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Abstract We discuss various basic conceptual issues related to coarse graining
flows in quantum gravity. In particular, the requirement of background indepen-
dence is shown to lead to renormalization group (RG) flows which are signifi-
cantly different from their analogs on a rigid background spacetime. The impor-
tance of these findings for the asymptotic safety approach to Quantum Einstein
Gravity (QEG) is demonstrated in a simplified setting where only the conformal
factor is quantized. We identify background independence as a (the?) key prereq-
uisite for the existence of a non-Gaussian RG fixed point and the renormalizability
of QEG.

Keywords Quantum gravity, Asymptotic safety, Background independence,
Functional renormalization group equations, Conformal factor

1 Introduction

Finding a logically consistent and predictive quantum theory of gravity contin-
ues to be one of the most challenging open problems in theoretical physics. Even
though the recent years have seen considerable progress in loop quantum grav-
ity, string theory, and asymptotic safety, to mention just three approaches (for a
general introduction see [1]), it seems that certain essential ingredients of a satis-
factory microscopic theory are still missing or only poorly understood. In any of
these approaches, one typically encounters problems which are conceptually very
difficult and deep, and at the same time highly complex from the calculational
point of view. On the conceptual side, the most severe problem is perhaps the
issue of background independence [2; 3; 4; 5]. Already, classically General Rela-
tivity is distinguished from all other physical theories in that it does not only tell
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us how physical processes take place in a given spacetime but also describes the
dynamics of spacetime itself. Many problems one encounters when searching for
a quantum theory of gravity can be traced back to this crucial property of General
Relativity, namely that it dynamically generates the “arena” in which all physics
is going to take place. In particular, the mediator of the gravitational interaction,
the metric or closely related fields, defines the proper length or mass scale of all
dimensionful physical quantities.

(A) Asymptotic safety In the following we investigate a particular aspect of back-
ground (in)dependence which is particularly important in the context of asymp-
totic safety [6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18], (for reviews see
[19; 20; 21]), [22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39;
40; 41; 42], (for detailed reviews of asymptotic safety in gravity see [43; 44]). In
this approach gravity is described by a quantum field theory of the metric tensor
which is renormalized at a non-Gaussian renormalization group (RG) fixed point.
This quantum field theory is defined by a functional RG trajectory on a “theory
space” consisting of well-behaved diffeomorphism invariant action functionals.
This trajectory must be complete in the sense that it has neither an infrared nor
an ultraviolet cutoff. In the ultraviolet the absence of unphysical divergences is
guaranteed by the requirement that the trajectory must hit a fixed point there.

(B) Coarse graining in gravity In order to implement this idea one has to pick a
concrete RG framework. In principle many choices are possible here; they dif-
fer by the generating functionals they employ, in the way field configurations
get “integrated out” along the RG flow, and, related to that, the interpretation of
the corresponding RG scale, henceforth denoted k. In theories on flat spacetime,
there exist implementations of the Wilsonian RG, the effective average action
[45; 46; 47; 48; 49; 50; 51; 52; 53], (for reviews of the effective average action in
Yang–Mills theory see [54; 55; 56]) for instance, which have the special property
that the mass scale k has a “quasi-physical” meaning in the following sense: the
basic functional RG equation (FRGE) describes the k-dependence of a family of
effective actions {Γk,0 ≤ k < ∞} each of which defines an effective field theory
valid near the scale k.

Going over to quantum gravity it is not clear a priori how one could intro-
duce an RG scale with a comparable physical meaning. The problem is that if
k is to have the status of a physical momentum it must be a proper rather than
merely a coordinate momentum. However, proper momenta, distances, or other
dimensionful quantities require a metric for their definition, and if the metric is
dynamical it is not clear with respect to which metric k should be “proper”. Pro-
ceeding naively, the average action of gravity would be a functional Γk[gµν ] which,
besides k, depends on a single argument gµν . More precisely, Γk[·], for every fixed
value of k, is a map from the space of metrics into the reals. This implies that from
the point of view of Γk[·] with k fixed all metrics have an equal status so that k
cannot be “proper” with respect to any particular one of them. This is a direct con-
sequence of background independence. It entails that the naive implementation
of the average action idea, leading to a family of functionals {Γk} which depend
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only on one metric argument, cannot be labeled by an RG scale with the above
“quasi-physical” interpretation.

