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Abstract In the context of a simple five-dimensional (5D)
model with bulk matter coupled to a brane-localized Higgs
boson, we point out a non-commutativity in the 4D calcu-
lation of the mass spectrum for excited fermion towers: the
obtained expression depends on the choice in ordering the
limits, N → ∞ (infinite Kaluza–Klein tower) and ε → 0
(ε being the parameter introduced for regularizing the Higgs
Dirac peak). This introduces the question of which one is the
correct order; we then show that the two possible orders of
regularization (called I and II) are experimentally equivalent,
as both can typically reproduce the measured observables,
but that the one with less degrees of freedom (I) could be
uniquely excluded by future experimental constraints. This
conclusion is based on the exact matching between the 4D
and 5D analytical calculations of the mass spectrum – via
regularizations of type I and II. Beyond a deeper insight
into the Higgs peak regularizations, this matching brings
another confirmation of the validity of the 5D mixed for-
malism. All the conclusions, deduced from regularizing the
Higgs peak through a brane shift or a smoothed square pro-
file, are expected to remain similar in realistic models with
a warped extra-dimension. The complementary result of the
study is that the non-commutativity disappears, both in the
4D and the 5D calculations, in the presence of higher order
derivative operators. For clarity, the 4D and 5D analytical
calculations, matching with each other, are presented in the
first part of the paper, while the second part is devoted to the
interpretation of the results.

1 Introduction

The recent and historical discovery of a Higgs-like boson [1–
3] around 125 GeV at the Large Hadron Collider (LHC) [4,5]

a e-mail: roberto.barcelo@th.u-psud.fr
b e-mail: subhadip.mitra@th.u-psud.fr
c e-mails: moreau@th.u-psud.fr; gregory.moreau@th.u-psud.fr

of the CERN presents the last missing piece of the particle
content of the Standard Model (SM). However, even with the
discovery of the Brout–Englert–Higgs scalar field [6–10], the
mechanism responsible for breaking the electroweak (EW)
symmetry is not fully understood; there remain some ques-
tions unresolved like, for example, determining the range of
validity of the SM. If the SM is valid all the way up to the
Planck scale then one can wonder why the EW energy scale
(close to the Higgs mass) is so much smaller than the Planck
scale. The famous Randall–Sundrum (RS) proposition of an
higher-dimensional background with the Higgs boson local-
ized on a TeV or infra-red (IR) brane [11], besides address-
ing the gauge hierarchy problem of Higgs mass corrections,
provides an aesthetic interpretation of this apparent discrep-
ancy between fundamental scales of nature: the measured
Planck scale would be an effective four-dimensional (4D)
scale whereas the gravity scale on the TeV-brane would be
reduced by a warp factor down to the EW scale order (the 5D
gravity scale in the bulk being still of the order of the Planck
scale). The later RS version with SM fields propagating in the
bulk [12] even allows one to explain the strong hierarchies
among fermion masses.

At this special moment where the LHC is scrutinizing the
Higgs boson properties [13–28] and exploring higher energy
frontiers, it is crucial for the community to have a deep theo-
retical understanding of the RS paradigm, in order to develop
careful phenomenological tests of such a scenario. These
tests of the RS model can make use of the more and more
precise experimental measurements in the Higgs sector [29–
32] or of possible direct signatures from Kaluza–Klein
(KK) excitations at colliders [33–48] (see Ref. [49] for a
review).

Now, from the theoretical point of view, it turns out that
recently there has been a debate in the literature on RS frame-
works [50,51]. A non-commutativity has appeared: different
results were obtained for Higgs production/decay processes
when taking ε → 0 and then NKK → ∞ [52] or the oppo-
site order [53]. NKK is the number of exchanged excited
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states at the level of the loop amplitude. ε is the infinitesimal
parameter introduced to regularize the Dirac peak along the
extra-dimension associated to the Higgs scalar stuck on the
IR-brane; indeed, this Higgs peak induces the so-called jump
problem, for the wave functions of the fermion bulk fields,
which must be regularized. It was clearly crucial for testing
the Higgs sector of the RS model at LHC to shed light on
those theoretical subtleties.

In this paper, we show that there exists another type of
non-commutativity in a 4D calculation (based on consider-
ing gradually KK tower effects): the fermion mass spectrum
expression relies on the arbitrary choice in ordering the lim-
its ε → 0 and N → ∞, where N is now the KK-index at
the level of the calculation of mass eigenvalues. We point out
this non-commutativity in a toy model with a brane-localized
Higgs boson and fermionic matter propagating along a flat
extra-dimension, but our main conclusions are expected to
remain true in more realistic warped extra-dimension sce-
narios.

So once more, it is urgent to really understand this new
non-commutativity and to determine which order of the lim-
its on ε, N has to be followed to construct a consistent model
before studying its phenomenology. For that purpose, we per-
form calculations of the fermion mass spectrum, in both the
4D and the 5D (based on equations of motion with Yukawa
terms) approaches, applying consecutively the two possible
orders – assimilated to two kinds of Higgs regularization – for
the above mentioned limits on ε, N . Those calculations allow
effectively a better insight into the Higgs peak regularization
features.

This 4D calculation of the mass spectrum reveals itself to
be quite ‘heavy’, due to the rich texture of the infinite fermion
mass matrices, but it has the further interest to demonstrate
analytically the exact matchings with the 5D calculation
results. Obtaining these 4D/5D matching results represents
an opportunity to confirm again the 5D formalism for KK
mixings often used.

Let us specify that in order to provide various illustrations
of our calculations within the above two types of regulariza-
tions, we regularize the Higgs delta peak by shifting it away
from the boundary as well as smoothing it into a square pro-
file – which constitutes an equivalent alternative.

Last but not least, we show that the non-commutativity
disappears in scenarios where the high-energy (ultra-violet,
UV) completion of the model leads to higher order operators
with derivatives and localized at the Higgs brane.

The paper is organized accordingly to the following sim-
ple plan. While Sect. 2 is devoted to the 5D approach of
the fermion mass spectrum, Sect. 3 is focused on the 4D
treatment and the two calculations are compared in the syn-
thesis made in Sect. 4. We summarize and conclude in
Sect. 5.

2 5D calculations

2.1 The model

We consider a toy model with an extra spatial dimension hav-
ing a flat geometry and being parametrized by the coordinate,
y. This extra-dimension constitutes an interval of length πR
with two boundaries at y = 0, πR. The Higgs boson of the
SM, embedded in a doublet under the SU (2)L gauge group,
is strictly localized on the brane at y = πR while some
fermionic matter is spread out in the bulk. For illustration, let
us consider the first quark generation1; the down-quark fields
denoted by Q and D are respectively a doublet component
and a singlet under SU (2)L , as in the SM. The dynamics for
the up-quark sector fields, Q̃ and U , is dictated by an identi-
cal Lagrangian and thus we will not repeat such an analogous
analysis throughout the paper. For our task, it is sufficient to
concentrate on the kinetic terms for the down-quarks as well
as their Yukawa interactions, whose fundamental 5D action
can be written as usual (after the EW symmetry breaking),

Sfermion =
∫

d4x dy

[
i

2
(Q̄�M∂MQ − ∂M Q̄�MQ

+{Q ↔ D}) + δ(y − πR) (Y5 Q̄L HDR

+Y ′
5 Q̄RHDL + H.c.)

]
, (1)

where the index is M = 0, 1, 2, 3, 5 and the Higgs field is
developed into the 4D scalar plus its vacuum expectation
value as H = v+h(x)√

2
, x representing the usual four coor-

dinates. It should be remarked that the coupling constants
Y5 and Y ′

5 are independent; in order to avoid the introduc-
tion of a new scale in the theory, one can choose Y5 = yR
and Y ′

5 = y′R, where y, y′ are dimensionless coupling con-
stants of O(1). In our notations, the 5D Dirac spinor, being
the smallest irreducible representation of the Lorentz group,
reads

Q =
(
QL

QR

)
and D =

(
DL

DR

)
, (2)

in terms of the two two-component spinors, for the two down-
quark fields.

2.2 The KK decomposition and equations of motion

In this Sect. 2, we derive the fermion masses using the so-
called exact or 5D approach. In this approach, one keeps the
Yukawa mass terms that appear after EW symmetry breaking
in the equations of motion for the fermion profiles along the

1 The third family of heavy SM quarks is generally expected to feel the
largest mixings with KK modes, but our formalism is directly extendable
to any quark generation as well as to leptons.
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extra-dimension [we will simply refer to those as equations
of motion (EOM)]. The advantage of this approach is that
the mixing among all KK modes for any fermion is auto-
matically taken care of when solving the EOM. Hence this
method for deriving the masses is called a 5D calculation as
it incorporates the full effect of the 5D theory in the EOM.

The first step is to perform a ‘mixed’ KK decomposition
of the 5D fields in Eq. (2),

QL =
∞∑
n=0

qnL(y) Qn
L(x), (3a)

QR =
∞∑
n=0

qnR(y) Dn
R(x), (3b)

DL =
∞∑
n=0

dnL(y) Qn
L(x), (3c)

DR =
∞∑
n=0

dnR(y) Dn
R(x), (3d)

where Qn
L(x), Dn

R(x) are the 4D fields and qnL ,R(y), dnL ,R(y)
are the corresponding wave functions along the extra-
dimension. Although not essential for our calculations, we
note for completeness that with this KK decomposition, the
profiles satisfy the following normalization condition:
∫ πR

0
dy[|qX (y)|2 + |dX (y)|2] = 1; with X = L , R.

Through a factorization of the 4D fields, the mixed KK
decomposition allows one to separate the Euler–Lagrange
equations for the 5D fields into the 4D Dirac equations
(μ = 0, 1, 2, 3),

− i σ̄ μ∂μQ
n
L(x) + m Dn

R(x) = 0, (4)

−iσμ∂μD
n
R(x) + m Qn

L(x) = 0, (5)

and the equations of motion for any excited fermion profile
after EW symmetry breaking,

− m qL − q ′
R + δ(y − πR)

vY5√
2
dR = 0, (6a)

− m qR + q ′
L + δ(y − πR)

vY ′
5√
2
dL = 0, (6b)

− m dL − d ′
R + δ(y − πR)

vY ′
5√
2
qR = 0, (6c)

− m dR + d ′
L + δ(y − πR)

vY5√
2
qL = 0, (6d)

where the ‘ ′ ’ exponent after any wave function denotes the
derivative with respect to the fifth coordinate, y. We have
assumed real Yukawa coupling constants and m masses for
simplicity, but this kind of analysis is generalizable to cases
with complex phases.

