
The Geant4 Virtual Monte Carlo

I Hřivnáčová

Institut de Physique Nucléaire (IPNO), Université Paris-Sud, CNRS-IN2P3, 91406 Orsay
Cedex, France

E-mail: ivana@ipno.in2p3.fr

Abstract. The Virtual Monte Carlo (VMC) [1] provides the abstract interface to the Monte
Carlo transport codes: GEANT 3.21 [2], Geant4 [3], and FLUKA [4]. The user VMC based
application, independent from the specific Monte Carlo codes, can be then run with all supported
simulation programs. VMC has been developed by the ALICE Offline Project and it has drawn
attention in other experimental frameworks.

Since its first release in 2002, the implementation of the VMC for Geant4 (Geant4 VMC) has
been continuously maintained and developed, driven by the evolution of Geant4 on one side and
the requirements from users on the other side. In this paper we report on new features in this
tool, we present its development multi-threading version based on the Geant4 MT prototype [5]
as well as the time comparisons of equivalent native Geant4 and VMC test applications.

1. Introduction
Geant4 VMC [6] has been previously described in detail in [7] and in the context of ALICE
in [8]). In this paper, we briefly recall the concept and the design of the Virtual Monte Carlo,
before reporting on the new developments in Geant4 VMC. One section is devoted to the Geant4
VMC multi-threading prototype and, finally, the time comparison of equivalent Geant4 native
and VMC test applications are discussed.

2. Virtual Monte Carlo (VMC)
VMC has already been presented in detail in [9] and [10], here we give a brief summary of the
main ideas. VMC defines an abstract layer between a detector simulation user code and the
Monte Carlo transport code (MC). In this way the user code is independent from any specific MC
and can be used with different transport codes, such as GEANT 3.21 [2], Geant4 [3], FLUKA
[4], within the same simulation application (Fig. 1).

In VMC, we introduce on one side the interface to the transport MC itself, TVirtualMC,
and on the other side the interface to the user application, TVirtualMCApplication, see Fig. 2.
In this way, we decouple the dependence between the user code and the concrete MC. Both of
these classes are available together with two other interfaces and a few more utility classes in
the vmc package in the ROOT framework [11].

The implementation of the TVirtualMC interface is provided for two Monte Carlo transport
codes, GEANT3 and Geant4 within their VMC packages available from the ROOT site. The
implementation for the third Monte Carlo transport code, FLUKA , was discontinued by the
FLUKA team in 2010. The TVirtualMCApplication, and optionally two other VMC interfaces,
have to be implemented in the user application.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 022024 doi:10.1088/1742-6596/396/2/022024

Published under licence by IOP Publishing Ltd 1



Figure 1. The VMC concept. Figure 2. The VMC design.

VMC is now fully integrated with the ROOT geometry package, TGeo [12], and users can
easily define their VMC application with TGeo geometry and this way of geometry definition is
recommended for new users.

The Geant4 VMC package provides the implementation of the Virtual Monte Carlo for
Geant4. It is available from the ROOT site as well as from the ROOT SVN server.

The package releases follow the releases of Geant4 which often require a migration of the
user code. A new tag can be also triggered by new developments or a new ROOT version. In
general, the tagged Geant4 VMC version can be used with the ROOT version with which it
was tested and with higher ones, and the Geant4 version with which it was tested, including
its patches, but not with higher Geant4 versions. The patch versions include fixes applied to
the base versions and are usually maintained for the last two versions, and so for the last two
versions of Geant4 too.

3. Geant4 VMC: New Features and Developments
New developments in Geant4 VMC are mostly driven by the evolution of Geant4 on one side
and the requirements from users on the other side. They are presented in two subsections: non
physics developments and developments related to user physics selections. Several fixes in the
tool, thanks to user feedback, contributed to its robustness and future stability.

3.1. Non Physics Developments
The new class, TG4FieldParameters, is introduced to allow a user customization of the Geant4
magnetic field integrator and the precision parameters. It has been inspired by Geant4
extended/field examples. Its associated messenger class, TG4FieldParametersMessenger, defines
a set of Geant4 interactive commands which can be used directly from the user configuration
macro written in the ROOT framework. An example of how to use the new commands is
provided in the g4config.in macro in the VMC example E02. All available commands are also
documented on the Geant4 VMC Web site [6].

