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Abstract

This work focuses on non-compact groups and their applications to quantum gravity,
mainly through the use of tensor operators. Non-compact groups appear naturally if
the space-time is of Lorentzian signature, but can also have an important role in the
Euclidean case, as will be shown.

First, the mathematical theory of tensor operators for a Lie group is recast in a new
way which is used to generalise the Wigner-Eckart theorem to non-compact groups.
The result relies on the knowledge of the recoupling theory between finite-dimensional
and infinite-dimensional irreducible representations of the group; here the previously
unconsidered cases of the 3D and 4D Lorentz groups are investigated in detail. As an
application, the Wigner—Eckart theorem is used to generalise the Jordan-Schwinger
representation of SU(2) to both groups, for all representation classes.

Next, the results obtained for the 3D Lorentz group are applied to (2 + 1) Lorentzian
loop quantum gravity to develop an analogue of the well-known spinorial approach
used in the Euclidean case. Tensor operators are used to construct observables and to
generalise the Hamiltonian constraint introduced by Bonzom and Livine (2012) for 3D
gravity to the Lorentzian case. The Ponzano-Regge amplitude is shown to be a solution of
this constraint by recovering the (opportunely generalised) Biedenharn-Elliott relations.

Finally, the focus is shifted on the intertwiner space based on SU(2) representations,
widely used in loop quantum gravity. When working in the spinorial formalism, it has
been shown that the Hilbert space of n-valent intertwiners with fixed total area is a
representation of U(n). Here it is shown that the full space of all n-valent intertwiners
forms an irreducible representation of the non-compact group SO*(2#n). This fact is
used to construct a new kind of coherent intertwiner state (in the sense of Perelomov).
Although some of these states were known already, the majority of them was not until
now; moreover, the underlying group structure was completely unknown. Hints of how
these coherent states can be interpreted in the semi-classical limit as convex polyhedra
are provided.
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> Chapter1

Introduction

Lie groups are undoubtedly one of the most useful tools in mathematical and theoretical
physics, especially in quantum theory. Although compact Lie groups play a more
prominent role in physics, non-compact ones have important applications too: many of
the dynamical groups are non-compact', and, as a matter of fact, the systematic study of
the representation theory of non-compact Lie groups started in 1947 with Bargmann,
‘Trreducible Unitary Representations of the Lorentz Group’, which was motivated by the
importance of the Lorentz group in physics.

Non-compact groups are the main theme of this work, which focuses both on their
mathematical properties and on their application to physics. Part of this thesis—mostly
Chapter 2—is very mathematical in nature, as it deals with a rigorous construction of
some important definitions and results in the representation theory of non-compact
groups. The rest of the work focuses on two distinct but related applications of non-
compact groups to quantum gravity; the link between the two applications is the use—
either explicitly or implicitly—of tensor operators. The three main topics covered in the
following chapters are described in the sections below, together with a brief overview of
loop quantum gravity.

1.1 Tensor operators and Wigner-Eckart theorem for
non-compact groups

Among the many applications of Lie groups and Lie algebra to physics, tensor operators
play a prominent role. Initially arising in the study of the quantum theory of angular
momentum, these operators are a generalisation of the notion of classical tensors, in
the sense that they transform “well” under the action of a group (SO(3) or its double
cover SU(2) for angular momentum); this statement can be formalised in terms of
representation theory by requiring that tensor operators transform, under the adjoint
action of the group, as vectors in one of its irreducible representations. Notable examples
are the position and momentum operators q and p (vector operators) and their “norms
squared” q* and p? (scalar operators): the latter are particularly important as, in general,
scalar operators are exactly those which are invariant under the action of the group.

'SinanoGlu, ‘Remarks on
dynamical and noncom-
pact groups in physics and
chemistry’.



*Messiah, Quantum Mechanics,
chap. XIII.

’Barut and Razka, Theory of
Group Representations and Ap-
plications, chap. 9.

*Klimyk, ‘Wigner-Eckart
theorem for locally compact
groups’.

*Mathematically, this is a con-
sequence of the fact that the
trivial representation does not
appear in the decomposition of
the product of two infinite-di-
mensional ones.

SThe 3D case was considered
only for representations in the
discrete series in Ui, ‘Cleb-
sch-Gordan Formulas of the
SU(1,1) Group’, but even in
these cases some results we are
going to prove here are missing.

1. INTRODUCTION

Tensor operators are extensively used in quantum mechanics, especially in atomic
and nuclear physics®, essentially for two reasons: two tensor operators can be combined
to obtain another one (for example we can construct q x p and q - p from q and p),
and in general the matrix elements of a tensor operator are easy to calculate, due to the
result known as the Wigner-Eckart theorem. The theorem states that’, when the group is
compact (e.g., SU(2)), the matrix elements of a tensor operator are proportional to the
Clebsch-Gordan coefficients—quantities that appear in the study of the decomposition
of a product of two representations into irreducible ones—with the proportionality
constant independent of the specific component of the tensor operator and of the basis
elements being considered: as a consequence, only one matrix element has to be explicitly
calculated to know all of the others, of which, depending on the rank of the tensor and
on the dimension of the vector spaces on which it acts, there can be quite a large number!

A generalisation to non-compact groups exists, although it is only for tensor op-
erators transforming as unitary representations of the group®*, which are necessarily
either 1-dimensional (trivial representation) or infinite-dimensional. In addition to the
obvious drawback of having to work with infinitely many components, the latter have
the disadvantage that, in general, they cannot be composed to obtain scalar operators’,
which as noted before are the only ones invariant under the action of the group and thus,
depending on the context, may be the only true observables of the theory.

In this thesis, a new generalisation of the Wigner—Eckart theorem which allows
tensor operators transforming as finite-dimensional (non-unitary) representation of
non-compact groups is introduced. To do so, the theory of tensor operators will be
revisited, introducing a basis-free definition which will make the proof of the theorem
straightforward. As we will see, however, the theorem itself is quite useless without the
explicit expression of the Clebsch-Gordan coefficients, which for non-compact groups
require the knowledge of the recoupling theory of finite-dimensional (non-unitary)
and infinite-dimensional (unitary) representations, which is not known in general and
has to be studied case by case. Here such a study will be presented for the particular
cases of Spin(2,1) and Spin(3,1), the double covers of the 3D and 4D Lorentz groups,
which are of great importance in physics. In both cases, the recoupling theory between
finite and infinite-dimensional representations was either only partially known® or
completely unknown. As we will see, despite these being amongst the simplest examples
of non-compact groups, the study of their Clebsch-Gordan decompositions is far from
easy.

As an application, the Wigner-Eckart theorem will be used to obtain a generalisation
of the Jordan-Schwinger representation of SU(2) to infinite-dimensional representations
of Spin(2,1) and Spin(2,1); in both cases this result was completely unknown for rep-
resentations in the continuous series, which for the 4D Lorentz group contains all the
non-trivial unitary representations. The Jordan-Schwinger representation is a way to
construct the generators of infinitesimal rotations—the su(2) generators, which can
be seen as the components of a vector operator—in terms of smaller building blocks,
namely a pair of uncoupled quantum harmonic oscillators, which are the components of
two spinor operators. The generalisation to the Lorentz groups exhibits similar features
to the Euclidean counterpart, but in the case of continuous series representations the
spinor operators can no longer be interpreted as harmonic oscillators, despite satisfying
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the same commutation relations.

1.2 Applications to quantum gravity

1.2.1  Overview of loop quantum gravity

An introductory overview of the most important aspects of loop quantum gravity is
presented here, following Rovelli and Vidotto, Covariant Loop Quantum Gravity. Loop
quantum gravity (LQG) is a tentative approach to the quantisation of gravity whose
main feature is that the quantisation is non-perturbative, i.e., the full metric is quantised,
not just the excitations of a fixed background metric. LQG focuses on the quantum
properties of geometrical quantities such as areas and volumes; the main result of the
theory is that space is fundamentally discrete, in the sense that the spectra of the operators
associated to the geometrical observables are discrete.

Loop quantum gravity attempts to quantise general relativity in the Palatini formal-
ism: instead of the metric, the vielbein’ and the connection are used as variables, without
assuming that the latter is necessarily the Levi-Civita connection. The quantisation is
obtained in two steps: first the classical theory is discretised, then the resulting phase
space is canonically quantised. The quantum theory obtained with this procedure is
obviously a truncation of the full theory; to recover the latter a continuum limit has to be
considered, where the discretisation is increasingly refined.

Discretisation of classical boundary phase space

First, space-time is discretised by introducing a triangulation, i.e., by approximating it
with d-simplices®. The triangulation of a region of space-time induces a triangulation of
its boundary, to which we associate its dual graph (Fig. 1): to each node of the graph we
associate a “chunk of space”—a triangle for 3D gravity or a tetrahedron for 4D gravity—
and to each link coming out of the node we associate one of the (d — 2)-simplices
bounding it—lines in 3D or triangles in 4D (Fig. 2). Two nodes are connected when
their two associated tetrahedra/triangles are adjacent.

The connection and the vielbein are discretised by assigning an SU(2) group element
and an su(2) algebra element to each link, known respectively as the holonomy and flux.
This way the classical boundary phase space of the theory becomes (su(2) x SU(2))* =
T*SU(2)%, where L is the number of links in the graph. Note that the group SU(2) is
only used in 3D Euclidean gravity and 4D gravity (both Euclidean and Lorentzian); as
already mentioned, the non-compact group Spin(2,1) is needed in the 3D Lorentzian
case.

Hilbert space and spin networks

Given a discretisation, or equivalently a boundary graph, the Hilbert space describing the
quantum states of the boundary geometry is given by canonically quantising T*SU(2)"
and taking into account the local SU(2) invariance at each node of the graph. A basis
for the Hilbert space is provided by spin networks, i.e., graphs with irreducible SU(2)

"The equivalent of the tetrad in
arbitrary dimensions.

*The higher-dimensional ana-
logue of triangles and tetrahed-
rons. Here d is the space-time
dimension.
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Figure 1: Section of the dual graph associated to the boundary triangulation.

() (b)

Figure 2: We associate to each node a triangle (a) in 3D and a tetrahedron (b) in 4D.

representations (labelled by half-integer spins) attached to each link and intertwiners
attached to each node; the latter are mathematical objects needed to ensure that the sum
of the SU(2) generators (angular momenta) of the links connected to each node is zero—
in other words they implement the local SU(2) invariance. The geometrical observables
are constructed from the SU(2) generators of each link. In particular, the operators
associated to the area/length of the triangle/segment dual to a link are proportional to
the Casimir operator of its representation, and consequently have a discrete spectrum.

One should note that this Hilbert space is kinematical, i.e., the Hamiltonian constraint
has to be implemented to obtain the physical Hilbert space.

Open problems

Loop quantum gravity still has some issues that need to be resolved. Of particular
importance are the following:

o Hamiltonian constraint: the dynamics of the theory, i.e., the construction of the
physical Hilbert space, is not fully understood yet, especially in the 4D case. The
difficulty lies in finding the solutions to the Hamiltonian constraint.

o Semi-classical limit: it is not yet known if loop quantum gravity has the right
semi-classical limit, that is general relativity is recovered in the limit # — 0.

The results of this thesis are related to both these problems: in Chapter 3 a solvable
Hamiltonian constraint is introduced for the 3D Lorentzian theory, while Chapter 4
deals with a new kind of coherent states in loop quantum gravity, which could be used
to achieve a better understanding of the semi-classical limit of the theory.
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1.2.2 Spinorial approach to 3D Lorentzian loop quantum gravity

3D quantum gravity is a useful “theoretical laboratory” to explore and test some of
the issues met in the 4D theory”. For example, it is possible to solve the Hamiltonian
constraint and to relate loop quantum gravity (LQG) to the relevant spinfoam model:
this was done in the Euclidean case, with either a vanishing or negative cosmological
constant’’. 3D Euclidean LQG uses SU(2) as a gauge groups, and its Hilbert space is
spanned by spin networks, graphs whose edges are labelled by irreducible representations
of SU(2) and whose vertices are associated to intertwiners of the representations of the
edges meeting at the vertex. These states diagonalise the operators describing geometrical
quantities, such as lengths and angles, which are constructed out of the su(2) algebra
generators, and whose spectrum turns out to be discrete.

An important tool in the description of 3D Euclidean LQG is given by what is known
as the spinorial framework, which uses the Jordan-Schwinger representation to introduce
a new family of SU(2)-invariant observables, which can be used to construct all the
usual geometrical observables and have the advantage of forming a closed algebra".
Among the other things, these new observables can be used to construct a solvable
Hamiltonian constraint'”. As mentioned above, the Jordan-Schwinger representation
can be recast in terms of tensor operators: this key realisation makes the generalisation
of the spinorial framework to different gauge groups possible; for example, it was used
to generalise it to the quantum group U, (su(2)) in Dupuis and Girelli, ‘Observables in
Loop Quantum Gravity with a cosmological constant’, in order to introduce a non-zero
cosmological constant in the theory.

Having an equivalent of the Jordan-Schwinger representation for Spin(2,1) allows
one to extend the spinorial formalism to the 3D Lorentzian case, of which it is the
gauge group; this generalisation is one of the main topics of this thesis. As a first step,
the classical LQG phase space is constructed by introducing classical tensors and, in
particular, classical spinors. The spinors are used as fundamental building blocks, as they
can be used to reconstruct both the flux and the holonomy variables of the phase space,
similarly to the Euclidean case; moreover, following an approach similar to the one
in Bonzom and Livine, ‘A New Hamiltonian for the topological BF phase with spinor
networks’, the spinors and the group elements constructed with them are used to rewrite
the flatness constraint of the classical space in terms of a new set of variables, namely the
classical equivalent of the observables constructed out of the spinor operators.

The quantisation of the classical phase space needs to be treated carefully, as there
are subtleties involved due to the non-compacticity of the gauge group. For example, the
quantum spinorial observables can take intertwiners between unitary representations to
intertwiners involving some (infinite-dimensional) non-unitary representation. Nev-
ertheless, these observables can be used to construct an Hamiltonian constraint as the
quantisation of the spinorial flatness constraint. Focusing on a triangular face of a spin
network, it is shown how the Lorentzian Ponzano-Regge amplitude, given by a Racah
coefficient, is a solution of the Hamiltonian constraint.

?Carlip, Quantum Gravity in
2 + 1 Dimensions.

'°Noui and Perez, ‘Dynamics of
loop quantum gravity and spin
foam models in three dimen-
sions’; Bonzom and Freidel,
“The Hamiltonian constraint in
3d Riemannian loop quantum
gravity’; Bonzom, Dupuis
and Girelli, ‘Towards the
Turaev-Viro amplitudes from a
Hamiltonian constraint’.

"In contrast, the length and
angle operators do not form a
closed algebra.

>Bonzom and Livine, ‘A New
Hamiltonian for the topolo-
gical BF phase with spinor net-
works’.

BFreidel, Livine and Rovelli,
‘Spectra of length and area in
(2+1) Lorentzian loop quantum
gravity’.



"*Freidel and Livine, ‘The fine
structure of SU(2) intertwiners
from U(N) representations’.

Freidel and Livine, ‘U(N)
Coherent States for Loop
Quantum Gravity’.

1%Tn which case { is sometimes
said to satisfy the Pliicker rela-
tions.
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1.2.3 Intertwiner space as an SO*(2n) representation

This last topic deals with applications of non-compact groups to quantum gravity again,
but it does so in the Euclidean setting. When working with the spinorial formalism in
loop quantum gravity with SU(2) gauge group, an additional structure appears on the
space of n-valent intertwiners with a fixed total area: this space is finite dimensional,
and it provides an irreducible unitary representation of the compact group U(n), whose
generators are constructed as SU(2)-invariant quadratic polynomials in the 21 harmonic
oscillators appearing in the Jordan-Schwinger decomposition of each leg'*. Here it will
be shown how, even when working with a compact gauge group, the spinorial formalism
naturally introduces a non-compact group in the theory: in fact, the full space of n-
valent intertwiners, with all possible areas, is shown to have the structure of an SO (2n)
representation. This group, which is non-compact for all n > 1, is a lesser-known real
form of SO(2n, C); we will show how, using the fact that it is a subgroup of the symplectic
group Sp(4n,R), it can be identified with the subgroup of Bogoliubov transformations on
the 21 harmonic oscillators that leaves the SU(2) invariance of the intertwiners intact.

One of the most important consequences of this new result is that, as will be shown,
the invariance of intertwiner space under SO (21 can be used to construct a new kind of
coherent intertwiner, just as U(#) coherent intertwiners were introduced for fixed-area
intertwiner space”. These are Gilmore-Perelomov coherent states, a generalisation of the
well-known harmonic oscillator coherent states—living in a unitary representation of the
Heisenberg group—to arbitrary Lie groups. In this work the new kind of coherent states
is introduced and analysed; in particular, the expectation values and variances of the
physical observables measuring areas are calculated in these states, and in some specific
cases it is shown how the full probability distribution can be calculated. Moreover, their
semi-classical limit is investigated: when the areas involved are large, it is shown that the
expectation values of the SO (2n) generators can be endowed with a Poisson algebra
structure, which leads to the original space upon quantisation. This semi-classical limit
can be related to a classical geometry by introducing n vectors that can be interpreted as
the normals to the faces of a convex polyhedron in R?, although more works needs to
be done to fully understand this process.

One should note that, although the understanding of the group structure underlying
these coherent states is completely new, some of them have been considered before, for
example in Freidel and Hnybida, ‘On the exact evaluation of spin networks’. Neverthe-
less, these form only a small subset of the full family of coherent states: in fact, as we will
see, the SO*(2n) coherent intertwiners are labelled by antisymmetric matrices ( satis-
fying some additional constraints; of these, only the ones with rank({) = 2 have been
considered’, as these are exactly the ones that can be obtained as a linear combination
of the U(n) coherent intertwiners.

1.3 Organisation of the thesis

The thesis is divided in three main chapters, based on the topics discussed above.
Chapter 2 starts with a brief review of the theory of (g, K)-modules, needed to rig-
orously treat infinite-dimensional group representations with algebraic methods, and a
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section dedicated to the study of tensor operators and the Wigner-Eckart theorem for
arbitrary groups; subsequently, the results on recoupling theory of finite and infinite-
dimensional representations and on the Jordan-Schwinger representation are presented
separately for Spin(2,1) and Spin(3, 1). Chapter 3 is roughly divided in two part: first
the classical description of LQG is considered, then the focus is shifted to the quantum
theory, with the description of the Lorentzian intertwiner space and the study of the
quantum Hamiltonian constraint built out of the spinor operators. Chapter 4 starts with
an introduction of the Lie group SO*(2n) and its Lie algebra, followed by a section
describing their action on intertwiners space; the rest of the chapter is focused on the
study of SO*(2n) coherent states and their properties.

A number of appendices are included at the end of the thesis: Appendix A lists some
useful properties of tridiagonal and antisymmetric matrices, Appendix B contains a
table of the Clebsch-Gordan coefficients used throughout the thesis and the proof of
some of their properties, and Appendix C provides some results on the groups SO* (2n)
and Sp(2n, R) and their action on bounded symmetric domains, which are used to label
the coherent states of Chapter 4.






> Chapter 2

Wigner-Eckart theorem and
Jordan-Schwinger representation for the 3D
and 4D Lorentz group

The key question of this chapter is the following: does the Wigner-Eckart theorem admit
a generalisation for non-compact groups? It is already known that this is possible if we
use the theorem for tensor operators transforming as (infinite-dimensional) unitary
representations’, so we will focus on tensor operators transforming as finite-dimensional
(non-unitary) representations”. As is common in physics, we will work throughout the
chapter with algebraic methods, i.e., we will consider everything from the Lie algebra
perspective; in order to do this rigorously for infinite-dimensional representations, we
will need the mathematical machinery of (g, K)-modules, so we will start by reviewing
them in Section 2.1. We will then show in Section 2.2 how tensor operators can be defined
in a basis-independent way, and use this new definition to prove the Wigner-Eckart
theorem for a generic Lie group.

As mentioned in Chapter 1, to actually use the theorem in the case on non-compact
groups it is necessary to study the recoupling theory of the product of a finite-dimensional
representation and an infinite-dimensional one. We will study in detail the cases of
the 3D and 4D Lorentz groups, respectively in Section 2.3 and Section 2.4. In both
cases, as an application, we will use the Wigner-Eckart theorem to generalise the Jordan-
Schwinger representation, known for only some representation classes®, to all irreducible
representations; the results for the 3D case will be the basis for Chapter 3.

The contents of this chapter are based on the results presented in the articles Sel-
laroli, “Wigner—Eckart theorem for the non-compact algebra s((2,R)” and Sellaroli,
Wigner-Eckart theorem and Jordan-Schwinger representation for infinite-dimensional
representations of the Lorentz group.

2.1 Infinite-dimensional Lie group representations and
(g, K)-modules

When working with non-compact groups, as we are about to do in this thesis, we often
have to deal with infinite-dimensional representations; we will see in this section how

'Klimyk, ‘Wigner-Eckart
theorem for locally compact
groups’.

*As noted in Chapter 1, these
are also more relevant from the
physical point of view.

*Finite-dimensional and dis-
crete series representations in
the 3D case, finite-dimensional
only in the 4D case.



*We will always assume that
representations are on complex
vector spaces.

*1.e., a representation of the Lie
algebra g of G.

5See Wallach, Real Reductive
Groups I, chap. 3.

7i.e., only sums of finitely many
vectors are considered.
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to rigorously treat them with algebraic methods, making use of the notion of (g, K)-
modules. Recall that a continuous Lie group representation, which we will also refer to
as a (topological) G-module, is a topological vector space* V with a continuous action
G x V = V such that

gv+w)=gv+gw, gav=agv, VgeG, Vv,weV, VaeC; (2.1)

as common when working with the module notation, we will denote the representa-
tion/module by its underlying vector space V. When working with finite-dimensional
representation, we can obtain a g-module’ with the same vector space by defining

d|

Xvi= — e
dt =0

v, Xeg, VveV, (2.2)
and we can often obtain all the information we need about the G-module by working on
the corresponding Lie algebra representation: for example the G-module is irreducible
if and only the associated g-module is.

These algebraic methods are extremely useful, and they are widely used in applic-
ations of representation theory to physics. However, when V is infinite-dimensional,
the requirement that the group action be continuous makes things considerably more
difficult; for example, an infinite-dimensional representation V is irreducible if there are
no closed invariant subspaces other than {0} and V itself, so that pure algebraic methods
are a priori not enough to enstablish the irreducibility of V. Moreover, working with the
Lie algebra is not as straightforward as the finite-dimensional case: one cannot always
obtain a g-module from V" as in (2.2), since the RHS may not be defined for a generic v.
In order to overcome these difficulties, we will work with (g, K) modules®:

Definition 2.1. Let G be a real Lie group with Lie algebra g and maximal compact
subgroup K. A (g, K)-module is a vector space V that is both a g-module and a K-module,
where we ignore the topology of K, which satisfies the compatibility conditions

1. k-X-v=Ad(k)X -k-vforallveV,keK, Xeg;

2. ifveV,Kv={kv |k e K} spans a finite-dimensional subspace of V on which the
action of K is continuous;

etY

3. ifveVandY etthen v=Yv

g
dt =0

The first condition is technical and is needed to extend the definition to disconnected groups;
the second conditions is equivalent to saying that V is the algebraic direct sum’ of finite-
dimensional irreducible K-modules, while the third condition ensures that the infinitesimal
action of K agrees with that of its Lie algebra € C g.

Although this definition may seem very technical, these objects have reasonable
properties: they are essentially g-modules with some additional compatibility with the
group. In order to understand how (g, K)-modules provide the right tool to study
infinite-dimensional representations with algebraic methods, we can take a look at some
of the results from Wallach, Real Reductive Groups I:

10
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« every topological G-module H induces a (g, K)-action on the space of K-finite
vectors

Hy :={v e V|dimspan{Kv} < oo},

which is also referred to as the underlying (g, K)-module of H; the action of g on
Hy is given by (2.2) as expected.

« An admissible G-module H is irreducible if and only if it is infinitesimally irredu-
cible, i.e., Hy is irreducible®.

« Two unitary representation on the Hilbert spaces H, H' are unitarily equivalent if
and only if they are infinitesimally equivalent, i.e., Hx = Hy, both as a g-module
and as a K-module.

Here a (g, K)-module V is an admissible if each irreducible representation of K appears
only finitely many times in V, while a G-module H is admissible if Hy is. Admissible
representations are those that, in some sense, behave “nicely”: for example, they include
all irreducible unitary representations. We will implicitly assume that all representations
we work with are admissible.

2.2 Tensor operators and Wigner-Eckart theorem

Tensor operators are a class of operators that transform particularly well under the
adjoint action of the group G, namely they transform as vectors in a representation of G.
They are usually defined relative to a basis, i.e., a tensor operator is identified with the
set of its components; here we will consider a basis-free definition instead. Moreover,
we will distinguish between the concept of weak and strong tensor operators’ to allow
for a rigorous treatment at the Lie algebra level for infinite-dimensional representations
by using (g, K)-modules.

Definition 2.2 (strong tensor operator). Let V,, V and V' be (topological) G-modules of
a Lie group G, with V,, finite-dimensional. A strong tensor operator for G is an intertwiner
between V, ® V and V', i.e., a continuous linear map

T:V,@V -V

such that
Tog=goT, VgegG.

If V, is irreducible, T is called an irreducible strong tensor operator.

Definition 2.3 (weak tensor operator). Let V,, V and V' be (g, K)-modules of a Lie
group G, with Vj, finite-dimensional. A weak tensor operator for G is an intertwiner
between Vy ® V and V', i.e., a linear map'°

T:V,@V >V

11

8No need to check if the invari-
ant subspaces are closed!

°This distinction is not found
in the literature.

'°In this weaker definition T is
not required to be continuous,
as there is no topology specified
on the (g, K)-modules.



2. WE THEOREM AND JS REPRESENTATION FOR THE 3D AND 4D LORENTZ GROUP

such that
ToX=XoT, VXeg and Tok=koT, VkeKk,
where g and K act on the product module as

X(vo®v) =(Xvy) ®v+v,® (Xv)
k(vo®v) = (kvy) ® (kv).

If V,, is irreducible T is called an irreducible weak tensor operator.

Note that this nomenclature is appropriate, as weak tensor operators are more general
than strong ones; in fact

Proposition 2.1. An intertwiner T : V — V' between G-modules is also an intertwiner
between the corresponding (g, K)-modules. As a consequence, a strong tensor operator is
also a weak tensor operator.

Proof. Recall that the subspace Vi € V of K-finite vectors, i.e., the set of all vectors v
such that span{kv, k € K} is finite-dimensional, is the (g, K)-module associated to V,
with

d
Xy = r exp(tX)v, VYXeg, VveVg. (2.3)
t=0

We have, since T commutes with the action of K € G,

dimspan{kTv | k € K} = dimspan{Tkv | k € K} (2.4)
2.
= dim T(span{kv | k € K}) < o0 4
for each v € Vy, that is T(Vy) € V. Moreover, for each X € gand v € V,

XTv = 4 exp(tX)Tv = 4 Texp(tX)v = Ti exp(tX)v =TXv, (2.5)
dtli=o dtli=o dt i

where the fact that T is continuous was used. It follows that T|, is an intertwiner
between the (g, K)-modules Vi and V. O

As weak tensor operators are more general, in the following chapters we will refer to
them simply as tensor operators, unless otherwise noted. It is often preferable to have
operators between V and V': this can be achieved by defining the “components” of a
tensor operator T in a basis {e; },.; € V as

T,:veVsT(e;®v)e V' (2.6)
the definitions of strong and weak tensor operators become respectively

gTig " =Y (e),ge,)T;, VgeG, (2.7)
jel

and

(2.8)

12



2.2. Tensor operators and Wigner-Eckart theorem

where (-, -) is the dual pairing of V;* and V; and {e’} jer € Vo is the dual basis™ defined
by

(ej,ei):ej(ei):c?ji. (2.9)

The definition of weak tensor operators can be simplified when K is connected, since
one can simply require the the operator commutes with every element of g. In fact we
have™

Proposition 2.2. If K is connected, a linear map T : V — V' is a (g, K)-module homo-
morphism, i.e., an intertwiner between V and V', if
ToX=XoT, VXEg.

