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Abstract. This review presents noncommutative spacetimes as one of the approaches to Planck scale
physics, with the main assumption that at this energy scale spacetime becomes quantized. Spacetime
coordinates become noncommutative as observables in Quantum Mechanics. The basic elements of
Drinfeld twist deformation theory are reminded. The Hopf algebra language provides natural framework
for deformed relativistic symmetries which constitute Quantum Group of symmetry and noncommutative
spacetime is in fact Hopf module algebra. The notion of realization for noncommutative coordinates in
terms of differential operators is also presented.

1. Introduction
The so called ”Planck scale” is the scale at which gravitational effects are equivalently strong as quantum
ones and it relates to either a very big energy scale or equivalently to a tiny size scale. There are many
theories trying to consistently describe that region. One of the possible assumptions is that below Planck
scale spacetime has more general structure, a noncommutative one where (as with quantum mechanics
phase-space) uncertainty relations naturally arise. A natural quantization of manifolds can be described
in the language of Noncommutative Geometry. Motivation for this fact starts with Gelfand-Naimark
theorem [1] which states that there is a one-to-one relation between certain commutative algebras and
certain spaces. One can say that the idea of Noncommutative Geometry is to consider noncommutative
algebras as noncommutative geometric spaces, i.e. to algebralize geometric notions and then generalize
them to noncommutative algebras. Minkowski spacetime can be seen in that picture as well.

Geometrically Minkowski spacetime is a 4-dim affine space over vector space equipped with a
nondegenerate, symmetric bi-linear form with Lorentzian signature ηµν. The position of an event in
spacetime is given by point p = (x0, x1, x2, x3).

However, algebraically Minkowski ”spacetime” is an Abelian algebraA = x4 of coordinate functions
xµ(p) on 4-dim real vector space described by commutation relations: [xµ, xν] = 0. Algebra A = x4 ≡

Poly(xµ) ≡ C[x0, . . . , x3] of spacetime coordinates xµ.
At the Planck scale classical Minkowski spacetime (as commutative algebra) becomes quantized and

it is described by noncommutative algebra, i.e. xµ → x̂µ. We get in such a way noncommutative model
of quantum space-time [xµ xν] = 0 −→ [x̂µ x̂ν] , 0. For example one can get the so-called Moyal-Weyl
(θ) spacetimeAθ [2],[3] described by:

[x̂µ, x̂ν] = ihθµν (1)

with the deformation parameter h which is of length2 dimension and it is usually related with Planck
length LP. Another option is to consider the so-called Lie-algebraic one

[x̂µ, x̂ν] = ihθµνρ x̂ρ (2)
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deformation parameter h of mass dimension which could correspond, e.g. to Planck mass or Quantum
Gravity scale. Its special example is the so-called κ-Minkowski spacetimeAκ [4],[5]:

[x̂0, x̂k] = ihx̂k; [x̂i, x̂ j] = 0 (3)

(where one usually takes h = 1
κ , hence the name of this type of noncommutative spacetime). Those two

types (Aθ and Aκ) of noncommutative spacetimes have been widely investigated in the literature, since
via the deformation parameter, e.g κ ∼ MP, they can be naturally connected with the Planck scale regime.