The variation of the action combined with the above EOM
on the boundaries give rise either to the Dirichlet Boundary
Conditions (BC) on both boundaries (i.e. vanishing profiles
at the two endpoints), denoted (−−) and to be assigned
to qR and dL , or to the Neumann BC (vanishing deriva-
tives), denoted (++) and assigned to qL and dR . Now, due
to the δ(y − πR)-term in Eq. (6a), its infinitesimal integra-
tion around y = πR leads to two distinct values of qR at
that point, which together with the unique qR (−−) BC ren-
ders the value of this profile at y = πR ambiguous: this
is the ‘jump’ problem [54], first described on an interval in
Ref. [55], which also arises of course for the dL profile in
Eq. (6d).

To avoid this ambiguity one has to regularize the Higgs
peak [55]: this can be done via shifting the Dirac peak away
from the boundary by a small (εR) amount, or via smoothing
the peak by giving it a narrow width (like a normalized square
function of width εR). Then one imposes the (−−) BCs and
solves the EOM (involving ε) to find the fermion masses,
before finally taking the limit, ε → 0, in order to recover
the wanted brane-localized Higgs situation. We are going to
realize explicitly those two schemes of ε-regularization in
the next two subsections.

2.3 Moving the Higgs peak

If one shifts the Higgs peak by a distance εR away from the
πR-boundary,

δ (y − πR) → δ (y − (π − ε)R) , (7)

then profile jumps move from the boundary to the bulk. The
EOM that one needs to solve become,

− m qL − q ′
R + δ (y − (π − ε)R)

vY5√
2
dR = 0, (8a)

− m qR + q ′
L + δ (y − (π − ε)R)

vY ′
5√
2
dL = 0, (8b)

− m dL − d ′
R + δ (y − (π − ε)R)

vY ′
5√
2
qR = 0, (8c)

− m dR + d ′
L + δ (y − (π − ε)R)

vY5√
2
qL = 0. (8d)

Solving this set of equations is not very complicated since,
for 0 ≤ y < (π − ε)R and (π − ε)R < y ≤ πR, the above
equations become identical to the free equations, i.e. EOM
without the Yukawa terms. For the qR , dL solutions satisfying
the (−−) BC and the qL , dR solutions with (++) BC, at
y = 0 (BCs still induced by the action variation combined
with the new EOM (8a)–(8d) on the boundaries), we get the
following physical profiles:

qL(y) = C cos(my), qR(y) = −C sin(my),

dR(y) = C cos(my), dL(y) = C sin(my),
(9)
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which are valid for 0 ≤ y < (π − ε)R. C denotes the nor-
malization factor. For (π − ε)R < y ≤ πR, we obtain the
following general EOM solutions:

q̂L(y) = B1 cos(my) + B2 sin(my),

q̂R(y) = B2 cos(my) − B1 sin(my),

d̂L(y) = B3 cos(my) + B4 sin(my),

d̂R(y) = B4 cos(my) − B3 sin(my),

(10)

where the Bi are arbitrary constants that are fixed by the
normalizations. From Eqs. (8a)–(8d), we see that the amount
of jump that a field undergoes is proportional to the value of
some other profile exactly at y = (π−ε)R. Hence to connect
the two sets of solutions in Eqs. (9) and (10), one needs to
assign some values for these profiles at the jump point. We
use the following convention for a generic profile:

f ((π − ε)R) = 1

1 + c
[ f ((π − ε)R) + c f̂ ((π − ε)R)],

(11)

i.e. we take the weighted average of the limiting values of
the function approaching from both sides, which, for c = 1,
translates into the normal averaging. The continuity condi-
tions read then

qR ((π − ε)R) − q̂R ((π − ε)R)

= −vY5√
2(1 + c)

[dR ((π − ε)R) + c d̂R ((π − ε)R)], (12a)

qL ((π − ε)R) − q̂L ((π − ε)R)

= vY ′
5√

2(1 + c)
[dL ((π − ε)R) + c d̂L ((π − ε)R)], (12b)

dR ((π − ε)R) − d̂R ((π − ε)R)

= −vY ′
5√

2(1 + c)
[qR ((π − ε)R) + c q̂R ((π − ε)R)], (12c)

dL ((π − ε)R) − d̂L ((π − ε)R)

= vY5√
2(1 + c)

[qL ((π − ε)R) + c q̂L ((π − ε)R)]. (12d)

Injecting Eqs. (9)–(10) in these four relations gives us the
following constant expressions:

B1 = B4

= C[(1+c)2(X+X ′) sin (2(π − ε)mR) − 2((1+c)2+cX X ′)]
2[c2XX ′ − (1+c2)] ,

(13)
B3 = −B2

= C(1 + c)2[X − X ′ + (X + X ′) cos (2(π − ε)mR)]
2[c2XX ′ − (1 + c2)] , (14)

where X = vY5/
√

2 and X ′ = vY ′
5/

√
2. One can now apply

the BC for the (−−) modes on the y = πR brane,

q̂R(πR) = d̂L(πR) = 0. (15)

For small ε → 0, this requires

tan (πR m) =
√

2(1 + c)2vY5

2(1 + c)2 + cv2Y5Y ′
5
, (16)

which for c = 1 becomes

tan (πR m) = 4
√

2vY5

8 + v2Y5Y ′
5
. (17)

This relation gives directly the solutions for the fermion mass
spectrum.

It is possible to choose another order of calculation.
Indeed, one can first derive the BC for the four profiles at
y = 0, πR and thus take into account their effects on the
EOM terms in Eqs. 6a–6d. At this level, we can first show
(as we do in Appendix A) that the usual (−−) and (++) BC
exist in the case where the EOM (6a)–(6d), containing bound-
ary terms, hold. Now the (−−) BC assigned to the dL , qR
wave functions have the effect of eliminating the δ(y − πR)

terms in Eqs. 6b–6c.
Then the rest of the procedure to find the mass spectrum is

identical to the previous order of calculation, except of course
that the terms involving the Y ′

5 coupling constant are absent.
At the next step, one introduces a regularizing ε-shift in the
EOM (6a)–(6d) (without Y ′

5 terms). As above, integrating the
obtained EOM leads to conditions at y = (π − ε)R which
connect the d, q profiles defined in the interval, [0, (π−ε)R],
with the d̂, q̂ profiles on, [(π − ε)R, πR]. These are now
conditions of continuity for the dR , qL profiles across y =
(π − ε)R,

qR ((π − ε)R) − q̂R ((π − ε)R) = −vY5√
2

dR ((π − ε)R) ,

(18a)

qL ((π − ε)R) − q̂L ((π − ε)R) = 0, (18b)

dR ((π − ε)R) − d̂R ((π − ε)R) = 0, (18c)

dL ((π − ε)R) − d̂L ((π − ε)R) = vY5√
2
qL ((π − ε)R) ,

(18d)

due to the absence of Y ′
5 terms on the right-hand side of

Eqs. 18b–18c. The consequence is that these profiles are well
defined at y = (π − ε)R, where dR = d̂R , qL = q̂L , which
fixes uniquely the amounts of discontinuity in Eqs. (18a)
and 18d; there is thus no need to choose any c-prescription
like in Eq. (12). One continues to follow the same steps of
calculation as in the previous procedure, with the same BC
as well. Replacing the dL , qR (dR , qL ) profiles in Eqs. 18a–
18d with their expressions dictated by the free EOM and the
Dirichlet (Neumann) BC at y = 0, as well as d̂L ,R , q̂L ,R with
the general expressions for free profiles, gives rise to a system
whose solutions for the constants once injected in the BC,
q̂R(πR) = d̂L(πR) = 0, lead to the fermion mass spectrum,

123



Eur. Phys. J. C (2015) 75 :527 Page 5 of 19 527

tan(πR m) = vY5√
2

, (19)

in the ε → 0 limit. It turns out that this mass result can be
obtained from Eq. (16) by setting Y ′

5 = 0, in which case
indeed the c-dependence disappears.

2.4 Smoothing the Higgs peak

We can alternatively replace the Higgs Dirac peak at the
boundary by a normalized square function, of width εR and
height 1/εR, so that the Dirac peak is recovered in the limit,
ε → 0. With this smooth profile, one gets the following
EOM:

− m qL − q ′
R + �(y − (π − ε)R)

εR

vY5√
2
dR = 0, (20a)

− m qR + q ′
L + �(y − (π − ε)R)

εR

vY ′
5√
2
dL = 0, (20b)

− m dL − d ′
R + �(y − (π − ε)R)

εR

vY ′
5√
2
qR = 0, (20c)

− m dR + d ′
L + �(y − (π − ε)R)

εR

vY5√
2
qL = 0, (20d)

where �(y) = 1 for y ≥ 0 and zero otherwise. In the range
0 ≤ y < (π − ε)R, these equations correspond to the free
EOM and have the same solutions as in Eq. (9) if we impose
once more the (−−) and (++) BCs at y = 0. Assuming
Y5 = Y ′

5 for simplicity, the following generic ansatz solves
the EOM (20a)–(20d) in the range (π − ε)R ≤ y ≤ πR:

f̂ X (y) = A fX exp

⎛
⎝
√

v2Y 2
5 − 2m2ε2R2

2ε2R2 y

⎞
⎠

+B fX exp

⎛
⎝−
√

v2Y 2
5 − 2m2ε2R2

2ε2R2 y

⎞
⎠ , (21)

fX standing for any profile and A fX , B fX being normaliza-
tion constants. Demanding that all the profiles are continuous
across y = (π − ε) R and setting q̂R(πR) = d̂L(πR) = 0
(BC for the (−−) modes) gives us the following condition
on the mass:

tan (πR m)=
√

vY5 − √
2mεR

vY5+√
2mεR

tanh

⎛
⎝
√

v2Y 2
5 − 2m2ε2R2

2

⎞
⎠ .

(22)

In the limit ε → 0 this simplifies to

tan (πR m) = tanh

⎛
⎝
√

v2Y 2
5

2

⎞
⎠ . (23)

As in the case of the shifted delta function, if one first
imposes instead the BC for the (−−) modes, qR(πR) =
dL(πR) = 0, the Yukawa terms in Eqs. 6b–6c are elimi-
nated. Then solving the EOM (20a)–(20d) with an εR-square
function but without those two Yukawa terms, one recovers,
through the same steps of calculation, the simple mass spec-
trum of Eq. 19.