Proof. Let € c g be the Lie algebra of K. Forany X € £, v € V, a € V* one has

% tzo(oc, (Toexp(tX) —exp(tX)oT)v)=(a,(ToX-XoT)v)=0. (2.10)
Since the derivative vanishes, it must be
(@, (T o exp(X) - exp(X) o T)7) = (@ (T o exp(0) —exp(0) o T)y)  (2:)
foreachv e V, a € V*, so that
Toexp(X)=exp(X)oT, VXet (2.12)
however, if K is connected, exp(¥) € K generates it", hence
Tok=koT, VkeK. (2.13)
O

One of the most useful properties of irreducible tensor operators is the Wigner-
Eckart theorem, originally proved for compact groups'* and later extended to non-
compact groups” only for the particular case of tensor operators transforming as (infinite-
dimensional) unitary representations, which we do not consider. Here we generalise it
to tensor operators transforming as (possibly non-unitary) finite-dimensional represent-
ations of arbitrary Lie groups. The theorem itself is trivial to prove, as it is essentially a
corollary of Schur’s lemma'®; in fact we have

Lemma 2.1. Let Vi, V, V be irreducible (g, K)-modules for a Lie group G, with V, finite-
dimensional. If a decomposition into irreducible modules for V, ® V exists, a non-zero
intertwiner

T:V,0V -V

is possible if and only if V' appears (at least once) in the decomposition. If T is the vector
space of all such intertwiners, dim T equals the multiplicity of V' in the decomposition,
and a basis is provided by the projections in each of the submodules W, ¢ V,@ V, W, =2 V',
with « keeping track of the multiplicities.

13

"Here V* denotes the continu-
ous dual space to V, that is
the space of continuous linear
maps V - C.

*The proofis based on Webster,
equivalence of Lie group and Lie
algebra intertwiner.

“In the sense that every k € K
can be obtained as a product of
elements of exp(£). Kosmann-
Schwarzbach, Groups and Sym-
metries: From Finite Groups to
Lie Groups, chap. 4.

“Barut and Razka, Theory of
Group Representations and Ap-
plications.

BKlimyk,  “Wigner-Eckart
theorem for locally compact
groups’.

*We continue referring to it
as a theorem solely for consist-
ency with existing literature.



7See Wallach, Real Reductive
Groups I, chap. 3.

*Up to proportionality factors.
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Proof. Let T: V;® V — V' be a (g, K)-module homomorphism. Schur’s Lemma for
irreducible (g, K)-modules' guarantees that, if W ¢ V; ® V is a submodule,

1 ifwzv’
Tl o< 2.1
| W {0 otherwise. (214)

It is then trivial to see that any such T can be written as a linear combinations of the
independent maps T* that project V, ® V on each W, = V' O

It trivially follows that

Theorem (Wigner-Eckart). Let T : V, ® V — V' be an irreducible tensor operator, with
V, V' irreducible. If a decomposition for V, ® V exists, T is a linear combination of the
projections T* : V, ® V. — W, into each irreducible component W, = V'. If V' ¢ V@ V
the tensor operator must necessarily vanish.

The reason why this theorem is so useful is that it implies that a tensor operator
T:V,®V - V'is fully specified” by the decomposition of the product module
V, ® V. The non-trivial step is to study the decomposition of this product, when G is
non-compact, for V; finite-dimensional and V infinite-dimensional. In the following
sections we will tackle all possible such representations for the specific case of the 3D and
4D Lorentz groups, which were previously unconsidered; in both cases the results will
be used, with the aid of the Wigner-Eckart theorem, to generalise the Jordan-Schwinger
representation of SU(2) to the respective non-compact group.

2.3 3D Lorentz group

This section focuses on the recoupling theory of a finite and an infinite-dimensional
representation of the double cover of the 3D Lorentz group, Spin(2,1). First we will
review the representation theory of the group in the language of (g, K)-modules, then
we will study the Clebsch-Gordan decomposition for all classes of infinite-dimensional
representations. Finally the recoupling theory results are used, in conjunction with
the Wigner-Eckart theorem to generalise the Jordan-Schwinger representation to all
representation classes of Spin(2,1).

2.3.1 Irreducible representations of Spin(2,1)

The proper orthochronous 3D Lorentz group SO,(2,1) is the identity component of the
subgroup of GL(3,R) that preserves the indefinite quadratic form

S(x) = —(x)> + ()% + (%)% x = (x0, %, %,) € R’ (2.15)

To allow for spin representations, we will work with its double cover Spin(2,1), which is

isomorphic to
(1 0) (1 0
o S)e6 %)

:{(% g)EMz(‘C) |“|2—|/3|2:1}.
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2.3. 3D Lorentz group

Its maximal compact subgroup is given by

i6
(0 2)emo

We will only consider complex representations, so we can work with the complexified
Lie algebra spin(2,1)c, generated by

(2.17)

0S0<27‘[} ~U(1).

Jo - ;(é _01), h=%(§ g) 12=%(_01 (1)) (218)
with commutation relations
Uos 1l =1l UpJal ==ilos [JpJo] = 1)) (2.19)
The Casimir operator is given in this basis by"
Q=-(Jo)’ + 1)+ (1)" (2.20)
It will prove useful to work with the ladder operators
J. =] £1], (2.21)
satisfying
UosJel =21 U T-1=-2]p (2.22)
so that the Casimir becomes
Q=—JoUo+D+J ]y ==Jo(Jo=1) + /] (2.23)

The (g, K)-modules induced by the irreducible admissible Hilbert space representations
of Spin(2,1) exhaust all the possible irreducible (g, K)-modules*’, and the generators
act on them as

Jolj» m) = mlj, m)

Jiljym) =T, (j,m)|j,m £1) (2.24)
Qlj,m) =-j(j+1l|j,m),
where
Fi(j,m)::ﬁ\/j¢m\/jim+1. (2.25)

The vectors | j, m) form an orthogonal basis®' for the vector space of the representation,
with j being a label for the representation and m enumerating the vectors; their possible
values depend on the representation class, which can be one of the following™:

» Positive discrete series D7 : infinite-dimensional lowest weight (with a lower bound
on m) modules, with

je{—%,o,%,l,...} and me{j+1j+2,j+3,...}.
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Note the resemblance with
the quadratic form S(x).

**See Knapp, Representation
Theory of Semisimple Groups:
An Overview Based on Ex-
amples, chap. II for the explicit
expression of the group repres-
entations.

*Unless the representation is
unitary or finite-dimensional,
it is not generally possible to
renormalise the basis to 1 and
keep the action (2.24) at the
same time.

*>See Wallach, Real Reductive
Groups I, chap. 5, for the classi-
fication.
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resentations.

*4i.e.,, those with non-zero
Plancherel measure.
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« Negative discrete series D} : infinite-dimensional highest weight (with an upper
bound on m) modules, with

jE{—%,O’%,l,...} and me{_j_l’_j_z’_j_?)"“}‘

o Continuous series C;?: infinite-dimensional modules of parity € € {0, %}, with
mee+Z and jeC;
when j is (half-)integer, there is the additional constraint
j-e¢Z.
Moreover, the representations C; and CZ;_; are isomorphic.

« Finite-dimensional series F;: isomorphic to the unitary SU(2)-modules™, with

je{0,3,1,...} and me{-j,—j+1,...,j-1j}
They are the only finite-dimensional modules, with dimension 2 + 1.

Of these representations, the only unitary ones are the whole discrete (positive and
negative) series, the continuous series with either

je{—%+ﬁs|s¢0}, 820,%, (2.26)
known as the principal series, or
je(-L0), €=0, (2.27)

known as the complementary series, and, among the finite-dimensional ones, only the
trivial representation F,. Of these, the only ones appearing in the Plancherel decompos-
ition* are the principal series and the discrete series with j > 0. Note that the inner
product on the Hilbert space of non-unitary representations, such as the F;, is not
preserved by the action of spin(2,1).

2.3.2 Product of finite and discrete modules

Consider the coupling F,, ® D of a finite-dimensional module and one from the discrete
positive series, with y > % The generators of spin(2,1) act on this module as

Jo=ly®l+1®],, J.=].®1+1®],. (2.28)

Remark. The discrete negative module D]T is the dual module to D;, i.e., they are related
by the change

Jo==Jo Je=Te  lism) = (=1)"]j,—m).
Conversely, F, is dual to itself, i.e., it remains unchanged under the same change. For this
reason, the results in this section will be proved for D}' only: the analogues for the negative
module trivially follow by transforming operators and vectors for both the finite and the
discrete series.
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Such a module is not generally irreducible. In order to find out if F, ® D;r can be
decomposed in terms of irreducible modules of spin(2,1)—a non-trivial task, since
the module is not unitary—we will consider the algebraically equivalent problem of
diagonalising (if possible) the Casimir Q. Solving the eigenvalue equation for generic
y is not easy; instead, the approach will be to explicitly find the eigenvectors and then
show that, under certain conditions, they provide a basis for the product space.

To avoid confusion, the basis elements of the finite-dimensional series will be denoted
by

yp) ey oy} (2.29)

from now on. Since both F, and D; are lowest weight modules, i.e., J_ annihilates one
of their basis elements, their tensor product has to be as well. In fact, the vector

W) =ly-y)elij+l) (2.30)

satisfies

J_lw(~y)) = 0s (2.31)

an element of F, ® D;-r satisfying this property will be called a lowest weight vector. [y_,)
is trivially a Q-eigenvector: from (2.23) follows that

Qly(y)) = ~JoUo = Dl¥(y)) = =G =y)(G -y +Dlyy)) (2.32)

since
Joly> ) ®j>m) = (m + )|y, u) ® |j, m). (2.33)

This is not the only lowest weight vector; in fact, we have

LR . +
Proposition 2.3. For the coupling F, ® Dj, the vectors

H v vl r " .+ -0 . .
W)= 3 (7 T 2T e ine ),
v=—y o=-y I, (y’ O)

with y € {-y,...,y} are lowest weight vectors and Q-eigenvectors, with respective eigen-
values

Ay =-(+w)(+p+1).

Proof. First notice that each [y(,,)) is non-vanishing. Acting on it with J_, we get

U =1 T (i i _
S ] IOy vt e u v
v=—-y o=—y I‘+(V’ 0)

v-1

¢ L.(j,j+u-o). ,. . .
M) [T L LE D G u -y, vy @l jp-v), (234)
v=—y o=—y r+ ()” 0)

where the property
L (jym—=1) =T_(j,m) (2.35)

17
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was used. Relabelling the dummy index v in the first sum and noticing that the term
v = p vanishes in the second one, we can rewrite this as

v

pl i -
S (e [T HEIEEZ Dy (el jeu-v) =0, Gao)
v=-y o==y I‘+ (% 0)

Again, the action of the Casimir is trivially given by

Q) = ~JoUo = Dly(uy) = =G+ #) G+ s+ Dlv))- (2.37)
O

The fact that a finite number of eigenvectors exist does not mean Q is diagonalisable.
Instead of working in an infinite-dimensional setting, however, we can take advantage
of the tensor product basis vectors of F, ® D;-' being J,-eigenvectors: the space can be
decomposed as®

F,eDi= @ Vy, (2.38)
M=j+1-y

where the V), are the orthogonal subspaces spanned by

(W)M) =y, u)®|j, M), pe{-y,...,min(y,M - j-1)}. (2.39)

Each V), is finite-dimensional and, since [Q, J,| = 0, we can work with the restriction
Qu = Qly,,, satistying
Qu (Vi) € Vi (2.40)

The total Casimir Q will be diagonalisable if and only if each Q,, is. In order to prove
whether Q is diagonalisable or not and under which conditions, the following two
lemmas will be needed.

Lemma 2.2. If j> y —1, then the repeated action of ], on a lowest weight vector never
vanishes; that is, for every y,

(]+)H‘I/I(M))¢0 VneN.

Proof. Suppose the lemma is not true for an arbitrary y, and let #n > 1 be the smallest
integer such that

(T [weuy) = 05 (2.41)
then we have (]+)”_1|1//(#)) # 0 and, since Q and J, commute,
QUL = UD)" Q) = 4 T)" ¥w)- (2.42)

On the other hand

QUL M) = ~JoUo + DU W) + T-U) ()

n— (2.43)
= Qeusmy T W)

18
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since
(]+)n71|1/](y)> € Vj+y+n' (2.44)
This is only possible if g(,) = q(,.p)> that is
G+w)(G+u+)=(G+pu+n)(j+u+n=+1), (2.45)

which is equivalent to
n(n+2j+2u+1)=0. (2.46)

However, since ¢ > —y and j > y — 1, we have

nxl
. (2.47)
n+2j+2u+1>1+2(y-1)-2y+1=0,

which leads to a contradiction. O
Lemma 2.3. The values

qQuy=-G+pw)G+u+l), pe{-y....y}, jeC

are all distinct if and only if

jeZ/2

TR o {je(—oo,—wu(y—l,oo).

Proof. Consider arbitrary y # v. One can easily check that
Ay =9y < (p-v)(p+v+2j+1)=0. (2.48)
Since y and v are different, this is equivalent to solving
p+v=-2j-1 (2.49)

The LHS is an integer number, so if j ¢ Z/2 there is no solution, i.e., the g u s areall
different. Suppose now that j € Z/2. The LHS is subject to the constraint (remember

U*v)
lu+v] <2y, (2.50)

so that a solution exists if and only if
12j +1] < 2y. (2.51)

Since j can only change by half-integer steps, it follows that coinciding g ,’s exist if and
onlyif j <y -1and j > —y. Consequently, they are all different if and only if j > y — 1 or
j<y O

We can now prove, under certain conditions, the diagonalisability of Q.
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Proposition 2.4. When j > y —1, the operator Q,, is diagonalisable, with distinct eigen-
values

qQuy=-G+p)G+u+1), pe{-y,....min(y,M-j-1)}
It follows that Q is overall diagonalisable.

Proof. Define, up to a normalisation factor, the vectors

j+uM)= )T ) € Vi, pe{-y,..omin(y, M- j-1)} (252)

owing to Lemma 2.2, they are all non-vanishing. Moreover, since Q commutes with ],
they are Q) -eigenvectors, with eigenvalues q,,. Finally, it follows from Lemma 2.3 that
the eigenvalues are all distinct: since the number of eigenvalues equals the dimension of
Vi Qyy is diagonalisable. O]

Proposition 2.5. When j <y -1, the operator Q;,,.,, is not diagonalisable. It follows
that Q is overall not diagonalisable.

Proof. 'The proof is divided in two parts: first we show that the only possible eigenvalues
of Qj,,, are the g(,)’s, then we use this fact to prove that Q;,,., is not diagonalisable.

(i) Suppose there is a non-zero eigenvector |¢) € V., with eigenvalue

P#q)y HE{Yvh (2.53)
It must be
(J-)"lg) =0 (2.54)
for some
ne{l,2,...,2y+1}, (2.55)
since there is only one vector in V;,,_, and it is annihilated by J_. Let N be the smallest
such number; then (J_)""!¢) # 0 and
QU ey = 1) lg) = 9()" ), (2.56)

while at the same time
QU ) = ToUo = DU o) + 1, U)M0) = 4ipney U o). (257)
It follows that ¢ equals one of the g,’s, which is a contradiction.

(ii) Notice that, since j > —%, it is always j > —y. Then, since j < y — 1, it follows from
Lemma 2.3 that there are at most 2y distinct eigenvalues. However, by acting with Q
on the basis vectors

Jj+l+y

((W)j+1+y)=ly,u) @ j+1+y—p) € Vi, (2.58)
we find that the matrix elements>®

Quy = ((W)j+1+y|QI(v)j+1+y) (2.59)
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vanish unless
p=v or u=vzl (2.60)

in other words, Q,, are the entries of a tridiagonal matrix (see Appendix A.1). In
particular, since the superdiagonal entries
Quua =T.(p)I_(jij+1+y-u), p<y-1 (2.61)

are all non-zero, it follows from Proposition A.1 that the eigenspaces of Q;,,, are all
1-dimensional. As a consequence, there are at most 2y eigenvectors, which means Q;,,.,
is not diagonalisable, as dim V., = 2y + L. Since Q is non-diagonalisable for at least
one M, Q will not be diagonalisable as well. O

Summary

The coupling F, ® D}r can be decomposed in irreducible modules if and only if j > y - 1.
An eigenbasis for Q can be constructed by defining recursively

UJW+1)=ERIEBJJLAQ’ Je{ji=vs--j+v)s (2.62)
starting from®’
[I,J+1) o< |l//]—j>’ (2.63)
which satisfy
QM) ==J(J+ DI, M), JolJ, M) = M|], M). (2.64)

Lemma 2.2 guarantees that these vectors are all non-zero, so that each Q-eigenspace
behaves as the discrete positive module®® D}r. In terms of the the old basis elements, the
change of basis must be of the form

Qp
j+uMy= > AnGpI(MM),  pe{-y,...,Qu} (2.65)
v=—y

where

Q, :=min(y, M - j-1), (2.66)
with the AJVVL s forming an invertible matrix; they will be called Clebsch-Gordan coeffi-
cients, in analogy with su(2) representation theory. More generally, we can write

Yy oo
M) = 30 3 AlyssjomlT, M)ly, ) @ |j, m), (2.67)
U==y m=j+1
where*
A(y, s j,m|], M) = Az/{lfj(j’)/)(smﬂLM (2.68)
will also be called Clebsch-Gordan coeflicients.
Analogous results are easily found for the coupling with D;. We can write the result
in a compact form as

jty
F,®D; = Dy, j>y-1, (2.69)
J=j-y
where we use the symbol @ to emphasise that this (algebraic) direct sum of modules is
not an orthogonal direct sum’°.
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*”Up to a normalisation factor.

**Note that J_|J,] +1) = 0 as
|J,J +1) is a lowest weight vec-
tor.

**Note that |y, ) ® |j, M — p)
vanishes for g > Q.

3°In fact, one can check that Q
is not Hermitian, as Fy, y 2
% is non-unitary, so there is
no reason to expect the Q-

eigenbasis to be orthogonal.
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2.3.3 Product of finite and continuous modules

Consider now the coupling F,, ® Cj of a finite-dimensional module and a generic one
from the continuous series, not necessarily unitary. The technique used for the discrete
series will not work here since the spectrum of J, is unbounded, hence a different
approach is needed.

We will work again individually on each J-eigenspace V,;, M € & +y + Z, with basis
vectors

(M) =y, p)® i, M—p), pe{-y,....v} (2.70)

and try to diagonalise Q,,. Explicitly, we are interested in finding a change of basis

Yy
T M) = 2 AR GI(M), e {-y,....y}, (2.71)
v=—y

with
QU (> M) = =T Uy + Dy M). (272)

Remark. Since any non-trivial F, is not unitary, the total Casimir is not Hermitian;
moreover, one can easily check that it is not a normal operator either, i.e.

[QX/p Qul#0.

As a consequence, not only the spectral theorem cannot be used to diagonalise it, but its
eigenvectors will be non-orthogonal and the matrix AM(j, y) non-unitary.

Solving the eigenvalue equation explicitly for arbitrary y is too difficult; however,
one can easily do it for the 2-dimensional case y = %: each Q,, is diagonalisable if and
only if j # -3, with eigenvalues q(s1) (the corresponding Clebsch-Gordan coefficients
are listed in Table B.1). Using this information, we can prove by induction that, when
j # Z/2, Q is diagonalisable for all y > 1. The case j € Z/2 will be treated later with a
different method.

Proposition 2.6. When j ¢ Z/2, the eigenvalues of Q,y for the coupling F,, ® C; are

quy=-G+w)(G+u+1), pe{-y.....v}h
that is
Ty =7+ -
These are all distinct and do not depend on M, so Q is diagonalisable.
Proof. (i) The proof proceeds by induction on half-integer y > % As the statement is
true fory = %, suppose that it is true for y — % and consider the coupling F, ® C;. The
finite-dimensional modules are isomorphic to the irreducible unitary modules of s1(2),

seen as representations of the complexification spin(2,1)¢ 2 su(2)c. Consequently, the
well-known result of s1(2) recoupling theory®

F,cFi®F,_12F,  oF, (2.73)
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can be used; explicitly,

33
yuy= > Y (3.oy-Ap o) ®ly-1.A), (2.74)
0:—% /\:—y+%
where
(3057 = 3 My, u) (2.75)
are the su(2) Clebsch-Gordan coefficients. We can then write, since Fy_ 1 ® ij is
2
decomposable by induction hypothesis,
IWEIATENE YIRS R UL (R RIEY S YY)
o,A
-1
2
=Y (G ay-pApnmio)e Y B (hy-3)li+xM-o)
0, K=—y+%
(2.76)

where the BKMA are the inverse Clebsch-Gordan coefficients, i.e., BM is the inverse of the
matrix AM. In particular, when y = —y, the only non-zero su(2) coefficient is**

by -y ) =1 77

so that

B (G DI+ R)j e p M), (278)
> 2

where the (j + «) label in the vector indicates it comes from the coupling

3. -3)®|j+ K M+ 3). (2.79)

There are exactly 4y vectors on the RHS of (2.78): they are
G=y+3)j-yM)

|(j+p+3)j+u,M) forue{-y+1,...,y-1} (2.80)
|G+ y =i+, M)

their Q-eigenvalues are
Ay = —G+w)G+p+1), wel{-y....y} (2.81)

which are all distinct®, and they form a basis for the M eigenspace in Vi ® Vy_ 1 ® C;?,
2

2
i.e., they are independent.
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Khersonskii, ‘Clebsch—-Gordan
Coefficients and 3 jm Symbols’.

31t follows from Lemma 2.3, as
jEzZ)2.
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As shown in Appendix B.1, Clebsch-Gordan coefficients satisfy the property

. oWt vy-M+1 .0
BM — bl :av bl —Bv— > >
v+l, y(] y) (.] Y) \/m s y(] )/)

where «,, is fixed by the normalisation convention and does not depend on M. Using
this formula and the fact that (see Table B.1)

(2.82)

— - lf p = _1

. \/2j+2K+1 2
B,IOV’I—% (j+m3)= j+;<5v1$ , ) (2.83)

o=

we can write
. Y M . .
[(=y)M) =ly,-y) @[, M +y)= > B,_,(jp)lj+ v, M) (2.84)
v="y

for some coefficients B]X_y, where the vectors on the RHS are defined up to a normalisa-
tion factor as

(J+3)], M) if J=j-y

I, M) o< {1(J = 3)], M) if J=j+y (2.85)
H0-D M) - L)+ 1), M) otherwise,

with
B(j+x+3)=a(jy—3) (2.86)

Since these vectors live in different Q-eigenspaces, they are necessarily independent.

(ii) Suppose now that the vectors |J, M) defined in (2.85) belong to V,,: then they
would be 2y + 1 independent eigenvectors in V), i.e., an eigenbasis, which proves the
proposition. It only remains to show that this is indeed true; it can be done by induction
as well. We can easily check that, for y <y,

Ql(#) M) € span{|(y —~1)M), [(u)M), [(u + 1) M)}, (2.87)
with
(e + DOMIQI()M) = T, (y, i)T_(ju M - ) # 05 (2.88)
consequently, it must be
(4 + 1)M) € span{|(u —1)M), |(#) M), Q|(¢) M) }. (2.89)
Now suppose that
(u=1)M),[(u)M) € spanf{|J, M) | ] = j=y,.... j+ v} (2.90)

then®*
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Ql(u)M) e span{|[, M) [ ] = j—=y,....j+y} (2.91)

so that, as a consequence of (2.89), it must be

|(u+1)M)espan{|[, M) |J=j—y,....j+V} (2.92)

as well. Since when u = —y the hypothesis is valid®, it follows by induction that every
basis vector |(p) M) can be written as a linear combination of the independent |J, M)
vectors. As their number match, the latter must form a basis for V,, so that they are, in
fact, eigenvectors for Q. O]

When j € Z/2, Q,, is not always diagonalisable. In order to prove when it can be
done, the following Lemma is needed.

Lemma 2.4. When j € Z/2, the eigenvalues of Qy; for the coupling F, ® C; are given by

q(u) ==(+u)(j+ru+l), pe{-y,....y}.

Proof. The result follows by continuity from Proposition 2.6. First notice that the func-
tion*®

di':je R~ det(Qy(j) - M) € C, (2.93)

is continuous since it is a product of continuous functions®” of j. Moreover, for j ¢ Z/2,
it is given by

Y
dy(j) = [T-G+wG+u+1) -7l (2.94)
==y

as a consequence of Proposition 2.6. Now let k € Z/2; since d is continuous, it must be

Y
' (k) =limdy' (7) = [ [=(k+w)(k+p+1) -] (2.95)
” U=y
so that the eigenvalues of Qy; are the g(,)’s. O

It is now possible to prove that

Proposition 2.7. When j € Z/2, Q is diagonalisable for the coupling F, ® C; if and only
if j>y—1lorj<—y.

Proof. We know from Lemma 2.3 that the eigenvalues of each Q,, (given by Lemma 2.4)
are all distinct if and only if j > y — 1 or j < —y. However, like in the discrete case (see
proof of Proposition 2.5), Q,, is represented in the |(¢) M) basis by a tridiagonal matrix
with non-zero superdiagonal entries. It follows from Proposition A.1 that the Q,, are
diagonalisable if and only if the eigenvalues are all different, i.e., j >y —1or j < -y, as
required. O
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*Note that |(-y —1)M) = 0.

3Here Qur( ) is the matrix rep-
resenting Qu in the coupling
F,® Cj, where y is fixed.

% Qne can easily check that the
entries of Qu(j) are continu-
ousin j.



38Schwinger, ‘On Angular Mo-
mentum’.

3Unitary representations are
those with K = K., KI = K_.
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Summary

The coupling F, ® CJS- can be decomposed in irreducible modules if and only if j ¢ Z/2
or, when j is (half-)integer, if j > y — 1 or j < —y. One can check directly that each
Q-eigenspace behaves as a continuous module: in fact, either

JtZ[2 = J¢Z[2 (2.96)
or
jeZ/2 JeZ/2
J. / = / (2.97)
j-ed¢Z J-E¢Z,
where
if Z
E:= {? 1 s+y€1 (2.98)
3 ifetyes+%Z;
in both cases
LL(JL,M)+0, VYJe{j-y,....j+y}, VYMeE+Z. (2.99)

The Clebsch-Gordan coefficients can be found by solving the eigenvalue problem for
the matrix representation of Q,,, with M arbitrary; the coefficients for the specific cases
ofy= %, 1 with arbitrary C; can be found respectively in Tables B.1 and B.2.

As with the coupling with discrete representations, we can write the result in the

compact form
€ iy E
F,®C; =] Cy, (2.100)
==y

with the restriction that, if j € Z/2, j >y —1or j < —y.

2.3.4 Jordan-Schwinger representation

An application of the Wigner-Eckart theorem to the non-compact group Spin(2,1) will
be presented here. It is well known in the quantum theory of angular momentum, where
the Lie group SU(2) is used, that the generators of the algebra (physically corresponding
to infinitesimal rotations) can be expressed in terms of a pair of uncoupled quantum
harmonic oscillators; this result is known as Jordan-Schwinger representation®”. Explicitly,
the su(2)¢ generators® K, K, and K_ with commutation relations

[K,,K,]=+K,, [K,,K_]=2K, (2.101)
can be expressed as
K, = %(aTa - bTb), K, = a'b, K =b'a, (2.102)
where a and b are quantum harmonic oscillators, i.e., satisfy
[a,a']=[b,b'] =1, (2.103)
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and all the other commutators vanish. More generally a, a',b,b" and 1 form a complex
unitary representation of the 5-dimensional Heisenberg algebra b, (R).