(C) The gravitational average action The actual effective average action for grav-
ity constructed in [8] achieves the desired “quasi-physical” status of k by using the
background field technique. The idea is to fix an arbitrary background metric gµν ,
quantize the (not necessarily small) metric fluctuations hµν non-perturbatively in
this background, and finally adjust gµν in such a way that the expectation value of
the fluctuation vanishes: hµν ≡ 〈hµν〉 = 0. In this way the background gets fixed
dynamically. The advantage of this procedure is that the quantization can take
advantage of many non-perturbative tools developed for field theories on non-
dynamical backgrounds. More importantly it is background independent in the
sense that no special gµν plays any distinguished role. During the quantization of
the hµν -field the background metric is kept fixed but is never specified explicitly.

In this construction, the RG scale k is “proper” with respect to the background
metric. Technically one organizes the path integral over hµν according to eigen-
modes of the covariant Laplacian D2(gµν) built from gµν and cuts off the integra-
tion at the infrared (IR) scale k2. This is done by adding a mode suppression term
∆kS to the bare action. Hence k is a gµν -proper momentum related to the scale set
by the “last mode integrated out” and can be given an approximate physical mean-
ing therefore. (See [34; 35] for a detailed discussion of this point.) This property
of the gravitational average action is the central prerequisite for the effective field
theory interpretation and for the possibility of performing “RG improvements” on
the basis of Γk [57; 58; 59; 60; 61; 62; 63; 64; 65; 66; 67; 68; 69; 70; 71; 72; 73;
74; 75; 76; 77; 78].

The price one has to pay for this advantage is that the average action is now
a functional of two metrics: Γk[gµν ,gµν ] ≡ Γk[hµν ;gµν ]. Here gµν ≡ gµν + hµν

is the expectation value of the microscopic metric. Only after having solved for
the (now more complicated) RG flow of Γk[gµν ,gµν ] one can impose hµν = 0 and
define the reduced functional Γ k[gµν ] ≡ Γk[gµν ,gµν ] which generates the same
on-shell matrix elements as the original one [79; 80; 81; 82; 83].

(D) “Background independence” via background field technique It should be stressed
that the average action Γk[· , ·] and its RG flow are “background independent”
objects, in the sense of the word as it is used in loop quantum gravity [2; 3; 4; 5],
for instance. Both metrics, gµν and gµν , are just freely variable arguments and no
metric plays any distinguished role.1 Furthermore, the mode cutoff is defined in
terms of D2(gµν) which involves the variable metric gµν and not any rigid one.
This is in sharp contrast to matter field theories on a non-dynamical spacetime with
a metric gnon-dyn

µν . There ∆kS is constructed from D2(gnon-dyn
µν ) which does indeed

single out a specific metric. The resulting flow is not “background independent”
in the above sense.

Besides fixing the physical scale of k, the use of the background field technique
has a second, conceptually completely independent advantage: if one employs a
gauge fixing term which is invariant under the background gauge transformations

1 Here and in the following the term “background independence”, put in quotation marks,
means the absence of a preferred metric. Referring to the background field formalism, no quo-
tation marks will be used.
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the resulting average action is a diffeomorphism invariant functional of its argu-
ments [79; 80; 81; 82; 83].

In the construction of the gravitational average action in [8] these two issues
are intertwined and because of the complexity of realistic RG flows it is not easy
to see how precisely the gµν -dependence of the IR cutoff ∆kS[hµν ;gµν ] influences
the flow. We shall describe this influence in a setting as “clean” as possible, namely
in an approximation to the full gravitational RG flow where gauge issues play no
role and the impact of this g-dependence of the cutoff can be studied in isolation.
The implications of the g-dependence are at the very heart of quantum gravity. It
arises only because the metric has the crucial property, not shared by any other
field, of defining the proper size of all dimensionful quantities, including that of k.