3 4D calculations

3.1 The KK decomposition and mass matrices

In this Sect. 3, considering the same model as the one defined
by the Lagrangian (1), we calculate the fermion masses in the
maybe more intuitive approach referred to as the perturbative
or 4D calculation. To obtain the fermion profiles, here, one
considers the free EOM, i.e. the equations without Yukawa
mass terms. As a result, unlike the 5D point of view addressed
in the previous Sect. 2, one needs to diagonalize the fermion
mass matrices to include the whole KK mass mixing effect.
The 4D approach denomination relies on the fact that one
starts from a 4D model without KK modes and the entire
KK tower is taken into account gradually, through the limit
N → ∞. It is also called a perturbative approach in the sense
that the Yukawa interaction is incorporated via infinite series
terms.

Now, these infinite numbers of KK excitations lead to
infinite-dimensional mass matrices whose exact diagonal-
ization can represent a challenging task. However, in cer-
tain cases it is possible analytically as we shall illustrate
in Sect. 3. The aim being to compare the fermion masses
obtained by diagonalizing the complete mass matrix with
the ones obtained from the previous 5D approach.

We start by decomposing the 5D fields in KK towers like,

QL =
∞∑
n=0

qnL(y) Qn
L(x), (24a)

QR =
∞∑
n=0

qnR(y) Qn
R(x), (24b)

DL =
∞∑
n=0

dnL(y) Dn
L(x), (24c)

DR =
∞∑
n=0

dnR(y) Dn
R(x), (24d)

which gives rise to the following KK mass terms in the 4D
effective Lagrangian:

LKK = −
∞∑
n=0

[Mqn Q̄
n
L(x)Qn

R(x)

+Mdn D̄
n
L(x)Dn

R(x)] + H.c.
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where

Mqn = Mdn = n

R
. (25)

The complete quark mass matrix in the 4D effective picture,
after EW symmetry breaking, reads

Lmass = −	̄L · [M] · 	R + H.c.

and can be expressed, in the ‘combined’ basis for the left-
and right-handed fields,

	 t
L = (Q0

L , D0
L , Q1

L , D1
L , Q2

L , D2
L , . . .),

	 t
R = (Q0

R, D0
R, Q1

R, D1
R, Q2

R, D2
R, . . .), (26)

by the following infinite matrix:

[M] ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mq0 α00 0 α01 0 α02 · · ·
β00 Md0 β01 0 β02 0 · · ·
0 α10 Mq1 α11 0 α12 · · ·

β10 0 β11 Md1 β12 0 · · ·
0 α20 0 α21 Mq2 α22 · · ·

β20 0 β21 0 β22 Md2 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(27)

with

αi j = Y5

∫ πR

0
dy δ(y − πR)

v√
2
qiL(y) d j

R(y), (28)

βi j = Y ′
5

∫ πR

0
dy δ(y − πR)

v√
2
diL(y) q j

R(y). (29)

To try to match the different regularizations performed
in the 5D approach of Sect. 2, we will treat similarly the
Higgs peak – by either moving or smoothing it – in the 4D
calculations of next two subsections.

3.2 Moving the Higgs peak

The fields (26) undergo the unitary transformation matrices
to the physical basis and the squared modulus of the quark
masses, |m|2, are the eigenvalues, noted λ, of the infinite-
dimensional matrix, [M†M]. For a general Higgs profile, we
present in Appendix B one of the main results of the paper: the
characteristic equation (CE), for the infinite [M†M] matrix,
whose solutions are the eigenvalues, λ = |m|2. From the
obtained expression of the CE terms shown there, a logical
structure in series emerges for such a general case. The CE
contains infinite series of various types which can be written
using the generic structures, An and Bn , involving, respec-
tively, αi j and βi j .

Let us now focus on the case of a Higgs peak infinitesi-
mally shifted at some point, y = (π − ε)R, along the extra-

dimension as in Eq. (7). Then the CE takes a much simpler
form since the functions, αi j and βi j , are factorizable in i and
j ,

αi j = vY5√
2
qiL((π − ε)R) × d j

R((π − ε)R), (30)

β j i = vY ′
5√
2
qiR((π − ε)R) × d j

L((π − ε)R), (31)

so that accordingly to Eq. (B.3)

An>1 = Bn>1 = 0, (32)

due to the anti-symmetric constructions of An and Bn . As a
result the generic CE of Eq. (B.1) simplifies to

1 +
∑
q1;d1

(−λ)
(αq1d1)

2 + (βd1q1)
2

(M2
q1

− λ)(M2
d1

− λ)

+
∑

q1,q2;d1,d2

(−λ)2 (αq1d1)
2(βd2q2 )

2

(M2
q1

− λ)(M2
d1

− λ)(M2
q2

− λ)(M2
d2

− λ)

×
(

1 − δq1q2

M2
q2

λ

)(
1 − δd1d2

M2
d2

λ

)

−
∑
Q1;D1

2 MQ1 MD1

αQ1D1βD1Q1

(M2
Q1

− λ)(M2
D1

− λ)

+
∑

Q1<Q2:d1,d2

2(−λ)MQ1 MQ2

(M2
Q1

− λ)(M2
Q2

− λ)

×αQ1d1αQ2d1βd2Q1βd2Q2

(M2
d1

− λ)(M2
d2

− λ)
×
(

1 − δd1d2

M2
d2

λ

)

+
∑

q1,q2:D1<D2

2(−λ)MD1 MD2

(M2
D1

− λ)(M2
D2

− λ)
× αq1D1αq1D2βD1q2βD2q2

(M2
q1

− λ)(M2
q2

− λ)

×
(

1 − δq1q2

M2
q2

λ

)

+
∑

Q1<Q2;D1<D2

2

⎛
⎝∏

i=1,2

MQi MDi

(M2
Qi

− λ)(M2
Di

− λ)

⎞
⎠

×(αQ1D1αQ2D2 × βD1Q1βD2Q2

+αQ1D2αQ2D1 × βD2Q1βD1Q2 ) = 0. (33)

Here and elsewhere, unless specified otherwise, a sum over
any index is assumed to be running from 0 to ∞; in the above
relation, the KK masses obey e.g., Mq1 = q1/R where q1 is
a running integer (slightly different writing from Eq. (25)
to ease notations). We stress that to derive Eq. (33), no
approximation has been made, or in other words this equa-
tion exhibits the complete CE in this case. Choosing the (−−)

and (++) BCs (from the action variation and free EOM on
boundaries) for the quark profiles, to end up with a chiral
theory, we get the following normalized solutions of the free
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EOM2:

qnL(y) = dnR(y) =
√

2

πR
cos
(ny
R

)
,

−qnR(y) = dnL(y) =
√

2

πR
sin
(ny
R

)
for n > 0

q0
L(y) = d0

R(y) =
√

1

πR
,

−q0
R(y) = d0

L(y) = 0 for n = 0. (34)

With these solutions, the αi j and β j i functions of Eqs. (30)–
(31) become

αi j =
√

2vY5

πR
cos(i(π − ε)) cos( j (π − ε)), α00 = vY5√

2πR
,

(35)

β j i = −√
2vY ′

5

πR
sin(i(π − ε)) sin( j (π − ε)),

β j0 = β0i = β00 = 0. (36)

We are now in possession of all the necessary tools to sim-
plify and solve the CE (33) in terms of the mass. Computing
analytically all the involved infinite sums (over KK modes),
we find the following compact form for the CE, in the final
limit ε → 0:

1 + 1

4
v2Y5Y

′
5 + 1

64
v4(Y5Y

′
5)

2 = v2Y 2
5

2
cot2 (πR

√
λ), (37)

or tan2(πR
√

|m|2) =
(

4
√

2vY5

8 + v2Y5Y ′
5

)2

. (38)

Let us add a few comments, for the reader, about the methods
used to derive that result. The term on the right-hand side of
Eq. 37 comes from (++) mode contributions only, in the
sense that it follows from the series of Eq. (33) (second term
of the whole expression):

∑
q1;d1

(−λ)
(αq1d1)

2

(M2
q1

− λ)(M2
d1

− λ)
, (39)

if one invokes the following identity:

∞∑
n=0

1

n2 − x2 = − 1

2x2 [1 + (πx) cot (πx)],

where x is some function of R and λ. All the other terms of
Eq. (33), except the fifth one (last term of the second line)
and the last one (two last lines), do not give contributions
in the limit ε → 0. The non-vanishing terms of Eq. (33)

2 Although we have kept β0 j , βi0 in the matrix (27) to make its (αi j ↔
β j i ) symmetric texture explicit, we note that β0 j = βi0 = 0 since the
zero-modes q0

R(y) = d0
L (y) = 0.

can be re-expressed as combinations of the (Hurwitz) Lerch
transcendent,3


(eiε, 1, x) =
∞∑
n=0

einε

n + x

= −γ − ψ (x) − log(−iε) + O(ε),

where γ is the Euler–Mascheroni constant and ψ (x) =
�′(x)/�(x) is the so-called digamma function (logarithmic
derivative of the gamma function).

At this stage, we insist on the fact that in order to obtain
Eq. (38) we have first written the CE of the mass matrix in
Eq. (33) and calculated its KK summations up to N → ∞,
before imposing the limit ε → 0 on the obtained CE – as a
last step. If, however, it is realized in the opposite order, i.e.
first applying ε → 0 on the mass matrix (27) (so that the
matrix elements βi j → 0 since qnR(πR) = dnL(πR) = 0),
before writing the matrix CE and working out its infinite KK
sums or in other words taking its limit for N → ∞ (without
βi j series anymore), one would obtain

tan2(πR
√

|m|2) =
(

vY5√
2

)2

, (40)

instead of Eq. (38). Equation (40) originates solely from the
series in Eq. (39). As already observed in the 5D approach,
one would obtain the same result as in Eq. (40) by setting
Y ′

5 = 0 in Eq. (38); this is logical since the βi j are propor-
tional to Y ′

5.