One may ask if a similar result holds for the (g, K)-modules of Spin(2,1): the answer
is positive for the discrete and finite-dimensional series, but an analogous construction
for the continuous series is not easily guessed and, in fact, was not available until
recently*®. It will be shown here how the Wigner-Eckart theorem can be used to find
an analogue of the Jordan-Schwinger representation for Spin(2,1), which covers all
representation classes.

First notice that the Wigner-Eckart theorem for a Spin(2,1) tensor operator*'

T:F,®V; > Vy, (2.104)
with components
TM:|j,m)€Vj—>T(|y,y)®|j,m))er,, (2.105)
takes the form
(s m'rljym) = (Il B m'ly, s j, m), (2106)

where (| 7] j) (usually called the reduced matrix element) does not depend on m, m’
or u and B(j', m'|y, u; j, m) are the inverse Clebsch-Gordan coefficients**

BT 11y, o 1) = B s (oY) (2107)
Now note that a tensor operator
V:F® VJ - V] (2.108)
can be constructed out of the algebra generators, with components
Va=7+il.,, V= —\/5]0; (2.109)
in fact
Uo Vil =0V, UV, ]=T.(Lp). (2.110)

An alternative way to look at the Jordan-Schwinger construction is to look for two
tensor operators

T:F%®Vj—>Vj_%, T:F%®Vj—>Vj+% (2.111)
that can be combined to obtain V. Explicitly, we make the ansatz
11
2 2 1 1 -
Vi = Z Z (3> 5 3> |1 1) T,T,. (2.112)
=

D=

1, =
2 #277

It can be shown™ that the RHS (2.112) is indeed a tensor operator F; ® V; — Vj; the
Clebsch-Gordan coefficients appearing in it are**

(3>t 35 ol ) = V- #)!f\z/(l t)!

(2.113)
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4°Sellaroli, ‘Wigner—Eckart the-
orem for the non-compact al-

gebrasl(2,R)’.

“Here V; is an irreducible
(g, K)-module of Spin(2,1),
on which the Casimir acts as
Q = —j(j + 1)1. Moreover, we
assume the module F, ® Vj is
decomposable.

#If V; is finite dimensional
these are the SU(2) Clebsch-
Gordan coefficients. It is im-
plicitly assumed that the coef-
ficients vanish if V;» does not
belong to the decomposition.

$Barut and Razka, Theory of
Group Representations and Ap-
plications, chap. 9.

44Varshalovich, Moskalev and
Khersonskii, ‘Clebsch-Gordan
Coefficients and 3 jm Symbols’.
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so that, in terms of the generators,

J, = «iT,T,, ]O:—%(T_T++T+T_), (2.114)
with the shorthand notation
T,:=T,:. (2.115)
2

We know from the Wigner-Eckart theorem that the matrix elements of T and T are

(= 3m|T,ljsm) = fF(G)B(j— 3, m'|5, s j,m) (2.1162)
G+ 3o m|Tljm) = F()B(j+ 3 m'15 p jom), (2.116b)

where f and [ are arbitrary functions. The matrix elements of the generators are known:
using the ansatz, we get

T, (jim) = (om+1],|j,m) = i(jym+1T,[j+ 1, m+1)(j+ i, m+ 1T |, m). (2117)

The RHS can be evaluated, assuming the decomposition exists of F1 ® V; exists, with
2
the Clebsch-Gordan coefficients from Table B.1, which give

S DID i g S0+ DI0)
NIEE NS A ! V2ji+2y/2j+1

so that it must be

i r,.(j,m), (2.118)

FG-DIG) _

W—l (2.119)
Similarly
S GG
(j,m 1|]_|],m)——\/m\/ﬁl“_(],m) (2.120)
and

Gy = 29427
N TR N TR
which means the ansatz is true whenever (2.119) holds. The choice

fG)=F()=v/2j+1 (2.122)

will be used here. The action of T and T is thus

(2.121)

T |j,m) =~ j+m|j—%,m—%) (2.123a)
T.ljym)=/j-mlj-3m+}) (2.123b)
T |jymy=+/j-m+1|j+1,m-1) (2.123¢)
T+|j,m):\/j+m+1|j+%,m+%), (2.123d)
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2.3. 3D Lorentz group

from which it follows that _ _
[T+’T—] = [T+’T—] =1, (2.124)

with all other commutators vanishing.

These commutation relations closely resemble those of the harmonic oscillator and,
in fact, generalise them. For example, when the representation considered is F i we find
by inspection

i = ﬂFTl. (2.125)
Renaming
T =-a, T.=0 (2.126)
we get
J. = ta'n, ] =ib'a, Jo = %(aTa - bTb), (2.127)

with a and b satisfying the harmonic oscillator commutation relation. Analogously, for
the discrete series D]* with j > 0 we have

~ |-17  forD?
T, = { T¥ for d (2.128)
T or Dj;
with the choice
— _ et
T =a, T,=ib for D;r (2.120)
T =a', T, =1ib for DJT
we get
Jo=a'b', J_=ab, Jy=1(a'a+ b'b+1) for D} (2.130)
J, =—ab, J_=-a'b", ]Oz—%(aTa+bTb+1) for D;.

Note that, despite the fact that the Clebsch-Gordan decomposition of F1 ® D*, does
2

2
not exist”, the Jordan-Schwinger representation in terms of harmonic oscillators also

works for D*; in fact the action of T is well defined even when j= —%, while T only
2
acts on D7, on which it is defined.

2
The continuous series generators cannot be rewritten in terms of harmonic oscillators
because, while

(j+3me5|Tljom) =#(om|Te|j+ 3, m= 1), (2131)

these matrix elements are never always real or imaginary, as that depends on the value
of m. This is to be expected, as if the generators could be written in terms of harmonic
oscillators, the Casimir element Q would be expressible in terms of the number operators

N,=a'a, N,=b"b, (2132)

which have discrete spectrum*: this contradicts the fact that the eigenvalues of Q are
continuous. Nevertheless, thanks to the Wigner—Eckart theorem, we constructed an
an analogue of the Jordan-Schwinger representation that works even in this case. This,
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“Recall that it must be j > y—1.
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ics.
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composable when j = -7 and
& = 0, the Jordan-Schwinger
representation works even in
this case, as with the discrete
series.

“Here ¢,,° is the Levi-Civita
tensor, and we use the Einstein
convention of summation over
repeated indices.
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together with the Clebsch-Gordan decomposition of F,® C}, is the most important result
of this chapter, as it will allow us to generalise the spinorial formalism of loop quantum
gravity to 3D Lorentzian space-time in such a way that continuous representations can
be considered, as we will see in Chapter 3. One should note that,despite the fact that the
components of T and T are not harmonic oscillators, the commutation relations (2.124)
are still those of a Heisenberg algebra representation, where one of the generators acts
as the identity, so that for each j, ¢ the space®”’

C;ik/z’ (2.133)
€

where ¢, changes parity every time k increases by 1 and ¢, = ¢, carries the structure of a
(non-unitary) h,(R)c-module.

2.4 4D Lorentz group

In this section we are going to study the recoupling theory of finite and infinite-dimen-
sional representations of the double cover of the 4D Lorentz group, Spin(3,1), using
the results of the 3D case as a guideline. The results we obtain are very similar to the
Spin(2,1) case, but their proofs are more elaborate due to the more sophisticated nature
of the representations. We will first review the Spin(3,1) representation theory, then
study the product of a finite dimensional representation and an infinite-dimensional one.
As for the 3D case, we are then going to use the Wigner—Eckart theorem to generalise
the Jordan-Schwinger representation, known only for the finite-dimensional modules,
to infinite-dimensional representations.

2.4.1 Irreducible representations of Spin(3,1)

The proper orthochronous Lorentz group SO (3, 1), henceforth simply referred to as the
Lorentz group, is the identity component of the subgroup of GL(4, R) that preserves
the quadratic form

Q(x) = _(9‘0)2 + (x1)2 + (9‘2)2 + (x3)2, x = (X9, X1, %3, X3) € R*. (2.134)

To allow for spin representations, the double cover Spin(3,1) 2 SL(2,C)y of SO4(3,1)
will be used here; moreover, only complex representations will be considered, so that
one may work with a complexified Lie algebra.

The Lie algebra spin(3,1) has 6 generators

J= (]0’]1>]2)) K= (K0>K1’K2)’ (2.135)
with commutation relations*®
[]a’ ]b] = ﬁsabcjc’ []a’Kb] = ﬁeachc’ [Ka’Kb] = _ﬁgabcjc- (2.136)

The J’s generate the subalgebra spin(3) = su(2) (i.e., spatial rotations), while the K’s are
the generators of boosts. The algebra has two Casimirs

¢ =K C=/-K (2.137)
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which, introducing the operators

J.:=]+i],, K,:=K +iK, (2.138)
and making use of (2.136), can be rewritten as
C=JoKo+3U_K, + LK), Cy=J"=(Jo+Kg+K,K_). (2.139)

As in Section 2.3, we will work with the (g, K)-modules induced by irreducible
admissible Hilbert space representations®, with g = spin(3,1) and K = SU(2); for
Spin(3,1) these exhaust all the possible irreducible (g, K)-modules’®. The general
irreducible admissible (g, K)-module’’, labelled by a pair (A,p) € Z/2 x C, is the
algebraic direct sum

Vi = @ V){’p (2.140)
of unitary irreducible SU(2)-modules VAj p where the sum is in integer steps and, de-
pending on the values of A and p, it is either j. .. € |A| + N or j., = oo (see later
discussion). The (complex) vector space VAJ ) is spanned by the basis

(A, p)jsm), meM;={-j-j+L....j-1j}, (2.141)
on which the su(2)¢ generators act as’*
Jol(A, p)js m) = m|(A, p)j, m)
1O p)jm) = €, Giom)| (A p) o 1) (142)
FI(A p)js m) = i + DI p)js m),
with
C.(jm)=vjFm/jtm+1, (2.143)

i.e., they are eigenvectors for J, and J?; since SU(2) is simply connected, its action on ij)p
is completely determined by the corresponding Lie algebra action. The (g, K)-module
will be given an inner product by requiring the SU(2)-modules to be orthogonal to each
other and the vectors in (2.141) to be orthogonal to each other™.

The possible matrix elements®* of the boost generators are

(j+Lm£1K,|j,m) = ?P/{r’p(j)\/jim+1\/jim+2 (2.144a)
(j+1,m|K0|j,m):P)tp(j)\/j+m+1\/j—m+1 (2.144b)
(js m £ 1K, [j, m) = Py ,(j) C..(js m) (2.144¢)

(j> mKoljsm) = Py, (j) m (2.144d)

(i-Lm=1K,|j,m) =Py ,(j)\/jFm\/jFm-1 (2.144¢)

(j=Lml|Kolj,m) = Py, (/)N j+m/j—m, (2.144f)
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group is SU(2).

°See Knapp, Representation
Theory of Semisimple Groups:
An Overview Based on Ex-
amples, chap. II for the explicit
expression of the group repres-
entations.

5'Gel'fand, Minlos and Shapiro,
Representations of the rotation
and Lorentz groups and their ap-
plications.

522 =] -J is the s5u(2) Casimir.

>3As in Section 2.3, we cannot
guarantee they are of norm 1
unless the module is unitary or
finite-dimensional.

>4 All the other matrix elements
necessarily vanish. In fact, the
boost generators Ko, K, are
(proportional to) the compon-
ents of an SU(2) tensor oper-
ator, so that all other possibilit-
ies are excluded by the Wigner-
Eckart theorem.
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where
o VItWi-MWitpVi-p N
Py o(j) = — = v . v . PL()=P,(i+1) (2.145)
J2j+13/2j -1
and
ilp ifi+0
p, (jy=4iGD N/ 2.146)
Lo (0) {0 if j=0. (
The Casimirs act on V) , as
C =idpl, Cy=(A*+p*-1)L (2.147)

The values j can take have an upper bound j, ., € |A| + N, if and only if

Py ,(jmax) =0 and Py, (i) #0  Vj< jiu (2.148)
i. ‘55
P = *(jmax +1)- (2.149)

It follows that V) , is finite-dimensional when p € £(|A[+N) and it is infinite-dimensional
in all other cases.

Remark (isomorphic modules). The values of the Casimirs and of Py ,(j), Py ,(j) and
Py ,(j) are invariant under the change (A, p) — (=A, —p); moreover, whether the module
is finite-dimensional and the value of j ... are unaffected by the change as well. It follows
that the modules V) , and V_) _, are isomorphic.
Unitary modules are those for which
K} =Ky Kl=K (
0 =Ko L =K, 2.150)
with respect to the inner product on V, . Explicitly, it must be
Pl,p(j) eR, Pg,p(j) eR, (2.151)
which is satisfied by three possible classes of modules:
o principal series: A € Z[2 and p € iR;
o complementary series: A = 0 and p € (-1,0) U (0,1);

o trivial representation: A = 0 and p = +1.
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Finite-dimensional modules

It was shown that the (g, K)-module with p = B(w + 1), w € |A| + N, B = +1 is finite-
dimensional. We will assume, for finite-dimensional modules (and for those only), that
A > 0. It is then easy to check that

dimVy , = (2j+1) = (0 - A+1)(w+A+1). (2.152)
j=A

Finite-dimensional modules can be given an alternative construction using the fact that
spin(3,1)¢ 2 su(2)c @ su(2)c, (2.153)

i.e., by changing to the basis
M4 = %(] - iAK), A=4l, (2.154)

with commutation relations
(M3, My ] = G ME 85 (2.155)

one can easily show that, for finite-dimensional modules,

K} =-K, K =-K, (2.156)

so that each M? is self-adjoint, i.e., each su(2)¢ subalgebra acts as a unitary su(2)
representation.

From su(2) representation theory we know that, if V; is the (2j + 1)-dimensional
unitary irreducible su(2)-module,

w
@Vj;Vw_M@Vw__A EVw__,\®Vw_+,\. (2.157)
j=A 2 2 2 2

SinceJ = M) 4 M(+), we can then change the basis to

w
i 1) ® |jzo my) = Z Z (j, m|j;> mys jp my)| (A, p) j, m), (2.158)
A m=j

where (j, m|j;, my; j,, m,) are the su(2) Clebsch-Gordan coefficients’® and
i wrld i w-d
nTE o (T (2.159)
=7 Ja= "5

it is assumed that M) and M(*) only act respectively on |j,, m,) and |j,, m,). The
dimension of the new basis is

2 +D)(2j,+) =(w+A+1)(w-A+1), (2.160)
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as expected. The choice of j;, j, depends on the sign of p: in fact, we have

Cilji> my) ® |jzs my) = iBA(w + 1) jy, my) ® |5, m,), (2.161)
but also
C=> iA(M™)?, (2.162)
A

so that (2.161) is consistent if and only if

. _w-B\A . w+BA (2163)
h= 5 2= > 163

Conversely, one can show that every product of su(2)-modules
Vj1 ® ij> i j2 €Ny/2 (2.164)

gives rise to a Lorentz group (g, K)-module with

i+, +1 if jy<j
A== il p:{(h ja+ 1) <ia (2.165)

~(jy+j+1) if ji > j,-

As a consequence, every finite-dimensional irreducible (g, K)-module can be specified
by a pair (j}, j,) € Ny/2 x Ny/2; it is customary to use the pair to denote the module
itself.

Examples of finite-dimensional modules are

+ (0,0): the scalar module (trivial representation);

« (3,0) and (0, 3): respectively the left and right Weyl spinor modules;

11
272

): the (complexified) vector module;
. (%, 0)a (0, %) the Dirac spinor module (not irreducible).

It is not difficult to infer the decomposition of the product of two finite-dimensional
modules from su(2) results; we have

jl+j2 k1+k2

Gok)® (k)2 @B @B k), (2.166)

j=liv=jal k=|ki~ka|
and, in particular,
(1> J2) = (j1,0) ® (0, j,). (2.167)

We will refer to modules of the kind (j, 0) and (0, j) respectively as left and right modules;
it follows from (2.167) that any other irreducible module can be constructed from the
product of a left and right one. To allow to easily specify if a module is left or right, the

notation
A {(j,o) if A=-1

AL 168
! (0,j) ifA=1 (2:18)
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will be used in the following sections. A basis for FJA is given by

jart)s peM; (2.169)
with
Joljar #) = #lja> ) and Kolja>p) = 1Auljas )
Jeljarw) = Co(jr )ljar £ 1) Kilja>p) = 1ACL(js )l jas p £ 1).

(2.170)

2.4.2 Product of finite and infinite-dimensional modules

In order to use the Wigner-Eckart theorem with infinite-dimensional modules, we
need to study the Clebsch-Gordan decomposition of the tensor product of a non-trivial
finite-dimensional module (necessarily non-unitary) and an infinite-dimensional one
(either unitary or non-unitary), which was previously unconsidered. In light of the
consequences of (2.167) mentioned above, we will start by considering couplings of the
kind F;f ® V) > where y > % and A, p are such that

P)tp(j) #0, Vje|l+N,. (2.171)

A Clebsch—-Gordan decomposition exists if and only if it is possible to simultaneously
diagonalise the two Casimirs in the product module’’, where the generators act as

J=J®1+1®], K=K®I1+1®K (2.172)
on the basis elements
o) ®l(hp)jm), jeM+Ny meM; weM,  (a73)

Instead of working with an infinite dimensional vector space, we can decompose
the product space into a sum of finite-dimensional spaces by diagonalising J, and J?
first. Using su(2) recoupling theory, we find that the vectors

(LMY= > > (psusjsml], M|y, ) ®[(A, p) j, m),
ueMy meM; (2.174)

jelM+Ny, Je{lji—-yh--5j+yv}h M e M,
provide an orthogonal basis of (J,, J*)-eigenvectors for the product space.
Proposition 2.8. The set of possible values ] can take for the vectors |(j)], M) is

0 iftA+yeZ

I ifd+yel+z

J(A,y) =max(e, [A|-y) +N,, €= {

Proof. (i) First consider the case [A| > y. As j > |A| > y, the possible values ] can take
for fixed j are
J=Yreea s (2.175)
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so that

JAy)s U {j-p--j+yr=IA -y + Ny =max(e [A - y) + N,
j€|A|+N0

as|A| -y > e

(ii) Now let y > |A|; in this case, we have

Je U-vpnjryr  ifj2y
{y—jo-. sy +j} if j<y.

It follows that, with ¢ defined as in the statement,

y+e—1 o
Jhy)y=Uly-g-y+idu U - j+y}
j=1\ jey+e
y+e-1
= LIJI{)’—J'>-~>Y+J'}U(8+N0)
j=I

=&+ Ny = max(e, |A] - y) + N,
as ij.:ml{y ~jy...,y + j} is necessarily’® a subset of & + N,,.

The eigenspace V/,, defined by

Jolw) = Mly),  Ply)=JJ+Dly), V]y)e Vi,

is spanned by the basis vectors™

{max(|A|, ] =9),....]+y} if J>y-|A|

M), jeQ;(Ay):=
(7)), M), jeQ;(d,y) {{y—],_,_,y-‘r]} if J<y-—[Al,

so that

dim V). - min(J+y—[A|+1,2y +1) if J>y-|A|
M= o541 if J<y-|A;

(2.176)

(2.177)

(2.178)

(2.179)

(2.180)

(2.181)

note that, when |A| > y, it is always true that J > 0 > y — |A|, so that the case ] < y — [A]

need only be considered when [A| < y.

Since the Casimirs commute with both J,, and J2, we can work with their restriction
on the finite-dimensional subspaces VI{/I and diagonalise those; moreover, it suffices to

consider the restrictions to V= V]] thanks to the following

Proposition 2.9. Let ] € J (A, y). The eigenvalues of the Casimirs C, and C, are the same

J
on each Vip M€ M].
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@ y=Al+1+n neNg

j possible values of J J possible values of j

[A| nEl,2y-n—3 3 A+ 7, A +n+1 (y=T,....y+])

[A]+1 n-1,...,2p-n+1 2 AM+n-1L..,A|+n+2 (y=J,....y+])

A+n-1 2,...,2p-3 i [Al,.. A +2n+1 (AL T+y)

Al +n T2y —3 2 [Al,.. A+ 20+ 2 (AL T+y)

Al +n+1  5,....2y+3 :

A+n+2 2,...,2p+3 2y-n-3 Al oo A+ 2y (AL T+y)
2y-n—31+k |A[+k,.. M| +2y+k =y T+y)
b) y=|A|+1+n, neNg

j possible values of | J possible values of j

[A| n+l...,2y-n-1 0 A|+n+1 (y=T...y+])

Al +1 Hy.o..,2y—n 1 A +n,.. M+n+2  (y=J,....p+]))

Al+n-1 2,...,2y-2 n+l Al .. A +2n+1 (AL T+y)

Al +n L...,2y—1 n+2 AlL... Al +2n+2 (A T+7y)

Al+n+1 0,...,2p :

Al+n+2 1,...,2y+1 2y-n-1 Al .. s A +2y (AL T +y)
2y-n-1+k A +k oo M+2p+k (J=9,....]+y)

Table 2.1: Possible values of J given j (left) and of j given J (right) when y > |A|.

Proof. The basis vectors of V]{,I satisfy

so that

L e v, {

Jl(DJ M) = C.(J, M)[(j)], M +1),

ker .|, ={0}, VM<]
kerJ_|,; ={0}, VYM>-].

(2.182)

(2.183)

Since J, commutes with the Casimirs, given a C,-eigenvector |a,) € V]{,I with eigenvalue
a, € C we have

whenever Vz{/z .18 defined®, so that each VA],I has the same eigenvalues.

0+ ]i|‘xa> € V]]\/Iil’

Callag) = JuColatg) = aa]. )

The action of the Casimirs on the basis vectors of V;

[G)I) =G T)s

je Q](/\’Y)
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is given by

el()) =[10+ D522 - (G + 1) = p(y + 1) “=222] 1))
N S N R e R )

Pr ()

=T+ j+y+Wi+y-INT+ji-nI-j+y+1(G-D])

(2.186a)

+

Cl(NI) =[(JT+1) - j(j+1))(1-1AP ,(j))
+y(y +)(1+1AP (7)) + A2+ p* = 1]|(j)))
— AP, ()T +j+y+2/i+y—T+ T+ j-y+1/T-j+yl(j+1)])

— AP, ()W +ji+y+Wi+y-INT+ji-y/I—ji+y+1(G-DJ),
(2.186b)

where it is implicitly assumed that |(j)]) = 0if j ¢ Q;(A, y). Note that the matrix form
of each C,, is tridiagonal (see Appendix A.1) and that, for the subdiagonal entries,

((G+DJICI(H) =0 <= j=]+y=maxQ;(A,y), (2187)

i.e., they are all non-zero®; it then follows from Proposition A.1 that the eigenspaces of
C, are all 1-dimensional, so that it is diagonalisable if and only if it has dim V; distinct
eigenvalues. Explicitly, the Casimirs are simultaneously diagonalisable on V; if and only
if there is a basis

(AP)) = Y ALy L) AAPIG)).  (AP)€Cl(Apy) €T (2188)

ISy
with
C/ (A, pry)| = dim V7, (2180)
such that
Ci|(A,P)]) = 1AP|(A,P)]) (2.190a)
Cyl(A,P)]) = (A% +P* = 1)|(A, P))) (2.190b)

and for every (A, P), (A',P') € C/'(A, p,y)

{AP =A'P (A',P’) = (A,P); (2.191)

AZ + P2 — (A/)2 + (P/)Z
note that at this stage A is allowed to be any complex number, to ensure that any
pair of eigenvalues of the Casimirs can be written as in (2.190). The coeflicients of the

change of basis A{y4; (A, p) j|(A, P)J} will be called as usual Clebsch-Gordan coefficients.
Conversely, the inverse change of basis is

(D=2 B{AP)lyas (A p)fH(AP)]),  jey(Asp), (2192)
(AP)eCy
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where the B{(A,P)]|y,; (A, p)j} are the inverse Clebsch-Gordan coefficients. As a con-
sequence of Proposition 2.9, the eigenvectors in V], M < Jwill be

(A P)], M) = 57 A{yas (A p)jI(APYTH()], M) (2.193)

jeQy

so that, more generally,

(APYLM) =3 > > Alyas (L p)jl(AP)]}
jeQy ueMy meM; ) )
x (y, us jsm|], M)y, ) ® (A, p)j m).  (2.194)

Solving the eigenvalue equations for arbitrary y is not an easy task: instead, we will
solve explicitly the case y = % and proceed by induction for the other cases. When y = %,
we have

1+N, if =0

and dimV; =
M-1+N,  ifA=0 ' ’{

1 ifJ=[A-1
A1) = 2 (21
I 3) { 2> s+l (2.195)
and it can be explicitly checked by solving the eigenvalue problem for (2.186) that, when
A £ -Ap,

{A=2p=2, (G gp+ ) cZ2xC  if /2 M+

1
2
{(A-1sgn(A),p-4sgn(1))} cZ/2xC 7= A~ 1 (2.196)

>

Ci'(Lp,5) = {

the corresponding Clebsch-Gordan coefficients can be found in Table B.3 (Appendix B).
When p = —AA the eigenvalues for J > |A| + % coincide, so that, as pointed out earlier,
the Casimirs cannot be diagonalised.

As the eigenvalues do not depend on ] and

Cf‘()t,p, e Cﬁl()\,p, 3, YIeJ(Ay), (2.197)
the eigenvectors can be extended to an eigenbasis
(AP)LM), (AP)=(Axipxd), Je|A|[+N,, MeM,, (2.198)

as it follows from (2.196) that when A > %

A=1-1 = JxA-1=]A (219)
A=1+3 = J>A[+1=]A '
and when A < —%
A=1-1 = J>A|+1=]A
{A =1+ L J> A - 1 |A| (2200)
= 2 Z 2 = I
One can check, for all eigenvalue pairséz, that
P ¢ +(|Al+N), (2.201)
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so that F{' ® V) p splits in two infinite-dimensional irreducible modules
2

Vap, (AP)=(A+3,p+%). (2.202)

These modules are never both unitary: a list of the possible pairs (A, p) such that there

is one unitary module in the decomposition can be found in Table 2.2. Notice that there

are, up to isomorphisms, only two unitary modules that coupled with F{' have a unitary
2

one in the decomposition.

A p V),p unitary if
principal series any +3 + iR (Lp) = (0,£3)
complementary series i% sgn(/\)g +(-L0)u(0,1) (A p)= (i%,o)

Table 2.2: The possible pairs (A, p) such that one V), ; is unitary (principal or comple-
mentary series).

