider a single
instanton trajectory, and treat the usual instanton time, T, as parameterizing a
path in configuration space. T = 0 corresponds to the top ol the harrier. If we

replace the gauge field in the lagrangian by its claaaical  value as a function of t,
then we obtain a lagrangian for r for small r of the form

4r 46 2qr, i) ‘F Cl -2 + --t
!J2P g2Pj

where p w e is the instanton scale size and cl and 61  are coefficients of order unity.’
For small 7, 0 has the form

IOI’ +
O=olM24rrp (9)

and similarly for 0’. In the adiabatic limit, where the field 6 ia essentially constant,
r and i will be Boltcmann distributed at each instant. The canonical momentum
receives a +dependent contribution from 0, eq. (9). This has the effect of slrew-
ing the velocity distribution, giving rise to an exceso flux over the barrier in one
direction. Because of the anomaly, this corresponds to a net production of baryons
or antibaryons, depending on the sign of 6. Proceeding in this way one obtains a
rate equation of the form eq. (6). In particular, this heuristic argument givea the
correct dependence on aw .

This picture is readily adapted to the case where the field 4 changes suddenly.
Despite the fact that this corresponds to a more violent departure from equilibrium,
it doea not in general lead to a much larger production of baryons. Before the
transition, one haa a Boltrmann distribution for r and i , and this distribution
remains essentially unchanged as 4 changes. However, the system receives a “kick”
from the sudden change in 4. In the time 4 changes from 0 to 60, the value at
which baryon number violation turns off, the velocity changes by an amount:

w

Ai has a definite sign. If it is large compared to the initial velocity, it will send
the system over the barrier in the direction corresponding to the production of
(say) baryons rather than antibaryons. If it is small compared to this velocity, it
will have no effect on the baryon number. The fraction of the distribution with
velocities,  i < Ai, is simply of order Ai. If AI is the time it takes for the Higgs

l Whether or not this is the case depends on the details of the phase transition, One can
easily imagine that S - I#, for example.

1

t There is some arbitrariness in these definitions, since the result depends on the gauge
choice for the instanton. llere we have indicated the factor of 41 coming from the angular
integration. The constant will depend upon the gattge  choice.
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field to rise to & over a correlation volume, [ -3, the final baryon number is of
order the product of this fraction, Al, and I’:

Here we have attempted to keep track of g’s and h’s, but not (unknown) coeffi-
cients of order unity. We will 8ee shortly that g#s - aT, so only if Af - ,$ is this
result comparable to that obtained in the “adiabatic” case. A similar expression
holds in the case of the operator 0’. The picture described  here is close to that
described in ref. 9, where the behavior of certain particular field configurations is
considered.

In order to actually determine the baryon number produced in this rapid ca8e,
we need to determine how the baryon number violating procem turns off as the
Higgs field changes. In this case, in contrast to the adiabatic case, where the boson
distributions ldlow the instantaneous value of the Higgs field, the distribution
remains essentially unchanged from its initial value. Consider the system in a box
of sire of order 4. For wavelengths of order C, the gauge fields obey an equation of
theforal

(a: +c-2 + (g4)2)A,(t)  = (c-)A2,c-3A3). 02)

Thue ior 4 = 0, the system become8 non-linear for A - Cf. If we examine eq. (12),
however, we see that for such A,,, the equations become linear once g# > oawT.
At thii point, no further passage over the barrier can occur; the barrier ha8 simply
“grown” and there is not enough energy available in these modes. Thus the proce.ss
turns otT both for slow and rapid changes in 0 at about the same value of 4. In :
each case, the relevant value of the Higgs field is very small.

It is worth commenting here on our assumption that the scale of CP violation is
large compared to Tt. Clearly this is not essential to the analysis. Indeed, T, cannot
be too much smaller than this scale if one is to obtain a large enough asymmetry.
If T, is as large or larger than this scale, then it ia necessary to include additional
fields. Study of particular examples indicates that these fields in some c~ lead
k further supprerreion of the asymmetry, but in many instances one obtain8 a good
estimate by replacing the masses which appeared in our formulae above by T,. T,
itself is constrained by the requirement that the baryon violation rate be extremely
small after the phase transition. More detailed analysis of particular models will
appear elsewhere.

We now have all the ingredients to estimate the baiyon asymmetry, once the
behavior of the Higgs field is known as a function of time. In a first order phase
transition, baryon number will be produced near the bubble wallu, where the iliggs

field is changing in time. In order to compute the asymmetry, it is thus necessary to
kuow about the shape aud velocity of the walls. We will leave a survey of different
models for a future publication. Here we simply illustrate some of the possible
behavior8 by considering the minimal standard model,16  even though this cannot
be a realistic model of baryon generatipn. For Higgs mm smaller than mu,
the transition is first order. The effect’ive potential for the 0 field a8 a function
of temperature is given by, for small self-coupling A and setting sin’Bw = 0 to
simplify the writing:

38V(4, T) = M’(T)d’ - ST43 + Ad’

where M2(T) = g - m2. When the phase transition occurs, the coefficient of
the quadratic term is extremely small, M2(T) - q; otherwise the pokntial has
only a minimum at the origin. We can make a crude estimate of the bubble wall
velocity and size (well after the bubble f&me) by requiring that in the rest frame
of the wall, the pressure is constant. This pressure receives an extra contribution
from the motion of the gas in this frame. The momentum change of a particle
passing through the wall can he estimated by assuming that the particle’s energy
is conserved, while its mass changes due to the change in 4. This gives uf - s,
where AP and AE are the changes in pressure and inkmal energy across the
wall. From eq. (13), u2 - $. The shape of the wall can be inferred from similar
considerations. For small 4, one finds 4 - c~(~-“(), where M - ($)kT.  As a
result, if A is not too small, the scalar field is changing rather slowly in space and
time and the system is in the’adiabatic regime described earlier. On the other hand
for such a field, ni is changing quickly enough that the approximations leading to
eq. (7) are valid. As one increasea A, and the transition become8 more second order,
the amount of baryon number is reduced; decreasing A brings us to the “sudden”
regime. Considerations of this type apply as well to the minimal supersymmetric
standard model, where the quartic coupling8 are of order g’, and the scalar rnw
are of order Mw.

In other models, the transition might be strongly first order, with bubbles
expanding at nearly the speed of light, and with a wall of microscopic dimensions.
This is the regime of rapid change of the Higg8  field. Here what is needed is an
estimate of the time At, appearing in eq. (1 I), required for the sero momentum
mode of the field in a correlation volume, t3, to reach #so. In a multi-H& model,
we might expect this time to be of order a timessome microscopic (mam) parameter
in the Iagrangian. Since the characteristic time for baryon violation is rather long
(0, this ruay be a source of additional suppression.
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In sum, it seems quite reasonable to think that the baryon number of the
universe was created at the electroweak phase transition, in some modest extension
of the standard model. There are large uncertainties in the calculations described
here, however, particularly in the actual calculation of the rate f. Detailed studies
of the phase transition in particular models are also essential, including not only
the structure of the bubble wall but also flow of baryon number across the wall.
One should also reconsider models such as that of ref. IO, in which there are other
sources of lepton number violation in the theory, but in which the mechanisms
described here may also operate efficiently.
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