
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Quantum Physical Origin of Lorentz
Transformations
To cite this article: R Kerner 2018 J. Phys.: Conf. Ser. 1051 012018

 

View the article online for updates and enhancements.

Related content
Information under Lorentz Transformation
N. Metwally, H. Eleuch and M. Abdel-Aty

-

Twisted Galilean symmetry and the Pauli
principle at low energies
Biswajit Chakraborty, Sunandan
Gangopadhyay, Arindam Ghosh Hazra et
al.

-

A derivation of the Lorentz transformation
based on frequency standards
Aleksandr A Denisov and E Sh Teplitsky

-

This content was downloaded from IP address 131.169.5.251 on 28/06/2019 at 11:32

https://doi.org/10.1088/1742-6596/1051/1/012018
http://iopscience.iop.org/article/10.1088/0253-6102/61/1/05
http://iopscience.iop.org/article/10.1088/0305-4470/39/30/011
http://iopscience.iop.org/article/10.1088/0305-4470/39/30/011
http://iopscience.iop.org/article/10.1070/PU2006v049n08ABEH005864
http://iopscience.iop.org/article/10.1070/PU2006v049n08ABEH005864
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/461219625/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


Quantum Physical Origin of Lorentz Transformations 

R Kerner  

LPTMC, Sorbonne Université-Université Pierre et Marie Curie, Paris, France 

E-mail: richard.kerner@upmc.fr 

Abstract. Our aim is to derive the symmetries of the space-time, i.e. the Lorentz 

transformations, from discrete symmetries of the interactions between the most fundamental 

constituents of matter, in particular quarks and leptons. The role of Pauli's exclusion principle 

in the derivation of the  2 CSL ,  symmetry is put forward as the source of the macroscopically 

observed Lorentz symmetry. Then Pauli's principle is generalized for the case of the 3Z  

grading replacing the usual 2Z  grading, leading to ternary commutation relations for quantum 

operator algebras. In the case of lowest dimension, with two generators only, it is shown how 

the cubic combinations 3Z -graded elements behave like Lorentz spinors, and the binary 

product of elements of this algebra with an element of the conjugate algebra behave like 

Lorentz vectors. 

1. Introduction 
Since the advent of quantum physics, great care was taken to demonstrate that all quantum 

phenomena, once averaged over great number of items, lead to the well known classical limits. The 

existence of such a limit was considered as one of the cornerstones of proper formulation of quantum 
mechanics, and Bohr made the “correspondence principle” a central point in his construction of 

quantum mechanics' basic framework [1]. 

Despite countless attempts, either using the ideas of “hidden parameters”, or along the lines of the so-
called “geometric quantization”, or probabilistic Brownian motion models, a convincing derivation of 

quantum physics from classical models, no matter how sophisticated, was never found. Therefore it 

can be stated now without any doubt left, that quantum physics is primordial with respect to other 

observable phenomena perceived by us on the classical level. 
Seen from this angle, the idea to derive the geometric properties of space-time, and perhaps its very 

existence, from fundamental symmetries and interactions proper to matter's most fundamental building 

blocks seems quite natural. Many of those properties do not require any mention of space and time on 
the quantum mechanical level, as was demonstrated by Born and Heisenberg [2] in their version of 

matrix mechanics, or by von Neumann's formulation of quantum theory in terms of the *C  algebras 

[3]. The non-commutative geometry is another example of formulation of space-time relationships in 

purely algebraic terms [4]. 

In what follows, we shall choose the point of view according to which the space-time relations are a 
consequence of fundamental discrete symmetries which characterize the behavior of matter on the 

quantum level. In other words, the Lorentz symmetry observed on the macroscopic level, acting on 

what we perceive as space-time variables, is an averaged version of the symmetry group acting in the 

Hilbert space of quantum states of fundamental particle systems. 
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Quantum Mechanics started as a non-relativistic theory, [2] but very soon its relativistic generalization 

was created. As an immediate result, the wave functions in the Schrödinger picture were required to 

belong to one of the linear representations of the Lorentz group, which means that they must satisfy 
the following covariance principle: 

         ψ x ψ Λ x S Λ ψ x  . (1) 

The nature of the representation  S   determines the character of the field considered: spinorial, 

vectorial, tensorial, etc.... As in many other fundamental relations, the seemingly simple equation 

         ψ x ψ Λ x S Λ ψ x   (2) 

creates a bridge between two totally different realms: the space-time accessible via classical 
macroscopic observations, and the Hilbert space of quantum states. It can be interpreted in two 

opposite ways, depending on which side we consider as the cause, and which one as the consequence. 