A new utility class, TG4ParticlesChecker, allows to compare particle properties defined in
ROOT and Geant4. This class was introduced when some discrepancies in ROOT particles
definitions were reported by users in order to be able to verify the consistency of particle
definitions in a general way. Its associated messenger class, TG4ParticlesCheckerMessenger,
defines a set of commands that can be used to select a particle, a particle property to be checked
and, the precision of the checked values.

In the standard VMC application a user action is called at each step. Typically a current
volume identifier is compared with a sensitive volume and, only if they match, the user action is
performed. A possibility for the user to select sensitive volumes in the initialization phase was
implemented on user request. In this case, the TVirtualMCApplication::Stepping() function is

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 022024 doi:10.1088/1742-6596/396/2/022024

2



called only when a track is located in a selected sensitive volume in a way similar to the native
Geant4 application. This feature can speed up a user application, especially when the accounting
of MC information happens in a small number of volumes in a rather complex geometry.

Among the other new features we would like to mention the implementation of new
TVirtualMC functions for drawing tracks from ROOT: SetCollectTracks(..), IsCollectTracks()
and a new, faster implementation of the TVirtualMC functions: VolId(..), VolName(..),
GetMediumID() which are intensively used in most VMC applications. Passing the random
number seed from the ROOT random number generator, TRandom, to the Geant4 random
number engine, CLHEP::HepRandom was also enabled in response to users requests.

3.2. Physics Selection
The physics list selection in Geant4 VMC has changed significantly since the CHEP 2007
paper [7]. The default Geant4 VMC physics list has been completely removed. Almost all
pre-defined physics lists were removed in the 2.4 version in December 2007. The remaining part,
dealing with optical physics processes could only be removed recently, in the version 2.13 from
December 2011, after having adopted the Geant4 VMC messenger class for a user customization
of optical physics in Geant4 9.5.

The selection of the physics list is done in a user configuration macro via a Geant4
reference physics list name. The existence of the selected physics list is then verified using
the G4PhysListFactory class and this class is also used for the physics list instantiation. In this
way Geant4 VMC does not need to maintain the information on the existing physics lists itself
and is more flexible with Geant4 updates. The mapping of Geant4 physics processes to the
VMC process codes (the enumeration named constants defined in VMC for each physics process
type) however, requires an update with each Geant4 release. In order to automate this process
a new test for processing all available Geant4 physics lists has been developed.

Besides the reference physics lists Geant4 provides several physics builders which can be added
to the physics setup defined in the reference physics list: G4ExtraPhysics, G4OpticalPhysics,
G4RadioactiveDecayPhysics, etc. These physics builders are handled in Geant4 VMC with the
new TG4ExtraPhysicsList class, allowing a user to select these physics builders via a string
option which is appended to the reference physics list name with a + character.

In addition to the Geant4 physics processes, Geant4 VMC introduces special processes and
maps which are used to support various VMC features: VMC cuts and process controls, step
limit per tracking medium, adding user particles to the stack during tracking, etc. These special
processes are constructed by their specific physics builders which are then handled all together
by the TG4SpecialPhysicsList class. Not all special processes are activated by default, some
have to be activated explicitly by the user via a string option in their configuration macro.

The Geant4 reference physics list, TG4ExtraPhysicsList and TG4SpecialPhysicsList are
combined in the final physics list class, TG4ComposedPhysicsList. The composition of this
class and the selection of the physics setup is demonstrated in Fig. 3.

There still remains a possibility to include personal user physics lists which are implemented
in the Geant4 framework. An example showing this option is provided in the VMC example
E03 in the Ex03RunConfiguration2 class.

Among the other new features we would like to mention the new TG4EmModelPhysics class
allowing a user selection of electromagnetic interaction energy loss and fluctuation models and
the new TG4CrossSectionManager class for inspecting hadronic cross sections. Light anti-
ions (anti-deuteron, anti-triton, anti-alpha, anti-He3) were included in the available particle
definitions on the request of ALICE and a test processing these particles was added in the VMC
example E03.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 022024 doi:10.1088/1742-6596/396/2/022024

3



Figure 3. The composition of
TG4ComposedPhysicsList and the selec-
tion of the physics setup.