In general such noncommutative algebras can be obtained via deformation procedure from
commutative ones. Quantum deformations, which lead to noncommutative algebras (as noncommutative
spacetimes), are connected with the Quantum Groups (Hopf algebras) formalism, which constitutes
the description of deformed symmetries. Quantum Group as generalized symmetry is described as
Hopf algebra H(m, η,∆, ε, S ). It is composed by an unital associative algebra (H ,m, η) and counital
coassociative coalgebra (H ,∆, ε). ∆ and ε are algebra homomorphisms, m and η are coalgebra
homomorphisms. The simplest example of Hopf algebra is provided by universal enveloping algebra for
given Lie algebra g. The universal enveloping algebraUg can be equipped with the primitive coproduct:
∆0(u) = u ⊗ 1 + 1 ⊗ u, counit: ε(u) = 0, ε(1) = 1 and antipode: S 0(u) = −u, S 0(1) = 1, for u ∈ g,
and extending them by multiplicativity property to the entire Ug. Recall that the universal enveloping
algebra is a result of the factor construction Ug = Tg/Jg where Tg denotes tensor (free) algebra of the
vector space g quotient out by the ideal Jg generated by elements 〈X ⊗ Y − Y ⊗ X − [X,Y]〉: X,Y ∈ g.
Noncommutative spacetimeA in this framework is a Hopf module algebra over Hopf algebraH with the
(left) module action . : H ⊗A → A; L . f of L ∈ H on f ∈ A satisfying: L . ( f ·g) = (L(1) . f ) · (L(2) .g)
(for more details see, e.g., [6, 7]). One usually says that such noncommutative spacetime stays in this
way invariant under quantum group of transformations in analogy to the classical case.

Hopf module algebras and the Hopf algebras can be deformed e.g. by relevant twisting element which
leads to noncommutative spacetime as covariant quantum space over deformed group of symmetry. For
Hopf algebraH , we can consider the twisting two-tensorF (the so-called Drinfeld twist), as an invertible
element inH ⊗H such that:

F = fα ⊗ fα ∈ H ⊗H and F −1 = f̄α ⊗ f̄α ∈ H ⊗H (4)

As a result of deformation quantized Hopf algebra HF has non-deformed algebraic sector
(commutators), while coproducts and antipodes are subject of the deformation:

∆F (·) = F∆(·)F −1, S F (·) = uS (·)u−1, (5)

where u = fαS (fα). F satisfies the 2-cocycle and normalization conditions [8, 9]:

F12(∆ ⊗ id)F = F23(id ⊗ ∆)F , (ε ⊗ id)F = 1 = (id ⊗ ε)F , (6)

which guarantee co-associativity of the deformed coproduct ∆F and associativity of the corresponding
twisted star-product in the twisted module algebraAF :

f ? g = m ◦ F −1 . ( f ⊗ g) = (f̄α . f ) · (f̄α . g) (7)

for f , g ∈ A and the Hopf action . remains unchanged. AF can be represented by deformed
?−commutation relations

[xµ, xν]? ≡ xµ ? xν − xν ? xµ = ihθµν(x) ≡ ıh(θµν + θ
µν
λ xλ + . . . ) (8)

replacing the nondeformed (commutative) one: [xµ, xν] = 0 where the coordinate functions (xµ) play a
role of generators for the corresponding algebras: deformed and nondeformed. Instead of [xµ, xν]? one
sometimes writes [x̂µ, x̂ν], as in e.g. (1) or (3).
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From the general framework [8], a twisted deformation of Lie algebra g requires a topological
extension of the corresponding enveloping algebra Ug into an algebra of formal power series Ug[[h]]
in the formal parameter h, providing the so-called h-adic topology (see e.g., [6, 7, 9]), it is mainly due
to the fact that twisting element has to be invertible. The Hopf module algebra A has to be extended by
h-adic topology to A[[h]] as well and then deformed into AF [[h]]. There is a correspondence between
twisting element, which can be rewritten as a power series expansion

F = 1 ⊗ 1 +

∞∑
α=1

hα fα ⊗ fα and F −1 = 1 ⊗ 1 +

∞∑
α=1

hα f̄α ⊗ f̄α, (9)

fα, fα, f̄α, f̄α ∈ Ug; h is deformation parameter, and classical r-matrix r ∈ g ∧ g satisfying classical
Yang–Baxter equation and universal (quantum) r-matrix R:

R = F 21F −1 = 1 + hr mod
(
h2) (10)

satisfying quantum Yang–Baxter equation. Classical r-matrices classify non-equivalent deformations.
We distinguish between two types of the classical r-matrix:

1) Abelian one, if it has the form

rA =

n∑
i=1

ai ∧ bi (11)

where all elements ai, bi (i = 1, ..., n) commute among themselves. The corresponding twist is given as
follows

FrA = exp(
1
2

rA). (12)

2) Another situation appears when the classical r-matrix r = rJn
(h) has the form

rJn = h
( n∑
ν=0

bν ∧ aν
)
, (13)

where the elements aν, bν (ν = 0, 1, . . . , n) satisfy the relations

[a0, b0] = b0, [a0, ai] = (1 − ti)ai, [a0, bi] = tibi,

[ai, b j] = δi jb0, [ai, a j] = [bi, b j] = 0, [b0, a j] = [b0, b j] = 0,
(14)

(i, j = 1, . . . , n), (ti ∈ C). Such an r-matrix is called of Jordanian type. The corresponding twist is given
as follows (see e.g. [10])

FrJn
= exp

(
h

n∑
i=1

ai ⊗ bi e−tiσ
)

exp(a0 ⊗ σ) , (15)

where σ := ln(1 + hb0).
One can notice that the zero component rJ0

(h) := hb0 ∧ a0 in (13) is the classical Jordanian r-matrix
and the corresponding Jordanian twist is given by the formula (15) for n = 0, i.e. FrJ0

= exp(a0 ⊗ σ)
(and this shorter form will be used later on).
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2. Quantum symmetries
The Poincaré symmetry is the full symmetry of special relativity and it includes translations, rotations and
boosts. Algebraically it is described by the Poincaré Lie algebra (Lorentz generators Mµν and momenta
Pµ), usually denoted as iso(1, 3), and defined by the following commutation relations

[Mµν,Mλρ] = i
(
Mµληνρ − Mµρηνλ − Mνληµρ + Mνρηµλ

)
, (16)

[Mµν, Pλ] = i
(
Pνηµλ − Pµηνλ

)
, (17)

[Pµ, Pν] = 0, (18)

where ηµν is the metric tensor with Lorentzian signature. As it is known (and shown above) any Lie
algebra provides an example of undeformed Hopf algebra. First one has to extend it to universal
enveloping algebra and then equip it in comultiplication, counit and antipode maps. Therefore, the
universal enveloping algebra of the Poincaré Lie algebraUiso(1,3) together with

∆0Mµν = Mµν ⊗ 1 + 1 ⊗ Mµν and ∆0Pµ = Pµ ⊗ 1 + 1 ⊗ Pµ (19)

S (Mµν) = −Mµν; S (Pµ) = −Pµ; ε(Mµν) = ε(Pµ) = 0 (20)

defined on the generators and then extended to the whole Uiso(1,3) constitutes the undeformed Poincaré
Hopf algebra. Such Quantum Group can be further deformed.

First deformations of Poincaré symmetry appeared in the early 90’s. The simplest is the so-called
θ-deformation corresponding to the Moyal-Weyl noncommutative spacetime (1) and it can be obtained
by twist deformation:

F = exp
(
−

i
2

hθµνPµ ⊗ Pν
)

; F −1 = exp
( i
2

hθµνPµ ⊗ Pν
)

(21)

where θµν is a constant antisymmetric matrix. We say that this twist has support in Poincare algebra, i.e.
F ∈ Uiso(1,3) ⊗Uiso(1,3). After twisting the Hopf algebra structure becomes twisted Poincaré algebra:

∆θ

(
Pµ

)
= ∆0

(
Pµ

)
; ∆θ

(
Mµν

)
= ∆0(Mµν) − h(Pθ)µ ∧ Pν + h(Pθ)ν ∧ Pµ (22)

where (Pθ)µ = Pρθρληλµ. One can easily notice that for the deformation parameter h � 0 the coalgebra
becomes undeformed (19) as classical limit should provide. It has been shown (e.g. see [3]) that the θ-
spacetimeAθ (1) stays covariant under θ- deformed version of the Poincaré quantum group. The module
algebra A is also deformed accordingly into AF = Aθ (the module action stays the same). In Aθ we
have new (?) multiplication (7) which leads to the algebra described by (1).