Within a different theory of gravity, and in a different formal setting, Flore-
anini and Percacci [84; 85] have made similar observations. They studied a per-
turbatively renormalizable gauge theory of vielbein and spin connection fields.
While asymptotic safety is not an issue there, they demonstrated that the quanti-
zation of the model results in a “bimetric theory”, and depending on which metric
is used in the ultraviolet (UV) regulator different effective potentials are obtained
for the conformal factor.

(E) The conformally reduced theory The system we are going to study in the fol-
lowing obtains by approximating the gravitational RG flow in two ways: First, we
restrict the theory space to that of the familiar Einstein–Hilbert truncation whose
RG flow is known in full generality [8; 11]. Second, we quantize only the con-
formal factor of the metric but not the other degrees of freedom it carries. This
“conformally reduced Einstein–Hilbert” (or “CREH”) truncation leads to a modi-
fied RG flow on the same theory space as the full Einstein–Hilbert truncation, and
it will be very instructive to compare the two.

All metrics appearing in the CREH framework, the integration variable in the
path integral, γµν , as well as gµν and gµν , are of the type “conformal factor
times ĝµν ” where ĝµν is a reference metric which is never changed; for exam-
ple, ĝµν = δµν . In this way, γµν , gµν , and gµν get represented by a single “scalar”
function, their respective conformal factor. The background metric, for instance,
is written as gµν = χ2

B(x) ĝµν . If one inserts the metric φ 2 ĝµν into the Einstein–
Hilbert action one obtains a φ 4-type action for the field φ , with a φ 4-coupling
proportional to the cosmological constant. We shall analyze this scalar-looking
theory by means of an effective average action. We use a background approach
which is analogous to the one used in the full gravitational FRGE. In particular,
the conformal factor of gµν sets the physical scale of k. So, conceptually, this sim-
plified setting is exactly the same as in the full gravitational flow equation, the
only difference is that we allow only the quantum fluctuations of the conformal
factor to contribute to the RG running of the couplings, i.e., the Newton and the
cosmological constant, respectively.

(F) Conformal factor versus φ 4-theory The standard quantization of φ 4-theory by
means of an FRGE for the average action is fairly well understood [52; 53]. It
amounts to using a gµν -independent cutoff. Here ∆kS is built from ĝµν which is
usually taken to be the metric of flat Euclidean space. It is this metric ĝµν which
defines the meaning of k. This scheme is the natural one when φ is a conventional
scalar matter field. By now a lot is known about the resulting RG flow [52; 53].
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In particular, above all mass thresholds one recovers the ln(k)-running of the φ 4-
coupling which is familiar from perturbation theory.

If φ is the conformal factor of the metric the situation is different. Now it is
natural to define ∆kS and hence k in terms of the adjustable background metric
gµν = χ2

B(x) ĝµν ; its conformal factor χB is determined dynamically by the condi-
tion that the fluctuations about χB have vanishing expectation value. We shall see
that the resulting RG flow is quite different from the standard scalar one. Typically
one finds that the RG running is much faster in the gravitational case.

For instance, there is a regime where the slow ln(k)-running of the standard
scalar is replaced by a much stronger k4-running of the φ 4-coupling. In this regime
the φ 4-coupling is proportional to the cosmological constant, Λk. Hence, in this
particular regime, Λk ∝ k4. This quartic cutoff dependence is something very well
known, of course. It is precisely what one finds by summing zero-point energies,
or rediscovers as quartic divergences in ordinary Feynman diagram calculations.
Moreover it agrees with the result from the full Einstein–Hilbert truncation.

To summarize this important point: the (expected) behavior Λk ∝ k4 obtains
only if we respect “background independence” and appreciate the very special
role of gravity, namely that it determines all proper scales, including that of k. We
find Λk ∝ k4 only if we define the cutoff with gµν = χ2

B(x) ĝµν , while we obtain
the much weaker k-dependence Λk ∝ ln(k) if we treat φ as an ordinary scalar.