4. Multi-threading Prototype
4.1. Geant4 VMC MT
The development of the Geant4 VMC Multi-Threading (MT) prototype started in the last
quarter of 2011. Naturally, the same approach as used in Geant4 MT [5] is adopted and the
main task of the migration to multi-threading processing was the replacement of all singleton
objects in Geant4 VMC with singletons per thread. The modifications, as described in the
Geant4MT User’s Guide, were then applied to the Geant4 VMC classes, mainly in geometry
and run categories. Special care was needed in the use of G4Allocator in TG4TrackInformation
which had to be declared thread local.

Changes were also required at the level of the VMC interfaces as both TVirtualMC and
TVirtualMCApplication are defined as singletons. A new function, TVirtualMC::InitMT(Int t
threadRank), was added in TVirtualMC for the initialization of MonteCarlo in the thread. These
changes have no consequence on single-threaded applications. They are available in the ROOT
5.34/00 release.

New classes for the multi-threading application management, G4ParRunManager and
G4ThreadManager, were developed according to Geant4 MT examples where this code is defined
in terms of external functions and variables. As they are not specific to Geant4 VMC, they are
now included directly in the Geant4 MT development branch and are just used from Geant4
VMC MT.

As opposed to a usual VMC application which is run from the ROOT main function, the
Geant4 VMC MT application starts from its own main function linked with all other package
libraries (ROOT, Geant4, etc.). This main function performs the instantiation of threads via
the included G4ParTop.icc utility. Both TGeant4 and UserMCApplication objects are then
instantiated per thread. The use of Geant4 VMC MT is demonstrated in the VMC example
E02 which defines an equivalent setup as ParN02 and ParN02Root in Geant4 MT. Its simulation
time on 4 core CPU scales with the number of threads in a way similar to ParN02 or ParN02Root
examples.

The modifications towards Geant4 VMC MT were quite straightforward and were applied in
a relatively short time. In one aspect, the code in Geant4 VMC was even simplified thanks to
the Geant4 logical volume identifiers, available in Geant4 MT only, and which can be reused
directly in Geant4 VMC .

The Geant4 VMC MT prototype is based on the Geant4 MT development branch as it uses
the classes added on the branch after the first Geant4 MT prototype release in October 2011
(based on Geant4 9.4.p01). It is available in the SVN development branch: geant4 vmc mt. The
first tagged version is foreseen after the public release of Geant4 MT based on Geant4 9.5.x.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 022024 doi:10.1088/1742-6596/396/2/022024

4



4.2. Geant4 (VMC) MT ROOT Output
Geant4 VMC operates always with the native ROOT output, that’s why the integration of
the ROOT output in the multi-threading version of Geant4 VMC was a primary condition for
developing this tool.

As Geant4 MT introduces parallelism per event, it is possible to separate the output per
thread without the need for merging outputs at the end of a simulation. The ROOT output can
then be introduced per thread: each thread opens and writes on its own ROOT file. There is
no need for a final merge since the files can be chained directly in the user analysis.

The ROOT output was first implemented and tested with Geant4 MT (without use of VMC).
The manager class for handling the ROOT output, analogous to Ex02RootManager used in the
VMC example E02, was added first to a Geant4 native example N02, and then extended for a
multi-threading case in ParN02. This extended ROOT manager class, RootManagerMT, and
the helper class RootMutex are now available in the new example ParN02Root in the Geant4
MT branch. The object of the ROOT TThread class type is instantiated at the beginning of
the program which makes it possible to release the lock on the ROOT output after the first
TTree::Fill() in all threads.

The design of classes for the ROOT output in Geant4 VMC MT is demonstrated in Fig. 4.
The TVirtualMCRootManager interface is implemented separately for single-threading and
multi-threading cases (TMCRootManager and TMCRootManagerMT) with use of the same
TMCRootManagerImpl helper class. TMCRootMutex allows additional locking of the ROOT
output from the user application when needed.

Figure 4. The design of classes for the
ROOT output in Geant4 VMC MT.

5. Performance Tests
The Geant4 extended example analysis/A01 was rewritten in VMC in order to evaluate the
overhead of the VMC layer compared to a native Geant4 application. This example reflects
the real applications in a better way than the existing VMC examples. It defines four sensitive
detector types (associated with six volumes) and a geometry including placements with rotations
and replicas.

The following modifications were applied to the original example setup in order to be able
to define it as a VMC application. The local magnetic field has been changed to a global field
with zero value outside the volume with the field, since local fields are not supported in VMC.
Then, the use of the G4PVParameterised volume in the example geometry has been changed to
the use of G4PVReplica, since parameterised volumes are not supported in the VGM tool [13]
used in Geant4 VMC for geometry conversions between ROOT and Geant4.