In other words, is the macroscopically observed Lorentz symmetry imposed on the micro-world of 
quantum physics, or maybe it is already present as symmetry of quantum states, and then implemented 

and extended to the macroscopic world in classical limit? In such a case, the covariance principle 

should be written as follows: 

         'μ' μ' μj S ψ j ψ' S j ψ

  . (3) 

In the above formula j    is the Dirac current,   is the electron wave function. 

In view of the analysis of the causal chain, it seems more appropriate to write the same 

transformations with   depending on S : 

       ' '' ' ,x S x S x   

      (4) 

      ' ', ,x S S S x  

     . (5) 

This form of the same relation suggests that the transition from one quantum state to another, 

represented by the unitary transformation S  is the primary cause implying the transformation of 

observed quantities such as the electric 4-current, and as a consequence, the apparent transformations 

of time and space intervals measured with classical physical devices. 
Although mathematically the two formulations are equivalent, it seems more plausible that the Lorentz 

group resulting from the averaging of the action of the  2 CSL ,  in the Hilbert space of states contains 

less information than the original double-valued representation which is a consequence of the particle-
anti-particle symmetry, than the other way round. 

In what follows, we shall draw physical consequences from this approach, concerning the strong 

interactions in the first place. But before considering these, which describe the forces conveyed by 
gluons and acting among quarks constituting hadrons, let us first see how the Lorentz group appears 

through the (2, )SL C  group action on fermions, in particular, on the electron states. 

2. Pauli’s exclusion principle 

The Pauli exclusion principle, according to which two electrons cannot be in the same state with 
identical quantum numbers, is one of the most important foundations of quantum physics [5]. Not only 

does it explain the structure of atoms and the periodic table of elements, but it also guarantees the 

stability of matter preventing its collapse as suggested by Ehrenfest, and proved later by Dyson [8-9]. 
The link between the exclusion principle and particle's spin, known as the “spin-and-statistic 

theorem”, is one of the deepest results in quantum field theory. 

In the case of the electron, it was discovered that this smallest and undivisible carrier of electric charge 
is also endowed with a magnetic moment and the intrinsic angular momentum, called “the spin”, 

which can take on exclusively two values. This explains the structure of electronic shells in atoms, 

where for a given main quantum number n  there exist 22n  different states. The 2n  states come from 

the possibility for the electron with energy state given by n  to take on different magnetic number 
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states, labeled by the magnetic number m  taking values from l  to l , including 0 . Here l  is the 

azimutal number, varying from n  to n . Then, for a given choice of ,  n l  and m , there are still two 

possibilities for the electron spin, which can be found in two states, “up” and “down”. The result is 

well known: the first electronic shell corresponds to the spherically symmetric s -state, with 

0 0 0n , l , m   , so that we have no more than two electrons in the lowest energy shell, with 

opposite spins. The next shell corresponds to 1 1 0 1n , l , ,    and 1,0m , i.e. three magnetic 

states. With two possibilities for spin we get the number of states in this subshell equal to 6, and 

altogether, with the previous shell, 8. The total number of states in all shells will be 22n . 

In purely algebraical terms Pauli's exclusion principle amounts to the anti-symmetry of wave functions 

describing two coexisting particle states. The easiest way to see how the principle works is to apply 

Dirac's formalism in which wave functions of particles in given state are obtained as products between 
the “bra” and “ket” vectors [6]. 

The most important statement concerning the spin of the electron is that two electrons cannot occupy 

the same state, with all quantum numbers equal including spin. If all quantum numbers except the spin 
are equal for two electrons, their spins must be opposed. In one word, if the two opposite spin states 

are created by 

 1 20 1 0 2 .a ,  a   (6) 

Both creation operators are supposed to be nilpotent, 

 1 1 2 20 1,1 0 0 2, 2 0a a ,  a a ,     (7) 

thus making impossible coexistence of two electrons with the same state of spin. 
Let us form an arbitrary linear superposition of two mutually exclusive states. 