Earlier on Polyakov [86] and Jackiw et al. [87] have pointed out that in the
CREH approximation the gravitational action is of the φ 4-type and argued on the
basis of standard scalar field theory that the cosmological constant should have a
logarithmic scale dependence therefore. Our results indicate that if one wants to
attach a physical meaning to k by measuring it in units of φ itself the running of
Λk is much faster in fact.

(G) Asymptotic safety in a φ 4-type theory Perhaps the most unexpected and strik-
ing feature of the CREH flow is that it admits a non-Gaussian RG fixed point
(NGFP) with exactly the same qualitative properties as the one in the full Einstein–
Hilbert truncation. The comparatively simple dynamics of a φ 4-theory is enough
to achieve asymptotic safety provided one quantizes the theory in a “background
independent” way.

At the NGFP the cosmological constant is positive and this translates to a
negative φ 4-coupling. Long ago Symanzik [88], (for a historic account see [89])
showed that the scalar φ 4-theory with a negative coupling constant is asymptoti-
cally free; its coupling strength vanishes logarithmically at high momenta. Using
the cutoff appropriate for the gravitational field the asymptotically free RG flow
becomes an asymptotically safe one, a NGFP develops.

The investigations using the gravitational average action which have been per-
formed during the past few years [8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19;
20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31] indicate that full Quantum Einstein
Gravity (QEG) is indeed likely to possess a NGFP which makes the theory asymp-
totically safe. Increasingly complicated truncations of theory space were analyzed
whereby all modes of the metric were retained. The results which we shall describe
in the following indicate that the NGFP that was found in these analyses is perhaps
easier to understand than it was thought up to now. It seems that, to some extent,
it owes its existence to an essentially “kinematical” phenomenon which is related
to the requirement of “background independence” and the fact that the dynamical



6 M. Reuter, H. Weyer

field itself, the metric, determines the proper value of the coarse graining scale.
The complicated selfinteractions of the helicity-2 modes, on other hand, can be
omitted without destroying the NGFP. While also characteristic of gravity, they
seem not to be essential for asymptotic safety.

The remaining sections of this paper are organized as follows. As a prepara-
tion we discuss in Sect. 2 the conformally reduced Einstein–Hilbert action. Then,
in Sect. 3, we derive an exact flow equation for conformally reduced gravity. In
Sect. 4 we specialize it for the CREH truncation and explain in particular the con-
ceptual differences of the theory presented here and standard scalar matter field
theories. In Sect. 5 we analyze the RG equations obtained from the CREH trunca-
tion and show that they predict a NGFP. The conclusions are contained in Sect. 6.

For further details we refer the reader to [36] and [37].

2 The conformally reduced Einstein–Hilbert action

In d spacetime dimensions, the Euclidean Einstein–Hilbert action reads

SEH[gµν ] = − 1
16π G

∫
ddx

√
g (R(g)−2Λ). (2.1)

Henceforth we shall assume that the argument gµν is a conformal factor times
a fixed, non-dynamical reference metric ĝµν . We would like to parameterize this
conformal factor in terms of a “scalar” function φ(x) in such a way that the kinetic
term for φ becomes standard, ∝ (∂µ φ)2. This is indeed possible for any dimen-
sionality. Introducing φ according to [87],

gµν = φ
2ν(d) ĝµν , (2.2)

with the exponent

ν(d)≡ 2
d−2

(2.3)

standard formulas for Weyl rescalings yield the following result for SEH evaluated
on metrics of the form (2.2):

SEH[φ ]

=− 1
8π ξ (d)G

∫
ddx
√

ĝ
(

1
2

ĝ µν
∂µ φ ∂ν φ +

1
2

ξ (d) R̂φ
2−ξ (d)Λ φ

2d/(d−2)
)

. (2.4)

Here R̂ is the curvature scalar of the reference metric ĝµν , and

ξ (d) ≡ d−2
4(d−1)

. (2.5)

In 4 dimensions we have ν = 1 and ξ = 1/6 so that the choice

gµν = φ 2 ĝµν (2.6)



The role of background independence for asymptotic safety in QEG 7

converts the Einstein–Hilbert action to a kind of “φ 4-theory”:

SEH[φ ] =− 3
4π G

∫
d4x

√
ĝ
(

1
2

ĝ µν
∂µ φ ∂ν φ +

1
12

R̂φ
2− 1

6
Λ φ

4
)

. (2.7)

We shall refer to the action (2.4) and its special case (2.7) as the conformally
reduced Einstein–Hilbert or “CREH” action.