A generalisation of the case y = % to arbitrary y is provided by the following Propos-
itions:

Lemma 2.5. Let y € N/2, A= +land (A,p) € Z]2 x C, with p ¢ +(|A| + N). Then

{ﬁu + 1) (p+Ap) £ 1(A+v)(p + Av)
) ) ) ) VutveM,
A+u) +(p+Au) -1 (A+v)"+(p+Av)° -1
ifand only if p + AL ¢ (-2y,2y) N Z.
Proof. Let y # v € M,. The statement reduces to
W+ u(A+ Ap) = vE +v() + Ap), (2.203)
which is equivalent to®
(U=v)(A+Ap+u+v)#0 <= A+Ap+u+v=0. (2.204)
The possible values the sum y + v can take are
{utvipzve Mt ={-2y+1,-2y+2,...,2y -2,2y -1}, (2.205)
so that (2.204) is true if and only if p + AL ¢ (-2y,2y) N Z. O

Proposition 2.10. Consider the product F;‘ ® V), withy > % and V) , infinite-dimen-
sional. When p + AL ¢ (=2y,2y) N Z the Casimirs are simultanously diagonalisable,
with

(AP)e{(A+v,p+Av)[veM,}.
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Proof. The proof proceeds by induction on y € N/2. Assume that the statement is true for
Y- %, and consider the product F;,A ®Vy,y> % It is known from su(2) representation
theory that

F? ® F;{% =E' ®F), (2.206)
so that
[yaru) = > (poy-yulip0)@l(y-3)a1h (2.207)
UGML TeM 1
2 Y72
in particular
Yaor) =130 @l =ay-3). (2.208)
Consider now the J*-eigenspace Vj, ] 2 |A| +y, so that J —y € Q;(A, y) and the vector
[T=»))=lysrr@l(p)) -y, ] y) (2.209)

exists. Using (2.208), |(J = y)]J) can be rewritten as

T-D =D e(-Dar-Deltp)-rI-7)
= 2; B{(A+7,p+AD)] = 3|(y = 3) s (L p)] ~ ¥} (2.210)

” x|3,03)®1A+1,p+AT)] - 3),

Sl

where we used the inductive hypothesis and the fact that
p+ALE(=2y,2y)NZ = p+ALE(-2y+1,2y-1)NnZ. (2.211)

Since in particular p # —AA, the results of the case y = % can be used, so that

(J-y)]) = Z Z B{(/\+T+0,p+AT+A0)]!%A;()L+T,p+AT)]—%}
‘TeMlTEMy

xB{(A+1,p+ AT)] - |(y - D) s (L p)T=yH[A + T](A + T+ 0, p + AT + A0)]),
(2.212)

where [ o] keeps track of the fact that (A+ 7+ 0, p+ AT+ Ac) comes from (1 + 17, p + AT).
There are exactly 4y (independent) vectors on the RHS of (2.212), namely

[+31(A+y.p + AY)])
I[=3](A+v,p+Av)]) and [[+3](A+v,p +Av)]), veM, (2.213)
[=31(A =y,p = Ay)]),

with 2y +1 = dim V] distinct eigenvalue pairs (see Lemma 2.5).
As shown in Proposition B.2, when ] > |A| + y the Clebsch-Gordan coefficients

satisfy

BUATLP+A) 3= Dep) =0} o VI F A5y T AP S

— N

B{(AP)] = 3|(y = 3)as (L p)] =y} VI-A-14/1-4p-1
(2.214)

>
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where « is fixed by the normalisation convention and is independent of J. Using this
formula and the y = % Clebsch-Gordan coefficients from Table B.3

\/] A+—\/] AP+—

if 0=-
B{(A+0,P+A0)]L ;(AP)] -1} = TR (2.215)

V2]+1V/ A+ AP

=

ifO':"rz,

it is possible to write

T=») = 2 B{A+v,p+Av)]lyas (X p)] = p}(A +v,p+ AV)]),  (2.216)
veM,

where the vectors on the RHS are defined (up to a normalisation factor) as

[(AP)]) o< [[£2](AP)]) if (AP) = (Ry.p = Ay) (2.217)

and

(AP)) o [+ 2](AP)) + 54D ZE D (A RY))  (2a)

otherwise. As these vectors live in different (C;, C,)-eigenspaces, they are necessarily
independent. Moreover, they form a basis of V: in fact, we know from (2.186) that

Cl(7)J) € span{|(j -], [(7)])|(G + D))} (2.219)
with
(G=-DIGI(D) =0 <= j=]+y, (2.220)
so that
|(j+1)J) € span{|(j - D), [(/)]) G| (7)])}- (2.221)

Since |(J — y)]) is a linear combination of the |(A, P)]) vectors, it follows recursively
that

(j))) € spanf{|(A +v,p + Av)]) [ve M}, VjeQ;(Ly). (2.222)

It follows from Proposition 2.9 that all the results obtained for V; hold for each VA],I,
M € M. One can then extend them to every J € 7 (A, y) by defining recursively (once
the Clebsch-Gordan coeflicients and the vectors have been appropriately normalised,
so that the generators act on the (C,, C,)-eigenvectors as (2.144))

(AP)] = 1] =1) < K_[(AP)LJ) = Py p(DV2TI(AP)T T -1)
~Pip(DV2(AP) +1,] 1), (2.223)
for J < |A| -y, which are trivially still eigenvectors. Since a basis of eigenvectors has been

constructed for the whole product space, it follows that the Casimirs are diagonalisable.
O
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The results of Proposition 2.10 does not apply when p + AA € (=2y,2y) N Z; in this
case we have

Proposition 2.11. Consider the product F;‘ ® V), withy > % and V) , infinite-dimen-
sional. When p + AL € (=2y,2y) n Z the Casimirs are not diagonalisable on the product

module.

Proof. Consider the J*-eigenspace V}, ] 2 |A| + y. The function

d,)(L ipeRdet(Cly, —kl) eC, keC (2.224)

is continuous, as it is a product of continuous functions of p (see eq. (2.186)). From
Proposition 2.10 we have that, for p + AL ¢ (-2y,2y) N Z,

d,’}(p) = 1;[/1 [E(A+v)(p+ Av) - k]; (2.225)

it follows from continuity that, for each fixed A € Z/2, n e {-2y +1,...,2y -1},

d,’}(—AA +n)=lim d,)(t(p) = [T [E(A+v)(~AX + n+ Av) — k]. (2.226)
p—>—Ar+n veM,

From Lemma 2.5 we know that there are at most 2y distinct eigenvalues in this case, while
dim V; = 2y +1. As pointed out earlier, the matrix form of C, |y, satisfies the assumptions
of Proposition A.1, so that it has at most 2y eigenvectors, i.e., it is not diagonalisable on
V; (and hence on the whole product space). O

Finally, the result for left and right modules can be generalised to arbitrary finite-
dimensional ones with the following

Corollary 2.1. The Casimirs are simultaneously diagonalisable in (y,,y,) ® V) ,, with
Yy, > 3 and V) infinite-dimensional, if and only if p — A ¢ (-2y;,2y,) N Z and
p+A¢(=2y,,2y,) NZ, with

(AP)e{(A+v+vy,p=v+vy) v e M, v e M, 15
the eigenvalue pairs are not necessarily distinct.

Proof. As already noted, one has (y;,y,) = F,, ® F;'Z, so that we may diagonalise the

Casimirs in F;’Z ® V), first, and then, for each resulting eigenspace V, p, in F, ® V), p.
We can distinguish 3 cases:

(i) ifp+A ¢ (-2y,,2y,) NZ the product F;z ® V) , admits a decomposition. The second
decomposition exists if and only if, for each v e M, ,

p+v—(A+v)=p-21¢(=2y,2y,) NZ. (2.227)
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(ii) Ifp+ A€ (=2y,,2y,) nZbut p — A ¢ (=2y,,2y;) N Z the product F), ® V), p is not
decomposable, but we can use the fact that F, ® F;’Z S F;rz ® F, and decompose the
product F, ® V, , first. Following the same reasoning of the previous case, the product
of each resulting submodule with Fy, will not be decomposable, as for each v € M,

p+v+(A-v)=p+2Ae(-2y,2y,)NZ. (2.228)

(iii) Finally,if p— A € (=2y;,2y;) nZ and p + A € (-2y,,2y,) N Z, both F, ® V, , and
F;Z ® V) , are non-decomposable. The only results we have are on the product of F;,A with
irreducible modules, so we are not in a position to say anything in this case. However, as
we saw in the proof of Proposition 2.11, the eigenvalues of C; and C, on F;z ® V), are
still respectively

iA+v)(p+v) and (A+v)*+(p+v)* -1, veM,, (2.229)
although they are not all distinct. Moreover, as each C,, C,-eigenspace is 1-dimensional,
in each (J,, J*)-eigenspace VA]/I there is exactly one vector [(A + y,, p + y,)], M) such
that

CUA+y2p+72)]s M) = 8(A+y,) (p + y2)l(A +y2, p + )], M) (2.230a)

Cl(A+y2p +y2)]s M) = [(A+32)" + (p+12)" =1][(A+ y3p + )], M). (2230b)
It is easy to see that®*

span{|(A +yy, p + y5), M) | T € A+ y, + No, M € M} (2.231)

behaves as a Lorentz group (g, K)-module under the action of J and K, that is F;z ®V) P

although not completely reducible, has at least one submodule V;,, ., . Since the

product F,, ® Vy,, .. is not decomposable®, (y;,y,) ® Vy , 2 F,, ® Vy,,, ., will

be indecomposable as well.

The values of the Casimirs follow from Proposition 2.10, and it can be checked
explicitly that they need not be all distinct: for example, when y, = y, = 1, two possible
pairs are (A, p) and (A — 2, p), which are equivalent if (A, p) = (1,0). O

Summary

A Clebsch-Gordan decomposition of the product F;‘ ® V) p» with V), infinite-dimen-
sional, is possible if and only if p + AA ¢ (=2y,2y) N Z, with the modules in the decom-
position having

(AP)e{(A+v,p+Av)|[veM, }; (2.232)
we can write this result in the compact form
F;‘ ® V/\,p = V)H—v,p+Av' (2'233)
veM,,

Likewise, the product (y;,y,) ® V) , is decomposable if and onlyif p— A ¢ (-2y;,2y,)nZ
and p + A ¢ (=2y,,2y,) N Z, in which case
(y1’ )/2) ® V)L,p = VA+V1+vz,p—v1+vz' (2"234)

vleMyl
VzEMyz
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2.4. 4D Lorentz group

2.4.3 Jordan-Schwinger representation

Just as in the 3D case, we can use the Wigner-Eckart theorem to generalise the SU(2)
Jordan-Schwinger representation to infinite-dimensional Spin(3,1) representations.
Recall that the su(2)¢ generators can be rewritten, when acting on unitary irreducible
SU(2) representations, as

= %(aTa -b'b), J,=d'b, J =b'g (2.235)

the extension of this result to finite-dimensional Spin(3,1) representations trivially
follows from the fact that spin(3,1)¢ = su(2)c @ su(2)c (see Section 2.4.1). A general-
isation to infinite-dimensional (g, K)-modules can be obtained by making use of tensor
operators as follows.

Proposition 2.12. Let M* = 1(J - 1AK), A = =1 be the generators of su(2)c ® su(2)¢ =
spin(3,1) . There exist four tensor operators

A A -
T F%@VLP_) lf%, 7%; T F1®V’1P_>V/\+2P+% A—:I:L
where V) , is an arbitrary infinite-dimensional (g, K)-module with
p+xA, p#Ex(A+1), (2.236)

such that
MY - H(TATA L TATY), M- eTATA

when acting on V) ,, where
(A, p)jom) = T3 1 £3) ® (A, p) jo m).

Their action on V) , is

\/]:Fm\/]+A\/]+Ap’(A_

T A, , Lom+l
(A p)jom NN Dj-pm=3)
\/]:i:m-i-l\/] A+1\/j-Ap+1 X A .
+1A (A=2p=5)j+3m*3)
\2j+13/2j+2
~ . L NTFM A A
T pyjom) == 1A T AT A0 )

V22 +1
Vitm+1L/j+A+1/j+Ap+1
+

V2j+1\/2j+2

and they satisfy the commutation relations

A+ dop e 8)j home d),

(T4 T5) = [TA 5] = 0%, [14,717) = [T4TF) -
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®Barut and Razka, Theory of
Group Representations and Ap-
plications, chap. 9.

’Remember that F}f\ is also an
SU(2) representation.

**Notice that the RHS is non-
zero if and only if p # £ and
p#+x(A+1).

®Using the Clebsch-Gordan
coefficients from Table B.3.

2. WE THEOREM AND JS REPRESENTATION FOR THE 3D AND 4D LORENTZ GROUP

Proof. Consider the tensor operators T, T4 described above. As a consequence of the
Wigner-Eckart theorem, it must be

jt3
T p)jom) =t (p) T B - Lo - 4)11L 5 (hp)) )
J=j-3 '
{1, M|3, 43 js m)| (X = 3, p = 5)], M)
~A ~A I A
T, (A p)jsm) =T (Lp) D> B{(A+35.p+5)]15,6(Ap)j} (2.238)
J=j=3 :
(ML ps o m) (1 3, p+ 4)7, M),
with tA, I arbitrary functions of A and p. Let now
VOA = —\/EMS‘, ViA1 = iMf; (2.239)

one can check that they are the components in the basis |1, 4) of a tensor operator
VA Fle Vip = Vipsinfact

B /A A B (A A
[MO > Vy ] = V(SABVH > [M:t’ Vy :| = Ci(l’ M)‘SABV/J:H‘ (2'240)
Suppose, as an ansatz, that

A A A
V= Y Y Gus s mll @) Ty T (2.241)
FIGM% paeM

[S']

it is a standard result for SU(2) tensor operators’®® that the RHS is indeed the u
component of a tensor operator transforming like F{, so that the ansatz is consistent.
Evaluating the Clebsch-Gordan coefficients, one can rewrite (2.241) as

My = -Y(TAT + TATY),  Mi=2TAT (2.242)

Comparing the possible matrix elements of both sides of (2.241) one can explicitly
check that they agree, i.e., the ansatz is verified, if and only if®®

tA(A+%,p+§)?A(/1,p)=\/)L+Ap\/A+Ap+1¢O. (2.243)
We choose here the particular solution

(L, p) =T (A, p) = /A + Ap; (2.244)

with this choice we recover the required matrix elements® and, after some tedious but
simple calculations, the required commutation relations. O]

Note that the matrix elements of the T4, TA operators satisfy

(=3 p=2)j= L, me LT (A, p)jym) = £((4, p) o m TA(A -1, p~2)j - L,m )
(2.245)
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2.5. Concluding remarks

and

((A=Lop=H)j+ m= HT2 O p)jom) = #(hp)jmITL A= p=4)j+ Lo 1),

(2.246)
and, like in the 3D case for continuous representations, they are never always real
or always imaginary if V) , is infinite-dimensional, so the components of the tensor
operators are not harmonic oscillators. Nevertheless, the commutation relations from
Proposition 2.12 are still those of the Lie algebra h,(R)¢ @ h,(R)(, the same as the
finite-dimensional case; in the infinite-dimensional case, however, since M* does not
acton V) , as a unitary su(2) representation, the T4, T (with A fixed) operators will
not act unitarily as a Heisenberg algebra either. This result is analogous to the one for
the continuous series in Section 2.3.4, and was similarly unknown until now. Let us
emphasise that, unlike the case of Spin(2,1), in the 4D case there is no discrete series,
so that this is the first version of the Jordan-Schwinger representation that works for
unitary representations.

2.5 Concluding remarks

We have seen in this chapter how the well-known Wigner-Eckart theorem admits
a simple generalisation to arbitrary Lie groups, possibly non-compact. Despite the
simplicity of the proof, it is still important to remember that, to actually gain any
useful information from the theorem, it is necessary to know which representations
appear in the Clebsch-Gordan decomposition of the product of the representation the
tensor operator transforms as and the representation it acts on, as well as the Clebsch-
Gordan coefficients themselves for the explicit values of the matrix elements. When the
representation acted on is infinite-dimensional—as it happens when the group in non-
compact—not only are these results not known in general, but as we have seen they are
not easy to obtain. We have studied the particular cases of Spin(2,1) and Spin(3,1) for
their potential applications to physics, an example of which we will see in Chapter 3, and
in the hope that the techniques we used will prove useful to investigate more complicated
cases.

Regarding the Jordan-Schwinger representation, we have discovered the new result
that, even when the representation is in the continuous principal series, it is possible
to express the algebra generators in terms of two spinor operators, which generalise
the harmonic oscillators. Although for continuous representations the spinors are not
harmonic oscillators anymore, it is interesting that they still have the commutation
relations of a Heisenberg algebra.
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~ Chapter 3

Spinor operators in 3D Lorentzian loop
quantum gravity

With this chapter we start investigating the applications of non-compact groups to
quantum gravity; in particular, we will construct a model of 3D Lorentzian loop quantum
gravity, and make use of the results of Section 2.3—particularly the Jordan-Schwinger
representation—to implement the Lorentzian version of the spinorial framework used
in the Euclidean case. Our main goal is to generalise to Lorentzian signature the results
of Bonzom and Livine, ‘A New Hamiltonian for the topological BF phase with spinor
networks’, where the spinorial framework is used in the 3D Euclidean case (with SU(2)
as gauge group) to construct a solvable Hamiltonian constraint. In the Lorentzian case
the gauge group is given by Spin(2,1); as we should expect by now, the treatment will
be considerably more complicated than the compact case.

We will first work at the classical level. In Section 3.1 we will define classical tensors,
which are essentially the equivalent of tensor operators for Poisson algebras; in particular
we will use classical spinors to obtain a classical analogue of the Jordan-Schwinger rep-
resentation. In Section 3.2 we will then use the spinors to construct a set of observables,
which we will use to express the classical Hamiltonian constraint. The rest of the chapter
is dedicated to the study of the quantised model. We start by constructing the space of
quantum states in Section 3.3; in Section 3.4 we will then quantise the classical Hamilto-
nian constraint, and we will show that the Lorentzian Ponzano-Regge amplitude’, given
by the Racah coefficient, is in its kernel. Finally, we will see in Section 3.5 that our
formalism is general enough that it can be used to cover the Euclidean case as well.

The content of this chapter is based on the results presented in the article Girelli and
Sellaroli, ‘3D Lorentzian loop quantum gravity and the spinor approach’.

3.1 Classical tensors and tensor operators for SU(1,1)
This section focuses on the notion of classical tensors. We will first define these quantities,

then show how, upon quantisation, they become the tensor operators we defined in
Section 2.2.
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*We follow here a “canonical
dequantisation” procedure, i.e.,
we replace [+, -] with i{-,-}.

’Barut and Razka, Theory of
Group Representations and Ap-
plications, chap. 9.

3. SPINOR OPERATORS IN 3D LORENTZIAN LOOP QUANTUM GRAVITY

3.1.1  Classical tensors

Classical Spin(2,1) tensors are the Poisson analogue of the tensor operators we defined
in Section 2.2. Explicitly, a tensor is a set of functions TZ, that transform as the vectors in
a Spin(2,1) representation, where the infinitesimal Spin(2,1) action is implemented as
a Poisson bracket’, i.e.,

{xol} = —tur), {x, 7} =1L (y, )7 (3.1)

The Poisson structure on R* analogous to the spin(2,1) commutation relations is given
by
{xg>x,} = +ix,, {x,,x_} =2ix,, (3-2)

where the algebra is parametrised by x, € R, x, € C with x_ = x,. We will only consider
tensors transforming like finite-dimensional representations: as we will see they are the
only ones that can be contracted together to obtain Spin(2, 1)-invariant quantities. We
will call respectively vectors, spinors and scalars the tensors transforming like F;, F 1 and

F,. We will also define contravariant tensors, i.e., tensors 7 transforming as the dual
representation F, . Recall that the Lie algebra acts on the dual space F, as

X(y, pl = ~(y, p|X, X €spin(2,1)c. (3.3)

One can easily show that F), = F, as representations, with the isomorphism given by

¢, (yul € By = (1) |y, —u) € F); (3.4)

consequently, we define the components of the tensor dual to 77 as

Yo . Vand
T‘u " (_1) T—[p (35)
which satisfy
{xoo 7y } =ty {xo1) b =100 (y, )Ty (3.6)

Analogously to tensor operators, tensors can be composed to obtain new tensors
using the Clebsch-Gordan coefficients; in fact®,

Vo U) T Tl (37)

T,z = Z A(y1 b3 Y2
)

is the ¢ component of a tensor transforming as F,, aslongas F, ¢ F,, ® F, . We can use
this fact to construct x,, x, out of two spinors, retracing our steps from Section 2.3.4
(Jordan-Schwinger representation), i.e., we consider two spinors 7 = (% )Tt=(%)
such that

xo=—5(1.T, +1,7_), x,==i1,7,, (3.8)

with
{T+’:F—} = {?'F’ T—} =i (3.9)
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3.1. Classical tensors and tensor operators for SU(1,1)

and all other Poisson brackets vanishing. At this stage we are working with a symplectic
structure on C*, which we have to reduce by imposing the reality constraints X, = x,,
X, = x_; two natural choices to implement these constraints are

7,=7, and T, =-T,, (3.10)

which reduce C* to C* equipped with the canonical symplectic form.
We can concatenate the spinors to form scalars using (3.7): using the Clebsch-
Gordan coeflicients

1_
A l . l 0 0 — (_1)2 Mla
(2) Aul’ 2 AMZ| > )_ \/E wi+2,0° (3.11)

we define a bilinear form

B(o,7):=-V2 ) VICHTE S #,00,0)0, 7, =01, - 0,7, (3.12)
pp
which assigns a scalar to two spinors o, 7.
It will be useful to introduce a bra-ket notation for the spinors. We define
1) =7, r]=7 (3.13)
and
(= BE) = (-FuT), (1= B(5) = (-1, 7% (14)

note that (7| and [ 7| are respectively the dual spinors of |7] and |7). With this notation
we can write the spin(2,1) generators in the compact form

X, = 5(1]0,]7), (3.15)
where X, +x X, — X
+ - + -
X = y Xy = ———— .16
! 2 2 24 (3.16)
and

(1 0 (o0 -i (o0 1)
%=\ 1) 27\ o) 2711 o 317

are the equivalent of the Pauli matrices.
An interesting feature of the spinors is the possibility to use them to construct
SU(1,1) = Spin(2,1) group elements

e=(5 &) tof-ipr -1 6518)

using tensor products of spinors and contravariant spinors; explicitly, we introduce
another pair of spinors w, w and define*

_ lw)(| - [w][7| _ 1 (WT+ -W.T, -W_T_+WwW_T.

el =) G
Sy e ww) ) 319

W,T, - W, T, —-W,T_+W.T

*One should note that this
definition differs from the one
presented in Girelli and Sel-
laroli, 3D Lorentzian loop
quantum gravity and the spinor
approach’, as an inconsistency
was later discovered in the old
definition. The rest of the con-
tent in the chapter has also been
adapted to fit the change.
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‘A New Hamiltonian for the to-
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3. SPINOR OPERATORS IN 3D LORENTZIAN LOOP QUANTUM GRAVITY

with the normalisation factor ensuring that det(g) = 1. We also require that g;; = g,,
and g, = g,; one can easily check that these conditions are satisfied when using one of
the constraints from (3.10) for the spinors. The inverse group element is given by

4 [ [ (320)

Vi (wlw)

Note that g acts on spinors by interchanging T with w; in fact, introducing the matching
constraint®

(wiw) = (1]7), (3.21)

we have

{g|r>=|w>, glel=wl {g-1|w>=|r>, gl =ll,

(wlg=(rl, [wlg=[ (e = ol [elg? =Dl

We will see in Section 3.2 that we can use this fact to interpret the group element g as
the parallel transport between the spinors on the edge of a graph.

3.1.2 Quantisation of classical tensors

Let us now consider the quantisation of the phase space we constructed. The spin(2,1)
generators become the operators ], J, acting on an irreducible representation; the
reality constraints X, = x, and X, = x_ are quantised as

Jo=J0 Ti=7, (3.23)

i.e., the representation is unitary. If we quantise the spinors as

,>T, 7,-T, (3-24)

and the Poisson brackets as {-,-} — —i[, -], we obtain the tensor operators we defined
when we treated the Jordan-Schwinger representation in Section 2.3.4, satisfying

[T,,T ]=[T,T]=1 (3.25)
and such that
Jo=#iT,T,, Jo=3(T.T, +T,T.); (3.26)

we will thus henceforth refer to them as spinor operators.

Recall that we have a constraint on the spinors imposed by the reality conditions. A
priori, we have a choice: we can first implement the reality constraints, then quantise,
or alternatively first quantise and then implement a quantum version of the reality
constraints. The quantisation of the two natural reality constraints (3.10)

_ |-z -T!
T, = { TS T, = {Tﬁ (3.27)
..
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3.2. Classical description of Lorentzian 3D loop quantum gravity

leads to the spinor operators acting on the discrete series D]* as harmonic oscillators, as
we saw in Section 2.3.4. However, there is no natural reality condition at the classical
level that upon quantisation leads to an action on the continuous series, as in this case
(j+3.m= 3T, |j,m) = F(j, m|Te|j+ 3, m £ 1), (3.28)
i.e., in some sense’, T, = FT=, which does not have a classical analogue. Despite this, the
quantum constraints ]g =], and ]1 = J_ are still satisfied. For this reason, we will adopt
the second quantisation scheme (first quantise, then implement the reality constraints),
which allows us to have continuous representations at the quantum level; in other words,
we will treat 7 and 7 as independent variables until we quantise them.
The quantisation of the spinors |[w) and |w] appearing in the spinorial description
of the SU(1,1) group elements is analogous, i.e.,

w, > T+, W, —T,, (3.29)

with the difference that we will have them act on covectors (bras). It should be noted that
there is an ambiguity in the quantisation of (7|7) and (w|w), as the operators appearing
in their naive quantisation do not commute; we will choose the symmetric quantisation

T, -7, > NI, -T,T.+T.T -T.T,)=T.T,-T,T_ +1=E, (3.30)

which has the double advantage of regularising the denominator of the (quantised)
group element when j = 0 and, as we will see later, closing the Lie algebra of scalar
operators we can build from the spinor ones. Note that with this choice the quantised
versions of (7|7) and (w|w) satisfy respectively’

Elj,m) = (2j+1)|jym) and  E(j,m|= (2j+1)(j, ml, (3.31)

which is the quantum version of the matching constraint (3.21).

3.2 Classical description of Lorentzian 3D loop quantum
gravity

We recall now the standard construction of the loop quantum gravity phase space®,
specialising it to the Spin(2,1) case. The triad and connection (e, w) are discretised
into the holonomy and flux variables (g, X) € T Spin(2,1). More precisely, we consider
a graph I and to each edge e we associate two fluxes X, X and a group element g; the
fluxes sit respectively at the source and target vertex, and the group element parallel
transports X to X (Fig. 3). The idea behind the spinorial framework is to replace the
fluxes and holonomies by attaching a pair of spinors |7), |7] at each vertex. For each
edge the two pairs of spinors provide the full information about T”Spin(2,1), since we
can reconstruct from them both the flux and the holonomy’.

The dynamics of gravity is encoded by two constraints, the Gaufl constraint and the
flatness constraint. The Gaufl constraint is discretised at the vertices of I, and corres-
ponds to an (infinitesimal) Spin(2, 1) invariance at the vertex; due to the proportionality
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litudes from a Hamiltonian con-
straint’.

"These will be analysed in de-
tail in Chapter 4, where we will
work in the Euclidean regime.
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3. SPINOR OPERATORS IN 3D LORENTZIAN LOOP QUANTUM GRAVITY

| [w)
|

7] [w]

[ s

Figure 3: The information about fluxes is now encoded by a pair of spinors.

between the fluxes and the su(1,1) generators, this invariance can be interpreted as the
requirement that the total flux at each vertex is zero'®, i.e.,

Z X;=0. (3.32)
1

Given a vertex v, we can construct a set of functions which commute with the Gauf3

constraint, and as such they will be called observables. They are defined in terms of

the spinors living on different legs of the vertex in such a way that they are Spin(2,1)

invariant; these functions are

fab = B(Ta’Tb) = [Ta|Tb)’
€ap = B(?a’Tb) = <Ta|Tb>’

fop = B(F0Ty) = (14l73),

_ ~ (3-33)
€ap = B(Ta’Tb) = [Ta‘Tb] = ~€p,-

The observables f,, and f,, are not all independent when reality conditions are imple-
mented: for example, if we use either 7, = -7, or 7, = 7, on both of the legs a and b,
we get that ,, = f,,. If instead we use 7, = -7 on leg a and 7, = 7. on leg b (or vice
versa), we get ]‘;b = —f,;- The functions e, f and fsatisfy the closed Poisson relations

{eapsecat = —1(8cp€qq = Spaect) (3:342)
{eap> fea} = —1(aafoc = OacSpd) (3.34b)
{eaps foa} = =8 (8pcfaa = Opafac) (3-34¢)
{fups Feat = =1 (Bapeea + Ocaluy = OcCua — Oaaler) (3.34d)
{fap foa} = {Faps fra} = 0. (3-34€)

These quantities are equivalent to the spinorial observables of the Euclidean case", and in
fact satisfy the same Poisson algebra: the only difference is in the choice of real structure,
i.e., which variables are conjugate to each other. As it is well-known in the Euclidean
case, we can use these observables to generate all the standard LQG observables.