3.3 Smoothing the Higgs peak

Alternatively, the Higgs Dirac peak at the boundary can be
replaced by a normalized square function, of width εR, as in
Eqs. (20a)–(20d). Then, using the profiles from Eq. (34), we
see that, for i, j > 0,

αi j = vY5√
2εR

∫ πR

(π−ε)R
dy qiL(y) d j

R(y)

= −vY5√
2εR

(
sin[(i+ j)(π−ε)]

i + j
+ sin[(i − j)(π − ε)]

i − j

)
,

β j i = vY ′
5√

2εR

∫ πR

(π−ε)R
dy d j

L(y) qiR(y)

= −vY ′
5√

2εR

(
sin[(i+ j)(π − ε)]

i+ j
− sin[(i− j)(π−ε)]

i− j

)
,

which means that the functions αi j and β j i are no longer fac-
torizable in i, j – so that the simplification relation (B.3) does
not hold anymore. As a result, the CE of Eqs. (B.1)–(B.7), for
the infinite [M†M] matrix, contains multiple infinite series
which render difficult its simplification. Now in the absence

3 Due to cancellations among different terms, Eq. 37 does depend ulti-
mately neither on γ nor on log(−iε).
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Table 1 Quark mass spectrum for a shifted Higgs peak

Table 1 (shifted Higgs) Regularization I Regularization II

tan (πR m) =
vY5√

2
tan (πR m) =

√
2(1 + c)2vY5

2(1 + c)2 + cv2Y5Y5

5D calculation
no δ-terms for (−−)-profiles δ-terms for (−−)-profiles

(−−) BC at πR, EOM with EOM with , (−−) BC at πR

tan2(πR |m|2) =
vY5√

2

2

tan2(πR |m|2) =
vY5/

√
2

1 + v2Y5Y5/8

2

4D calculation
no (−− elôrelfiorp-) (−−)-profile effect

→ 0 , N → ∞ N → ∞ → 0

of a compact form, like the one in Eq. (33), it is tricky to
solve the CE and work out the exact squared mass eigenval-
ues, λ = |m|2.

4 Interpretation of the analytical results

4.1 A non-commutativity in the 4D approach

After having presented our analytical results, we now dis-
cuss their impacts, one by one. First, we have found that the
4D calculation gives rise to different fermion mass spectrum
definitions in the two orderings of the calculation: first taking
the limit ε → 0 (Higgs localization) in the mass matrix (27)
before writing the CE and applying the limit N → ∞ (here
N refers generically to the various indices used in previous
section for the KK summations), leads to the CE (40),4 while
the inverse order of taking N → ∞ in the CE and ε → 0 in
a second step, results in Eq. (38) – in the case of an Higgs
profile regularized by a shifted Dirac peak where the CE can
be derived analytically from the 4D point of view (dealing
with infinite mass matrices). In the former order, the fermion
(−−) wave functions play absolutely no rôle in the calcula-
tion since the βi j off-diagonal terms of the matrix (27) vanish
at the first step (ε → 0 limit). In contrast, the infinite KK sum
over these vanishing terms gives rise non-trivially to an addi-

4 In a preliminary work [56] on the RS framework, an approximated
mass spectrum was obtained in this ordering (ε → 0, N → ∞) through
an expansion in powers of v2/M2

KK.

tional contribution in Eq. (38) which is proportional to the
Y ′

5 coupling (entering the βi j ). All this is summarized in the
4D line of Table 1.

This non-commutativity will be confirmed in Sect. 4.2 in
the following sense: we will see that these two 4D calculation
orderings correspond to two different 5D calculations.

In the context with bulk fermions coupled to a brane
Higgs, the non-commutativity pointed out here – the dif-
ference between the two orderings of the limits ε → 0 and
N → ∞ – differs from the non-commutativity discussed
in the literature [50,51] (in the RS framework)5: the latter
one concerns the different results obtained from taking first
ε → 0 and then NKK → ∞ as in Ref. [52], or the oppo-
site order as in Ref. [53]. Here, NKK denotes the number of
exchanged excited modes included at the level of the one-
loop amplitude, when calculating the gluon–gluon fusion
mechanism or the Higgs decay rate into two photons (the
loop momentum integration is performed at the really first
step).

While the 4D order ε → 0, NKK → ∞ matches the 5D
calculation (avoiding the very notion of KK state) with a
Higgs strictly stuck on the TeV-brane (where the (−−) KK
modes vanish) [50], the opposite 4D order – with the brane-
limit taken only at last – renders the Higgs sensitive to (−−)

KK states and thus corresponds to the 5D approach with
a narrow bulk-Higgs field localized toward the brane [50]
(unsuppressed ‘resonance contribution’ from high-mass KK

5 See also Refs. [57–59].
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states which can resolve the Higgs wave function [60]). It
was also found in Ref. [50] that the limit ε → 0, for the
Higgs profile regulator, can be taken either before or after
performing loop integrations.

The question6 about the non-commutativity of ε → 0
and NKK → ∞ has a formal interest and was discussed for
technical reasons since one has to impose anyway a � cut-
off at the end of the day, due to the non-renormalizability
of higher-dimensional theories (or their induced low grav-
ity scale), so that NKK is bounded from above. It was found
in Refs. [50,51] that once the loop calculation is performed
in a realistic context with a consistent UV regulator such as
dimensional regularization (or with a hard UV momentum
cut-off on the 4D loop integral), the non-commutativity ambi-
guity disappears. The present non-commutativity of ε → 0
and N → ∞ raises a new question, because the � cut-off
must not be applied on N (see Sect. 4.4). This physical ques-
tion about the interpretation of the non-commutativity will
be addressed in Sect. 4.3.

4.2 Matching the 4D and 5D approaches

In the 5D approach, there are also two possible ways for
calculating the fermion mass spectrum, as described in Sect. 2
and summarized in the 5D line of Table 1.

In one way, the BC at πR is imposed for the (−−) pro-
files in a first stage so that the two terms in Eqs. (6b)–(6c)
involving both the δ(y−πR) peak and a (−−) profile, dL(y)
or qR(y), vanish (after integration). In a second stage, one
solves the EOM system (6a)–(6d) with a regularized Higgs
peak, e.g. shifted by an amount εR.

The other way consists of first solving the system (8a)–
(8d) with an εR-shifted Higgs, so that the terms in Eqs. (8b)–
(8c) involving both δ(y − (π − ε)R) and a (−−) profile, dL
or qR , really contribute. Then one imposes the BC at πR for
the (−−) profiles, which does not eliminate the above terms.
The mass spectrum is dictated by those last conditions.

Those two calculation orderings result in two different
mass spectrum definition given by Eqs. (16) and (19), which
are copied in the 5D line of Table 1; the angle of the tan-
gent function is only defined modulo nπ , which gives rise to
the KK eigen-mass tower mn (n ∈ N as in Eqs. (3a)–(3d)).
The effect of the EW symmetry breaking is thus a shift of
arctan(vY5/

√
2)/πR in the KK mass tower n/R, for the case

of the left column in Table 1.

6 It was pointed out [61], based on a 4D calculation of the gluon–gluon
fusion amplitude in RS, that some specific higher derivative operators
allow one to take into account a UV sensitivity.

As expected,7 there is a mass spectrum matching between
the 4D and 5D calculations that Table 1 exhibits. Although
expected, this matching was not trivial to demonstrate ana-
lytically, especially due to the complexity of dealing with the
infinite 4D mass matrix (27). Furthermore, it turns out that
there are in fact two distinct 4D/5D matchings, for the two
calculation orders performed in 4D (cf. Sect. 4.1) and 5D
(described in previous paragraph) that we thus commonly
denote in the table as regularizations of type I and II – see
the discussion in Sect. 4.3. The 4D/5D matching in the reg-
ularization of type I is explicit: the two equations obtained
give rise to the same possible mass spectra. In the regular-
ization of type II, the 4D/5D matching occurs exactly for
c = 1 as show the two mass equations; it means that other
5D c-prescriptions (i.e. c �= 1) should not represent experi-
mentally distinct regularizations8 (as distinct 4D approaches
matching c �= 1 do not exist).

The first implication of those two 4D/5D matchings is
the existence of two different 4D calculations (confirming
Sect. 4.1) since there are two ways of calculating the mass
spectrum from the 5D point of view as well. These two ways
of calculating (regularizations I and II) differ in their brane-
Higgs sensitivity to the tower of bulk (−−) profiles; this
can be described remarkably in both the 4D and the 5D
approaches. From the 5D point of view, in regularization II
the terms in Eqs. (8b)–(8c) coupling the VEV to (−−) pro-
files are not vanishing – in contrast with case I – as explained
at the beginning of this subsection. Regarding the 4D treat-
ment, in regularization II there is a non-vanishing contribu-
tion from the βi j terms (cf. Eq. (29)) which represent overlaps
between the Higgs and (−−) profiles, whereas their contri-
bution is absent in case I as discussed at the beginning of
Sect. 4.1.

There is a second consequence; the two 4D/5D matchings
guarantee that the 5D mixed formalism (cf. Eqs. (3a)–(3d)),
followed usually in the literature, represents a correct proce-
dure to take into account mixing effects between all KK levels
which are otherwise explicitly included via the off-diagonal
elements of the 4D mass matrix (27)).

Finally, the 4D/5D matching confirms that there exist two
approaches for deriving the same mass spectrum and that
in the 4D approach there is no inconsistency induced by the
Higgs localization that should be regularized (as the so-called
jump problem in the 5D approach). This can be interpreted by
the fact that the exact 4D calculation proceeds by construction
through a limit (N → ∞) to obtain ‘softly’ the fermion
mass expressions in the wanted higher-dimensional scenario.

7 In the 4D limit N → ∞, the effect of the infinite KK tower is taken
into account which is equivalent to consider rigorously the full 5D fields
of Eqs. (24a)–(24d).
8 The precise notion of experimentally equivalent regularizations will
be described at the beginning of Sect. 4.3.
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This limit acts typically as the regularizing limit ε → 0
corresponding to a brane Higgs, in the 5D framework.

The obtained 4D/5D matching also constitutes an addi-
tional confirmation of the validity of the field theory regu-
larization usually applied in the 5D calculation (within this
context of brane-localized Higgs scenarios), and leads to a
global coherent picture. Now of course, to determine whether
such a paradigm – relying on mathematical regularizations of
an ill-defined peaked field – corresponds really to the physi-
cal model, one would have to confront it with experimental
results.9

4.3 On the two types of regularizations

It is mentioned at the end of Appendix C.2 in Ref. [55] (where
description is limited to the simpler case Y5 = Y ′

5) that the
regularizations, called I and II here, give at most two dif-
ferent interpretations of the Y5v(= yvR) parameter com-
bination (proportional to MDL in notations of Ref. [55]).
Let us discuss here this twofold feature more precisely. In
fact, the two types of equations in Table 1 (both similar in
4D and 5D for c = 1) corresponding to the two regulariza-
tions constitute two different relations between the Y (′)

5 , v, R
parameters and the physical mass solutions represented by
m. A physical mass m having a unique value (the measured
one), the difference between these two relations has to be
either compensated by different values for Y5, v, R (which
do not constitute observables) in cases I and II, or canceled
by setting Y ′

5 to zero (then Y5, v, R can be identical in cases
I and II). There exist thus two numerically equivalent defi-
nitions of the mass value m so that regularizations I and II
are experimentally equivalent10 or even strictly identical (for
vanishing Y ′

5).
Indeed, concretely, today there exist two different sets of

Y5, v, R values (for Y ′
5 �= 0) reproducing the measured values

of the observed fermion masses through the two definitions,
f I
n and f II

n (solutions from the two mass equations in Table 1),
associated to regularizations I and II:

Regularization I

{
mn = f I

n(R, v,Y5)

m̃n = f I
n(R, v, Ỹ5)

9 As the renormalizations of quantum corrections were confronted
(with success) to collider data.
10 The expression “experimentally equivalent”, used here and through-
out the paper, is motivated by the fact that the two regularizations can
give rise to the same value of a measured mass m. Now it is clear
that, formally speaking, regularization II may generate values of a mass
observable in a range different from regularization I (as can be seen by
comparing the mass spectra in Table 1), and, the degrees of freedom
involved in the mass spectrum are also different (appearance or not of
the Y ′

5 coupling constant); in this sense regularizations I and II are not
“physically equivalent”.