The other type deformation (not coming from twist) is provided by the so-called κ-deformation of
Poincaré algebra [11, 12, 13] which originally was obtained by contraction procedure from q-deformed
S Oq(3, 2). In the deformed case the κ−PoincaréUiso(1,3)

κ algebra consists of (16) - (18) as in undeformed
case but coalgebra structure is no longer primitive and has the form:

∆κ (Mi) = ∆0 (Mi) = Mi ⊗ 1 + 1 ⊗ Mi, ∆κ (Ni) = Ni ⊗ 1 + Π−1
0 ⊗ Ni −

1
κ
εi jmP jΠ

−1
0 ⊗ Mm (23)

∆κ (Pi) = Pi ⊗ Π0 + 1 ⊗ Pi, ∆κ (P0) = P0 ⊗ Π0 + Π−1
0 ⊗ P0 +

1
κ

PmΠ−1
0 ⊗ Pm, (24)

S κ(Mi) = −Mi, S κ(Ni) = −Π0Ni −
1
κ
εi jmP jMm, S κ(Pi) = −PiΠ

−1
0 (25)

The counit ε is undeformed, i.e., ε(A) = 0 for A ∈ (Mi,Ni, Pi). We have used the notation:

M0i = iNi; Mi j = εi jkMk; Π0 =

(
P0
κ +

√
1 − PµPµ

κ2

)
.
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Such quantum group constitutes deformed symmetry for κ-Minkowski spacetime defined by the
commutation relations (3). The above Hopf algebra is given in the so-called classical basis [14], but
there exist other bases in which κ-Poincare algebra looks different and even the commutation relations
are modified (are no longer of (16) - (18) form). For the so-called bicrossproduct basis see e.g. [13]
or for the so-called standard basis see e.g. [11]. Depending on the purpose of application one can
use different forms of this quantum group, for example in κ-deformed quantum field theories (see e.g.
[15]), doubly special relativity (see e.g. [16]) or in the most recent relative-locality effect (see e.g. [17])
the bicrossproduct basis form was used the most extensively. κ -Minkowski spacetime defined by the
relations (3) constitutes a Hopf module algebra over κ-Poincare algebra defined by (16) - (18), (23) -
(25).

The κ -deformation of Poincaré algebra is characterised by the inhomogeneous classical YB equation,
which implies that one should not expect to get κ−Minkowski space from a Poincaré twist. However,
twists belonging to extensions of the Poincaré algebra are not excluded, e.g. one can consider the twists
with the support in Uigl [18, 19] or in the Weyl-Poincaré algebra [20, 21], the minimal one-generator
extension of the Poincaré algebra which includes dilatation generator. For those twists we also obtain
κ-Minkowski spacetime (3) however no longer as κ-Poincare module algebras, i.e. with different Hopf
algebra as quantum symmetry.

3. Realizations and representations
Another commonly used feature in the noncommutative spacetimes approach is the realization for the
noncommutative coordinates. One can express noncommutative coordinates as operators acting on
algebra of functions in analogy to Quantum Mechanics when observables of position and momenta
become operators on a Hilbert space. The Heisenberg algebra (i.e. quantum mechanical phase space) H
can be defined as a free algebra of n coordinate generators and n generators of momenta, satisfying the
following relations: [

xµ, xν
]

= 0;
[
Pµ, xν

]
= −iηµν · 1;

[
Pµ, Pν

]
= 0; (26)

where ηµν = (−,+,+,+) is diagonal metric tensor with Lorentzian signature.
Now for example let’s consider g = igl(n,R) = gl(n,R) B tn of the inhomogeneous general linear

group as a semidirect product of gl(n,R) with translations tn. We choose a basis Lµν , Pµ ∈ igl(n,R) with
the following standard set of commutation relations:

[Lµν , L
ρ
λ] = −iδρνLµλ + iδµλLρν , [Lµν , Pλ] = iδµλPν (27)

µ, ν, . . . = 0, . . . , n − 1 igl(n,R) as Lie algebra acting on A (algebra of (complex-valued) functions on
the spacetime manifold M = Rn) via first-order differential operators (derivations ≡ vectors fields). It
has the following realization: Lνµ = xνPν 1. The action of differential operators on functions induced by
derivations (vector fields) remains the same in deformed and nondeformed cases.

Therefore by defining the map Lνµ → xνPν which is a Lie algebra isomorphism we obtain ”Heisenberg
algebra realization” ofUigl(n). Moreover the Heisenberg realization described above induces Heisenberg
representation via Pµ = −ı∂µ = ı ∂

∂xµ ; Lνµ = −ıxν∂µ acting in the vector space C∞(Rn) 2.

In noncommutative spacetimes approach the noncommutative coordinates can be introduced as
operators acting on algebra of functions as well. It comes from the fact that the twisted star product

1 We will use the same letter to denote an abstract element in igl(n) and its (first-order) differential operator realization in XM
(i.e. assuming the embedding of the Uigl(n) ↪→ UXM).
2 The best known representations are given on the space of (smooth) functions on Rn in terms of multiplication and
differentiation operators. For this reason one can identify Heisenberg algebra with an algebra of linear differential operators on
Rn with polynomial coefficients.
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enables us to ’realize’ the algebraAF in terms of (formal) differential operators on a manifoldM, i.e. in
algebra of vector fields XM. Operator realizations are naturally defined by x̂ ∈ UXM:

x̂µ = xµ +

∞∑
m=1

hm(
f
α
. xµ

)
· fα (28)

which can be written also as x̂µ(g) = xµ ? g, g ∈ A.
Summarising, one can say that we deal with the realization of given algebra in space of linear

operators over h, i.e. L (h) (where h is the Hilbert space) when we determine homomorphism from
one algebra to another. Hence the name, e.g. ”Heisenberg algebra realization”. When linear space is
determined we speak about representations (for more detailed analysis and examples, see e.g. [22]).

For example in θ-deformation (corresponding to θ-twist (21)) the (Heisenberg) realization for
coordinates is the following:

x̂µ = xµ −
1
2

hθµνPν (29)

One can easily check that such coordinates xµ satisfy commutation relations (1) by using only (26).
The noncommutative κ−Minkowski space (3) also can be realized in terms of generalized differential

operators. In fact there exist a huge amount of such Heisenberg realizations of the κ -Minkowski algebra.
Particularly important is the so-called non-covariant family of realizations [19, 23, 24]:

x̂i = xiφ(A), x̂0 = x0ψ(A) + ıhxk∂kγ(A) (30)

where A = ih∂0. Functions φ, ψ, and γ are taken to be real analytic obeying initial conditions φ(0) = 1 and
ψ(0) = 1, and γ(0) has to be finite in order to ensure a proper classical limit at h 7→ 0. The κ−Minkowski
commutation relations [cf. (3)] are equivalent to the property that functions φ, ψ, and γ do satisfy the
equation [23]:

γ = 1 + (lnφ)′ψ (31)

where φ ′ ≡ dφ
dA There are few examples of twists providing κ-Minkowski spacetime (3) with support in

F ∈ Uigl⊗Uigl for which the realization of noncommutative coordinates fall into the non-covariant class
(see e.g. [18, 19, 20]).