The flatness constraint is discretised by requiring that the product of the holonomies
around each face f of the graph is the identity, i.e.,

ng=ﬂ.

ecf

(3-35)

In the Euclidean case it was discovered that this constraint can be recast in a natural
constraint involving either the fluxes'” or the spinors', according to the initial choice of
variables on the graph. In the spinorial framework, one essentially projects the flatness
constraints on the basis provided by the spinors, to obtain a set of scalar constraints.
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3.2. Classical description of Lorentzian 3D loop quantum gravity

The physical interpretation is that the scalar product of two spinors at a vertex is left
invariant when parallel transporting the spinors along the edges around the relevant
face. To generalise this result to the Lorentzian case, we will focus on a triangular face
of the graph, such as in Fig. 4, following Bonzom and Livine'*. Sitting at the vertex

g5

g3 g4

g & %

Figure 4: The flatness constraint on the triangular face is g,g,"g; = 1.

between g, and g; and proceeding clockwise (i.e. along the cycle (342)), the constraints
are given by

342 = (ws|(1- 828385 73) [ws| 73] (3.36a)
342 = [w)|(1- 8284 83) 73] (W, 3) (3.36b)
342 = (ws|(1- 8,85 83) 73] (Wl 3) (3.36¢)
342 = [ws)(1- 8283 85) T3 )(w,| 73], (3.36d)

where the factors on the right, e.g., [w,|15], are introduced for convenience, as they will
be important when we quantise these contraints.

The constraint (3.35) is actually a set of 3 real scalar constraints: in fact g,g; g3, as
an SU(1,1) = Spin(2,1) group element, is parametrised by 3 real parameters, so that the
constraint

1-8,81'8=0 (337)
has 3 (real) degrees of freedom. The four complex constraints in (3.36), being propor-
tional to the matrix elements of (3.37), are equivalent to it and thus carry the same
degrees of freedom. Using the parallel transport of the spinors we can simplify the
expression of the previous Hamiltonian constraints, namely we can express them in
terms of the vertex observables e, fab,};h. For example, using (3.22) for (w,|g, and
¢5|73], we have that

HY, = (w)l(1- 2,83 g5) 73] [ws|73)
= <W2|T3][W2|T3> - (T2|g4 |W3][W2|Ts>
— (ol dTwal e — (1 |T4><W4|_|T4][W4|)W wolt (3.38)
(wlzs][wsls) <2|( P o

= .?23.1(23 - (6241724 - ﬁ32'43)e;1f23,
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“In other words, the counter-
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3. SPINOR OPERATORS IN 3D LORENTZIAN LOOP QUANTUM GRAVITY

where we define that e, := e,, = (74|74) = (wy|w,).
Different sets of constraints can be obtained by considering the other possible cycles;
the general expression for them is

Hi)hc =ec,Cra — (€ch€ha — fonfoa)eh Cug (3.392)
HY) =Zeeca = (fonoa = %) b Cca (3.39b)
Hi]hc =fratea = (Ccofoa = Fev€ha) et fa (3.39¢)
HY =frufoa = (Feveba = Cnfoa) e Foao (3.30d)

where (abc) is any permutation of (342). Note that it suffices to consider even permuta-
tions only”, as it is easy to check that

HEZm = Ho[l]bc’ Hgm = Hi]bc’ HBm = H£>hc' (3‘40)
One can check by direct computation that
Ht<1]bc + Hx[zizc - Ht<1)bc B Hg]bc =eze tr(l - g,8,8c)> (3.41)

where the trace is calculated using the fact that, for two column vectors x and y,

tr(x ® yt) = ytx, (3.42)
so that for example
tr(|7,)(75l) = {7,]74) = g (3.43)
and the identity
fca};a - eca’evca = (TiTi - Tin)(?iATi _ﬁ%ﬁ) - (’i{‘[j— _?j—Tf)(Ti?i - Ti?c—l)
~a __a ~a __a ~C C ~C _C
= (Tl -7l (7l - T Td)
= eaec

(3.44)

is used.

3.3 Relativistic spin networks

Our goal in this section is to quantise the classical LQG space we constructed in 3.2. We
will first recall some notions of Spin(2, 1) recoupling theory that we will need to proceed,
then construct the space of Spin(2, 1) intertwiners, which we will use as building blocks
of our quantum theory. It should be noted that, due to the non-compactness of the
group, closed spin networks, which are proportional to the intertwiner which maps the
trivial representation to itself, are generally divergent; spin networks for non-compact
groups have been studied in detail in Freidel and Livine, ‘Spin networks for noncompact
groups’, where it was shown how to deal with these divergencies. We will mostly focus
on 3-valent intertwiners, but we will also consider 4-valent ones to introduce the notion
of Racah coeflicients. In the last subsection we will introduce an inner product in the
space of intertwiners.
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3.3. Relativistic spin networks

3.3.1 Spin(2,1) recoupling theory

Some results of Spin(2, 1) representation theory, namely the known recouplings between
irreducible (g, K)-modules are reviewed here. The ones we discovered in Section 2.3
are recalled as well.

Coupling of finite-dimensional representations

The finite-dimensional representations of Spin(2,1) coincide with those of SU(2). In
particular, their recoupling will have the same Clebsch-Gordan decomposition, i.e.

j+f
J=1j-J'|
Coupling of unitary representations

The known recouplings for unitary representations are'®

D; ® Df, = @ Dy (3.46a)
J=j+j"+1

SR o
D:®Dj- @ Dio @ Dje /};{ CuisdS, Jun=e=c(j+])  (346b)

J=min J=Jmin
oo @
D? ® Ci%+ﬁs =@ Dje /R C}_S%Jrﬁs dS, Jon=E=¢(j+¢) (3.46¢)
J=Jmin +
, oo oo )
_ E ’
Ci%+ﬁ5 ® Ci%_'_ﬁsl = ]? D;r @]? D] @2 ./];&r C—%-{—ﬁs dS, ]min =E-= C(S + & ),
(3.46d)
where j,j' > -3 and s, s > 0, the function ¢ is defined by
0 ifxeZ
s(x)=1, .. (3.47)
3 ifx e 3 + 7

and it is to be understood that 69?: , Vanishes if b < a. Notice in particular that only
representations in the Plancherel decomposition appear in the Clebsch-Gordan de-
composition, even when we consider couplings involving discrete representations with
j= —%. Moreover, the trivial representation F,, does not appear in any of the representa-
tions. The factor 2 in (3.46d) denotes that each continuous representation appears twice
in that decomposition.

Coupling of finite and infinite-dimensional representations

Recall from Section 2.3 that for the coupling of a finite-dimensional representation and
one from the discrete or continuous series we have
+ ]+y +
F,®Dj = H Dj, (3.48)
J=j-y
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7Here |S| denotes the cardinal-
ity of a set S.

3. SPINOR OPERATORS IN 3D LORENTZIAN LOOP QUANTUM GRAVITY

with the restriction j > y — 1 and

jty
F,®C;= C/, E=q(y+e), (3-49)
J=j-y

with the restriction that, if j € Z/2, j >y —1or j < —y.

Clebsch-Gordan coeflicients and label notation

So far our results of recoupling theory are very heterogeneous. In order to have a uniform
notation across different cases, we will introduce a new convention: the quantum number
j € C will become a label, i.e., we will, with abuse of notation, continue to call j the pair
(j, ), where
o€ {D+,D7,C0,C%,F} (3.50)
is a symbol denoting the representation class. The label j now completely determines
the module, which we denote by V;, spanned by the standard basis |j, 7). The set of
possible m values will be denoted by M .
Consider now a generic coupling V; ® V. If a decomposition exists, we are going
to denote by D(j, j) the set containing the labels of all representations appearing in it.
We then have

M) = 30 AGms jm|, M)jm)®|f,m"),  JeD(j,j), MeM; (351)
m,m’
where the A(j, m; j', m'|], M)’s are the Clebsch-Gordan coefficients of the decomposi-
tion. To account for the case F, ® V}, in which this map is generally not unitary, we will
write

myelfim)= [ d80) 3 BOMlpmfamO M) (s
> MeM;

where the B(J, M|j, m; j', m')’s are the components of A™', i.e., the inverse Clebsch-
Gordan coeflicients. The integral is taken with respect to a measure & defined as follows:
if D,(j,j") € D(j, j') is the subset of labels with representation class a, then"

A if |D,| = |R]

&lp, = iy (3.53)
> jen, 9 if |D,| =N,

where A is the Lebesgue measure on C and §; is the Dirac measure defined by

1 if Je A

8;(A) = {0 £7¢A (3.54)

Clebsch-Gordan coefficients possess many interesting properties. It follows from their
definition that they satisty the orthogonality relations

f d&(7) 22 AG,ms j'm' [, M)B(J, Mljy s /s 1) = 8,y O (3.552)
M
> BU,Mlj,m; ', m")A(j, ms j',m'|]', M) = 8(J,]") Spp e (3:55b)
m,m’
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3.3. Relativistic spin networks

where
is a Dirac delta ifa=pfand|D,| = |R|
6]Daxpﬁ is a Kronecker delta ifa=pand|D,| = |N| (3.56)
identically vanishes ifa #p.

Moreover, they can be normalised so that
A(j,msj,m'|J, M) = B(J, M|j,m; j,m"), (3:57)

so that we may refer to both of them as Clebsch-Gordan coefficients. With this normal-
isation, they satisfy the recursion relations

I.(J, M)A(j,m;j' ,m'|J,M 1) =T, (j, m F1)A(j,m F1;j ,m'|], M)
+I,(j,m #1)A(G,m;j,m #1|],M), (3.58)

which easily follow by acting with J, on both sides of (3.51).

3.3.2 Intertwiners

Recall that an intertwiner between (g, K)-modules for Spin(2,1), V and W, is a linear
map y : V - W satisfying

yoX=Xoy, VXespin(2,1). (3.59)

The set of all possible intertwiners from V to W forms a vector space, which will be
denoted by Hom(V, W). We will only work with intertwiners between representations
that are either irreducible or a tensor product of irreducible ones'. An intertwiner

k n
v:QV, > QY (3.60)
a=1 b=r+1
will be called n-valent and, for reasons that will become clear shortly, we will say it has
k incoming legs and (7 — k) outgoing ones.

Of particular interest are the 3-valent intertwiners. If the decomposition of V; ® V;,
exists, the vector space Hom(V; ® V;,V; ) is completely specified by it, as a non-
vanishing intertwiner only exists if V;, appears in the decomposition; the number of
independent intertwiners equals the multiplicity of V; in the decomposition (1 or 2 for
the known decompositions). These basis elements will be denoted by

J
>—j3:|jpm1>®|jz,mz>» S By, maljyy mis o my)|js sy (3.60)

]2 M3€Mj3

where we assume j also includes an appropriate label for multiplicities, when necessary.
On the LHS we used a graphical notation for the map, which will turn out to be very
useful. It is to be read this way: incoming representations (legs) are on the left, while
outgoing ones are on the right; an arrow will be used to make the direction clear if
needed.
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3. SPINOR OPERATORS IN 3D LORENTZIAN LOOP QUANTUM GRAVITY

Analogously, the basis elements for Hom(V;,, V; ® V) are given by the intertwiners

32

Ji
j3_< Hims) = D AGj mys o Myl js ms)l i my) ® jp,my). (3.62)
J2 meMy
mZEsz

Moreover the unique intertwiner in the 1-dimensional space Hom(V}, V;) will be de-
noted by

j=ly. (3.63)

] J

The two kinds of 3-valent intertwiners can be used as building blocks of all the others,
provided that the necessary Clebsch-Gordan decomposition exists: this can be achieved
by composing intertwiners, to obtain maps on bigger representations; with our graphical
notation, this amounts to “glueing” them together. We will call any such composition
of intertwiners a spin network. Note that, when working with unitary representations,
there is no way to obtain a closed spin network' with this glueing procedure, as the
trivial representation F,, does not appear in any recoupling of infinite-dimensional
representations. Closing a spin network by tracing, which graphically amounts to
connecting an incoming leg with an incoming one of the same intertwiner, leads to
divergencies, which will have to be dealt with; here however we are only interested in the
nodes inside a spin network, which would be unaffected by any regularisation procedure.

3.3.3 Racah coefficients

Consider a 4-valent intertwiner y with 3 incoming legs V; ® V;, ® V; and a single
outgoing one V: it will generally not be unique, unless one of the representations
involved is the trivial one. Two possible bases of intertwiners, whose linear combinations
can be used to construct any 4-valent one of this type can be obtained by exploiting the
associativity of tensor products, i.e.

le®VjZ®VJ-3g(le®VJ-2)®Vjs;VjI®(VjZ®VJ-3). (3.64)

Assuming the decomposition in irreducible representations of V; ® V;, exists, the generic
y can be written as a linear combinations of the intertwiners

Jn )

, U .

J2 i»  j€D(ja)s (3.65)

Js

analogously, if V;, ® V;, is decomposable, the intertwiners

J1

J2 ( j>  J23 €D(jr j3) (3.66)
23

J3

form a basis as well. We will now study how the two bases are related to each other.
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3.3. Relativistic spin networks

First notice that*®

1 ————— i
= ja———j2, (3.67)
J3—s

as can be checked explicitly using the properties of Clebsch-Gordan coefficients. This
equation can be “glued” to the basis elements (3.65) to obtain

Ji
. Ju .
J2 J. (3.68)
J3
The intertwiner
(3.69)

having only one incoming and outgoing representation, must necessarily be proportional
to the unique intertwiner between j' and j. Since the latter vanishes when j # j', it must
be

Js (3.70)

where the § is to be considered a Dirac delta over continuous subsets in both D(jy,, j3)
and D(j,, j,3)> and a Kronecker delta otherwise. The proportionality factor in (3.70),
which we will call Racah coefficient, is given by

[].1 ].2 ].12]= Z A(fy> my3 fiz Mozl jy m) A(fip, Mys 3, M fins, M3)
J3 ] J23)  mymgms
mi2,mz3

x B( jig> mylji, My joo M) B(j, mljiy, myss 3o m3),  (3.71)

with m € M ; one can check using the Clebsch-Gordan recursion relations that the
result does not depend on which m is chosen. We finally get that

jl ) j1

. oo i1 .

j2 j= Z[]l % ].12] e\ )—1i> (3.72)
_ [ EEE ARk Jj2s

J3 J3

i.e., the Racah coefficients are the components of the elements of one basis in terms of
the other. An analogous argument can be made for the basis elements (3.66). With our
convention for the Clebsch-Gordan coeflicients, we can check that

, Ji2
i=i—5 j (3.73)
J23 j3
so that . .
N 1 )
. . a1 oo
e o—1i = Z[]l J2 ].12] j2 j. (3.74)
) J23 12 J3 ] Jasf
J3 J3
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*'Note that it is always true that
the LHS can be split in the sum
of independent subspaces on
the right: what we are really re-
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Note that there is a nat-
ural choice for the basis ele-
ments once a convention has
been chosen for the Clebsch-
Gordan coefficients appearing
in (3.46).
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Remark. Note how there was no mention of unitary representations in the discussion of
Racah coefficients: what was presented is well-defined any time the appropriate Clebsch-
Gordan decomposition exists. This means in particular that we can consider Racah coeffi-
cients involving both unitary and non-unitary representations, which be relevant when
discussing the quantum version of the observables e, f and .

3.3.4 Inner product space structure

We already saw that Hom(V, W) is a vector space; we will now see how an inner
product can be defined naturally on it. This time we will only use unitary irreducibly
representations from the Plancherel decomposition.

The space of intertwiners can inherit an inner product by requiring that™

Hom(®, V;, ® 8, V. ®. V;,) = Hom(®, V;,, ®, V;,) @ Hom(®; V;,. ®. V).
(3.75)
It is then easy to convince ourselves that the composition of two intertwiners belongs to
(a space isomorphic to) the tensor product of their respective intertwiner spaces, so that,
for example,

V;)@Hom(V;, V;,®V},) (3.76)

2}
Hom(V, ®V,,, V;,8V;,) = [ d&(j) Hom(V,,®V,,,

or

Hom(V; ® V;, ® V;

&
]3,Vj)=f d&(ji,) Hom(V, ® V;,, V) @ Hom(V}, ® V;

Ji2 3’ VJ)
(3.77)

We can repeat this process until we only have sums of products of 3-valent spaces, so

that it only remains to define the inner product on the latter. This is easily achieved:

« when the space is one dimensional there is only one basis vector which we may
normalise to 1;

« when the space is two dimensional, i.e., there is multiplicity, we choose the two
basis elements>* to be orthonormal.

One can check explicitly that this is consistent with the possibility of using different
decompositions for the same space, e.g.

®
Hom(V, © V, ®V;,,V)) = [ d&(jns) Hom(V,, ® V,

Vj23) ® Hom(Vj1 eV, V]),

(3.78)

3

so that the procedure is well defined.

Restricting ourselves to representations in the Plancherel decomposition makes
our construction possible, as it guarantees that the direct sums in the Clebsch-Gordan
decomposition are orthogonal. Note, however, that if we only use finite-dimensional
representations the same would be true, and the inner product would still be well defined:
in fact, the total Casimir acting on a product of finite-dimensional representations is
self-adjoint, so that the modules appearing in the decomposition are orthogonal to each
other.
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3.4. 3D Lorentzian LQG and Lorentzian Ponzano-Regge model

3.4 3D Lorentzian loop quantum gravity and Lorentzian
Ponzano-Regge model

In this final section we will construct a quantum version of the spinorial observables,
and determine their action on intertwiners. We will then discuss some properties of
the Racah coefficients, which are defined even when both unitary and non-unitary
representations are coupled; in particular, we will show that the Biedenharn-Elliott
relation—also known as pentagon identity—holds, even when one of the representations
involved are finite-dimensional. Finally, we will quantise the Hamiltonian constraints
defined in Section 3.2, and show that the intertwiner associated to the Racah coeflicients,
which generates the Lorentzian Ponzano-Regge model, is in their kernel; the proof
consists in showing that the action of each constraint is implemented as a recursion
relation (the Biedenharn-Elliott relation), whose solution is the Racah coefficient.

3.4.1 Intertwiner observables

We want observables in loop quantum gravity to be invariant under the action of the
gauge group Spin(2,1): this is exactly what scalar operators (tensor operators trans-
forming as F,) are. The usual observables we consider are those built from the algebra
generators, which are essentially the components of the vector operator V defined in
(2.109). When acting on a product of representations ®, V;, they are defined as

3 a a 1 a a
Q,p = % %:A(l, #;1,-4[0,0) V, Vf’y =—JJo + E(J_Jf + ]Jf), (3.79)

where V*? denotes the operator acting only on representation a; equivalently, we can
write them in the suggestive form

Quy = 17TiT], 1= diag(-1,L1), (3.80)
where i and j are space-time indices.

When working in the spinorial setting, we can construct scalar operators by com-
bining the two spinor operators T and T. The four kinds of operators we can get are

Ey=-V2Y A L —ul0,0)(To 1l + TET, ) = T°T) - TS TP + 6,41, (3.810)
U

Fop=—V2Y A(%, s 3,-p0,0) T4 1", =TT - T T, (3.81b)
U

E, = —\/EZA(%, Us %, -ulo, O)T; Tfﬂ =T Tf - Tfﬁ, (3.81¢)
U

which are the quantum analogues of the classical observables (3.33). Note that an ordering
factor was introduced in the quantisation of e,; this particular ordering was chosen
to ensure that these operators form a closed Lie algebra. The commutation relations of
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The T and T operators would
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spectively to V_i and Vi,
neither of which would be unit-
ary anymore.

+is

**Here the transpose is defined
with respect to the matrix ele-
ments in the standard |j, m)
basis.

*The operators we define will
always act on a single node, i.e.,
n-valent intertwiner, inside a
generic spin network.

**This can be easily checked in
the case of an intertwiner with
one incoming and one outgo-
ingleg, which is necessarily pro-
portional to the identity.
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these operators are

(Eap>Ecal = 0cpEaa = 8aaBep (3.82a)
[Eaps Feal = 8pcFaa — SpaFac (3.82b)
[Eap> Feal = 0aaFpe = 8acFpa (3.82¢)
[Paps Foa] = 8apEcq + 8caB g = 8pE o — 844y (3.82d)
[Faps Feal = [Faps Fog] = 0, (3.82¢)

Note that, when acting on the continuous class, the operators E, F, F take unitary rep-
resentations (in the Plancherel decomposition) to non-unitary ones™. As such, they are
not proper observables when acting on continuous representations; however, one can
choose quadratic functions of these observables such that the representation is sent to
itself.
Due to the relation between T and T, the operators we defined are not all independ-
ent. One has, in general*,
Fap = Faps (3.83)
In particular cases the transposes can be converted to adjoints; for example, if a and b

both denote a representation in the discrete positive (negative) class F., = F;Lb, while if

t
Eah = Eba'

one is them is discrete positive and the other discrete negative F., = —F;rb.
The operators we defined act on representations; their action can be extended to
intertwiners as follows. Let

Yo S S almy ) & L)

Myry1 my b=k+1

k
¥ Qljas ma (3.84)
a=1
be a generic n-valent intertwiner™, where « is a function depending on Clebsch-Gordan
coeflicients; this intertwiner can be also expressed in the form

(3.85)

n k
V/* = Z Z a(ml’ cee mn) ® |jh’ mh> ® ®<ju’ ma|’
my My b=k+1 a=1

which does indeed return the same values when acting on ®, V;,. However, (3.85) is
not necessarily an element of the space ®,;, V;, ® ®, V., since it does not generally
have finite norm for infinite-dimensional representations®’: it is only to be regarded as a
formal expression, similarly to the usual way of representing the identity of a separable
Hilbert space as

> liNil, (3.86)
iel
where {|i)},.; is an orthonormal basis.
One can easily check, using (3.59), that y is in intertwiner if and only if
Jov' =0, J.y =0, (3.87)

where the generators act on dual vectors as the dual representation (see equations (3.3)
and (3.4)), i.e.

Joljrm| = =m(j,ml|,  J.(jym|==Cz(jym){(j,mF1]. (3.88)
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The action of an operator of the form

n k n k
T: Q V,eQV, > Q Ve RVj (3.89)
b=k+1 a=1 b=k+1 a=1

is then defined by inverting transformation (3.85) for Ty". One can check that the
resulting map is an intertwiner if and only if T is a scalar operator.

The E, F ang F operators can be expressed as a sum of operators of the form (3.89) by
having T” and T* act as the identity on anything but the a-th leg (incoming or outgoing)
and by extending their action to dual vectors as

T, (j,m| = (jym|T,, T.(j,m|:=(j,m|T,, (3.90)
that is
T (jym|=—/j+m+1 <j+%,YH+1| (3.912)
T (j.m|=\/j-m+1(j+3,m-1 (3.91b)
T (jiml=\/j-m(j-%m+} (3.91¢)
T.(jom|=\/j+m{(j— 1, m-1] (3.91d)

The actions of the scalar operators on some 3-valent intertwiners of interest are listed
here, where the notation

D(j) =/2j +1 (3.92)
is used; these actions are*’

Ep jl>—j3 :D(kl)D(J'z)[lfl % j1]5 10 kl>—f3 (3.932)

i Jo J3 ky| ReimaTRedats ks
Ey j]>—js :—D(kl)D(jz)—Ifl % jl-ék 10, 1 j1>—ja (3.93b)

i |2 J3 k| Foitz Ry i
Fy jl>—fs _ p(k)pG|S 7 A, e, k1>—j3 (3.950)

i 2 J3 k| kit TRents ks
F, jl>_f3 :_D(kl)D(]'z)'lfl % jl-a 10 i k1>—13 (3.93d)

i 2 Js k| Reima TRy ks
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Ji ’k 1]
Ep, js{j =-D(k)D(j,) jzl ].23 ilz Oy jisd km_l]s{ (3.93€)
. (k3 ]
. _ . 2
Ey ]3_<j2 +D(k1)D(]2)-]~2 Js k2‘6k1]1—* k2]2+ _< (3.93f)
. k3 i
. _ _ . 2
By Js{jz e OLTA| R DR { (3.939)
= : [k 5 ]
2 L 4
4 - . . —]1 Ja J.3- > :
2 L P
, A
Es, ; >—j3 = D(j,)D(js) %1 ki k32 O, Jz+18ks 3ty >_ (3.93])
2 L B
, (i1 2 Js) >
Fy j >—j3 = D(j,)D(js) %1 ki k32 Oy e 1Ok -1 (3.93k)
2 L B
= o b2 s
Fy >—f3 :_D(]Z)D(B)I:% k2]8k2 jo-t O, g+l >_ (3.93])
J2

The Racah coefficients we have used may involve both unitary and non-unitary repres-
entations; as discussed in Section 3.3.3, they are still defined in this case.

3.4.2 Biedenharn-Elliott relations and symmetries of the Racah
coeflicients

Some useful properties of the Racah coefficients are presented here, namely some sym-
metries and the Biedenharn-Elliott relations, essential to our goal.

Symmetries

When at least one of le’ V and V is the finite-dimensional representation F; the
2

**This is not by any means the ~ Racah coeflicients possess the symmetries28
only case in which some sym-

metries arise, but explicit know-

ledge of the Clebsch-Gordan

coefficients is needed in order 66

to prove them.
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A=
s

Figure 5: Graphical representation of the pentagon identity.

.1 T 1 .
) kl = (-1 j1+j2k1kzD(k1)D(k2)[k1 2 J1:| ]
i T k)Y D()DGY) [k T (s54)
[1 . T . 1 .
2 N kl = (-1 j1+jz—k1—kzD(k1)D(]2) 2 k1 1
_] J2 k2_ ( ) D(jl)D(kz) J kz J2 (3.94b)
—] j1 j2< _ j1+k2—k1—j2D(k1)D(k2) [] kl kz]

= (-1 — N .
1k k)Y D(j)D(jp) |5 j2 i (3949

note that the numbers on the exponents are always in Z/2: for example, in the first
equation, it must be k; € D(%, j;) sothatj, —k; = i%. The proof of these symmetries

is straightforward, and can be checked by inserting the explicit values of the Clebsch—
Gordan coefficients from Table B.1in (3.71).

Biedenharn-Elliott

Racah coefficients, regardless of the representation classes involved, satisfy the Bieden-
harn-Elliott relations or pentagon identity, which can be represented graphically as in
Fig. 5: one can go from the leftmost intertwiner to the rightmost one by repeated Racah
transformations in two possible ways; equating the Racah coefficients appearing in the
two transformations we get that

Z[J} 2 jlz][g’l o ij][jz Js 123]:[11 2 jlz][j}z Js J..lzs]‘ (3.052)
i L3 Ji23 Jaz)Ja ] J2allJa J23a T34 J3a ) JnaflJa T J3a
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3. SPINOR OPERATORS IN 3D LORENTZIAN LOOP QUANTUM GRAVITY

Analogously, we can repeat the process starting from one of the other 4 intertwiners, to
get the remaining identities

5 [ s f.m] 1 2 jlz][jl a3 jm]:[jz Jsods|[ i h2 de | (5esb)
imsLJa 7 JsaflUs Jizz Jaz)lJa T J234 Ja J234 J3a||J34 ] J234]
s 2 e[ s j}23] 1 2 jlz]:[q‘l jo Js [z s is] (5050
o W3a ] JazallJa T J3a]lJ3 Ji23 J23 Ja ] J23a||Ja J234 J34]
s[5 s i jlz'[j}z s j;23]:[1_'1 jodu|[i s g esa)
1 L4 J23a J3allJ3a T J23al[Ja T J3a J3 J12z J23||Ja ] J234]
Z[J_& jos dwms iz s ;jz;[jl Ja ]'12]:[]_12 s 1;23'[1; B2 dn] (50se)
i LJa ] J3a]lJa J23a J3a]lJ3a T J234 Ja ] J3a U3 J123 J23]

One can equivalently obtain all relations from the first one by repeatedly applying the
Racah coeflicients orthogonality relations

Z[J.l J2 f][f J2 %}2]:auzs,j;3>1><j1,jzulzwupjguza) (3.962)
o s 7 Jas]l)s T J2

. . . . . .