Regularization II

{
mn = f II

n (R, v,Y5,Y ′
5)

m̃n = f II
n (R, v, Ỹ5, Ỹ ′

5)
(41)

In other words, the two systems in Eq. (41) have solutions
in terms of Y (′)

5 , v, R for the first mass eigenvalue [mn=0]
and this is true including quarks/leptons (the same formal-
ism as here, introducing parameters m�n , Y�5, Y ′

�5) of down
or up SU(2)L-isospin (notations trivially extended to m̃n , Ỹ5,
Ỹ ′

5, m̃�n , Ỹ�5, Ỹ ′
�5) from the three generations (notations to

be completed with flavor indices). The fact that there exist
solutions to the systems of type (41) is also due to the individ-
ual dependences of the masses on the Yukawa parameters11

and the higher number of Y5-like parameters compared to
the number of measured fermion masses. As for an overview
of the other parameters, typically, the EW precision tests
from the LEP collider would bound from above the R radius
(imposing large KK masses to avoid dangerous corrections
to the SM predictions for EW observables) while in the gauge
boson sector mZ , mW , GF would allow to determine the val-
ues of the bare parameters v, g, g′ (through loop calculations
as described e.g. in Ref. [32]), the recently measured Higgs
mass fixing the quartic coupling λ [1–3].12

The experimental equivalence of regularizations I and
II is based on generic arguments and thus also applies
to amplitudes induced by flavor changing neutral current
(FCNC) effects. This leads to remarks on the FC Higgs
couplings coming from misalignments between fermion
masses and Yukawa couplings, in the RS framework with a
brane Higgs [54]. This misalignment is quantified by a non-
universal shift estimated to be, using notations of Ref. [54]
except for down-quark Yukawa parameters:

Regularization I

{
�d = 0 + �d

2 = md |md |2R′2

×
(

F(cq)

f (cq)2 + F(−cd)

f (−cd)2

)

Regularization II

{
�d = �d

1 + �d
2 = md |md |2R′2

×
(

2

3

Y ′
5

Y5

1

f (cq)2 f (−cd)2 + F(cq)

f (cq)2 + F(−cd)

f (−cd)2

)
(42)

where F(cq) = (2cq − 1)/(2cq + 1) and �d
1 = 0 in case

I due to vanishing contributions from Y ′
5 terms. Note that

11 Basically different masses depend on different Y5-like parameters
(i.e. Y5, Ỹ5, Y�5,…).
12 Going from this toy model to RS [11], one should add the AdS5
curvature parameter, k, but kR ≈ 11 is fixed by the gauge hierarchy
solution. For the RS custodially protected version [62] there can be
an additional freedom from the M̃ parameter of explicit bulk custodial
symmetry breaking, or even another one via the gZ ′ coupling [63] in
case of no left–right parity [64]. One should also add basically the 5D
mass parameters, cL/R i

u,d,ν,l (i = 1, 2, 3), in the RS extensions addressing
the flavor problem [65–74].
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in these equations the physical condition to reproduce the
(approximated)md mass has been used to fix the v parameter.
Equation (42) shows that there exist two sets of parameters13

giving rise to the same value of �d within regularizations I
(without terms proportional to Y ′

5, as included in Ref. [54])
and II (with such terms) so that these regularizations can
be experimentally equivalent. There even exist such param-
eters (e.g. f (cq) ∼ 1, f (−cd) � 1) for Y ′

5 and Y5 of the
same order of magnitude as might be wanted to not introduce
new energy scales [54]. Notice that with more constraints on
parameters from new experimental data and under the strong
physical assumption Y ′

5 � Y5, it could happen that the two
sets of input parameters in regularizations I and II cannot
reproduce the same value of �d : then precise FCNC data
should be used to select the correct theoretical regulariza-
tion by pinning down the real and unique �d value. This
experimental test is similar to the one discussed right below.

In the future, the upgraded 13 TeV LHC and other collid-
ers will certainly provide more data. One can expect more
precise measurements of the Yukawa and hV V [V = Z ,W ]
couplings (being functions of g, g′, v [1–3] and R due to KK
gauge boson mixings) or even the detection of Higgs pair
production that would give information on the hV V , hhV V ,
hhh couplings (in turn on combinations of λ, g, g′, v, R). The
systems of Eq. (41) would thus have to be extended to include
in particular the physical Ynm , Ỹnm Yukawa couplings which
depend on the same parameters Y (′)

5 , Ỹ (′)
5 , v, R:

Regularization I

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mn = f I
n(R, v,Y5)

m̃n = f I
n(R, v, Ỹ5)

Ynm = gI
nm(R, v,Y5)

Ỹnm = gI
nm(R, v, Ỹ5)

Regularization II

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mn = f II
n (R, v,Y5,Y ′

5)

m̃n = f II
n (R, v, Ỹ5, Ỹ ′

5)

Ynm = gII
nm(R, v,Y5,Y ′

5)

Ỹnm = gII
nm(R, v, Ỹ5, Ỹ ′

5)

(43)

Those couplings are involved in the action terms

Ynmh(x)Q̄n
L(x)Dm

R (x) and Ỹnmh(x) ¯̃Qn
L(x)Um

R (x) expressed
with 4D fields representing mass eigenstates.14 KK mode dis-
coveries would also add new entries (like mn with n > 0) for
the systems in Eq. (43).

With such new data coming it could happen at some point
that there exist no more set of parameters satisfying one of
the two types of system in Eq. (43) (more physical constraints
without new degrees of freedom). This would mean that the

13 For instance with f (cq ) � 1, f (−cd ) � 1 and Y ′
5 � Y5.

14 In the 4D approach, this notation is coherent with previous notations
if the Dm

R (x) fields result from a mixing with the Qm
R (x) fields, and the

Qn
L (x) include mixings with Dn

L (x).

associated regularization is ruled out by experimental data.
This uniquely ruled out regularization could only correspond
to the system with less parameters: regularization I (no Y ′

5,
Ỹ ′

5 parameters), since regularization II for Y ′
5, Ỹ

′
5 → 0 gives

back regularization I so that excluding regularization II would
also exclude regularization I. In a situation of this kind where
regularization I only is experimentally ruled out, regulariza-
tions I and II would obviously not be experimentally equiv-
alent.

Let us simply remark here that it is not trivial to conclude
intuitively on the experimental equivalence of the two regu-
larizations. Indeed in regularization II, from the 4D point of
view, first taking N → ∞ leads to have in a first step a full 5D
theory with complete (i.e. infinite) 5D field KK decomposi-
tions. Then imposing the ε → 0 limit, in this non-truncated
5D framework, represents effectively a localization of the
Higgs scalar on the brane. In contrast, for the regularization
I, the physical sense of taking ε → 0 before having com-
pleted the 5D theory (i.e. having taken N → ∞) is not clear
anymore: it is not obvious that it corresponds to the geometric
brane-localization along the extra-dimension as it is realized
within an hybrid 5D scenario. In other words, this regular-
ization may or may not be equivalent to regularization II.
Therefore the experimental tests described above are really
necessary to determine whether those two regularizations are
experimentally equivalent or not.

The above considerations on the degrees of freedom added
by the Y ′

5, Ỹ ′
5 parameters are expected to be similar with a

warped extra-dimension. Therefore, one can invoke the pre-
vious discussion to make the following comments on the
past and future literature about the RS scenario (or generally
on higher-dimensional theories with a brane-localized Higgs
scalar and bulk matter).15

As discussed at the beginning of this subsection, regular-
izations I and II reproduce the present collider data and are
thus experimentally equivalent. Hence, the constructions of
RS realizations reproducing the fermion masses and mix-
ings performed through regularization I, as for instance in
Refs. [63,65–74], would have been possible as well using
regularization II.

Concerning future data, one cannot be sure to predict theo-
retically all the possible physical values within regularization
I (some can be inaccessible as discussed below Eq. (43))
whereas regularization II is clearly exhaustive in its pre-
dictions (it includes the parameter space of regularization
I which is recovered for Y ′

5 = Ỹ ′
5 = 0). This is the reason

why the RS predictions on KK quark masses, FCNC rates or
Higgs productions/decays (involving KK fermion mixings)
made e.g. in Refs. [31,32,75–77] (4D calculation) [78] (5D

15 For constructions of RS scenarios with a brane Higgs as a limit case
of bulk-Higgs models, we refer to Refs. [53,54].
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calculation)16 may not be complete in contrast with those of
Refs. [30,50–52,54] (5D calculation).

Finally, our recommendations to treat the future experi-
mental data within the RS model are as follows. One should
perform regularizations I and II to determine whether in both
cases there exist parameters reproducing the whole set of
observables (as in Eq. (43)). If regularization I cannot repro-
duce data then it is excluded, otherwise the two regular-
izations are experimentally equivalent.17 This procedure is
important to safely conclude on the validity of these Higgs
regularizations and to avoid misleading interpretations. From
a practical point of view, the question of the experimen-
tal equivalence of these regularizations is also important.
Indeed, a systematic calculation of the fermion masses or
Yukawa couplings is easier through regularization I than II,
both in the 4D (less infinite sums to address cause some
mass matrix elements vanish) and 5D (less δ(y −πR) terms
in EOM) approaches. Therefore, one could benefit from a
regularization equivalence by choosing to use the simpler
regularization I.

4.4 The cut-off procedure

Generally speaking, the extra-dimensional backgrounds lead
to non-renormalizable theories which are valid only up to a
certain energy scale where starts the non-perturbative regime.
For instance, in the RS model with bulk matter this scale is
driven by the perturbativity of the top Yukawa coupling and
is around 2–3MKK (MKK ≡ first KK photon mass) (see e.g.
Ref. [63]) so that a � cut-off satisfying, � � 2–3MKK,
should be applied. � indicates the typical energy scale of the
UV completion of the theory.