 1 2u     (8) 

Such a state is created by the corresponding linear combination of creation operators 

 1 2 .u a a    (9) 

This operator, creating a possible state of an electron, must be also nilpotent, so that 

 
2 0 0u u u u,u   . (10) 

Writing explicitly the square of the linear combination 1 2u λa μa   we get 

 
22 2 2 2 2

1 2 1 1 2 2 1 2u λa μa λ a λμa a μλa a μ a      . 

Imposing the nilpotency condition on the operator u  makes the above combination vanish. As both 

operators 1a  and 2a  were supposed to be nilpotent, what remains is 

  1 2 2 1 1 2 2 10λμ a a a a ,    a a a a      (11) 

(the numbers µ and λ commute, so that μλ = λμ). 

Let us introduce a contravariant tensor 

 1 2α βε ,  α, β , . (12) 

Contracting with two creation operators, we can write: 

1
.

2
a a a a a a  

            

But a a a a     , therefore 

1

2
a a a a  

         , 

from which follows, taking into account that a a   are linearly independent, 

 
11 22 12 21          0     αβ βαε ε ε ε , ε ε       . (13) 

There exists a natural dual algebra of contravariant entities   1 2αξ , α,β ,  satisfying the anti-

commutation relations 
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α β β αξ ξ ξ ξ   

with a corresponding two-form 

αβ βαε ε  . 

The 2-form αβε  can be considered as inverse to αβε  because one has: 

 .γβ γ

αβ αε ε δ  (14) 

Note the order of indices being contracted: with a different choice, we would get the identity matrix 

with the minus sign on the right. 
Now, if we require that Pauli's principle must apply independently of the choice of a basis in Hilbert 

space, i.e. that after a linear transformation we get 

 
1 2det 1    1α'β' α' β' αβ α'β' ' '

α βε S S ε S , ε , ε      , (15) 

then the 2 2  complex matrix α'

αS  must have the determinant equal to 1, which defines the (2 CSL , )  

group. 

3. From Pauli to Dirac  

The existence of two internal degrees of freedom had to be taken into account in fundamental equation 

defining the relationship between basic operators acting on electron states. At the time when Pauli 
proposed the simplest equation expressing the relation between the energy, momentum and spin: 

 
2 σ pEψ mc ψ c ψ   , (16) 

the relativistic invariance of electromagnetic interactions was firmly established. However, the linear 
equation (16) is not invariant under the Lorentz group: once squared, it yields the wrong relation 

between the energy-momentum ,  pE  and the mass m : 
2 2 4 3 22 σ p pE m c mc    . 

At this point Pauli could have restored the Lorentz invariance by doubling the number of components 

of the wave function, and by introducing states with negative mass: 

 

2

2

σ p ,

σ p .

Eψ mc ψ c ψ

Eψ mc ψ c ψ

  

  

  

   
 (17) 

It is easy to check that now each of the components satisfies the relativistic equation 

 

2

2 2 4 2 2 2 2 2p    or   p μ

μ

E
E m c c p p m c

c

 
     

 
. (18) 

The existence of anti-particles (in this case the positron), suggests the use of the non-equivalent 

representation of (2 CSL , ) group by means of complex conjugate matrices. Along with the time 

reversal, the Dirac equation can be now constructed. It is invariant under the Lorentz group. 

 

2

2

   ,

.

i ψ mc ψ i σ ψ
t

i ψ mc ψ i σ ψ
t

  

  


  




    



 (19) 

The two coupled Pauli equations, with two masses, positive and negative, can be represented as 

follows: 

      2

2 2 3 2 1I I I σ pE ψ mc σ ψ c σ ψ      . (20) 

Here 2I  stands for the 2 2  identity matrix, and the two Pauli matrices are 

3 1

1 0 0 1
     

0 1 1 0
σ , σ

   
    

   
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and 
ψ

ψ
ψ





 
  
 

, so that ψ  is a column formed with two two-dimensional Pauli spinors. 

After multiplying the entire equation from the left by the matrix 3 2Iσ  , and moving the momentum 

term to the left, we get the Dirac equation: 

    2

3 2 2 2 2I σ p I IE σ ψ c iσ ψ mc ψ      , 

which can be written as 
2μ

μγ p ψ mc ψ  

with 
0

3 2 2I    k kγ σ , γ iσ σ    . 