The simplest twist is of Abelian type (F A
s )−1 = exp [−ıh (sP0 ⊗ D − (1 − s) D ⊗ P0)] (with s being a

numerical parameter labelling different twisting tensors) which provides the following realizations for
noncommutative coordinates:

x̂i
s = xie(1−s)hP0 , x̂0

s = x0 − hsxkPk (32)

where D = xkPk in Heisenberg realization. All twists F A
s (for any s) correspond to the same classical

r-matrix: rA = D ∧ P0 and they have the same universal quantum r-matrix which is of exponential form:
R = (F A

s )21(F A
s )−1 = eıD∧P0 . The deformed symmetry algebra corresponding to this twist can be found

in [18, 20, 22]. Some interesting applications for symmetrized version of this twist (for the choice of
parameter s = 1

2 ) were considered e.g. in [25].
Another example of κ-space realizations falling into non-covariant class (30) come from Jordanian

twist: (F J
r )−1 = exp (−Jr ⊗ σr), and have the form:

x̂i
r = xi (1 − rhP0)−

1
r and x̂0

r = x0(1 − rhP0). (33)

where Jr = ı( 1
r xkPk − x0P0) (in Heisenberg realization) with a numerical factor r , 0 labelling different

twists and σr = ln(1 − hrP0) (cf. the remark in point 2) in Introduction). Direct calculations show that,
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regardless of the value of r, twisted commutation relations (8) take the form of that for κ-Minkowski
spacetime (3). The corresponding classical r-matrices are the following:

rJ = Jr ∧ P0 =
1
r

D ∧ P0 − L0
0 ∧ P0. (34)

Again we refer the reader for the full form of deformed Hopf algebra to [20, 22] as quantum symmetry
in this case. It is worth to mention that for the choice of r = −1 we can reduce the symmetry group
from the whole Uigl to the the minimal one-generator extension of the Poincare algebra which includes
dilatation generator, i.e. Poincare-Weyl algebra [20, 22].

Interestingly, for the minimal extension, i.e. Poincare-Weyl algebra there exists also symmetric
version of above Jordanian twist (see e.g. [26, 27, 28]) which can be written in compact way as [28]:

F −1 =

∞∑
m=0

1
m!

(
−

h
2

)m m∑
k=0

(−1)k
(
m
k

)
Pm−k

0 J<k> ⊗ Pk
0J<m−k>, (35)

where J<0> = 1, J<1> = J, J<2> = J(J + 1), ..., and J = xµPµ (in realization) and still [J, P0] = P0.
It provides slightly modified realization for noncommutative coordinates with respect to non-covariant
family (30):

x̂i = xiφ(A); x̂0 = x0ψ(A) + ıhxk∂kγ(A) + ξ (A) (36)

where φ =
(
1 − 1

2 A
)
, ψ =

(
1 − 1

4 A2
)
, γ = 1

2

(
1 − 1

2 A
)

and ξ = ih
4 A. In general ξ (A) could be any function

satisfying ξ(0) = 0 (to provide the classical limit) and still the equation (31) will be satisfied. Which
means that this twist via start product (8) also provides κ-Minkowski algebra Aκ with the commutation
relations (3).

4. Conclusions
The structure of spacetime, at the scale where quantum gravity effects take place, is one of the most
important questions in fundamental physics. Below the quantum gravity scale the symmetry of spacetime
should also be deformed. Noncommutative spacetimes as one of the approaches to the description of
Planck scale physics allow to describe the geometry from the quantum mechanical point of view. At the
Planck scale the idea of size or distance in classical terms is not valid any more, because one has to take
into account quantum uncertainty which naturally arise via noncommutative coordinates. Moreover their
realizations as differential operators play the role of observables.

The aim of the review was to introduce in a compact way the variety of noncommutative spacetimes
and their deformed relativistic symmetries which have been widely used by many authors in the view
of applications in physical theories like quantum field theory or gravity. The deformation of spacetime
requires a generalisation of its symmetry group and one deals with the θ- or κ-Poincare Quantum Group
as well as with twist-deformations of inhomogeneous linear group.
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