Up to now ĝµν is an arbitrary metric, defined on the same smooth manifold as
gµν . Later on we shall fix the topology of this manifold to be that of flat space Rd

or of the sphere Sd .
For d > 2, the case we shall always assume in the following, the kinetic term in

SEH[φ ] of (2.4) is always negative definite due to the “wrong sign” of its prefactor.
As a result, the action is unbounded below: for a φ(x) which varies sufficiently
rapidly SEH[φ ] can become arbitrarily negative. This is the notorious conformal
factor instability.

Leaving aside issues related to the functional measure, quantizing gravity in
the CREH approximation based upon the bare action SEH[φ ] is similar to quantiz-
ing a scalar theory with an action of the general type

S[φ ] = c
∫

d4x
{
−1

2
(∂φ)2 +U(φ)

}
(2.8)

where c is a positive constant. For the sake of the argument let us assume that
ĝµν = δµν is the flat metric on R4. Then SEH of (2.7) is indeed of the form (2.8)
with the potential U(φ) = 1

6 Λ φ 4 and c = 3/(4πG) > 0. Let us assume that the
cosmological constant is positive, the case which will be relevant later on. For
Λ > 0 the potential term in the action (2.8) is positive definite, while the kinetic
piece is negative definite. We would like to explore the quantum theory based upon
the functional integral

I ≡
∫

Dφ eiS̃[φ ] (2.9)

where S̃ is the Wick rotated version of S, with (∂φ)2 ≡ ηµν ∂µ φ ∂ν φ . One would
expect that in this theory the wrong sign of the kinetic term drives the conden-
sation of spatially inhomogeneous (x-dependent) modes, i.e. the formation of a
“kinetic condensate” similar to the one discussed in [90]. The amplitude of the
inhomogeneous modes cannot grow unboundedly since this would cost potential
energy.

Next let us look at the closely related theory with the “inverted” action Sinv[φ ]≡
−S[φ ]. Thus

Sinv[φ ] = c
∫

d4x
{

+
1
2
(∂φ)2 +V (φ)

}
(2.10)

with the negative potential

V (φ) ≡−U(φ)≤ 0. (2.11)

In pulling out a global minus sign from S the instability inherent in the theory has
been shifted from the kinetic to the potential term. According to Sinv, the kinetic
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energy assumes its minimum for homogeneous configurations φ = const, but the
inverted potential V (φ) =− 1

6 Λ φ 4 becomes arbitrarily negative for large φ .
Even though S and Sinv appear to be plagued by instabilities of a very different

nature, they nevertheless describe the same physics (up to a time reflection). The
path integrals involving S and Sinv are related by a simple complex conjugation:

Iinv ≡
∫

Dφ e−iS̃[φ ] = I∗. (2.12)

We shall refer to the formulation in terms of S and Sinv as the original picture and
the inverted picture, respectively.

So we see that for pure gravity in the CREH approximation the “wrong” sign
of the kinetic term can be traded for an upside down potential. The FRGE formal-
ism we are going to develop will effectively correspond to the inverted picture.
As we shall see it is indeed the Λ > 0 case that will be relevant to asymptotic
safety. Hence the conformal factor dynamics is described by an action with posi-
tive kinetic but negative potential term.

Interestingly enough, this kind of φ 4-theory with a negative coupling constant
was discussed by Symanzik [88] long ago. He showed that the coupling strength
vanishes at short distances, thus providing the first example of an asymptotically
free quantum field theory (for a historic account see [89]).

3 Effective average action for the conformal factor

3.1 The background field method

The most important difference between the conformal factor and an ordinary
scalar is that φ determines the magnitude of all physical scales; in particular it
determines the proper scale that is to be ascribed to a given numerical value of the
IR cutoff k appearing in the FRGE context. For this reason the quantization of φ

by means of an FRGE differs from the standard one. In fact, even though gauge
issues do not play any role here, the background field method has to be employed.
This approach will allow us to give a meaning to statements like “Γk describes
the dynamics of fields averaged over spacetime volumes of extension ∼ k−1” in
presence of a quantized metric where a priori it is unclear in which metric the
extension of those spacetime volumes is measured.