Based on the previous results and discussions, we are
going to clarify here the correct and generic way to apply the
� cut-off on scenarios with a Higgs scalar stuck at a brane.
Without loss of generality, one should follow this two-step
procedure,

(1) calculate the bulk fermion mass spectrum and Yukawa
couplings including infinite KK tower contributions,
as done automatically when manipulating 5D fields
or considering infinite mass matrices (with N → ∞
after/before ε → 0 accordingly to regularization I/II) in
the 4D approach;

16 Let us also mention Ref. [56] in regularization I, which presents
4D/5D matching considerations via a numerical approach and for a
truncated KK fermion tower.
17 The last possible situation with both regularizations unable to repro-
duce data would mean that either another kind of regularization is nec-
essary (as both previous regularizations would then not be correct) or
the RS model itself (in its minimal version with an Higgs boson strictly
localized on the brane) is ruled out.

(2) consider only the obtained mass eigenstates of the tow-
ers (masses and couplings derived at step (1)) which are
lighter than the � cut-off, in the computation of physical
observables and tree/loop-level amplitudes – with nota-
tions of Sect. 4.1, it means that NKK must be finite.18

The reason for this rigorous order is that one should first
build formally a consistent and pure 5D theory (N → ∞)
with full KK fermion mixings, before truncating this theory
at the frontier of its validity domain indicated by � to get the
physical effective low-energy model.

Notice that adopting the inverse order, i.e. (2)→(1), within
regularization II, that is, first, applying the � cut-off and
second, calculating the fermion mass eigenvalues with a finite
mass matrix (as the cut-off would prevent from taking N →
∞) – ending with ε → 0 – would lead to incomplete eigen-
mass expressions (even for the lightest modes) without the Y ′

5
term (cf. Table 1). Indeed, the non-vanishing contributions
from the mass matrix elements involving Y ′

5 originate non-
trivially from the fact that the limit N → ∞ has been taken
(see beginning of Sect. 4.1).

This cut-off procedure is analogous in supersymmet-
ric RS extensions [79] where, at the first step, the 4D
effective Lagrangian must be written including infinite
KK tower effects: one can then regularize tree-level δ(0)-
inconsistencies, arising in the bulk sfermion couplings to two
brane-Higgs bosons (from Yukawa and D-terms),19 through
cancellations with contributions from exchanges of infinite
KK towers – treated via the completeness relation. In a sec-
ond step, one can apply the � cut-off on tower eigenstates
entering the computation e.g. of quantum corrections to the
Higgs mass, based on the obtained couplings [79]. This pro-
cedure, which has been shown to be the correct one in super-
symmetric RS frameworks [79], confirms that one should
first elaborate a consistent and thus complete 5D theory
(with infinite KK towers) before truncating it at the physical
cut-off for calculating amplitudes – as justified in previous
paragraph.

4.5 Discussion for the square Higgs profile

Let us finally discuss the regularization introduced in
Sect. 2.4, which consists in smoothing the Higgs delta peak
by a square function. In that case, depending on whether
the (−−) BC at πR is applied before or after solving the
EOM system (20a)–(20d) with a square Higgs profile, the

18 Even if a cut-off should be applied on physical observables, it may
be instructive to take the limit NKK → ∞ for technical purposes in
formal discussions on the calculation itself [30,50–53].
19 And in self-couplings of the Higgs bosons as well.
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mass spectrum is given by Eq. (19) (regularization I) or
Eq. (23) (regularization II). In the regularization I, there are
no �-terms for (−−)-profiles in Eqs. (20b)–(20c). All this
is summarized in Table 2 below, similarly to 5D part of pre-
vious Table 1 for the shifted Higgs regularization – except
that here Y5 = Y ′

5 is assumed (case II) for simplicity in the
calculation.

The Higgs regularizations via a square profile and a shifted
delta peak are experimentally equivalent [52,54,55] for the
same reasons as those presented in detail at the beginning
of Sect. 4.3 where regularizations I and II were compared.
Note that in the case of regularization I, these two profile
regularizations are even formally equivalent as shown by the
identical mass spectrum exhibited in Tables 1 and 2. Hence,
the above discussion of the equivalence of regularizations I
and II (Sect. 4.3) holds also for the square Higgs profile. In
particular, the considerations on the counting of degrees of
freedom are the same: there are once more additional param-
eters (Y ′

5) in regularization II (even if those do not appear
explicitly in Table 2 due to the Y5 = Y ′

5 hypothesis). Finally,
the discussion of the cut-off in Sect. 4.4 remains also valid
with a square Higgs profile.

4.6 Higher order operators with derivatives

So far in our discussion, we have ignored the possibility that
the UV completion of the considered model could induce
some higher order operators in the low-energy effective
description. In this section, we consider a scenario where
higher order operators of the kind

δ(y − πR)YHO
∂y QRH∂y DL

�2

⇔ δ

(
y −
[
πR − 1

�

])
YHO Q̄RH DL , (44)

would be present. The motivation is that these specific oper-
ators are allowed by the symmetries of the 5D action (1) and
are relevant for the present discussion of the regularizations.
The term (44) would add up to the 5D action of Eq. (1). Here
� represents the cut-off energy scale, while the YHO coupling
constant has the dimension and order of magnitude of R. The
rewriting as a shifted Yukawa coupling was discussed at the
end of Ref. [54] or in Ref. [61].

4.6.1 5D approach

We will show that in the scenario with an operator, like
in Eq. (44), regularizations I and II would become analyt-
ically equivalent. For that purpose, we will study the effects
of such an operator on the fermion mass spectrum, going

first through the 5D approach of the Higgs shift procedure.
Let us first rewrite the EOM in the presence of such an
operator,

− m qL − q ′
R + δ(y − πR)

vY5√
2
dR = 0, (45a)

− m qR + q ′
L

+
{
δ(y − πR)

vY ′
5√
2

+δ

(
y −
[
πR − 1

�

])
vYHO√

2

}
dL =0,

(45b)

− m dL − d ′
R

+
{
δ(y − πR)

vY ′
5√
2

+δ

(
y −
[
πR − 1

�

])
vYHO√

2

}
qR =0,

(45c)

− m dR + d ′
L + δ(y − πR)

vY5√
2
qL = 0. (45d)

Notice the two additionalYHO terms with respect to Eqs. (6a)–
(6d).

In the case of regularization I – following the steps
described in Sect. 2.3 – the (−−) BC assigned to the dL ,
qR wave functions have first the effect of eliminating the
δ(y − πR) terms in Eqs. (45b)–(45c). One is thus left
with,

− m qL − q ′
R + δ(y − (π − ε)R)

vY5√
2
dR = 0, (46a)

− m qR + q ′
L + δ

(
y −
[
πR − 1

�

])
vY I

HO√
2

dL = 0,

(46b)

− m dL − d ′
R + δ

(
y −
[
πR − 1

�

])
vY I

HO√
2

qR = 0,

(46c)

− m dR + d ′
L + δ(y − (π − ε)R)

vY5√
2
qL = 0, (46d)

after introducing the regularizing ε-shift for the brane-Higgs
field. At this level, one can view the inverse cut-off 1/� as
the Higgs spatial shift εR, since the limit ε → 0 imposed
by the regularization will then induce the limit � → ∞,
which must be taken as well – given the step (1) described
in Sect. 4.4 (infinite KK tower, N → ∞, to get a pure 5D
theory). One thus ends up with the system of Eqs. (8a)–(8d),
with Y I

HO instead of Y ′
5. Hence, as in Sect. 2.3, combining

the conditions at (π − ε)R (coming from the integrations
of the EOM), the wave function expressions and the BC,
q̂R(πR) = d̂L(πR) = 0, leads to the fermion mass spectrum
of Eq. (16), with Y I

HO instead of Y ′
5,

tan (πR m) =
√

2(1 + c)2vY5

2(1 + c)2 + cv2Y5Y I
HO

. (47)
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Table 2 Quark mass spectrum for a square Higgs profile

Table 2 (square Higgs) Regularization I Regularization II [Y5 = Y5 ]

tan (πR m) =
vY5√

2
tan (πR m) = tanh

v2Y 2
5

2

5D calculation
no Θ-terms for (−−)-profiles Θ-terms for (−−)-profiles
(−−) BC at πR, EOM with EOM with , (−−) BC at πR

In the case of regularization II, starting by shifting the
brane-Higgs peak in Eqs. (45b)–(45c), one first obtains the
EOM,

− m qL − q ′
R + δ(y − (π − ε)R)

vY5√
2
dR = 0, (48a)

− m qR + q ′
L

+
{
δ(y − (π−ε)R)

vY ′
5√
2

+δ

(
y−
[
πR− 1

�

])
vY I I

HO√
2

}

dL = 0, (48b)

− m dL − d ′
R

+
{
δ(y − (π − ε)R)

vY ′
5√
2

+ δ

(
y −
[
πR − 1

�

])
vY I I

HO√
2

}

qR = 0, (48c)

− m dR + d ′
L + δ(y − (π − ε)R)

vY5√
2
qL = 0. (48d)

Once again, taking the inverse cut-off 1/� as the Higgs shift
εR, one ends up with the system of Eqs. (8a)–(8d), with
Y ′

5 +Y I I
HO instead of Y ′

5. Therefore, as in Sect. 2.3, combining
the conditions at (π − ε)R, the wave function expressions
and the BC, q̂R(πR) = d̂L(πR) = 0 (Eq. (15)), we find the
fermion mass spectrum of Eq. (16), with Y ′

5 + Y I I
HO instead

of Y ′
5,

tan (πR m) =
√

2(1 + c)2vY5

2(1 + c)2 + cv2Y5[Y ′
5 + Y I I

HO] . (49)

Therefore, the mass spectra from Eq. (47) and Eq. (49)
are equal after the parameter redefinition, Y I

HO ≡ Y ′
5 + Y I I

HO.
This means that regularizations I and II are identical in the
presence of the higher order operator (44).

4.6.2 4D approach

Similarly, in the 4D approach, the mass matrix element β j i

of Eq. 31 becomes

β j i = vY ′
5√
2
qiR((π − ε)R) × d j

L((π − ε)R)

+vYHO√
2

qiR

(
πR − 1

�

)
× d j

L

(
πR − 1

�

)
. (50)

In regularization I, first applying the regularization limit
ε → 0 would only suppress the Y ′

5 term of Eq. 50 (since
qnR(πR) = dnL(πR) = 0) but not the whole matrix element
β j i . Then following the same calculations in terms of β j i

as in Sect. 3.2, one writes the matrix CE and works out its
infinite KK sums (N → ∞) leading to the same spectrum as
obtained in Eq. 38, except that Y ′

5 should be replaced there
by Y I

HO,

tan2
(
πR
√

|m|2
)

=
(

4
√

2vY5

8 + v2Y5Y I
HO

)2

. (51)

This is guaranteed by the fact that β j i → 0 as well in the
limiting case � → ∞ (step (1), N → ∞, of Sect. 4.4).