The price to be paid for the recovery of relativistic invariance was the introduction of negative mass, 
which Pauli was not ready to accept at that time. A few years later Dirac deduced the same system of 

equations for the electron introducing the operator acting on a four-component spinors as a “square 

root” of the d’Alembertian operator. The states with negative mass were interpreted as the “Dirac sea”, 
and the holes in that sea were interpreted as positrons - electrons' antiparticles. 

The transformation properties of γ -matrices can be now written as follows [10]: 

  1 1 ,μ μ ν'

ν'Sγ S Λ S γ   (21) 

where μ

ν'Λ  is the Lorentz transformation acting on space-time 4-vectors, while S  is a bi-spinor 

representation of the Lorentz group, composed of two in equivalent matrices of  2 CSL ,  group. 

The apparent 2Z  symmetry ensuring the relativistic invariance of two coupled Pauli equations echoes 

a similar situation in the description of classical electromagnetic field. The Maxwell equations can be 

viewed as a coupled system of linear first-order equations for the components of electric and magnetic 

fields, E  and B  

1 E 1 B
B         E,

c t c t

 
    

 
. 

These equations can be decoupled by applying the time derivation twice, which in vacuum, where 

E 0div   and B 0div   leads to the d'Alembert equation for both components separately: 
2 2

2 2

2 2 2 2

1 E 1 B
E 0         B 0,

c t c t

 
    

 
. 

Nevertheless, neither of the components of the Maxwell tensor, be it E  or B , can propagate 

separately alone; only their combination can travel along the same direction of the common wave 
vector. 

The Dirac equation for the electron displays a similar 2Z  symmetry, with two coupled equations 

which can be put in the following form: 

 

2

2

   ,

.

i ψ mc ψ i σ ψ
t

i ψ mc ψ i σ ψ
t

  

  


  




    



 (22) 

where ψ  and    ψ  are the positive and negative energy components of the Dirac equation; this is 

visible even better in the momentum representation: 

 

2

2

p

p

E mc ψ cσ ψ ,

E mc ψ cσ ψ

 

 

    

      

 (23) 

The same effect (negative energy states) can be obtained by changing the direction of time, and 

putting the minus sign in front of the time derivative, as suggested by Feynman. 
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Each of the components satisfies the Klein-Gordon equation, obtained by successive application of the 

two operators and diagonalization: 
2

2 2

2 2

1
0.m ψ

c t


 
   

 
 

As in the electromagnetic case, neither of the components of this complex entity can propagate by 
itself; only all the components can. 

4. Ternary exclusion principle 

Our next goal is to find how the Lorentz invariance can be derived from quantum symmetries of 
strong interactions. According to the present knowledge, the hadrons, behaving like fermions, are in 

fact composite particles. The true elementary particles carrying both baryonic and fractional electric 

charges are quarks. The experimental data obtained via deep inelastic scattering reveal that quarks 

behave like almost point-like objects as compared with proton's or neutron's size: in fact, their 
dimension is about 1000 times smaller than that of a hadron - about the same ratio as the dimension of 

atomic nuclei compared with dimension of an atom [11-13]. 

It seems that at this scale the usual space-time relations are hard to be implemented from outside, 
especially taking into account that due to the strength of interactions the uncertainty principle should 

be at work, thus making it even harder to speak of distances and time delays. On the other hand, strict 

selection rules are apparently at work, because only three-quark states lead to observable fermionic 

configurations, and quark-antiquark states produce strongly interacting π -mesons. There are two 

fundamental quark states, called u  and d ; the u  quark is endowed with fractional electric charge 

2 3/ , while the d  quark has the charge equal to 1 3/ . The anti-quarks u  and d  gave the same 

charges with opposite signs, 2 3/  for u  and 1 3/   for d . Thus, a proton is constructed as a 

product state uud , and neutron corresponds to the product state udd. The three π -mesons are 

generated by the quark-antiquark pairs according to the scheme 

 0 1
        

2
π ~ ud , π ~ du, π ~ uu d d   . 