Before we can set up the RG formalism we must explain the background-
reformulation of the path integral underlying the quantum field theory of the con-
formal factor. We start from a formal path integral2∫

Dχ e−S[χ] (3.1)

where S is an arbitrary bare action (perhaps related, but not necessarily identical
to SEH) and χ(x) denotes the microscopic (“quantum”) conformal factor field.

2 Since this is customary in the literature we shall use a Euclidean notation in the general
discussions. At the formal level it is trivial to obtain the corresponding Lorentzian formulas by
replacing −S→ iS, etc.; for the time being the positivity properties of S play no role.
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(The notation φ(x) will be reserved for its expectation value.) We think of (3.1) as
descending from a path integral over quantum metrics γµν(x),∫

Dγµν e−Sgrav[γµν ], (3.2)

by a restriction to metrics of the form

γµν = χ2ν ĝµν . (3.3)

The integrals (3.1) and (3.2) refer to a spacetime manifold of a given topology and
ĝµν is a reference metric consistent with this topology. The action S[χ] depends
parametrically on ĝµν but we shall not indicate this dependence notationally. The
non-dynamical, classical metric ĝµν is considered fixed once and for all; it has no
analog in the full theory and is not to be confused with the background metric and
the corresponding conformal factor which we introduce next.

We decompose the variable of integration, χ , as the sum of a classical, fixed
background field χB and a fluctuation f :

χ(x) = χB(x)+ f (x). (3.4)

Even though we frequently use the term “fluctuation”, f (x) is not assumed small,
and no expansion in powers of f (x) is performed here. We assume that the measure
Dχ is translational invariant so that (3.1) can be replaced by

∫
D f exp(−S[χB +

f ]). Actually it is sufficient to assume that the original Dχ equals a translational
invariant measure up to a Jacobian since we may include the logarithm of this
Jacobian in S.

At this point it is natural to introduce a background-type generating functional
by coupling an external source J(x) to the fluctuation only:

exp(W [J; χB]) =
∫

D f exp
(
−S[χB + f ]+

∫
ddx

√
ĝ J(x) f (x)

)
. (3.5)

Repeated differentiation of W with respect to the source yields the connected n-
point functions of f in presence of J. In particular the normalized expectation
value of the fluctuation is

f (x)≡ 〈 f (x)〉=
1√
ĝ(x)

δW [J; χB]
δJ(x)

. (3.6)

The field thus obtained is functionally dependent on both J and χB, i. e. f =
f [J; χB]. We assume that this relationship can be solved for the source, J = J[ f ; χB],
and introduce the Legendre transform of W :

Γ [ f ; χB] =
∫

ddx
√

ĝ J[ f ; χB](x) f (x)−W [J[ f ; χB]; χB]. (3.7)

This definition implies the effective field equation

δΓ [ f ; χB]
δ f (x)

= J(x). (3.8)
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More generally, repeated differentiation of Γ with respect to f (x) yields the 1PI
n-point correlators of f in presence of J. The source can be “switched off” by
equating f after the differentiations to the function f 0[χB](x) ≡ f [J = 0; χB](x).
Note that f 0 has no reason to vanish in general, and that the resulting n-point
functions still depend on χB. The expectation value of the complete conformal
factor reads

φ ≡
〈
(χB + f )

〉
= χB + f , (3.9)

and sometimes it will be convenient to regard Γ a functional of φ and χB rather
than f and χB:

Γ [φ ,χB] ≡ Γ [ f = φ −χB; χB]. (3.10)

For the restriction of this function to equal arguments φ = χB which amounts to a
vanishing fluctuation expectation value we write

Γ [φ ] ≡ Γ [φ ,φ ] = Γ [ f = 0; χB = φ ]. (3.11)