Within regularization II, one first writes the CE, calculat-
ing its KK summations up to N → ∞. At this level, the
β j i element of Eq. (50) can be factorized with respect to
Y ′

5 +Y I I
HO, given that the Higgs shift εR is non-vanishing yet

and can be taken as the inverse cut-off 1/� (same arguments
as in the 5D case). Then imposing the limit ε → 0, one finds
the same spectrum as in Eq. (38), replacing Y ′

5 by Y ′
5 + Y I I

HO,

tan2
(
πR
√

|m|2
)

=
(

4
√

2vY5

8 + v2Y5[Y ′
5 + Y I I

HO]

)2

. (52)

Once again, the mass spectrum from Eqs. (51) and (52)
are equal after the coupling redefinition, Y I

HO ≡ Y ′
5 + Y I I

HO.
We thus recover, using the 4D calculations, the identity of
regularizations I and II in the presence of the derivative oper-
ator (44).

The conclusion of Sects. 4.6.1 and 4.6.2 reads as follows.
In the presence of the higher order operator (44), the non-
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commutativity disappears and regularizations I and II give
rise to the same analytical expression for the fermion mass
spectrum. Obviously it is this unique mass spectrum which
must be used for phenomenological studies. Notice that this
spectrum is identical to the spectrum obtained within regu-
larization II in the absence of higher order operators (see for
instance Table 1).

5 Summary and conclusions

In the framework of a simple higher-dimensional model with
bulk matter and a brane-localized Higgs boson,20 we have
first pointed out a certain non-commutativity in the order of
the 4D calculation for the fermion mass spectrum: applying
first the limit ε → 0 and then N → ∞ (so-called regular-
ization I) leads to a different analytical expression from the
inverse ordering (regularization II). The interpretation of this
difference raises obviously a physical question: which order
is the correct one?

Then the exact matching between the 4D and 5D calcu-
lations of the mass spectrum, which is expected, has been
established analytically – for the first time and in both regu-
larizations (I/II). This matching allows a deeper understand-
ing of the regularizations of brane-Higgs models; in partic-
ular, it turns out that regularizations I and II differ in their
brane-Higgs sensitivity to the tower of bulk (−−) profiles for
the fermions. Besides, the obtained 4D/5D matching repre-
sents another confirmation that the usually applied 5D mixed
formalism (i.e. the mixed KK decomposition of Eqs. (3a)–
(3d)) is a correct way of including the whole KK mixing
effect.

We have further worked out the interpretation of the exis-
tence of two types of Higgs peak regularization, which
answers the question raised above about the new non-
commutativity. The conclusion is that with the present exper-
imental setup, regularizations I and II are experimentally
equivalent. Nevertheless, with future constraints from high-
energy collider results, it could happen that only regular-
ization I is ruled out – as regularization II involves more
free parameters (like Y ′

5, Ỹ ′
5). Therefore, there is anyway no

regularization-dependence of the model since either regular-
izations I and II are experimentally equivalent or one of the
two is simply excluded.

Our analysis has lead us to clarify the cut-off procedure
in models with a brane Higgs: one must first build a con-
sistent 5D theory – i.e. calculate eigen-masses and Yukawa
couplings accordingly to regularization I or II – with full
KK fermion effects (N → ∞), before restricting this theory

20 Our results are expected to be essentially similar (up to warp factors
of course) in realistic warped extra-dimension scenarios.

(finite NKK) to its validity domain delimited by the � UV
cut-off for computing physical amplitudes. This is analogous
to the cut-off process in supersymmetric extensions of the RS
model [79].

We mention that even if the Higgs peak regularization used
throughout the paper was shifting the delta peak, regularizing
the Higgs profile by a smooth square function is experimen-
tally equivalent and has been performed as well. In particular,
this square profile treatment has allowed one to confirm our
statements on the comparison between regularizations I and
II.

Besides, an important complementary result has been
found: it has been shown, in the case of the regularization
through a Higgs shift, that the non-commutativity disappears
in the presence of higher order derivative operators localized
on the Higgs brane. In other terms, regularizations I and II
have been found to give mass spectra identical to each other
– and analytically equivalent to the spectrum from regular-
ization II without higher order operators. Those results hold
within both the 4D and the 5D approaches.
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Appendix A: The boundary conditions with boundary
terms

In this appendix, we derive BC for the fermions obeying
the action of Eq. (1) which contains boundary interactions.
Expanding this action, to isolate the terms involving deriva-
tives along the fifth dimension, and integrating by part the
second term over the four usual dimensions, one gets,

Sfermion =
∫

d4x dy

[
i

(
Q̄γ μ∂μQ + 1

2
(Q̄γ 5∂5Q

−∂5 Q̄γ 5Q) + {Q ↔ D}
)

+δ(y − πR) (Y5 Q̄L HDR

+Y ′
5 Q̄RHDL + H.c.)

]
. (A.1)
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Now integrating by part the third term of this action over the
extra dimension and considering the EW symmetry breaking
that will affect the mass spectrum, one obtains

Sfermion =
∫

d4x dy

[
i

(
Q̄γ μ∂μQ + Q̄γ 5∂5Q

−1

2
∂5(Q̄γ 5Q) + {Q ↔ D}

)

+(X5 Q̄L DR + X ′
5 Q̄RDL + H.c.)

]
, (A.2)

with the compact notation, X (′)
5 = Y (′)

5
v√
2

δ(y − πR).
Expressing the action in terms of the two-component spinors
defined in Eq. (2), Eq. (A.2) becomes

Sfermion =
∫

d4x dy

[(
− i Q̄Rσμ∂μQR − i Q̄L σ̄ μ∂μQL

+Q̄R∂5QL − Q̄L∂5QR

+1

2
∂5(Q̄L QR − Q̄RQL) + {Q ↔ D}

)

+(X5 Q̄L DR + X ′
5 Q̄RDL + H.c.)

]
. (A.3)

The variation of the action with respect to the Q̄L ,R fields
reads

{
δQ̄L

Sfermion = ∫ d4x dy [ δ Q̄L (−i σ̄ μ∂μQL − ∂5QR + X5 DR) + 1
2 ∂5(δ Q̄L QR) ]

δQ̄R
Sfermion = ∫ d4x dy [ δ Q̄R (−i σμ∂μQR + ∂5QL + X ′

5 DL) − 1
2 ∂5(δ Q̄RQL) ] (A.4)

Analogous equations hold for the D̄L ,R spinors (obtained
from Eq. (A.4) by the replacements Q ↔ D and X5 ↔ X ′

5).
The vanishing for any δ Q̄L of the action variation in the first
line of Eq. (A.4) is realized, as in the absence of Yukawa
interactions, via the separate vanishing of two distinct parts,

−i σ̄ μ∂μQL − ∂5QR + X5 DR = 0, (A.5)∫
dy ∂5(δ Q̄L QR) = [δ Q̄L QR]y=πR

y=0 = 0, (A.6)

the first equation leading to the EOM while the second one
defines the BC. By inserting the KK decompositions (3a)–
(3d) into Eq. (A.5), and the three similar equations obtained
from variations with respect to the 5D fields, Q̄R , D̄L ,R , one
obtains the EOM (6a)–(6d) for the profiles – if one uses the
4D Dirac equations (4)–(5). The condition (A.6) should be
satisfied for any δ Q̄L so that it can be written, together with
all the similar conditions for the other 5D fields,

δ Q̄L QR
∣∣
πR = δ Q̄L QR

∣∣
0 = δ Q̄RQL

∣∣
πR = δ Q̄RQL

∣∣
0 = 0,

δ D̄L DR
∣∣
πR =δ D̄L DR

∣∣
0 =δ D̄RDL

∣∣
πR =δ D̄RDL

∣∣
0 = 0.

(A.7)

The condition, dL(0) = qR(0) = 0, is compatible with
Eq. (A.7) – involving the 5D fields (3a)–(3d) – and once
inserted into the EOM (6b)–(6c), taken at y = 0, leads to
the additional condition, d ′

R(0) = q ′
L(0) = 0 (as the EOM

boundary terms are not at y = 0). Similarly, the condi-
tion, dL(πR) = qR(πR) = 0, respects Eq. (A.7) and after
injection in the EOM (6b)–(6c) at y = πR gives rise to,
d ′
R(πR) = q ′

L(πR) = 0 (here the EOM Yukawa terms are
removed by the condition, dL(πR) = qR(πR) = 0). In
summary, the (−−) and (++) BC for dL , qR and dR, qL ,
respectively, fulfill the conditions (A.7)21 together with the
EOM at the boundaries and thus constitute a satisfactory BC.

We notice that, in order to cancel the action variation,
grouping together the terms of the first line of Eq. (A.4) in
the following way:

−i σ̄ μ∂μQL − ∂5QR = 0,

×
∫

dy [X5 δ Q̄L DR + 1

2
∂5(δ Q̄L QR)] (A.8)

= vY5√
2

δ Q̄L DR
∣∣
πR + 1

2
[δ Q̄L QR]y=πR

y=0 = 0, (A.9)

is different from Eqs. (A.5)–(A.6): here, all the boundary
terms appear in the same equality (A.9). Equation (A.8),
and similar equations for the other fields, would lead to the

EOM of Eqs. (4)–(5) and (6a)–(6d) without Yukawa interac-
tions. Those interaction terms would now be included in the
Eq. (A.9) which is at the origin of the fermion BC. We see
clearly that when one would then try to regularize the Higgs
peak, through a shift or a smearing, it would not be possible
anymore to write the Yukawa interaction as a boundary term
in Eq. (A.9). It means that it is more tricky to follow a regular-
ization procedure when the Yukawa interaction is included in
the BC equation (whichever regularization, I or II, is invoked
as the Y5 coupling has to be regularized in both). This is the
reason why the brane-localized Yukawa interactions are usu-
ally (see for instance Ref. [52,54]) taken into account instead
in the EOM, like in our Eq. (A.5). There a shift or a smearing
of the Dirac peak contained in X5 does not make the Yukawa
coupling disappear from the EOM, since the latter is defined
over the whole interval.