The following items briefly summarize the test setup:

• The VMC example was run with the native Geant4 geometry (using the geometry option
“geomGeant4”).

• FTFP BERT physics list with 1 mm range cuts was used in all tests.

• The same primary generator periodically changing particles between e+, µ+, π+, K+ and
proton with a fixed momentum was used in all tests.

• The Geant4 example was run with both local and global magnetic fields.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 022024 doi:10.1088/1742-6596/396/2/022024

5



• The VMC example was then run without saving data, with the storage of hits only, with
the storage of the particles stack only, and finally with the storage of both.

• The time taken for a run of 100 events with 100 primary particles each was measured.

The test was performed with Geant4 9.5.p01, ROOT 5.32.03 and the Geant4 VMC
development version (SVN trunk revision 607) on the Intel Core i7 processor with Fedora Core
14 and gcc 4.5.1.

Table 1. Performance test results.

Time[s] Time/ Time/
Ref. I Ref. II

G4 local field 97.93 0.81 0.70
G4 global field (Ref. I) 121.43 1.00 0.87
VMC (Ref. II) 139.04 1.15 1.00
VMC storing hits 141.24 1.16 1.02
VMC storing stack 178.37 1.47 1.28
VMC storing all 179.08 1.47 1.29

The measured times are summarized in table 1. The total time of one run in seconds is
presented in the first column, the relative value of this time with respect to the time of the
native Geant4 application with a global magnetic field (marked as Ref. I) in the second column
and the relative value of this time with respect to the time of the VMC application without
storing data (marked as Ref. II) in the third column.

The VMC example without storing data (Ref. II) and the Geant4 example with a global
magnetic field (Ref. I) define an equivalent experiment setup and so comparing times of these
tests can be used to evaluate the overhead of the VMC layer as compared to a native Geant4
application. In the example tested this overhead is around 15 %. Storing hits adds only 2 %
simulation time as the hits transient data representation is identical with their persistent data
representation (ROOT framework). However, when storing particles, where the transient data
representation (Geant4 framework) is different from their persistent one (ROOT framework),
an additional 28 % simulation time is observed. It should be noted that the example is using
the Ex03MCStack with no optimizations which stores all secondary particles. In the end, the
full VMC application is 47 % slower than the original Geant4 application, but the greater part
of this sluggishness is caused by the added file output (not present in the Geant4 version) and
not by the VMC interface itself.

6. Conclusions
Geant4 VMC has been in production for already ten years. In this paper we gave an overview
of new features of the tool, we have reported on the work concerning the integration with the
Geant4 multi-threading prototype and, evaluated a time overhead that the use of an additional
VMC layer adds to the simulation time of a native Geant4 application.

Acknowledgments
The author would like to acknowledge X. Dong from Northeastern University for his help with
the Geant4 MT prototype and P. Canal from Fermilab for his help with ROOT IO in a multi-
threading framework.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 022024 doi:10.1088/1742-6596/396/2/022024

6



References
[1] http://root.cern.ch/drupal/content/vmc
[2] Brun R et al 1985 GEANT3 User Guide (CERN Data Handling Division, DD/EE/84-1)
[3] Agostinelli S et al 2003 Nucl. Instrum, and Methods A506 250-303
[4] Fasso A et al 2001 Proc. of the MonteCarlo 2000 Conference (Lisbon, Springer Verlag Berlin) 159-164 and

955-960.
[5] http://geant4.web.cern.ch/geant4/support/download MT proto.shtml
[6] http://root.cern.ch/drupal/content/geant4-vmc
[7] Hřivnáčová I 2008 J. Phys: Conf. Series 119 032025
[8] Hřivnáčová I et al 2011 J. Phys: Conf. Series 331 032016
[9] Hřivnáčová I et al 2003 Proc. of Computing in High Energy and Nuclear Physics (La Jolla) pp THJT006
[10] Carminati et al 2004 Proc. of Computing in High Energy and Nuclear Physics (Interlaken) pp 433
[11] http://root.cern.ch
[12] Brun R, Gheata A and Gheata M 2003 Proc. of Computing in High Energy and Nuclear Physics (La Jolla)

pp THMT001
[13] Hřivnáčová I 2008 J. Phys: Conf. Series 119 042016

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 022024 doi:10.1088/1742-6596/396/2/022024

7