It is instructive to compare the above generating functionals in the background
approach with those in the standard (“st”), i.e. non-background formalism. There
one would define Wst[J] by

exp(Wst[J]) =
∫

Dχ exp
(
−S[χ]+

∫
ddx

√
ĝ J(x)χ(x)

)
(3.12)

and the standard effective action Γst[φ ] would obtain as the Legendre transform of
Wst[J]. Exploiting the translational invariance of Dχ it is easy to see that the two
sets of functionals are related in a rather trivial way:

W [J; χB] = Wst[J]−
∫

ddx
√

ĝ J(x)χB(x) (3.13)

Γ [ f ; χB] = Γst[χB + f ] ⇐⇒ Γ [φ ,χB] = Γst[φ ] (3.14)

Γ [φ ] = Γst[φ ]. (3.15)

The key property of the background formalism is that the standard n-point func-
tions

δ nΓst[φ ]
δφ(x1) · · ·δφ(xn)

(3.16)

can alternatively be computed by differentiating the functional Γ [ f = 0; χB] =
Γ [χB] with respect to the background χB:

δ nΓ [ f = 0; χB]
δ χB(x1) · · ·δ χB(xn)

∣∣∣∣∣
χB=φ

≡ δ nΓst[φ ]
δφ(x1) · · ·δφ(xn)

. (3.17)

In the case at hand the equality of (3.16) and (3.17) is trivial since Γ [ f = 0; χB]
and Γst[χB] are exactly equal here.
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The situation is less trivial when one applies this formalism to gauge theories,
employing a gauge fixing term invariant under background gauge transformations.
Then the analogs of the n-point functions of (3.16) and (3.17) are not exactly
equal, but they are equal “on-shell”. As a result, both sets of correlators give rise
to the same set of physical S-matrix elements [79; 80; 81; 82; 83]. The important
conclusion is that even then the functional Γ which obtains by requiring that the
fluctuation has no expectation value ( f = 0) and depends only on one field (χB ≡
φ ) contains all of the physical, gauge-invariant information.

Before continuing let us summarize the status of the various metrics, all con-
formal to one another, that enter the construction. First, there is the reference met-
ric ĝµν , a classical field which is fixed once and for all and never gets varied.
Second, there is the quantum metric, the integration variable

γµν = χ2ν ĝµν = (χB + f )2ν ĝµν . (3.18)

In the canonical approach, this metric corresponds to an operator. Third, there is
the background metric defined by

gµν ≡ χ2ν
B ĝµν . (3.19)

It is a classical field again which is considered variable, however. In particular it
can be adjusted to achieve f = 0 if this is desired. Fourth, there is the expectation
value of the quantum metric

gµν ≡ 〈γµν〉 ≡ 〈(χB + f )2ν〉 ĝµν . (3.20)

And finally, fifth, there is the metric with the conformal factor φ . As φ ≡ χB + f =
χB + 〈 f 〉, it reads

ğµν ≡ φ 2ν ĝµν ≡ (χB + 〈 f 〉)2ν ĝµν . (3.21)

In general, gµν and ğµν are not exactly equal. However, they are approximately
equal if the quantum fluctuations of f are small. In d = 4 where ν = 1, for instance,
we have

gµν = gµν +[2 χB 〈 f 〉+ 〈 f 2〉] ĝµν

ğµν = gµν +[2 χB 〈 f 〉+ 〈 f 〉2] ĝµν .
(3.22)

Hence the difference gµν − ğµν = [〈 f 2〉−〈 f 〉2] ĝµν is proportional to the variance
of f so that gµν and ğµν are not very different if the fluctuations of f are “small”.
However, in order to make this statement precise one first would have to give a
meaning to the expectation value of the operator product f 2 with both operators at
the same point, something we shall not attempt here. Notice also that ğµν reduces
to gµν if f = 0 while gµν does not: gµν = gµν + 〈 f 2〉 ĝµν .