Z[]l ].2 ].12][].1 ].2 ]-12]:5(j12’j;z)D(jpJ'2|]'12)D(j2’]'3|j23)) (3.96b)
s L3 JsllJs ] 23

where

1 if ji, € D(jy, jp)

. o (3.97)
0 if ji, ¢ D(ji> a)-

D(jys jaljr) = {

3.4.3 Recovering the Lorentzian Ponzano-Regge model from the
Hamiltonian constraint

We have now all the tools to discuss the quantum Hamiltonian constraint and the
Lorentzian Ponzano-Regge model®. The classical Hamiltonians given in (3.39) can
be quantised using the quantum observables E, F and F; we will choose the ordering
exactly as it appears in the classical equations. The quantum Hamiltonians are given by

1Y, =E By~ (Eq By - Ebea)E;—j (3.98)
A <EE.,~ (FyFp, - Ecbgba)i_cz (3.99)
Hi]bc =F,,F,, - (E4F,, - ﬁcbgba)g_t (3.100)
PAIB)C =F.,F., - (FpEpa — Echha)%. (3.101)
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3.4. 3D Lorentzian LQG and Lorentzian Ponzano-Regge model

Note that there is no ordering ambiguity in the fractional term, as E, and, say, E_, act
on different nodes. On the other hand, there is an ordering ambiguity between E;" and
the other terms where one of the indices is b: this particular ordering was chosen to
ensure that the Lorentzian Ponzano-Regge amplitude, given by the Lorentzian Racah
coeflicient, is a solution of these constraints. To prove this we restrict ourselves to a
triangular subgraph, given by the spin network®®

AN
. . . . ]3 .
Y(ja jzrja) = 124D Jss
. J4
J6

(3.102)

we made explicit only the dependence on j,, j; and j, as these are the only legs that can
be changed by H ., when (abc) is a permutation of (342).
Let us consider the particular quantum Hamiltonian constraint given by

3 = & > > By~ = = Fys
Hg;z = Fp3Fy3 - (E24F43 - F24E43)_E = Fy3Fy3 + (E24F34 - F24E34)_E > (3.103)
4 4

all the other cases can be treated in the same way. The proof that y it is annihilated by
(]

the operator H 31, consists in showing that the action of a gm on y provides a recursion
relation for the Racah coeflicient, essentially the Biedenharn-Elliott relation. This was
already discussed at length, for both the (undeformed and deformed) vector case®
and the spinor case® in the Euclidean framework; we will see here that this is also
happening in the Lorentzian case®. Note that this new result relies on the knowledge of
recoupling theory between finite and infinite-dimensional representations investigated
in Section 2.3: without it the Racah coefficients appearing in (3.93) would not be defined.

Making use of equations (3.93) we can compute the explicit action of PAISQ on y. For

the first part of H SQ we get
E3F32W(j2:j3»j4) = -D(j,)D(j3)D(j, + %)D(]B - %)

X[jl Ja J3 :|[]1 jz*%
1o 1 1|1 .

.

J3—3 Lo (
) . s J3s Ja)s  (3.104)
A |2 i :|W(J2 Ja» ja)

while for the other 2 parts we have**

~ F oL . ) . . j ' j
E24F34§W(]2’]3’]4) = D(j,)D(j3)D(j, + %)D(Js _% [Jf . ]_2 1 Ji 1]
4 2 J3 2 J2 2

H 1 1 . . 1 1 .
I3=2 2 I3 ][Jz+zz Jz] SR PR L
X . . . . . . + s R 3.105)
[ Ja s J4_% Ja Js ]4—% v( )37 2 )4 2)
and
BB 240 1) = -DUDGIDG = DoGs- b 70 2
! 2 J3 2 12 B

><|:j3_% % J3 :|[j2+% % Ja

[N | RSP j4+l]‘”(j2+%’j3_%’j“%)' (100
2 2
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3'Bonzom and Freidel, “The
Hamiltonian constraint in 3d
Riemannian loop quantum
gravity’; Bonzom, Dupuis
and Girelli, ‘Towards the
Turaev-Viro amplitudes from a
Hamiltonian constraint’.

3*Bonzom and Livine, ‘A New
Hamiltonian for the topolo-
gical BF phase with spinor net-
works’.

BGirelli and Sellaroli, 3D

Lorentzian loop quantum
gravity and the spinor
approach’.

*#Note that each operator is act-
ing on a different node.



3 Note that J4 € D(%,jzx).

3. SPINOR OPERATORS IN 3D LORENTZIAN LOOP QUANTUM GRAVITY

Using the definitions of the Racah coefficients (3.72) and the fact that, as a consequence
of (3.55b), when j, j" € D(j, j,)

i

j'4©71 =08(j>j') i i=8(Gij) T i (3.107)
J2
we see that
. .. LT

Ly v J2 I3 |\ T2 T3 -

> J35 = ST o> js =\ 7 s (3.108)
¥(ja» 3> ja) %:[]4 s ]]j% []4 js ]6] P >—Js
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moreover, we can adapt (3.95d) to our situation as®

1
[{1 A 13][1'1 ja j3]: MZZ [12 1 J'z][jl I, (3][13 ! js]. (3.109)

3 J3 J2)lis Js Js j1j4j6]4]4j5]6j4j5]4
4=ja—3
Substituting these results in the action of the Hamiltonian, it follows that

H§121//(j2,j3,j4) =0. (3.110)

3.5 Relationship with SU(2) theory

The framework we have constructed automatically describes the Euclidean case as well.
Mathematically, this is a consequence of the fact that SU(2) and SU(1,1) are two real
forms of the complex Lie group SL(2, C), i.e.

SU(2)¢c 2 SU(1,1)¢ = SL(2,C). (3.111)

As a consequence, the complex representations of the two groups coincide; in particular,
SU(1,1) representation theory contains as a subcase all the finite-dimensional repres-
entations of SU(2) used in Euclidean LQG. In our description, every notion at the
representation theory level (spinor operators, Racah coefficients, etc.) has by design not
been restricted to unitary representations, instead allowing for any irreducible one. The
only exception is the definition of the Hilbert space structure, which however, as we
noted, is still valid if we restrict to finite-dimensional representations alone; consequently,
everything at the quantum level can be used to described the Euclidean case as well, by
using intertwiners between finite-dimensional representations.

The same is true at the classical level. Recall that for finite-dimensional represent-
ations the spinor operators satisfy T, = ¥T.; using the equivalent reality condition
T, = F1, for classical spinors, the group element (3.19) becomes

1 (W+T++ ‘T’+—_+T) (3112)
(z[r)(wlw) \ W+ T = ST '

SIS

_ W_T_
$ w_t,
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3.6. Concluding remarks

Since
(t7) = |z_|* +|7,]* > 0, (3.113)

we have
gn =81 & =8 (3.114)

which makes g an element®® of SU(2). The su(2) Poisson brackets are recovered by
letting x, — —ix,; the same transformation, at the quantum level, makes the finite-
dimensional representations unitary (as SU(2) representations).

3.6 Concluding remarks

We have seen in this chapter that, thanks to our results from Section 2.3, it was pos-
sible to extend the spinorial formalism of loop quantum gravity to the 3D Lorentzian
case; moreover, we were able to reproduce the results of Bonzom and Livine, ‘A New
Hamiltonian for the topological BF phase with spinor networks’, namely we construc-
ted an Hamiltonian constraint using the spinor operators, and we showed, using an
opportunely generalised Biedenharn-Elliott relation, that it is solved by the Ponzano-
Regge amplitude. The Racah coeflicients we defined in Section 3.3.3 were essential in
obtaining this result, as they appear in the action of the spinorial observables and in
the Biedenharn-Elliott relation. It is important to note that, when working with con-
tinuous representations, the Racah coefficients we use may involve non-unitary infinite-
dimensional representations, which are not in the inner product space we defined: this
should not be seen as an issue®, but rather as a consequence of the parametrisation of
the Hamiltonian constraint using complex variables. One should note that, following
Bonzom and Livine, we only considered the case of a triangular face; for a complete
treatment more general cases should be investigated.
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~> Chapter 4

SU(2) intertwiners from SO*(2n)
representations

In this last chapter we will consider a second application of non-compact groups to
quantum gravity. Unlike Chapter 3, we will work with Euclidean loop quantum gravity,
with SU(2) as gauge group; despite the fact that the gauge group is compact, we will show
that a non-compact group appears naturally when working in the spinorial formalism,
i.e., when we rewrite the SU(2) generators using the Jordan-Schwinger representation.
Two main results are presented in the chapter: we will first show how the non-compact
group SO (2n), whose properties are reviewed in Section 4.1, has a natural action on
the space of all n-valent intertwiners, a generalisation of the known fact that the space of
n-valent intertwiners with fixed area provides a U(n) c SO*(2n) representation'; this
result, together with a review of the U(#) one, is the topic of Section 4.2. The second
result is an application of the first one: in Section 4.3 we will use the SO* (2n) structure
to construct a new kind of coherent intertwiners, following the Gilmore-Perelomov
construction of coherent states for arbitrary Lie groups. We will then study the properties
of these coherent states, in particular the matrix elements and expectation values of
the algebra generators, and the semi-classical limit. Finally we will see how these states
are connected to the symplectic group and to Bogoliubov transformations, which will
allow us to give a physical interpretation to SO*(2n) as the subgroup of Bogoliubov
transformation of the Jordan-Schwinger harmonic oscillators which are compatible
with the SU(2) invariance.

4.1 The Lie group SO*(2n) and its Lie algebra

The non-compact Lie group G = SO*(2n) is the subgroup of SU(n, n) consisting of
matrices that preserve the symmetric form

X Vnrrt P VX T X% Vot Yo Xyt X Vo t Y Xops XY € c*, (4.1)
o 1, (o 1,
g (]ln 0 g - ﬂn 0 M (4'2)

73

that is
SO*(2n) = {g e SU(n,n)

'Freidel and Livine, “The fine
structure of SU(2) intertwiners
from U(N) representations’.



*Details can be found in Ap-
pendix C.

4. SU(2) INTERTWINERS FROM SO” (2#1) REPRESENTATIONS

Recall that SU(n, n) is the group of complex matrices with determinant 1 preserving
the indefinite Hermitian form

vy = = = = 2n
XN T X Yot XYy = XtV — 0 T Xon Voo x,yeC > (4'3)

1, o\ (1, o
§lo -1,)8 \o -1,/ (4-4)

Elements of SO*(2n) can be parametrised” as 2 x 2 block matrices

ie.,

SU(n,n) = {g e SL(2n,C)

A B
8= (_g g)’ A, BeM,(C) (45)
with det(A) # 0 and
AA* —BB* =1, A*B=-B'A, (46)
. _ 4.6
A*A-B'B=1, BA' = —AB',
with inverse
4 (A B
g =\ g 4t (4.7)

The maximal compact subgroup K ¢ G is isomorphic to U(n), and is given by the

elements of the form
0 U ’ " 4

The group is non-compact for all n > 2, while SO*(2) = U(1).

The Lie algebra of SO*(2n) is
ff0 L,\_ (0 I,
4 (ﬂn 0) = (ﬂn oIV (4.9)

su(n,n) = {V €sl(2n,C) ‘ A (ﬂ(;’ _(]i ) = —(ﬂg _(]1 )V} (4.10)

50" (2n) = {V € su(n,n)

where

and
s1(2n,C) = {V € M, (C) | trV = 0} (4.11)

its elements are parametrised by 2 x 2 block matrices

X Y
V= (_? )?)’ X,YeM,(C) (4.12)
satisfying
X"=-X, Y'=-Y, (4.13)
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4.2. SO*(2n) action on intertwiner space

so that dimso™(2n) = n(2n —1). A basis for s0™(2n)¢ = s0(2n,C) is given by the
matrices

a Ay 0 B 0 0 ~ [0 Ay — Ay,
Eah_( 0 _Aba)’ Fab_(Aab_Aba 0)) F“b_(O 0 > (4.14)

where a,b =1,...,nand A, € M, (C) is the matrix with entries

(Aah)cd = 8ac8bd; (4.15)

the E;, matrices span the complexification of the subalgebra u(#). The commutation
relations of the s0™(2n) complexified generators are

(Eap>Ecal = 0cpEag = 6aqEcp (4.16a)
[Eap> Feg] = OpcFog = SpaFye (4.16b)
(Eap> Feal = 80aFpe = SacFpa (4.16¢)
[Faps Fea] = 8apEcq + ScaBap — O Eaa — Suaes (4.16d)
[Fap» Feal = [Fops Fog] = 0, (4.16¢)

and unitary representations are those for which
T T ol
Eab = Eba’ Fab = Fab‘ (4'17)
It will prove useful to also introduce the notation
b o1 b -ab
E,:=a"E,, F,:=z"F,, F,=z"F,, az¢M,(C), (4.18)

where we use the complex conjugate of z in F, to ensure that when the representation is
unitary (F,)" = F,; these 50* (21) elements satisfy the commutation relations

[Ea» Eg] = Ef a1 (4.192)
[Ewr F] = Fazizar (4.19b)
[Ea» F.] = —Fperia (4.19¢)
[F,.E,] = E(— 1) (w-wt)*- (4.19d)

4.2 SO”(2n) action on intertwiner space

We will now see how, when working in the spinorial setting’, the space of all SU(2)
intertwiners with 7 legs possesses a natural SO (2n) action, and is in fact an irreducible
representation of the latter. Recall that the Jordan-Schwinger representation for SU(2)
takes the form

J.=3(A"A-B'B), J,=4"B, J_=B'A (4.20)

where
[A,AT] =[B,B'] =1 (4.21)

75

*i.e., making use of the Jordan-
Schwinger representation.



4i.e., all A’s and B’s commute.

>Messiah, Quantum Mechanics,
chap. XII.

®Here the components of @
are the the generators acting on
the representation Fj,.

7It is implicitly assumed that
the operators with subscript a
only acton Fj,.

$These are the Euclidean equi-
valent of the observables we
defined in Chapter 3 from the
spinors operators T and T, and
are in fact scalar operators for
SU(2).

4. SU(2) INTERTWINERS FROM SO” (2#1) REPRESENTATIONS

are two decoupled harmonic oscillators*. They act as a Heisenberg group representation
on the orthonormal basis’

n4> 1810 = [Maduo ® [MB)uos  Masmp €N, (4.22)
where )
Alngpo = Vialnauo  A'lna—Duo =V 1a +1ny + o, (4.23)
4.23
Blng)uo = v/nplnpdnos  B'|ng —1)yo = Vg +1ng +1)yos
the numbers 7, and njy are the eigenvalues of the number operators
N,:=A"A, Ny:=B'B. (4.24)

The standard SU(2) basis for the representation F; can be rewritten in the harmonic
oscillator basis as

ym)=j+m, j—m)yyy meM, (4.25)
One can easily check that
P =YE-1)(E+1), E=A"A+B'B+1, (4.26)
with
Elj,m) = (2j + D)]j, m), (427)

that is, in some sense, E provides (almost) a square root of the Casimir.

We can now extend this construction to the intertwiner space as follows. We denote
by Invgy ;) (F;, ® - ® F; ) the set of SU(2) invariant vectors in the tensor product of n
SU(2) irreducible unitary representations, that is those that are annihilated by the total

6
angular momentum”
n

J= 0,

a=1

(4.28)

which we can identify with n-legged intertwiners. We then introduce the Jordan-
Schwinger representation for each leg, i.e., we use 2n harmonic oscillators”

T T
[Aa’Ab] = [Ba’Bb] = 80!1]1 (4'29)
to write
I = J(ALA, - BiB,), T\ =AlB,, ] =BlB,. (4:30)
The E operator we defined for a single leg generalises to the 21 operators”
Eyp = AQAy + BiBy + 8,1 (4.31)
satisfying the commutation relations
[Eah’Ecd] =0yEaq — 0aaEch> (4.32)

which are those of a u(n) algebra (see (4.16)). These operators can be used to construct
all the usual LQG observables, namely

J OO =04, A, — AA - (1-28,,)A,, (4.33)
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4.2. SO*(2n) action on intertwiner space

where
Ay =3B = 0,1), A=Ay, (4.34)

as it is easy to show. We are going to interpret the eigenvalues of the operator A,
Aaljasma) = jaljas ma) (435)

as the area associated to the leg a, hence we will refer to the 4 ’s as area operators; the
operator A := Y, A, gives us the total area of the intertwiner.

It was shown in Freidel and Livine, “The fine structure of SU(2) intertwiners from
U(N) representations’ that the space of intertwiners with a fixed total area® J € N,

Hy= D Invgypy(Vy@-—-eV;) (4.36)

a jﬂ:

has the structure of an irreducible unitary representation of U(n), whose infinitesimal
action is given by the E_, operators we defined®. Explicitly,

H =[J+1,]+11,...,1], (4.37)
where the [A},1,,..., 4, ], with
A2A, 221,20, (4.38)
denotes the U(n) representation with highest weight vector |1), for which
E_ |A)=2,4) and E_ |A)=0, Va<b; (4-39)

this particular choice of A’s is required to for SU(2) invariance. The dimension of U(n)
representations can be computed with the hook-length formula™

dim[A,...,4,] =] %, (4.40)
a<b
which in our specific case gives
dim[A},1,,1,...,1] = AI_A—AIZH(AI;I 11;2) (AZ/;; 11;3), (4.41)
so that . Ji 1 (J+n-1\(]J+n-2
dim #, = ﬁ( J )( ] ); (4.42)

one can check' that this is indeed the dimension of the space of n-legged intertwiners
with fixed total area.

We will now show how, in addition to the action of U(#) on each #/, there is an
action of SO* (2n)the full space on n-legged intertwiners

H, = DH, (4.43)
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“the fact that the total area must
be an integer follows from the
selection rules of the addition
of angular momenta.

°Qur notation differs from that
of the article, namely our E,;,
have an additional 6, term,
which as we will see is essen-
tial to construct the SO*(2n)
representation.

"Tachello, Lie Algebras and Ap-
plications, chap. 4.

*Refer to the aforementioned
paper.



“These operators were already
known: what is new is the fact
that, thanks to the &,, we in-
troduced in (4.31), they form
a closed algebra together with
the E,p’s.

"“Technically speaking it is a
unitary (g, K)-module, but we
will refer to it as an SO*(2n)
representation for simplicity.

4. SU(2) INTERTWINERS FROM SO” (2#1) REPRESENTATIONS

which is a new result. To do so, we introduce the operators"
F,, =B,A,-A,B, (4.44a)
E,= BZATb - AJ;BZ (4.44b)
which act respectively as ladder operators for the total area, i.e.,
['A’ Fah] = Fab’ ['A’ Fah] = Fab; (4-45)
together with the E_, operators we defined in (4.31), they satisfy the commutation
relations (4.16), which are those of an s0* (21 algebra. Since

El,=E,, F,,=F,, (4.46)

a
we can see H,, as a unitary representation'* of SO*(2n), which is irreducible since, as it
easy to see, ker F, = {0}, for a # b. The fact that the repeated action of the E, F, and F
operators on |0) is still an intertwiner follows from the fact that they satisfy

D’Eah] = U’ Fub] = D’Fab] =0, (447)

i.e,, they are all scalar operators.

Finally, as an aside, note that the F,, operators we introduced can be used to obtain
an explicit expression for the highest weight vectors in the U(n) representation #/; in
fact

Proposition 4.1. The highest weight vector for the U(n) representation HJ, is defined up
to a phase factor as

1

Vg1

Proof. First note that, as a consequence of the commutation relations (4.16), we have

lvy) = Ny(Ep)l0), N =

E, ifa=b<2

[E > Fp] = 84, F,p + 8y, E, =10 ifa=b>2 (4.48)
0 it a<b.
If we assume that |y;) is a highest weight vector, using the fact that
N 1~
|‘l’} 1) = —= Fulv,T) (4.49)
N
we get
(J+2)y) ifa=b<2

Eab|‘/’]+1> & (FIZEab + [Eab>F12])|‘//]> = |‘/’]+1> ifa=b>2 (4.50)

0 if a < b;
since the result is true for J = 0, as
Eqpl¥o) = Egpl0) = 8,40), (4.51)

it follows by induction that [} ) is a highest weight vector for all J € N;,. The normalisation
factor is chosen so that {y,|y;) = 1; we will see how to calculate this inner product later
in the chapter, with Proposition 4.5. O]
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4.3. Coherent intertwiners

4.3 Coherent intertwiners

In this section we will consider an application of the fact that the space of all n-valent
SU(2) intertwiners forms an irreducible SO* (2#n) representation. Following Perelomov,
we will introduce a set of coherent states for SO*(2n) which, being based on the in-
tertwiner representations, provide a new kind of coherent intertwiners. We are first
going to review the construction of Gilmore-Perelomov coherent states, then apply it
to the specific case we are interested in. We are then going to analyse the properties
of these states, specifically the matrix elements and expectation values of the so* (21)
generators and the semi-classical limit. Finally, we are going to investigate the connec-
tion of the coherent states with the symplectic group Sp(4#n, R) and with Bogoliubov
transformations.

4.3.1  SO*(2n) coherent states

The full understanding of the group structure underlying the E,,, F,, and F,, operators
allows us to construct a new kind of coherent states in the intertwiner space, namely the
Gilmore-Perelomov generalised coherent states” for SO* (2n). This construction general-
ises and complements the coherent intertwiners presented in Freidel and Livine, ‘U(N)
Coherent States for Loop Quantum Gravity’, which make use of the U(#) structure and
live in the space of intertwiners with a fixed area.

Recall that generalised coherent states for a unitary irreducible module V of a generic
Lie Group G are defined as

€)= &lvo), g€G, (452)
where |y,) € V is a fixed state of norm 1. Note that, at this stage, there is no guarantee
that two coherent states labelled by different group elements indeed describe physically

different states (i.e., they are not the same vector up to a phaselé). In fact,let H € G be
the maximal subgroup that leaves |y,) invariant up to a phase, that is

hlye) = e®Plyy),  VheH, (453)

which will be called the isotropy subgroup for |y, ): it is obvious that if g, € g;H then

€)= ¢“lg), (4.54)

i.e., the two states are equivalent. The inequivalent coherent states are labelled by elements
of the left coset space

G/H:={gH|geG}, (455)
and are given by
%) = [gx) = g:lyo).  Vx e G/H, (456)

where g, € x is a representative of the equivalence class x.

For the particular case of the intertwiner representation of SO* (2n), we will choose
the harmonic oscillator vacuum |0) as our fixed state. It is easy to see that the isotropy
subgroup for |0) is the maximal compact subgroup K = U(n) c SO*(2n); the coset
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"More information on this
bounded symmetric domain,
as well as some the proofs of

some of the statements presen-

ted in the following can be
found in Appendix C.

*Here we mean the subgroup
of all g € G such that g(0) = 0.

9Here /M denotes the unique
positive semi-definite square
root of a positive semi-definite
matrix M . Recall that, since
the square root is unique, we

have (v/A)" = /At and analog-

ous expressions for A, and A*.

4. SU(2) INTERTWINERS FROM SO” (2#1) REPRESENTATIONS

space SO*(2n)/U(n) can be identified with one of the bounded symmetric domains
classified by Cartan'/, namely

SO*(2n)/U(n) =2 Q, = {{ e M,(C) | ' = ~{and {*¢ < 1}, (4.57)
on which SO*(2n) acts holomorphically and transitively as
g0=(8 p)w=cmcreoy (459)

The isotropy subgroup™® at { = 0 is given by K, and the correspondence between Q,, and
SO*(2n)/U(n) is given by

(eQ,~{geG|g(0)={} = gKeSO"(2n)/U(n), (4.59)
where" B
X, (X
. ¢ ¢ . *\—1.
g '_( * s )9 X ‘_\/(]l_(() > (460)
¢ 4 X, X( {
the coherent intertwiner states are then given by
() == g10), (eQ,. (4.61)
Note how
1€} = g(0)) (4.62)
and, indeed, “
gl0) = e Vg(0)), VgeG Ve, (4.63)

A more explicit expression for these states can be obtained using the following Lemma.

Lemma 4.1 (Block UDL decomposition). Any element of SO*(2n) can be decomposed

A B\ (1 BAT\((AH)T o0 1 0
-B Al \o 1 0 AJ\-A"'B 1
:exp(%ﬁBg_l)exp(EL)exp(—%FA_lB)

where L is such that ™" = A*. Note that, unless B = 0, the factors do not belong to SO* (21
anymore, but to its complexification SO(2n, C) instead.

Proof. (i) Since A must be invertible, the matrices appearing in the decomposition are
well-defined. One can check explicitly that the LHS equals the RHS, making use of the
fact that

(A")'=BA'B=(A")"+(A")'B'B
(A") - (a")(ATA-1)
A.

(4.64)
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4.3. Coherent intertwiners

(ii) To see how the exponentials arise, notice that both BA'and A"'Bare antisymmetric,
as a consequence of (4.6). For any antisymmetric matrix T we have

Foeanr(p Sot)-3(o )-(0 D) we
a,b a,b
so that _

exp(%ﬁBA_l)z(g B? ); (4.66)
similarly

1 0
eXp(—%FA—lB) = (_A_lg ﬂ). (467)

For the middle matrix in the factorisation, recall that any invertible complex matrix
admits a (non-unique) logarithm. Since A* is invertible, there is L such that e” = (A*) 7%
moreover, it follows from the properties of the matrix exponential that A = ¢!’ Then

A 0 L 0
EL=ZLab( N )=(O _Lt) (4.68)
ab ba
so that . .
e 0 (@ o
exp(EL) = (O e_Lt) = ( 0 A)’ (469)
which concludes the proof. O]

As a consequence of Lemma 4.1 we can rewrite g, as

8= exp(%fz) exp(E;) exp(_%FX(—IEX{) (4.70)

where L is such that
el =\/1- (. (4.71)

Since |0) is annihilated by every F,, and
w1
e"110) = €10 = det(e")[0) = det(1- ¢*¢)2|0) (4.72)

we can eventually write the coherent states as

) = N(Q) exp(LF,)[0),  N(Q) = det(1-{*0)2. (4.73)

Using the fact that the representation is unitary, we can write the inner product between
two coherent states as

(w|0) = (0lg, gc10), (4.74)
with

-1 (Xw(]l—a)c*)X( Xw(f—w))_(( ) (4.75)

808t X, (O - 0)Xp X, (1- 0" )X,

81



4. SU(2) INTERTWINERS FROM SO” (2#1) REPRESENTATIONS

which automatically ensures
det(1- w*{) # 0, (4.76)

as X, (1- 0*{)X ¢ must be invertible. We know from Lemma 4.1 that the group element
can be written as

8o 8; = exp(F,) exp(E, ) exp(Fg) (4.77)
for some a and f3, with A such that

= X (1- o)X = V1- (1 - L0) VI - wet, (4.78)

so that 1 1
~ A _det(1-{"()2 det(1- 0 w)?
(w|¢) = det(e™){0]0) = detl— o' 0) ; (4.79)

the Cauchy-Schwarz inequality ensures that

|(w|()|2 <1 (4.80)

where the equality only holds when w = {, as by definition states labelled by different
cosets are not proportional to each other.

Summary

To summarise, we have constructed a set of coherent intertwiners

€)= det(1- {* )7 () exp(3F,)|0), (eq,, (4.81)

where Q,, is the set of anti-symmetric matrices { € M, (C) satisfying {*{ < 1. They are
all independent from each other, and their inner product is given by

det(1 - {*C)% det(1 - w*w)% <1
det(1- w*{) v

(w|C) = (4.82)

with the equality holding only when w = (. They are Gilmore-Perelomov coherent states,
as they satisfy

gl0) = €D 1g(0)),  geSO*(2n), (4.83)

where the action of g on ( is given by (4.58), i.e., up to a phase factor, the action of the
group goes through the coherent states.