Besides, there is another important super-selection rule: three colors are needed to combine three 

quarks into a hadron, anti-colors for an anti-hadron, and colorless combinations of colors and anti-

color are needed to form a meson [14-15]. 
Although in Quantum Chromodynamics quarks are treated as fermions, there is no direct proof of such 

assertions, because quarks are never observed as freely propagating particles outside the hadrons 

where they interact by means of gluon exchange. The fact that three quarks combine into stable states, 

with two identical states coexisting, but not three, strongly suggests that a ternary analogue of Pauli's 

principle may be involved, based on the representations of the cyclic group 3Z  instead of the cyclic 

group 2Z . We shall show how certain unusual representations of the  2 CSL ,  group can be 

constructed as invariance groups of ternary generalization of Pauli's exclusion principle. This suggests 

that a convenient generalization of Pauli's exclusion principle would be that no three quarks in the 
same state can be present in a nucleon. 

Let us require then the vanishing of wave functions representing the tensor product of three (but not 

necessarily two) identical states. That is, we require that   0Ô x,x,x   for any quantum state x . As 

in the former case, consider an arbitrary superposition of three different states, x , y  and z , 

ω α x β y γ z    

and apply the same criterion,   0Ô ω,ω,ω  . 

We get then, after developing the tensor products, 
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       

           

           

           

3 3 3

2 2

2 2

2 2, , , , , , , , , , , ,

Ф ω,ω,ω α Ф x,x,x β Ф y,y, y γ Ф z,z,z

α β Ф x,x, y Ф x,y,z Ф y,x,x γα Ф x,x,z Ф x,z,x Ф z,x,x

αβ Ф y,y,x Ф y,x, y Ф x,y, y β γ Ф y,y,z Ф y,z, y Ф z,y, y

βγ Ф y z z Ф z z y Ф z y x Ф z z x Ф z x z Ф x z z 

   

             

             

        

            0αβγ Ф x,y,z Ф y,z,x Ф z,x, y Ф z,y,x Ф y,x,z Ф x,z, y

   

         

 

The terms  , ,Ô x x x ,  , ,Ô y y y  and  , ,Ô z z z  do vanish by virtue of the original assumption; in 

what remains, combinations preceded by various powers of independent numerical coefficients  α, β  

and γ , must vanish separately. This is achieved if the following 3Z  symmetry is imposed on our wave 

functions: 

     2Ô x, y,z jÔ y,z,x j Ô z,x, y   

with 3 22
exp   1   1 0

3

πi
j , j , j j

 
     

 
. 

Note that the complex conjugates of wave functions  , ,Ô x y z  transform under cyclic permutations 

of their arguments with 2j j  replacing j  in the above formula 

     2Ψ x, y,z j Ψ y,z,x jΨ z,x, y  . 

It is quite easy to imagine simple - and unique - cubic generalization of anti-commutation relations 

defining the usual Pauli's exclusion principle. The 2Z  group is generated by an idempotent element, 

represented on the complex plane by multiplication by 1 . The anti-commutation relations are just the 

faithful representation of the cyclic permutation:  1ab ba  . Now, there are two different 

representations of the cyclic group 3Z  in the complex plane, both generated by cubic roots of unity. 

Let us denote 

 
2 3 22 4

exp   exp   1   1 0
3 3

πi πi
j , j , j , j j

   
        

   
. (24) 

Let us introduce N  generators spanning a linear space over complex numbers, satisfying the 

following cubic relations [16-17]: 

 2       1 2A B C B C A C A Bθ θ θ jθ θ θ j θ θ θ , A,B , ,...N   . (25) 

We shall also introduce a similar set of conjugate generators,   1 2
A

θ , A,B,... , ,...,N , satisfying 

similar condition with 2j  replacing j : 

 2
A B C B C A C A B

θ θ θ j θ θ θ jθ θ θ  . (26) 

Combined with the associatively, these cubic relations impose finite dimension on the algebra 

generated by the 3Z -graded generators. As a matter of fact, cubic expressions are the highest order 

that does not vanish identically. The proof is immediate: 

 
2 3 4A B C D B C A D B A D C A D B C A B C Dθ θ θ θ jθ θ θ θ j θ θ θ θ j θ θ θ θ j θ θ θ θ     (27) 

and because 4 1j j  , the only solution is 

 0A B C Dθ θ θ θ  . (28) 

Similar conclusion concerns the conjugate generators, for which the highest monomials are also cubic. 