21 Note that all the conditions of Eq. (A.7) are induced by the (−−)

BC only.
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Appendix B: The generic characteristic equation

From the infinite quark mass matrix, [M], defined in Eq. (27),
we first get the symmetric matrix, [M†M], which can be
written without loss of generality as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M2
q0

+∑n β2
n0 α00Mq0 + β00Md0

∑
n βn0βn1 α01Mq0 + β10Md1

∑
n βn0βn2 · · ·

... M2
d0

+∑n α2
n0 α10Mq1 + β01Md0

∑
n αn0αn1 α20Mq2 + β02Md0 · · ·

...
... M2

q1
+∑n β2

n1 α11Mq1 + β11Md1
∑

n βn1βn2 · · ·
...

...
... M2

d1
+∑n α2

n1 α21Mq2 + β12Md1 · · ·
...

...
...

... M2
q2

+∑n β2
n2 · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the discrete sums are taken from n = 0 to infinity.
For the CE of this infinite matrix, [M†M], we find the

following analytical expression:

1 + P0 + P1 = 0 (B.1)

where P0 and P1 are both series of infinite number of terms.
In the limit where all the KK mass (M) terms go to zero,
P1 vanishes but P0 does not. In order to describe the parts,
P0 and P1, we have to first define the following structures
depending on the αqd (defined in Eq. (28)):

An (q1, . . . , qn; d1, . . . , dn)

≡
∑

r1,...,rn(∈{d1,...,dn})
εi(r1)...i(rn) εi(d1)...i(dn) αq1r1 . . . αqnrn ,

(B.2)

such that εabc... is the anti-symmetric tensor, with for instance
the index i(r3) = i(d2)=̂2, and the three first structures
can be written explicitly as (notice the specific definition for
A1 (q1; d1)),

A1 (q1; d1) = αq1d1,

A2 (q1, q2; d1, d2) = αq1d1αq2d2 − αq1d2αq2d1,

A3 (q1, q2, q3; d1, d2, d3) = αq1d1αq2d2αq3d3

+αq1d2αq2d3αq3d1 + αq1d3αq2d1αq3d2

−αq1d1αq2d3αq3d2 − αq1d3αq2d2αq3d1 − αq1d2αq2d1αq3d3 .

Note that because of the anti-symmetric nature of these struc-
tures, in a factorizable case where αqd = fq × fd , one has
simply

An≥2 = 0. (B.3)

Analogous structures can be introduced for the βdq (defined
in Eq. (29)):

Bn (d1, . . . , dn; q1, . . . , qn)

≡
∑

r1,...,rn(∈{d1,...,dn})
εi(r1)...i(rn) εi(d1)...i(dn)βr1q1 . . . βrnqn . (B.4)

One has similarly, Bn≥2 = 0, for factorizable cases with,
βdq = fd × fq . Now, with the conditions

qi �= q j �= Qk ; di �= d j �= Dk (B.5)

where i, j, k = 0, 1, 2, . . ., the first few terms (sufficient to
deduce the rest of the infinite series) in the P0 and P1 parts
can be expressed as

P0 =
∑
q1;d1

(−λ)

(
(A1(q1; d1))

2

(M2
q1

− λ)(M2
d1

− λ)
+ (α ↔ β)

)

+
∑

q1<q3;d1<d3

(−λ)2

×
(

(A2(q1, q3; d1, d3))
2

(M2
q1

− λ)(M2
d1

− λ)(M2
q3

− λ)(M2
d3

− λ)

+(α ↔ β)

)
+

∑
q1,q2;d1,d2

(−λ)2 (A1(q1; d1))
2

(M2
q1

− λ)(M2
d1

− λ)

× (B1(d2; q2))
2

(M2
q2

− λ)(M2
d2

− λ)

×
(

1 − δq1q2

M2
q2

λ

)(
1 − δd1d2

M2
d2

λ

)

+
∑

q1<q3,q2;d1<d3,d2

(−λ)3

×
{

(A2(q1, q3; d1, d3))
2

∏
i=1,3(M

2
qi − λ)(M2

di
− λ)

× (B1(d2; q2))
2

(M2
q2

− λ)(M2
d2

− λ)

×
(

1 − δq1q2

M2
q2

λ

)(
1 − δd1d2

M2
d2

λ

)

×
(

1 − δq3q2

M2
q2

λ

)(
1 − δd3d2

M2
d2

λ

)
+ (α ↔ β)

}

+
∑

q1<q3,q2<q4;d1<d3,d2<d4

(−λ)4

× (A2(q1, q3; d1, d3))
2

∏
i=1,3(M

2
qi − λ)(M2

di
− λ)
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× (B2(d2, d4; q2, q4))
2

∏
j=2,4(M

2
q j

− λ)(M2
d j

− λ)

×
(

1 − δq1q2

M2
q2

λ

)(
1 − δq3q2

M2
q2

λ

)

×
(

1 − δq1q4

M2
q4

λ

)(
1 − δq3q4

M2
q4

λ

)

×
(

1 − δd1d2

M2
d2

λ

)(
1 − δd3d2

M2
d2

λ

)

×
(

1 − δd1d4

M2
d4

λ

)(
1 − δd3d4

M2
d4

λ

)

+O(α6, β6) (B.6)

and

P1 =
∑
Q1;D1

−2MQ1 MD1

(M2
Q1

− λ)(M2
D1

− λ)

×
[
A1(Q1; D1) × B1(D1; Q1)

+
∑
q1;d1

(−λ)

{
A2(Q1, q1; D1, d1)A1(q1; d1)

(M2
q1

− λ)(M2
d1

− λ)

× B1(D1; Q1) + (α ↔ β)}
+

∑
q1q2;d1,d2

(−λ)2 × A2(Q1, q1; D1, d1)A1(q1; d1)

(M2
q1

− λ)(M2
d1

− λ)

× B2(D1, d2; Q1, q2)B1(d2; q2)

(M2
q2

− λ)(M2
d2

− λ)

×
(

1 − δq1q2

M2
q2

λ

)(
1 − δd1d2

M2
d2

λ

)
+ O(α5, β5)

]

+
⎧⎨
⎩
∑

Q1<Q2

2MQ1 MQ2

(M2
Q1

− λ)(M2
Q2

− λ)

×
⎡
⎣∑
d1,d2

(−λ) × A1(Q1; d1)A1(Q2; d1)

(M2
d1

− λ)

× B1(d2; Q1)B1(d2; Q2)

(M2
d2

− λ)

(
1 − δd1d2

M2
d2

λ

)

+
∑

q1;d1,d2,d3

(−λ)2

×
{
A2(Q1, q1; d1, d3)A2(Q2, q1; d1, d3)

(M2
q1

− λ)(M2
d1

− λ)

× B1(d2; Q1)B1(d2; Q2)

(M2
d3

− λ)

×
(

1 − δd1d2

M2
d2

λ

)(
1 − δd3d2

M2
d2

λ

)
+ (α ↔ β)

}

+
∑

q1,q2;d1,d2,d3,d4

(−λ)3

× A2(Q1, q1; d1, d3)A2(Q2, q1; d1, d3)

(M2
q1

− λ)(M2
d1

− λ)(M2
d3

− λ)

× B2(d2, d4; Q1, q2)B2(d2, d4; Q2, q2)

(M2
q2

− λ)(M2
d2

− λ)(M2
d4

− λ)

×
(

1 − δq1q2

M2
q2

λ

)(
1 − δd1d2

M2
d2

λ

)(
1 − δd1d4

M2
d4

λ

)

×
(

1 − δd3d2

M2
d2

λ

)(
1 − δd3d4

M2
d4

λ

)
+ O(α6, β6)

]

+ [(Q1, Q2) → (D1, D2)]

}

+
∑

Q1<Q2;D1<D2

2

⎛
⎝∏

i=1,2

MQi MDi

(M2
Qi

− λ)(M2
Di

− λ)

⎞
⎠

×[A2(Q1, Q2; D1, D2) × B2(D1, D2; Q1, Q2)

+ A1(Q1; D1)A1(Q2; D2) × B1(D1; Q1)B1(D2; Q2)

+ A1(Q1; D2)A1(Q2; D1)

×B1(D2; Q1)B1(D1; Q2) + O(α4, β4)]

+
⎧⎨
⎩

∑
Q1<Q2<Q3;D1

(−2)

⎛
⎝∏

i=1,3

MQi

(M2
Qi

− λ)

⎞
⎠ MD1

(M2
D1

− λ)

×
⎡
⎣∑
d1,d2

(−λ)

(
A2(Q1, Q2; D1, d1)A1(Q3; d1)

(M2
d1

− λ)

× B2(D1, d2; Q1, Q2)B1(d2; Q3)

(M2
d2

− λ)

+ A2(Q1, Q3; D1, d1)A1(Q2; d1)

(M2
d1

− λ)

× B2(D1, d2; Q1, Q3)B1(d2; Q3)

(M2
d2

− λ)

+ A2(Q2, Q3; D1, d1)A1(Q1; d1)

(M2
d1

− λ)

× B2(D1, d2; Q2, Q3)B1(d2; Q1)

(M2
d2

− λ)

)

×
(

1 − δd1d2

M2
d2

λ

)
+ O(α5, β5)

⎤
⎦

+(MQ ↔ MD, α ↔ β)

⎫⎬
⎭

+
⎧⎨
⎩

∑
Q1<Q2<Q3<Q4

2

⎛
⎝∏

i=1,4

MQi

(M2
Qi

− λ)

⎞
⎠

×
⎡
⎣∑
d1,d2

(−λ)2
(
A2(Q1, Q2; d1, d3)A2(Q3, Q4; d1, d3)

(M2
d1

− λ)(M2
d3

− λ)

× B2(d2, d4; Q1, Q2)B2(d2, d4; Q3, Q4)

(M2
d2

− λ)(M2
d4

− λ)
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+ A2(Q1, Q3; d1, d3)A2(Q2, Q4; d1, d3)

(M2
d1

− λ)(M2
d3

− λ)

× B2(d2, d4; Q1, Q3)B2(d2, d4; Q2, Q4)

(M2
d2

− λ)(M2
d4

− λ)

+ A2(Q1, Q4; d1, d3)A2(Q2, Q3; d1, d3)

(M2
d1

− λ)(M2
d3

− λ)

× B2(d2, d4; Q1, Q4)B2(d2, d4; Q2, Q3)

(M2
d2

− λ)(M2
d4

− λ)

)

×
(

1 − δd1d2

M2
d2

λ

)(
1 − δd1d4

M2
d4

λ

)

×
(

1 − δd3d2

M2
d2

λ

)(
1 − δd3d4

M2
d4

λ

)
+ O(α6, β6)

⎤
⎦

+(MQ ↔ MD, α ↔ β)

⎫⎬
⎭ , (B.7)

where all the discrete sums are taken from zero to infinity
and λ represents the eigenvalues of the [M†M] matrix.
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