It is important to mention that, although this construction is new, some of these
states have been considered before in Freidel and Hnybida, ‘On the exact evaluation of
spin networks’, Freidel and Hnybida, ‘A Discrete and Coherent Basis of Intertwiners’,
and Bonzom and Livine, ‘Generating Functions for Coherent Intertwiners’, although the
underlying group structure was not known. Nevertheless, the coherent states presented
in those articles are only those such that rank({) = 2—which are exactly those that can
be seen as a linear combination of the U(#n) coherent states for all possible areas—so
that the vast majority of the states we constructed in this section are indeed new.
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4.3. Coherent intertwiners

4.3.2 Matrix elements of the so*(2n) generators

The easiest way to compute the matrix elements of the s0™ (2n) generators E;, F,;, and
ﬁab in the coherent state basis is to make use of the 2n harmonic oscillator operators
A,, B,; in particular, we are going to project the states |{) on the well-known harmonic
oscillator coherent states. Recall that* coherent states for the representation of the

Heisenberg group H,, with generators acting as
[AaAp] = [Bo Byl = 051,
on the vector space spanned by the vectors™
t Ty
)= 0 v
where |0) = |0, 0) is the harmonic oscillator vacuum
A,4|0) = B,|0) = 0,

are the vectors

(g% iRt at B
o, B) = e 5 (a*a+p*p)
y,gNS \/m\/ﬁ

lu,v), a,peC’

satisfying
Agle B) = agla. B),  Bglas B) = Balas B)-

The resolution of the identity in terms of these coherent states is given by

/., duta )l e B = 1.
where the measure of integration is**
du( B) = —-d" (@) d"3(o) "R(B) 4" I(B).
We can now use the fact that
(o, BIC) = N (O){at, Blexp(LF)l0)

= N'({){a, Bloye’ ¢

_ N(()eﬂ*C&—%(a*Mﬁ*ﬂ)
to write

(alt) = [, du(e Bl B)a B0
= N@WN(Q) [, du(a, pyef Tpeeet’s

0 @1 0|/«
:N(w)N(() ./(‘CZn dy(tx,ﬂ) exp[—%((xt B at ﬁt)(—ﬂw ((é g( n)(g
0 -{0

)

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

which is a Gaussian integral®. Although we already know the value of (w|(), we can use
this expression to calculate the matrix elements of any operator built as a polynomial in

the harmonic oscillator operators thanks to the following Proposition.
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*°Perelomov, Generalized Co-
herent States and Their Applica-
tions, chap. 3.

*'Here we use the multi-index
notation, that is we have
(A")" = (A])"---(A})"" and
pli= ! .. pa!, with g e Ng.

**Here R and J denote respect-
ively the real and imaginary
part of a complex number.

»31n fact, we could also have cal-
culated (w|{) by evaluating this
integral.



**It is assumed that all the re-
quirements on A such that the
integral converges are satisfied.

*Here we use the multi-index
notation again.
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Proposition 4.2. Let
S= fe_%XtAX d"x,

with A € M, (C) symmetric and invertible, be a convergent Gaussian integral**. Then

1t 0 0 0
—-Sx'Ax qn
fxalxaz...xake 2 d x_S__

2|y
a]al a]az a]ak

J=0
for any k € N; in particular, the integral vanishes whenever k is odd.

Proof. First note that

_LytaAx n J 0 0 —LxtAx+]tx qn
fx x, x, e 2 d"x= | ——u— 2 d"x. (4.93)
ar”™ay ay a]m a]az a]ﬂk =0
With the change of variable x — x + A™'J one has
It Ax+ J'x o = WA - Lt - I - LA T+ AT (4.94)
4.94

= -Ix'Ax+ 11'A7Y

so that

CliAr o 3 9 0
/xalxaz...xa e 2 d X = —/m — oo ——
k a]al a]az a]ak

1t p-1 _ 1t
ez]A ] / e 2% Ax d"x (4‘95)
J=0

as required. Note that, since J'A isa quadratic polynomial in Ji,..., ], if k is odd
there is a leftover factor of J after k derivatives, which makes the whole integral vanish
when evaluated at J = 0. O

Proposition 4.2 can be used to find matrix elements by starting with (4.92) and
setting

X
Y
J = < | (4.96)
Y
one can easily check that
(e 0*()_1 —((H—SJ*()" (11—(!6)*)’1 “ (0*)_1
A= ((ﬂ—w*f)1 0 0 —(ﬂ—w*()lw)’ (4.97)
0 (1-0*O)7! |(1~0* )@ 0
so that
$(@,0) =31 AT =Y {(1- 0" )X+ V' (1- 0)'@X (ao9)
4.9

+ X' (1-w )" X+Y'(1-w")"Y.

Then, for any operator of the form™
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4.3. Coherent intertwiners

ki pk k k
p(A, B, AT, BT = AMB* (A" (BN, Ky, ky, ks, ky € NG, (4.99)
where it is important that all the raising operators are on the right (anti-normal order-
ing)m, we have, as a consequence of Proposition 4.2, *SIf they are not, they can al-
ways be rewritten in this form
(wIP(A,BaAT,BT)ICFf du(a, B)p(a, B, &, B)(wla, ) (a, BIC) up to some summands propor-
C2n ( 4'100) tional to the identity, for which
_ e S(w,0) it is trivial to compute matrix
= (w|()P(vX>vY’vX’vY)‘x:Y:Oe > elements.
where . . )
0" 9" 2"
(vy)F = k e Nj. (4.101)

axkaxk gxkn’

In particular, we have:

Proposition 4.3. The matrix elements of the so* (2n) generators in the coherent state
basis are given by

(@) = (ld)[1+207°¢(1- 0 0) 7],
(@lFul0) = (@lO)[20(- )],
(w|Fopl0) = (@l)[2(1- 0" 0) "],
Proof. (i) Firstlet us rewrite E ;, as
E, = AyAL + ByB -8, (4.102)

using the commutation relations of the harmonic oscillators. Then we can insert the
resolution of the identity for the H,, coherent states to obtain

(@la,ALJ0) = [ duCa ) lalasle e AL L)
- [ dute ) Ty ol B)(a BO) (4109
~N@NQ) [ du(ap) e, o ot

applying Proposition 4.2 together with equations (4.92) and (4.98) we obtain

o 0 T (1o 0)!
A ATIE) = 9 o X{(1-w* )~ X+
(w]AyAy]Q) = (w]C) 3X. 3%, X:Y:Oe (4100
= (@)1= )] ,.
Similarly
(w|ByBLIC) = (@) [(1- 0™ O)7'], (4.105)
so that
(W|Eg[¢) = (| [2(1- 0 )" =1] , = (|1 +20"{(1- 0 {-1)"] | (4106)
as
1-X)"=1+X(1-X)". (4.107)
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*’Note that the A, all commute,
so there is no ordering ambigu-

ity.
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(ii) To obtain the matrix elements of F,;, we insert the resolution of the identity again,
which gives

(0lBoAsS) = [ du(ar B)(wlByAsla ) e BI)
= [, dua. B) oary ol e )

(4.108)
_ Jd d Y= ) Xt
N <w|(> aYa aXb X:Y:()e
(@l - '],
leading to
(0|Fapl0) = (0| [20(1- O], (4.109)
as
[((1-w )] =-(1- ") (= ~{(1-w )™ (4.110)

(iii) The matrix elements of F_, are easily obtained from the F,, ones as

(| FaplC) = (CIFypl )
- W[ZG(H - Cw*)fl]ab (4.111)
= (0)[¢[2(1- 0 ) D] .
O

Proposition 4.4 (Expectation values of areas). The expectation values of the area operat-
ors in a particular coherent state |() are

(A)=[CC@-0™ 0 (A =a[@-)7]

and their variance is

Var(‘Aa) = %(Aa)((Aa> + 1)’ Var(A) = %(Aab)((Aub> + 8ab)‘

Moreover, when the non-zero eigenvalues of (*{ approach 1, although Var(.A) grows

\/Var(A

without bound, the coeficient of variation (T>) approaches a value in (0,1].

Proof. (i) The form of the expected values follows directly from Proposition 4.3. In
order to calculate the variances, we will need the covariance®

Cov(A,, Ay) = (A AL) = (A (Ay). (4112)
First note that
4A,A, = (A,A" + B,B! —2)(A,A] + B,B} —2)
=A,A"A,Al + B,B'B,B} + A,A"B,B! + B,BlA, A
—4A,-4A, -4 (4.113)
=A,A,ALAl + B,B,BB} + A,B,AB] + A,B,A} B!
—4A, - 4A, -20,,A, —4-25,,.
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4.3. Coherent intertwiners

Making use of the resolution of the identity for the H,, coherent states we get*®

(A AL} = [ dua B)(ClA4,Arla B) e BLALAL )

[ () 3,005, G B )

9 9 9 0 KX
aXa aXb a‘)—(a a)_(b X=Y=0
Jd 0

=— 2 ((6X),+(oX
= 04q0pp + 04y 03y

and similarly
Tt
<BaBbBaBb> = 03420pp + 044 0pg>

while for the term with both harmonic oscillators we have
(A B ALBY) = [ dule B)(CIAByla B) e AL B )

[ Qi B) @B Sl B) (s IO)

- J i 0 0 eYt(0X+?tag)?+)?taX+?aY
0X, 9Y, a)_(a a?b Yoo
9 9 0 v Yo X+X'o X+
= oo = 0Y), +(o(X e
39X, 3Y, 9%, X:H(( )y + (00X),)
0 9 > Yo X+
= ox, 1|, (Oa(eD) + (D), )

OaaOpb + (O’Z)bu(co—)b“
=0,,0p + (UC*)ah(cva)ba
=0,,0p + (U(*)ba((o-)ab

Eventually we can compute the covariance as™

COV(Aa’“Ah) =0,,0pp + %oababa + %(0(*)ab((a)ba — 044 = Opp
- %6ab0ab +1- 0400y T 0gq + Opp — 1
:%Oabaha + %(U(*)ab((a)ba - %aabaab’
which leads to*°
Var(A,) = Cov(Ag Ay) = 50,40, = 1) = 5(A,) ((A,) +1)

and

Var(A) := ZbCOV(Aa’Ab) =tr(o®-0) = Zb<Aab)(<Aah> + 8ah).
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*To simplify notation we
define o := (1- )"

(4.114)

(4.115)

(4.116)
*Recall that {*{o = 0 -1, so
that (As) = daa — L.

(4.117)
**Note that (o is anti-symmet-
ric.

(4.118)

(4.119)



3'Note thatas (1-{*¢) <1, it
must be o > 1.

¥Recall that, if A, B € M,,C are
positive semi-definite matrices,
tr(AB) < tr(A) tr(B).

33Using the fact that, as 0 > 0,
tr(1) tr(o?) > tr(o)’.

**When rank({) > 2animport-
ant simplifying assumption is
missing, namely, as we will see,
the fact that {{*( is propor-
tional to (.
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(ii) The coeflicient of variation for the total area is then given by

JVar A _ tr[o(o - ]1)]

> 0; .
(A) tr(o - 1) (4.120)
making use of the fact that, as both ¢ and ¢ — 1 are positive semi-definite’*,
trffo(o -1)] <tr(o) tr(o - 1), (4.121)
we obtain an upper bound for the coeflicient of variation,
1
v Var A tr(o) \2
< . (4.122)
(A) tr(o) - n

When the non-zero eigenvalues of {*{ approach 1 we have tr(c) — oo, so that

v/ Var A

A (4.123)

<1 when tr(o) — oo,

as expected. O

Let us spend a few words on the last result of Proposition 4.4, regarding the coeflicient
of variation. This coefficient measures the relative standard deviation, i.e., the amount of
dispersion compared to the value of the mean. In our particular case, the result is telling
us that, even though the dispersion gets bigger as the total area increases, the relative
standard deviation is bounded by a value that approaches 1 for sufficiently large area.
Note that the coeflicient of variation does not provide any useful information when the
area is very small, as®

/Var A B \/tr[o'(a—]l)] § \/% tr(o) tr(o —1)
(A tr(o-1) tr(o - 1)

when (A) - 0,ie,0 > L

In the specific case when rank({) = 2 we can do much more than computing
expectation values and variances: in fact, we can produce the complete probability
distribution of the total area as follows®*.

(4.124)

— OO

Proposition 4.5 (Probability distribution of total area). When ( is of rank 2 the probability
distribution for the total area in the state |{) is

P(J) = det(1- ) (Lee(C*0)) (J+1),  TeN,.

Proof. (i) Let
1.8) = (3E)l0),  TeNg (4.125)

these are eigenvectors of .4, with

AlLL¢) =11, {), (4.126)
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as 1:"} adds one quantum of area each time®. The SO*(2n) coherent states can then be
written as

€)= det(1-{"0)2 exp(lfc)|o>

_ det(1-°0)} Z Lo (4127)

Since the |J, {) states are mutually orthogonal®®, the probability that |{) is measured with
total area J is given by

(L0 det(1- Q)

(rL.arng (32 ACRSE (4.128)

P((])E

it remains to calculate the norm squared of the state |J, {).

(ii) Recall that
1 177
[3F0 3F] = Ex ooy = Eeer (4.129)

and

1F]-1F =
(e 3Fe] = 3Fpepicgn = Faro (4.130)

moreover, since ( is of rank 2, one has (see Appendix A.2)

("¢ = %U’(“*)C (4.131)

so that

=1
k -~ -1 = -~ - .
= ;(%Fz)e chc*c(%Fz)k ‘ (4132)
r(¢C) (3F;)

It follows that?”

L, (38,)10) = [LF,, (3F;)]j0)

J ook T
= Z(%Fc)k IEC(* (%Fz)] o) (4.133)

89

3In fact [ A, F] =

3% As they are eigenvectors of a
self-adjoint operator, with dif-
ferent eigenvalues.

%Recall that F,|0) = 0 and that
E.|0) = tr(«)|0).



*¥Borja et al., ‘U(N) tools for

loop quantum gravity: the re-

turn of the spinor’.
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and in particular

(7. 217.0) = (0(AF,) (A F) o)
=TT+ ) (Ol (AF) T (AE) o) (4134)
=JJ+ D)3 (T (-1, -1,0).

Solving the recurrence relation with (0, (|0, {) = (0|0) = 1 we obtain

(0, 07,0) = g+ D1 (S (o) (4135)

which, plugged in (4.128), gives
P()) = det(1- ") (37 0) 0 + 1) (4136)
as expected. O]

Plots for the probability distribution can be found in Fig. 6. Note how, as the non-
zero eigenvalues of {*( approach 1 (equivalently tr({*{) — 2), the relative shape of the
distribution remains the same, as a consequence of Proposition 4.4.

4.3.3 Semi-classical limit

Let us now consider the semi-classical limit of our coherent intertwiners. Our goal
is to obtain out of the expectation values of the algebra generators a set of variables
that, endowed with the appropriate Poisson structure, we can interpret as a classical
geometry (similarly to the classical space of Chapter 3). In particular, we want to be able
to construct a set of vectors that sum to zero, and as such can be regarded as the normals
to a convex polyhedron®®.

In order to investigate the semi-classical limit , it will prove useful to rewrite the
expected values of the s0* (2n) generators in a different way; note the similarity with
the bra-ket notation we introduced in Section 3.1.1 when working with classical spinors.

Proposition 4.6. The expected values of the so* (2n) generators can be written in the
form

a|zb ((|Eab|( ab + Z a|zb

>J|,_‘

k 1 k
(|Fab|( :2/1_ a|zb (|Fab|( :Z

a=1

where k = 1 rank({), A2 is a non-zero eigenvalue of {*{ and
xp T o =
-() =-(5) @G @08

satisfy
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Figure 6: Distribution of total area for different values of tr({*{) when { is of rank 2.
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k
0 -1
M = @)La(l 0 ) ®0, 5> Ay >0; (4.137)
a=1
then
* k 2
M'M=@BM\1,o0,_ (4.138)
a=1
and

k
I-MM)"=@D1-1) 'L el, . (4.139)
a=1
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It follows that
(CIF0) = [20@- D],
= [2UM -M M)
k n
= Z 1- ac\Yc2a 6c,20c718d,2¢x)Ubd (4'140)
a=lc,d=1
k
= Z a,2a Ua,Z{x—l Ub,Z(x)
and
(UE4I0) = 84 = [207¢A-C"0)7]
= 2UM M(1-M*M)TUY]
k n 2/12
= Z Z 2 Uac((sc 20— 16d 2a-17F 56 2(x6d Za)Uhd (4.141)
a=1c,d=1 1- Aoc
:Z > (UaZ(x thZ(x 1+Ua2(th,2a)'
a=1 1-
Choosing
ay\ ZAi 2 Ua,20¢—1 X7 _ ZAi 2 L_]a,sz
|Za) ) (1 - A%z Ua,th |Za] B 1- )‘é _ﬁa,za—l (4:142)
we find ;
l
IEDY A_ 282h),  (CIEI0) = 04 + Z zal2,); (4.143)
a=1"a
moreover,
N ay B 212 \? 2/\/; > (U, 2a—1Ua,2/3—1 Ua2a L_]a,zﬁ—l
- () () 2o o -
a=1 a=1 Ua Za—an,Zﬁ Ua,2¢x Ua,zﬁ
207 (4.144)
= 04 a1 )2 -2 L
- (xﬁz a‘Z
as expected. O]
As consequence of this fact, in the limit
Ay =1L a=1...,k (4.145)
where the expected value of the total area
k AZ
o
(4.146)
A=z
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we have

k
(CIF510) ~ D lzalzp)s  (CIELIC) = b+z alzp)- (4.147)
a=1

We can interpret the semi-classical limit as a classical geometry by introducing the
canonical symplectic structure on C*"

n k
w=1Y Y (dx5 rdxy +dy; Ady;), (4.148)

a=la=1

with Poisson brackets

L& (of og of ag of ag Of og
Ga-afy( Lk k- as) e
so that
(x5, %} = {75, 7} = 160, (4150)
with all other brackets vanishing. With this symplectic structure, the functions
k k -
Z a|zb fab = Z[zalzb) (4-151)
a=1 a=1
satisfy
{eab’ ecd} = _ﬁ(é\cbead - Sadecb) (4.152a)
{eab’ fcd} = _ﬁ(8adfhc - 6acfbd) (4-152b)
{eah’fcd} = _ﬁ(abcfad - 5hdfac) (4.152¢)
{fub’fcd} = _ﬁ(adbeca + 6caedb - acbeda - 8daecb) (4.152d)
{fab’fcd} = {fah’fcd} =0, (4.152€)

which are the classical analogue of the s0*(21n) commutation relations (4.16); in fact,
upon quantisation we have

x> A% ¥ AY Y5 B% 3% B, (4.153)

a

which satisfy the commutation relations of 2kn decoupled harmonic oscillators when
{,-} = —i[-], so that*

k
T +
e = Egp = Z(AZ AZ + Bg BZ + (Sab) (4.154a)
a=1
k
(4 (4 o 4
fap = Fap = D (BRA} + A3By) (4.154b)
a=1
fap > Fyy = FJ, (4.154¢)

which satisfy (4.16).
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**The proof can be found in
Alexandrov, Convex Polyhedra,
chap. 7.

4. SU(2) INTERTWINERS FROM SO” (2#1) REPRESENTATIONS

To recover a classical geometry, we construct n (3-dimensional) vectors out of the
2kn spinors |25 ), namely

(4.155)

M=

VW)=Y Ullelz8), a=1,...,n,

a=1

where o is the Pauli vector

. N . 0 1 0 -1 1 0
o=o0X+o0,y+02 o0,= L ol 0, = i o) o, = o -1/ (4.156)

which in components read

k
Vx(a) = Z %(’_‘3)’3 + VaXa (4.157a)
a=1
(@ _ %
Vya = Z ﬁ(’?;)’g ~ Ya¥Xa) (4.157b)
a=1
(@ _ %
V.Y = Z% XoXq = VaVa)- (4.157¢)
a=1
It follows from Proposition 4.6 that the spinors satisfy the closure contraints
n k n k [za,.a =a. a
Xy (% XaXa YaXa
Zal\Zal = 2oy e ] <l (4.158)
IIEIIEIED 9D [ wHL ) S
which implies that
n
LASDINARET: (4.159)
a=1

as such, we can interpret the n vectors as being the normal vectors to the faces of a
polyhedron by means of the Minkowski theorem*®

Theorem 4.1 (Minkowski theorem). Letv,,...v, € R® be vectors spanning R satisfying

Vi +Vy+e+v, =0,
Then there exist a unique (up to translation) convex polyhedron with n faces f,,..., f,

such that v, is the normal vector to f,,.

This construction is similar of the usual one in terms of spinors, which can be found
for example in Borja et al., ‘U(N) tools for loop quantum gravity: the return of the
spinor’, and in fact coincides with it if rank({) = 2. Note that in the rank 2 case, as one
can easily show,

v(@ y(@ _ i(za|za>2 - ieia = (A,)?, (4.160)

that is the areas associated to the faces of the polyhedron, which are given by the length
of their normals, are exactly the expectation values of the area operators. However, when
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rank({) > 2, due to the summation over «, such a relation between the norm of v(a)
and e, is not available, namely

k
V(a) V(a) — zll Z ( ayayaxb — xaxgy€y€> (4.161)
ﬁ:

so that at this stage the full relationship between the polyhedron we constructed and the
quantum theory we started from is non fully understood. One should note that

{V(ﬂ) V(“)} (a) (4.162)
and
{V> eah} = {V’ fab} = {V’ fah} =0, (4'163)
so that upon quantisation of the vectors we get
v g, (4.164)
where
k il T
74 =3 1 (AT A% - BYTBY) (4.1652)
a=1
k T
(=3 as'Bs (4.165b)
k T
]ga) . ZBZ A%, (4.165¢)
a=1

which we can regard as a generalisation of the Jordan-Schwinger representation with 2k
spinors instead of 2. An unexpected feature of this generalisation is that each SU(2) rep-
resentation F; appears more than once in the Heisenberg group H,; (R) representation

generated by the harmonic oscillators: for example, when k = 2 and j € %NO, both

(21,00, (0,0))o and  [(0,27), (0,0 (4166)
describe the highest weight vector |j, j) € F;, where
|(na1ng), (M2, g2)s ey (Myks Mgk) Yo = @|nAa, N ) HO> (4.167)
a=

while if j € N, the vector
1(7:0)> (j>0))uo (4.168)

works as well. It is likely that this property will play a key role in the full understanding
of the semi-classical limit.
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#See Appendix C.

421t follows from (4.174).

4. SU(2) INTERTWINERS FROM SO” (2#1) REPRESENTATIONS

4.3.4 Relationship with Sp(4n, R) coherent states and Bogoliubov
transformations

The coherent states we have defined can be introduced can be reinterpreted in terms
of Bogoliubov transformations by making use of the connection between SO*(2n) and
the symplectic group Sp(4n, R). Recall that, if we have a set of N decoupled harmonic
oscillators

[Ca’ CZ] = 6ab’ [Ca’ Cb] = [CZ’ CZ] =0, (4-169)

a Bogoliubov transformation is a a canonical transformation which maps them to a new
set of harmonic oscillators,

C,=U"c, +v*c] (4.170)
6; = 6abCZ + V“bCh, (4.171)

satisfying the usual commutation relations; we can write in a compact form

(%) i (% %)(3) (4172)

The conditions on U and V such that

[Ea’ 62;] = 8ab’ [aa’ Eb] = [6:;’ 6;] =0 (4.173)
are
vut-vvh=1, Uv'=VvU, (4.174)
which automatically ensure that U is invertible and that*'
Uu Vv
(V ﬁ) € Sp(2N,R); (4.175)

as such, we can interpret Sp(2N, R) as the group of Bogoliubov transformations of N
harmonic oscillators. The vacuum for the set of new harmonic oscillators is given by

0) ::Nexp(%S“bCZCZ)m), (4.176)
also known as the squeezed vacuum, where § is the symmetric matrix**
S=-U"v; (4.177)

in fact, it is easy to see that

~ > 1 . k
C0)=NY F[Cd’(%s 'cicy) ]\0)
k=0 ™*

o 1 b K101 qed ot | 1 gde it
=N Y —k(is®cicl) (iscl+Lis*cl)o)
2 k(astae) (il aste) .

1 bt K od
=(4s™cic)) s“cllo)
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from which it follows that _
C,[0) = 0. (4.179)

The fact that [0) has finite norm can be proven by evaluating (0[0) as a Gaussian integral,
making use of the resolution of the identity in terms of the coherent states for the
harmonic oscillators C,,.

To connect SO*(2n) to Bogoliubov transformations, note that SO*(2n) can be
embedded into Sp(4n, R) as*

-Y
€ Sp(4n,R), (4.180)

0

X Y %
q).(_? X) €SO™(2n) »

X

<o o X
~ > e
SRS

so that we can interpret SO*(2n) as a subgroup of Bogoliubov transformations of
the 2n harmonic oscillators A, B, that we use to construct the Jordan-Schwinger
representation. In particular, for the Bogoliubov transformation ¢( ggl), with { € Q, we

get
5= (‘; ‘(f), (4.181)

so that the associated squeezed vacuum is
Nexp(zabBZAZ)m) z./\/’exp(%z“bﬁab)m), (4.182)

which is exactly the coherent state |{). To summarise, we can regard the coherent
intertwiners we defined in this chapter as the squeezed vacua associated to a subgroup
of Bogoliubov transformations, isomorphic to SO*(2n). The particular Bogoliubov
transformations are exactly those for which the squeezed vacuum is still SU(2) invariant
(i.e, an intertwiner), so that we can essentially regard SO* (2n) as the group of canonical
transformations of 2n harmonic oscillators preserving SU(2) invariance, where the
SU(2) action is implemented through the Jordan-Schwinger representation.

4.4 Concluding remarks

We have seen in this chapter how, even when working in the Euclidean regime, i.e.,
with a compact gauge group, the spinorial framework induces an action of the non-
compact group SO*(2n) on the space of all n-valent intertwiners. The reason why this
additional structure was overlooked until now, despite the fact that a similar result was
known for the maximal compact subgroup U(n) c SO*(2n), essentially lies in the
way the operator E, is defined: our definition differs from the usual one found in the
literature** in that it includes a 8,1 term, which ensures that the commutation relations
for the E, F and i operators form a closed algebra, namely so” (2n)c; without it, the
commutator [F,,, F,;] has some terms proportional to 1 appearing in it, which prevent
the interpretation of the intertwiner space as a representation of SO*(2n).

We have seen how this new SO* (21) action can be used to construct a set of coherent
intertwiners, using the Gilmore-Perelomov generalised coherent states; as we noted,
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4. SU(2) INTERTWINERS FROM SO” (2#1) REPRESENTATIONS

although some of these were already known and used, the vast majority of them are new,
namely all those labelled by a matrix { of rank greater than 2. As part of the analysis of
the properties of these coherent states, we have shown that, in the semi-classical limit of
large areas, each coherent state is peaked around a classical phase space which we can
interpret as the classical geometry given by a convex polyhedron with # faces. Some
work is still required to achieve the full understanding of the semi-classical limit, as there
are some issues in the connection between the expectation values of the area operators
and the areas of the faces of the polyhedron when rank({) > 2, i.e., for the previously
unconsidered coherent states.
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> Chapters

Conclusions and outlook

In the past three chapters we investigated a number of results, all related to each other,
with non-compact groups as their common thread. The first few of them have been
mathematical in nature. First we saw how the Wigner-Eckart theorem can be generalised
to arbitrary Lie groups, with the introduction of the new concept of weak tensor operators
to make the treatment in the case of non-compact groups rigorous, then proceeded to
construct the main ingredient of the theorem, the Clebsch—-Gordan decomposition of
the product of finite and infinite-dimensional representations, for the specific cases of
the Lorentz groups; finally, we were able to use these results to construct an analogue
of the Jordan-Schwinger representation for all representation classes of Spin(2,1) and
Spin(3,1). Although the results of representation theory were far more difficult to prove
and have a much broader scope, the Jordan-Schwinger representations are arguably the
most important results of Chapter 2: even though they are just a simple application of
the Wigner-Eckart theorem, the importance of their applications to physics, and the fact
that they were completely unknown for continuous series representations makes them
of considerable value, and in fact it is only thanks to these results that it was possible to
write Chapter 3 at all.