To complete the algebra, we should impose commutation relations between ordinary and conjugate 

generators. Our choice is the following relation: 

 2     ,           .A B B A B A A Bθ θ jθ θ θ θ j θ θ     (29) 
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Such an algebra is naturally 3Z -graded: the generators  Aθ  are of 3Z -grade 1, their binary products 
A Bθ θ  of 3Z -grade 2, and cubic products A B Cθ θ θ  are of 3Z -grade 3 equivalent to 0. The conjugate 

operators 
A

θ  are endowed with grades opposite to that of Aθ 's, namely grade 2 for 
A

θ , 3Z -grade 1 

(which is 4 modulo 3) for products 
A B

θ θ , and grade 0 for cubic products. (corresponding to 6 modulo 

3). Under multiplication the grades add up modulo 3. Such algebras were considered in [18-19]. 

In principle, one should ask the question what is the effect of non-cyclic (odd) permutations; however, 

in the case of two generators only, all permutations are equivalent with cyclic ones. From now on, we 
shall assume that the generalized ternary Pauli's principle is applied to the set of only two quantum 

operators. Let us symbolize the operator creating an u -quark by 1θ , and the operator creating a d -

quark by 2θ . Then we have only two linearly independent three-quark states: 
1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 2 2 2 2 1   and   θ θ θ jθ θ θ j θ θ θ θ θ θ jθ θ θ j θ θ θ    . 

According to (27), no observable states of four or more quarks can be produced. Also the states with 

three u  or three d  quarks are prohibited, which agrees with the experiment. 

Let us show now how ternary generalization of Pauli's exclusion principle leads to some special 

representation of the (2 CSL , ) group. As in the case of the 2Z  symmetry, we shall introduce an 

invariant three-form   1 2   1 2α

ABCρ , α,β , ...K, A,B,... , ,...N  . The upper indices α, β  run from 1 to K , 

where 
3

3

N N
K


 , the number of linearly independent 3-forms satisfying the imposed 3Z  

symmetry. The invariant 3-forms are then defined as follows: 

 

   2

1

3

1

3

α A B C α A B C α B C A α C A B

ABC ABC BCA CAB

α A B C α A B C α A B C

ABC BCA CAB

ρ θ θ θ ρ θ θ θ ρ θ θ θ ρ θ θ θ

ρ θ θ θ ρ j θ θ θ ρ j θ θ θ ,

     

   
 

  

 21

3

α A B C α α α A B C

ABC ABC BCA CABρ θ θ θ ρ ρ j ρ j θ θ θ     , (30) 

from which we get the following properties of the cubic ρ -matrices: 

 2α α α

ABC BCA CABρ ρ j ρ  . (31) 

Even in this minimal and discrete case, there are covariant and contravariant indices: the lower and the 

upper indices display the inverse transformation property. If a given cyclic permutation is represented 

by a multiplication by j  for the upper indices, the same permutation performed on the lower indices is 

represented by multiplication by the inverse, i.e. 2j , so that they compensate each other. The upper 

index α  can take on two values because there are only two independent combinations of three 

generators, 121 and 212. Hopefully enough, they may coincide with the index of a Pauli spinor. 

Similar reasoning leads to the definition of the conjugate forms 
α

ABCρ  satisfying the relations similar to 

(31) with j  replaced by its conjugate, 2j : 

 2 .
α α α

ABC BCA CAB
ρ jρ j ρ   (32) 

In the simplest case of two generators, the j -skew-invariant forms have only two independent 

components: 
1 1 2 1

121 211 112ρ jρ j ρ  , 
2 2 2 2

212 122 221ρ jρ j ρ   

and we can set 
1 1 2 1

121 211 1121,   ,   ρ ρ j ρ j   , 
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2 2 2 2

212 122 2211,   ,   ρ ρ j ρ j   . 

5. Lorentz symmetry on quark states  

The constitutive cubic relations between the generators of the 3Z  graded algebra can be considered as 

intrinsic if they are conserved after linear transformations with commuting (pure number) coefficients, 

i.e. if they are independent of the choice of the basis. Let 'A

AU  denote a non-singular N N  matrix, 

transforming the generators Aθ  into another set of generators, B' B' B

Bθ U θ . We are looking for the 

solution of the covariance condition for the ρ -matrices: 

 
α' β A' B' C' α'

β ABC A B C A'B'C'S ρ U U U ρ . (33) 

Now, 1

121 1ρ  , and we have two equations corresponding to the choice of values of the index α'  equal 

to 1 or 2. For 1α' '  the ρ -matrix on the right-hand side is 1'

A'B'C'ρ , which has only three components, 
1 1 2 1

1 2 1 2 11 11 21' ' '

' ' ' ' ' ' ' ' 'ρ ,  ρ j ,  ρ j   , 

which leads to the following equation: 

 1 1 2 1 2 2 1 1 1 1 2 1 2 1 2 1

1 1 2 1 1 2 1 1 2 1 1 2 1 1 2

' ' ' ' ' ' ' ' ' ' ' ' ' ' 'S U U U j U U U jU U U U U U U U     , 

because 2 1j j   . 

For the alternative choice 2α' '  the ρ -matrix on the right-hand side is 2'

A'B'C'ρ , whose three non-

vanishing components are 
2 2 2 2

2 1 2 1 2 2 2 2 11' ' '

' ' ' ' ' ' ' ' 'ρ ,  ρ j ,  ρ j   . 

The corresponding equation becomes now: 

 2 2 1 2 2 1 2 2 2 2 1 2 1 2 1 2

1 1 2 1 1 2 1 1 2 1 1 2 1 1 2

' ' ' ' ' ' ' ' ' ' ' ' ' ' 'S U U U j U U U jU U U U U U U U     . 

The remaining two equations are obtained in a similar manner. We choose now the three lower indices 

on the left-hand side equal to another independent combination, (212). Then the ρ -matrix on the left 

hand side must be 2ρ  whose component 2

212ρ  is equal to 1. This leads to the following equation when 

1α' ' : 

 1 1 2 1 2 2 1 1 1 1 2 2 1 2 1 2

2 2 1 2 2 1 2 2 1 2 1 2 1 1 2

' ' ' ' ' ' ' ' ' ' ' ' ' ' 'S U U U j U U U jU U U U U U U U      

and the fourth equation corresponding to 2α' '  is: 

 2 2 1 2 2 1 2 2 2 2 1 2 1 2 2 1

2 2 1 2 2 1 2 2 1 2 2 1 2 1 2

' ' ' ' ' ' ' ' ' ' ' ' ' ' 'S U U U j U U U jU U U U U U U U     . 

The determinant of the 2 2  complex matrix A'

BU  appears on the right-hand side: 

  2 2

1 1 det' 'S U U     . (34) 

The remaining two equations are obtained in a similar manner, resulting in the following: 

    1 1 2 2

2 2 2 2det ,        det' ' ' 'S U U S U U           . (35) 

The determinant of the 2 2  complex matrix A'

BU  appears everywhere on the right-hand side. Taking 

the determinant of the matrix α'

βS  one gets immediately 

    
3

det detS U    . (36) 

However, the U -matrices on the right-hand side are defined only up to the phase, which due to the 

cubic character of the covariance relations and they can take on three different values: 1  , j  or 2j , i.e. 

the matrices A'

BjU  or 2 A'

Bj U  satisfy the same relations as the matrices A'

BU  defined above. The 

determinant of U  can take on the values 1  , j  or 2j  if  det 1S  . This will be true if we admit that 

the indices α, β...  relate to the usual Pauli fermions, and that matrices S  represent the  2 CSL ,  group. 
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A similar covariance requirement can be formulated with respect to the set of 2-forms mapping the 

quadratic quark-anti-quark combinations into a four-dimensional linear real space. As we already saw, 

the symmetry (29) imposed on these expressions reduces their number to four. Let us define two 

quadratic forms, μ

ABπ  and its conjugate 
μ

AB
π  

    and   
B μ B

μ A A

AB BA
π θ θ π θ θ . (37) 

The Greek indices μ,ν... take on four values, and we shall label them 0 1 2 3, , , . The four tensors μ

AB
π  

and their hermitian conjugates 
μ

BA
π  define a bi-linear mapping from the product of quark and anti-

quark cubic algebras into a linear four-dimensional vector space, whose structure is not yet defined. 
Let us impose the following invariance condition: 

 .
B μ B

μ A A
BA

AB
π θ θ π θ θ  (38) 

It follows immediately from (29) that 

 2 μμ

AB BA
π j π  . (39) 

Such matrices are non-hermitian, and they can be realized by the following substitution: 

 2        ,
μμ μ μ
BA

AB AB BA
π j iσ , π jiσ    (40) 

where 
μ

AB
σ  are the unit 2 matrix for 0μ  , and the three hermitian Pauli matrices for 1 2 3μ , , .  Again, 

we want to get the same form of these four matrices in another basis. Knowing that the lower indices 

A  and B  undergo the transformation with matrices A'

BU  and 
A'

BU , we demand that there exist some 

4 4  matrices μ'

νΛ  representing the transformation of lower indices by the matrices U  and U  

 
μ' ν A' B' μ'

ν AAB B A'B'
Λ π U U π , (41) 

This defines the vector ( 4 4 ) representation of the Lorentz group. 