The rest of the thesis focused on applications to physics, in particular to quantum
gravity. In Chapter 3 we saw how the mathematical results discovered in the previous
chapter can be used to implement an equivalent of the spinorial approach to loop
quantum gravity in the (2 + 1) Lorentzian case. Although the results we found are very
similar to the Euclidean ones, the Lorentzian case has several key differences, caused by
the higher complexity of Spin(2,1): for example, the E, F and F operators we defined in
some cases take intertwiners between unitary representations to intertwiners between
non-unitary representations, and as such cannot be considered proper observables.
Nevertheless, they can still be used to generate all of the geometric observables, and
we were able to use them to construct a solvable Hamiltonian constraint, with the
Lorentzian Ponzano-Regge amplitude in its kernel. It is important to note that, although
the Jordan-Schwinger representation was already known in the case of discrete series
representation, the action of the E, F and F operators involves Racah coefficients where
one of the representations is F 1 which still require the knowledge of the recoupling
theory results of Chapter 2: as a consequence, the entirety of Chapter 3 is new, not only
the results involving continuous representations.

99



'Dupuis and Girelli, ‘Observ-
ables in Loop Quantum Gravity
with a cosmological constant’;
Dupuis, Girelli and Livine, ‘De-
formed spinor networks for
loop gravity: towards hyper-
bolic twisted geometries’.

*Banados, Teitelboim and Zan-
elli, “The Black hole in three-
dimensional space-time’.

*Dupuis and Livine, ‘Holo-
morphic simplicity constraints
for 4D spinfoam models .

*Dupuis, Freidel et al., ‘Holo-
morphic Lorentzian simplicity
constraints’.

5. CONCLUSIONS AND OUTLOOK

Finally, in Chapter 4 we switched gears and analysed some new properties of Euc-
lidean LQG. We saw that, although SU(2) is compact, when working with the spinorial
formalism the non-compact group SO (2n) appears naturally in the theory; specifically,
the Hilbert space of all n-valent intertwiners provides an irreducible representation
of SO*(2n), which can be interpreted physically as the subgroup of Bogoliubov trans-
formations of 2n harmonic oscillators—the ones appearing in the Jordan-Schwinger
representation—that preserves the SU(2) invariance of intertwiners. This new structure
complements the known fact that the space of n-valent intertwiners with fixed area
is a representation of U(n), which incidentally is the maximal compact subgroup of
SO*(2n). Analogously to what was done for fixed-area intertwiner space in Freidel
and Livine, ‘U(N) Coherent States for Loop Quantum Gravity’, we used the SO* (2n)
structure to construct a new kind of coherent intertwiners, making use of Perelomov’s
construction of coherent states for arbitrary Lie groups. Although some of these states
were already considered in the literature, the ones we constructed are more general, as
there is no requirement on the matrices labelling them to be of rank 2. In the end we have
shown that, in the semi-classical limit, each of these coherent states is peaked around
what can be interpreted as the classical geometry described by a convex polyhedron in
R?, although some work remains to be done to fully understand this link.

Future work

As we have seen in Chapter 2, the techniques used to investigate the Clebsch-Gordan
decomposition of the product of a finite and an infinite-dimensional representation are
similar for both the 3D and 4D Lorentz group, although the treatment is more convoluted
in the higher dimensional case; it is therefore likely that these techniques can be used as
a guideline for the study of more generic non-compact groups. In particular, it would be
interesting to consider the quantum groups associated to Spin(2,1), i.e., the g-deformed
enveloping algebra U, (spin(2,1)). The reason why this particular example would be
worth studying is that it may be used to introduce a cosmological constant A # 0 in the
Lorentzian LQG kinematical Hilbert space, similarly to ¢/, (su(2)) in the 3D Euclidean
case'. The knowledge of the Wigner-Eckart theorem in these cases would likely lead to
a deformed Jordan-Schwinger representation, which could be used to generalise the
formulation of the Lorentzian spinorial framework of Chapter 3 in the presence of a
non-zero cosmological constant. It is worth noting that, when A # 0, new interesting
features appear, such as the Bafiados-Teitelboim-Zanelli (BTZ) black hole?, so that a
generalisation to the quantum group could shed new light on the physics happening
when A is non-zero.

In addition to the use of U, (spin(2,1)), another line of future research spawning
from the results of Chapter 3 could be the extension to the 4D case. Using the results
of Section 2.4.3 (Jordan-Schwinger representation) for Spin(3,1), the introduction
of a spinorial formalism in theories using the 4D Lorentz group as a gauge group
should not be difficult. The quantum theory in this case is an interesting open problem:
although a model exists in the Spin(4) gauge group’, the generalisation to the Lorentzian
case was only developed at the classical level®. It is not surprising that the spinorial
framework is missing here, as, unlike the 3D Lorentz group, in 4D the Jordan-Schwinger

100



representation was completely unknown for all unitary representations. Hopefully, the
results presented in this thesis will help bridge this gap.

The results of Chapter 4 are the ones that better lend themselves to future research,
since some of them are preliminary and require additional work. The next step will
definitely be the understanding of the nature of the semi-classical limit of the coherent
states and its connection to a classical geometry. The pursuit of this topic has great
importance, as the states labelled by a matrix with rank greater than 2—those for which
the understanding of the semi-classical limit is incomplete—are exactly those that have
never been considered before; finding out their connection to a classical geometry is
thus necessary to figure out the role that they will play in loop quantum gravity.

Another interesting research topic related to the SO* (2n) formulation of intertwiner
space is its generalisation to Spin(2,1) intertwiner, and is closely connected with the
spinorial approach to 3D Lorentzian LQG; in fact, the spinorial observables E, F and
F introduced in Chapter 3 form an s0(2#,C) algebra just like in the Euclidean case,
i.e., intertwiner space can be seen as a representation of SO(2n,C). Although this
preliminary result is easy to obtain, as we have seen multiple times in this thesis dealing
with Spin(2,1) makes things considerably more difficult than the SU(2) case. First of
all, there is no single intertwiner space, as the spinorial observables do not change the
class of a representation, so that for example an intertwiner of the kind D* ® D™ - D
can never become one of the kind D™ ® D™ — D™ under the action of the SO(2n, C)
generators. Moreover, it is unclear which real form of SO(2n, C) should be used to
make each kind of intertwiner space a unitary representation: it is entirely possible that
different real forms may be needed, depending on the classes of the representations
appearing in the intertwiners.
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~ Appendix A

Some facts about matrices

A.a  Tridiagonal matrices

Tridiagonal matrices are square matrices whose only non-zero entries are on the main

diagonal, the diagonal below it (subdiagonal) and the diagonal above it (superdiagonal).

They can be visualised as

by ¢
a b, o
A= , (A1)
An-1 bnfl Cn-1
aﬂ bn
with the generic entry given by
Aij = 61‘71’]‘ ai +6i,j bi+6i+l,j Ci’ (AZ)
where
a,:=0 and ¢, :=0. (A.3)

A result holding for a certain class of tridiagonal matrices', will be proved here.

Proposition A.1. Let A be a n x n tridiagonal matrix over a field K. If the superdiagonal
(subdiagonal) entries of A are all non-vanishing, its eigenspaces are all 1-dimensional.

Proof. Consider the case of non-zero superdiagonal entries. Recall that, if A € K is an
eigenvalue of A, the associated eigenspace is ker(A — Al), the vector space of solutions
to the equation

Ax = lx, xeK" (A.9)

with the notation introduced in (A.2), this is equivalent to the system of n equations

(b= A)x;+¢x,=0
a;x; 1+ (b, -AN)x;+¢;x,,,=0, i=2,...,n—-1 (A.s)

a,x,_+(b,-A)x, =0.
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*Youla, ‘A normal form for a
matrix under the unitary con-
gruence group’, corollary 2.

3Here, for two square matrices
(possibly of different dimen-
sions) A and B, A @ B denotes
the block matrix (4 §).

A. SOME FACTS ABOUT MATRICES

If x, = 0 the first equation reduces to
€%, =0, (A.6)

which implies x, is zero as well, since all the c’s are non-vanishing. In general, the kth
equation will be

Ck X1 = 0, (A.7)

i.e., the only solution with x; = 0 is the null vector.
Let then x, be an arbitrary non-zero value. Substituting each equation in the next
one, the first n — 1 equations reduce to a system of equations of the form

C1x1+1:(xl+lxl, i=1,...,1’l—1, (A.S)

with each « depending solely on A and on the matrix entries. These always have solution,
since one can safely divide by the c’s; as a consequence, the solution is completely specified
by the value of x;, which can be factored out as a scalar coefficient. The nth equation is
automatically satisfied, as it was assumed that A is an eigenvalue. By virtue of egs. (A.8),
all the non-zero solutions of the eigenvalue equation are proportional to each other, so
that

dimker(A - A1) = 1. (A.9)

The proof for the case of non-zero subdiagonal entries proceeds analogously. O]

A.2 Anti-symmetric matrices

An anti-symmetric matrix X is one which satisfies X' = —~X. In the specific case of
complex matrices, one can prove the following result’.

Lemma A.1 (Decomposition of anti-symmetric matrices). Any anti-symmetric matrix
X € M, (C) can be decomposed as UMU", where U is a unitary matrix and’

> (0 ~ha if n is even
@, (L )@ (0)  if nisodd,
with
M2A, 221,20, v:[gJ. (A1)

It follows that rank(X) = rank(M) is necessarily even.

We can use this Lemma to prove a useful result in the case of anti-symmetric matrices
of rank 2.

Corollary A.1. Let X € M, (C) be an anti-symmetric matrix of rank 2. Then

XX*X = Ler(X* X)X and  det(1- X*X) = (1- Ler(X*X))".
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A.2. Anti-symmetric matrices

Proof. Let X = UMU" be the decomposition of X given by Lemma A.1. Since the rank

is 2, it will be

so that

it follows that

and

Moreover,

0 -\
(0 os..

. A0

tr(X*X) = tr(UM*MU") = tr(M* M) = 21>

XXX = UMM MU' = UMU" = L tr(X* X)X.

det(1- X*X) = det(UU' - UM*MU")
=det(1- M"M)
- (1-2%)°
- (1-Lu(x'x))”.
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~ Appendix B

Clebsch—-Gordan coefhcients

B.1 Spin(2,1) Clebsch-Gordan coefficients

=1 = 1

] _] 2 ] - ] + 2

_ 1 B j+M+1 \ji-M+1
H 2 V2j+1 2j+1

Ll j-M+1 jHM+1
H=73 /2j+1 /2j+1

Table B.1: Clebsch-Gordan coefficients B(J, M|y, y; j, M — u) for y = %

J=j-1 J=) J=j+1
p=-1 VIOV i*/%vﬁMH _\/z_vf'\}f‘_4\/f+M+1 Vi-M\/j-M+1
2j\/2j+1 2j\/2j+2 V2 /2j+2
=0 f\/j‘_M\/f*_M 2M f\/mm
o VA Vi Y
=41 VIi-My/j-M+1 ﬂ\/j+M\/j—M+1 M/ M+
¢ V2i/2j+ V2j\/2j+2 NooNoT

Table B.2: Clebsch-Gordan coefficients B(J, M|y, y; j, M — ) for y = L.

Explicit values for the Clebsch-Gordan coefficients are presented here, for the small
values y = % (table B.1) and y =1 (table B.2), with arbitrary j. The tables are valid for
D]*, C; and F i provided only the allowed values of j, ] and M are considered. The
coeflicients are normalized in such a way that

A(y, us j,m|J, M) = B(J, Mly, us j, m) (B.1)

and that, for the finite-dimensional series (with j > y), they coincide with the su(2)
ones. Moreover, in analogy with the su(2) case, the Clebsch-Gordan coefficients for
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B. CLEBSCH-GORDAN COEFFICIENTS

the coupling V; ® F, = F, ® V; are chosen to be

B(J, Mlj, msy, ) := (=1)" 7V B(J, Mly, s j, m). (B.2)

Some properties of the Clebsch-Gordan coeflicients ar also listed in this section.
Assume that the coupling F, ® V;, with V; an arbitrary irreducible (g, K)-module, is
decomposable, and consider the Clebsch-Gordan coefficients in the form presented in
Section 2.3, that is such that the diagonalized basis vectors are

I, M) = 3" > Ay, s js ml], M)y, s j, m). (B.3)
1% m

One can always rescale these vectors so that
T M) =C.(J, M)|], M +1). (B.4)

By acting with 7, on both sides of (B.3) and equating the coeflicients of each basis vector
we find that the Clebsch-Gordan coefficients must obey the recursion relation

C.(J, M)A(y, s jym|], M £1) = C,(y, u F1)A(y, 4 7 1; j, m|], M)
+Co(m*DA(y, s jym 1], M); (B:s)

analogously, we fins for the inverse coefficients

+C,(j,m*1)B(J, M|y, u;j,m*1). (B.6)

Since both the coeflicients and their inverse, for each fixed J, are solutions the same
homogeneous linear system, they must be proportional to each other: we will choose
their normalization so that

A(y, ps j,m|], M) = B(J, Mly, us j, m). (B.7)

Since the recursion relations only relate coefficients with the same J, one could think a
priori that coefficients with different J are independent. It will be shown in the following
that this is not true.

Proposition B.1. Consider the coupling F, ® V; of a finite-dimensional module and an
irreducible one, of any class. Whenever the denominator is defined, the Clebsch-Gordan
coefficients satisfy
B(J + 1, M|y, —y; j, m) o J-M+1
B(], M|y, -y; j, m) VI+M+1

where the proportionality factor is fixed by the normalisation of the Clebsch-Gordan
coefficients and does not depend on M or m.
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B.2. Spin(3,1) Clebsch-Gordan coefficients

Proof. Consider the particular case of (B.5)
C.(J, M)B(J, M + 1]y, =y; jym +1) = C.(j, m)B(J, M|y, —y; j, m), (B.8)

where we used the fact that
C.(y,-y-1)=0. (B.9)

By considering the same equation for J + 1 and dividing by the first one, we obtain

B(J+LM+1]y,-y;j,m+1)  C,.(J,M) B(J+1,Mly,~y; j,m)

D;,(M+1):= = R
D = My jom 1) G0+ LM) BU, My, o)
(B.10)
ie,
-M M+1
D/(M+1) = VI- MV M+ D, (M). (B.11)
VI-M+1/J+M+2
It is easy to see by recursion that
-M- 1 M+1
D,(M+n) = vJ n+lvie M+ D,(M), neN, (B.12)
VI+M+n+1W/J-M+1
from which it follows that
B(J+1, M|y, -y; j,m) J-M+1
D,(M) = = N B.
/M) B(J, My, —y; j,m) (x(])\/]+M+1 (B13)
where « is arbitrary and depends on the normalization.
O
B.2 Spin(3,1) Clebsch-Gordan coefficients
(AP)=(A-3p-5) (AP)=(A+5p+9)
. 1 OA\/]—)L+%\/]—AP+% A+ [+ Ap+d
J=J=3 SRy == s wwrys V2IH/A+Ap
. 1 \/]+)L+%\/]+Ap+% QA\/]—A+%\/]—AP+%
TANAS NoE N Y= i v

Table B.3: Clebsch-Gordan coefficients B{(A, P)]|y; (A, p)j} fory = 1.

Some notions about the Clebsch-Gordan coefficients of the coupling Ff ® V), are
presented here. In particular, explicit values for some Clebsch-Gordan coefficients,
namely those with y = % are listed in Table B.1; the normalisation is chosen so that

B{(AP)]|3 (A p)j} = A3 5 (M p)jl(A P} (B.14)

Moreover, we will prove the following useful property:
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'Requiring that J > |A| + y is
needed to ensure j = J — y is
allowed, i.e., J — y € |A| + No.

*Recall that in this case the only
non-zero coefficient in (B.15) is

AIESNESNIESE

B. CLEBSCH-GORDAN COEFFICIENTS

Proposition B.2. Consider the product Ff‘ ® V), withy > % and V) , infinite-dimen-
sional. If a Clebsch-Gordan decomposition exists, when ] > |A| + y the Clebsch-Gordan
coefficients satisfy, for all (A, P) € Cf()t, psy)s

B{(A+LP+A)]lys (L) -y} VI+A+1/T+ AP +1
B{(A,P)]lyas (A, p)T -y} VI-AT-AP

where the proportionality factor is fixed by the normalisation of the Clebsch-Gordan
coefficients and does not depend on J.

Proof. When J > |A|+y the (J,, J*)-eigenspace V/ = V]] is spanned by the 2y +1 vectors’

() = % (yous i T =l Dlyas ) @ (A ) T = 1) (B.15)
peMy

where je {J-y,...,]+y}. Since F;‘ ® V), is decomposable, CHAp,y) = CA(\p,y)
does not depend on J when J > |A| and

(DD = > B{(AP)lys (4, )H(AP)]). (B.16)

(A,P)eCA

Equating (B.15) and (B.16) in the particular case j = J — y gives®

v ) (A p) =y T-y) = > B{(AP)lyas(Ap)]-y}H(AP)]).  (Bay)
(AP)eCA

Acting with K, on both sides of (B.17) we get respectively

- Py, (J-y2] -2y +1\/2] -2y + 2y ) ® [(Lp)] + 1=y, ] +1-)
=Py, (J-y)2] -2y +1\/2] -2y +2[(J +1-y)] +1)

=- P, (J-y)V2I -2y +1\/2] -2y +2 (B18)
>, B{(AP) +1ys (A p)] +1-y}(AP)] +1)
(AP)eCA
for the LHS and
- 3 B{AP) Iy (M )T - y3Prp()V2] +13/2] +2|(A,P)] +1)  (Buao)
(A,P)eCA

for the RHS; it follows that, for each (A, P) € C4(A, p, y),

B{(A,P)]yas (A p)] =y} Pap (V2] +1/2] +2 =
B{(AP)] +1lys (A, p)] + 1=y} Py, (J = y)\/2] = 2y + 1/2] =2y + 2. (B.20)

Now let

B{(A+LP+A)]lys (Lp)] -y}

, (AP)eC*(Mp,y), (B
B{A P gy —yy o P e hpy), o (Ba)

f](A, P) :=
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B.2. Spin(3,1) Clebsch-Gordan coefficients

where the numerator may vanish if (A +1,P + A) ¢ C;(A, p, y); it follows from (B.20)
that

P++1 AU
fratap) = ptzal o)

I+ A+2/J+AP+2  \[]-A\/] - AP
VT A+IT-AP+IT+A+ /T + AP +1

(B.22)

f(A.P).

One can check recursively that it must be, for each n € N,

Vi+n+A+1/J+n+AP+1 /J-A\J- AP
A,P) = A,P); (B.
Frn ) VJ+n—AJ/J+n- AP \/]+A+1\/]+AP+1f]( ) (B23)

the solution of this recurrence relation in J is

VI+A+1/J+AP+1
A,P) o , B.
where the proportionality constant does not depend on J. O]
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~> Appendix C

Bounded symmetric domains

This appendix contains definitions and results related to the groups SO*(2n) and
Sp(2n,R) and their action on their respective bounded symmetric domains. The expose-
tion closely follows Knapp, ‘Bounded Symmetric Domains and Holomorphic Discrete
Series’.

In order to treat both groups at the same time, we will define

f O L, (0 1, _
§ (—sﬂn 0 )g - (—sﬂn 0 )}’ e= (€
(1, o) (1, o0

and SL(2n, C) is the group of 2x x 2n complex matrices with determinant 1. Then we
have

G*(2n) := {g € SU(n, n)

where
SU(n,n) = {g e SL(2n,C)

SO*(2n) == G~ (2n), Sp(2n,R) := G (2n). (C3)

In both cases the maximal compact subgroup is

U 0
K := {(0 (_I) ‘ Ue U(n)} ~U(n). (C.4)

C.1  Parametrisation of the group G*(2n)

Elements of G*(2n) can be parametrised as 2 x 2 block matrices

A B
(C D)’ A,B,C,D e M, (C), (C.s5)
satisfying the conditions
A"A-C'C=1 (C.62)
D'D-B'B=1 (C.6b)
A'D-eC'B=1 (C.6¢)
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'Recall that A*B = C*D and
A*A-C*C=1

C. BOUNDED SYMMETRIC DOMAINS

A*B=C*D (C.6d)
A'C=¢C'A (C.6¢)
B'D =¢D'B (C.6f)
A B
det(C D) =1 (C.6g)

This parametrisation can be greatly simplified, owing to the following propositions.

Proposition C.1. Let g = (é ]I;) € G°(2n). Then A and D are necessarily invertible
and det(D)
et
det(g) = .
(&) = Ger(ar)

Proof. (i) Suppose that A is not invertible; then there must be a non-zero v € C" such
that Av = 0. It follows from (C.6) that
v=(A"A-C"C)v=-C"Cy; (C.7)

however, C*C is a positive semi-definite matrix, i.e., all of its eigenvalues are non-
negative, hence a contradiction. An analogous argument shows that D is invertible as
well.

(ii) Recall that, if D is invertible,

det(A B ) = det(D) det(A - BD'C). (C.8)
C D
As A” is invertible, we have'
A*A-A*BD™
det(A - D) = 3 ©)
det(A*)
_det(A*A-C*DD'C)
det(A*) (C.9)
_det(A"A-C*C)
- det(A*)
B 1
 det(A*)’
which concludes the proof. O

Lemma C.1. Let g = (é ]I;) € G*(2n). The inverse of g has the form

4 _ [ DY -eB'\
g - _sct At >

moreover, in addition to the constraints (C.6), it must be

AD'-e¢BC'=1, BA'=¢AB' and CD'=¢eDC.
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C.1. Parametrisation of the group G*(2n)

Proof. (i) One can check explicitly that

D' -eB'\(A B\ (D'A-¢B'C D'B-¢B'D\ (1 0 (C10)

—ect A J\c D) \alc-ecta A'D-ec'B) |0 1) 10
as it follows directly from (C.6), hence

D' -eB') _
(—Ect At ):g 1. (C.ll)

(i) Since, as g is a square matrix, it must be gg~! = 1 as well, one has

1 0\ (A B\[ D' -eB'\ [AD'-eBC' BA'-¢AB' (Ca2)

0 1) \C DJ\-eC' A" )] \CD'-eDC' DA'-e¢CB' '
from which the additional constraints follow. O

A B
Proposition C.2. Let (

& . .
c D) € G*(2n). Then it must necessarily be

C=¢B, D=A, (Ca3)
which automatically ensures the det(g) = 1.
Proof. From (C.6) and the results of Lemma C.1 follows that
AD'= A(D'-B'BD™")
=1+¢eBC'~ AB'BD™

=1+eBC' —¢BA'BD ™ (€19

=1+eBC' - eBC',

thus D = A. Then A*B = C*A and A'C = ¢C"A so that
C=e(A)'C'A=¢B. (C.15)
The fact that det(g) = 1 follows directly from Proposition C.1. O

Putting everything together: the elements of G*(2n) are parametrised by block

matrices of the form
A B
g= (SE A) (C16)

with det(A) # 0 and A, B satisfying

AA® -BB* =1 (C.17a)
A*A-B'B=1 (Cazb)
A*B=¢B'A (Cazc)
BA' = ¢AB', (Cayd)
with inverse R .
g = (_B* o ) (C18)
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C. BOUNDED SYMMETRIC DOMAINS

C.2 The Lie algebra g*(2n)

f 0 L,\_ (0 I,
V(—s]ln 0)_ (—s]ln o)V (Ca9)

su(n,n) = {V esl(2n,C) ‘ V*(ﬂg _(]1 ) = —(ﬂg _(ﬁ )V} (C.20)

The Lie algebra of G*(2n) is given by

g°(2n) = {V esu(n,n)

where

and
sl(2n,C) ={V e M,(C)|trV =0}. (C.21)

It is easy to see that the elements of g°(2n) can be parametrised by 2n x 2n matrices

X Y
V= (s? X,) (C.22)
with
X =-X, Y'=¢eY. (C.23)

As X € M,,(C) is anti-hermitian, it has n* real degrees of freedom, while Y is symmetric
if e = 1and anti-symmetric if & = -1, so that it has #* + en real degrees of freedom; it
follows that dim g°(2n) = n(2n + ¢€) as a real Lie algebra.

A basis for g°(2n)¢ is given by the matrices

_ Aah 0 _ 0 0 = 0 Aah+£Abu
Bap = ( 0 —Aba)’ Fap = (Aab + ey, o)’ Fap = (o 0 ’

(C.24)
where a,b=1,...,nand A, € M, (C) is the matrix with entries

(Aab)cd = 6ac8bd; (C.25)
the E;, matrices span the complexification of the subalgebra u(n). Using the fact that
AahAcd = 5bcAad’ (C-26)

we can easily compute the commutation relations of the complexified generators, which
are

(Eap>Ecal = 0cpEaq = 6aqEcp (C.27a)
[Eaps Feq] = 0y Fog + €8, F,, (C.27b)
(Eap> Foql = =0, Fpg — €0,4Fy, (C.27¢)
[Pap> Foa] = =0 Eda = 0aaEer — €8apEca — €8.4E (C.27d)
[Fap» Fea] = [Fopo Fog] = 0. (C.27¢)
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C.3. Bounded symmetric domains

C.3 Bounded symmetric domains

Bounded symmetric domains are a class of domains in CN of the form G /K, where G is
a non-compact semi-simple and K is its maximal compact subgroup; here G/K denotes
the left coset space

G/K:={gK|geG}, gK:={gk|keK}. (C.28)

For the particular case of G = G°(2n), K = U(n), the bounded symmetric domain is
isomorphic to the domain

QL ={{eM,(C)|1-(>0,{" =}, (C.29)

on which G*(2n) operates holomorphically as

§(0) = (AL + B)(CC + D), g=(’é ﬁ) (C30)

This action is well defined: in fact we have®

(ctepyctsp)-(atenyacen) - 0y %)e()
by

={"(-1<0;
if (C{ + D) were not invertible, there would be a non-zero vector v in its kernel, so that

0>v*(C{+D)*(C{+D)v-v*(A{+B)" (Al + B)v

_ V(AL +B)*(AC+ B)v <0, (C32)

which leads to a contradiction. Moreover, it follows from (C.31) that

1-g(0)*g() =[(C¢+D)'] (@- ") (Ci+ D) >0, (C.33)

so that indeed g(Qe, ) ¢ Qe,,. The fact that Qe, = G*(2n)/U(n) is a consequence of
the following propositions.

Proposition C.3. The action of G*(2n) on Q) is transitive, i.e., for all {, w € QF there
is g € G*(2n) such that w = g({).

Proof. First notice that for each { € Qf, there is a group element that sends { to 0. In
fact,
g(0)=BA™'={ <« B=(A, (C34)

where, owing to (C.17), A has to satisfy

AAT = (1= (C.35)
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Recall that since the positive-
definite square root is unique,

one has (\/Z)t = VAt and

analogous expressions for A,

and A*.

C. BOUNDED SYMMETRIC DOMAINS

i.e., A is a square root of the positive-definite matrix (1 - {¢*)~; in particular one can
choose the unique positive-definite square root, denoted by /(1 — {¢*)~1. One can
check explicitly that®

g:(\/(n—w)-l c\/(ﬂ—w)*) (C36)
V=T Va-ryT '

satisfies all the constraints (C.17), so it belongs to G*(2n). Then for any {, w € Q;, one
has

(8,87 )(0) = ,(0) = , (C37)

so the action is transitive. O]

Proposition C.4. The isotropy subgroup of 0 € Q, is K, = U(n), the maximal compact
subgroup of G*(2n).

Proof. Let
g- ( 4 E) (C38)
a generic G*(2n) element. We have
g(0)=BD™, (C39)
which vanishes if and only if B is the zero matrix. It follows that
1=AA" - BB" = AA", (C.40)

so that the subgroup that leaves 0 € Q)}, invariant is K. O
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