The first four equations relating the 4 4  real matrices μ'

νΛ  with the 2 2  complex matrices A'

BU  and 

A'

BU  are as follows: 
0 0 1 1 2 2

0 3 1 11 1

' ' ' ' ' 'Λ Λ U  U U  U     

0 0 1 1 2 2

0 3 2 22 2

' ' ' ' ' 'Λ Λ U  U U  U     

0 0 1 1 2 2

0 2 1 12 2

' ' ' ' ' 'Λ iΛ U  U U  U     

0 0 1 1 2 2

0 2 2 21 1

' ' ' ' ' 'Λ iΛ U  U U  U     

There are three other sets of four equations similar to the one displayed above, corresponding to three 

alternative choices of values of the upper primed index 1  2', '  and 3' . We do not display them here 

explicitly; the resulting matrices μ'

νΛ  span a vector representation of the Lorentz group, although with 

special complex coefficients. 

The metric tensor μνg  can be defined in the following manner. 

With the invariant “spinorial metric” in two complex dimensions, ABε  and 
ABε  such that 

12 21 1ε ε    and 
12 21ε ε  , we can define the contravariant components 

ν ABπ . It is easy to show that 

the Minkowskian space-time metric, invariant under the Lorentz transformations, can be defined as 

  
1

diag
2

μν μ ν AB

AB
g π π , , ,      

 
 (42) 

According to this picture, the Lorentz symmetry observed on macroscopic scale is the result of the 

action of the  2 CSL ,  group on the Hilbert space of quantum states of elementary fermions (leptons), 

i.e. electrons, μ -mesons and neutrinos, all of which satisfy the Dirac equation and Pauli's exclusion 
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principle. The essential ingredient is the appearance of two 2Z  symmetries, one due to the dichotomic 

spin states, another one to the particle-antiparticle symmetry. Due to the last symmetry, Dirac spinors 

ψ  are composed out of two in equivalent Pauli spinors. The Dirac spinors, in turn, produce Lorentz 

scalars or vectors due to the introduction of charge conjugation, 0ψ ψ γ . Then Lorentz scalars and 

Lorentz 4-vectors are produced out of binary products 0ψψ ψ γ ψ  and 0k kψγ ψ ψ γ γ ψ . 

For hadrons and strongly interacting mesons (here we consider only protons and neutrons, plus the π -

mesons) the apparent Lorentz symmetry stems from the 3Z  generalization of Pauli's principle 

implemented in quarks, so that only two three-quark configurations can be observed, uud  and udd , 

as well as three independent quark-antiquark pairs ud , du  and  
1

2
uu d d . The 3Z  graded 

ternary algebra quark generators are preserved by the 3Z -twisted representation of the  2 CSL ,  

group. Cubic combinations of these operators behave like Pauli spinors, transforming under usual 

representations of  2 CSL , . Their quadratic combinations transform as Lorentz 4-vectors or Lorentz 

scalars. 
The dynamics of quarks is very well described by Quantum Chromodynamics [14-15], where quarks 

are treated as usual Dirac fermions interacting via vector particles called gluons. All these fields are 

endowed with an extra property called color, and become observable only in “colorless” 
combinations, with three different colors (red, green and blue) for the three-quark states producing 

nucleons, and eight color-anticolor combinations for gluons, spanning an octet representation of the 

 3SU  algebra. On the other hand, the possibility of deriving a new 3Z -twisted representation of the 

Lorentz group suggests that a generalization of the Dirac equation incorporating this symmetry 

coexisting with the 2 2Z Z  symmetry in the usual case should be possible. The color dynamics based 

on this generalization is beyond the scope of the present paper. The generalized Dirac equation mixing 

three colors, based on the 2 3 2Z Z Z   symmetry is constructed and discussed in papers [20-21]. 
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