The metrics gµν and gµν are analogous to the fields with the same names in
the construction of the exact gravitational average action [8]. Certain differences
arise, however, since there a linear background–quantum split is performed at the
level of the full metric, while in the present approach the split is linear at the
level of the conformal factor. In [8] where the integral over all metrics γµν is dealt
with, one decomposes γµν = gµν + hµν and then integrates over the fluctuation
hµν . As a result, gµν = 〈γµν〉 = gµν + 〈hµν〉 is linear in the expectation value of
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the fluctuation so that there is no difference between gµν and ğµν . In the present
setting, on other hand, the metric γµν is parameterized by the fluctuation in a
nonlinear way: γµν = (χB + f )2ν ĝµν . This non-linearity is the price we have to
pay if we want the CREH action to look like that of a standard scalar φ 4-theory.

3.2 The average action of the conformal factor

From the technical point of view, the main problem consists in (approximately)
computing the path integral (3.5). Next we shall set up an RG formalism which
translates this problem into the equivalent problem of solving a certain functional
RG equation subject to a boundary condition involving S.

(A) Introducing a mode cutoff Using a variant of the effective average action for
scalars (for detailed reviews of asymptotic safety in gravity see [43; 44]),[45] we
modify (3.5) by introducing a mode-cutoff term into the path integral defining W :

exp(Wk[J; χB])

=
∫

D f exp
(
−S[χB + f ]−∆kS[ f ; χB]+

∫
ddx

√
ĝ J(x) f (x)

)
. (3.23)

The action ∆kS[ f ; χB] is to be constructed in such a way that the factor exp(−∆kS)
suppresses the long-wavelength modes of f (x) with momenta p . k while it does
not affect the short-wavelength modes with p & k. In order to arrive at an FRGE
of the familiar second-order type we take ∆kS to be quadratic in f :

∆kS[ f ; χB] =
1
2

∫
ddx

√
ĝ f (x)Rk[χB] f (x). (3.24)

Here Rk is a pseudodifferential operator which may depend on the background
field. Allowing for this χB-dependence is crucial in order to implement “back-
ground independence” [2; 3; 4; 5] and to give a “proper” meaning to the coarse
graining scale k in a theory with a dynamical metric.
(B) Giving a meaning to k In flat space the parameter k, by elementary Fourier the-
ory, has the interpretation of the inverse length scale over which the microscopic
fields are averaged or “coarse grained”. If we want to have a similar interpreta-
tion in quantum gravity we must decide with respect to which metric this length
scale is measured. In the background field approach, there is a canonical candidate
for a metric measuring the coarse graining scale, namely the background metric
gµν = χ2ν

B ĝµν . In fact, as we discussed in Sect. 1, the RG flow becomes “back-
ground independent” (in the sense of [2; 3; 4; 5]) if ∆kS is constructed from gµν ,
or χB here, rather than from a rigid metric. The key property of Rk[χB] is to dis-
tinguish “long-wavelength” and “short-wavelength” modes of f (x) whereby the
“length” is defined in terms of gµν , i.e. the background conformal factor χB.

The advantage of using the background field method is that at an intermediate
stage it decouples the field integrated over, the fluctuation f , from the field that
fixes the physical value of k, namely χB. At the very end, after the quantization
has been performed and the RG trajectories are known, we may set f = 0 with-
out loosing information. Then the scale dependent version of the single-argument
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functional defined above, Γ k[φ ≡ χB], depends only on one conformal factor, cor-
responding to “the” metric gµν , and its parameter k is a momentum measured,
indirectly, with respect to this metric.

(C) Which spectrum is cut off ? A cutoff operator Rk with the desired proper-
ties can be constructed along the following lines. We think of the functional inte-
gral (3.23) over f as being organized according to eigenfunctions of the Laplace–
Beltrami operator constructed from gµν :

� ≡ g−1/2 ∂µ g 1/2 g µν ∂ν . (3.25)

Expanding f in terms of (−�)-eigenfunctions, the task of Rk is to suppress those
with eigenvalues smaller than k2 by giving them a “mass” of the order k, while
those with larger eigenvalues must remain “massless” (for detailed reviews of
asymptotic safety in gravity see [43; 44]), [45]. In the simplest case, when the
f -modes have a kinetic operator proportional to � itself the rule is that the correct
Rk when added to Γ

(2)
k leads to the replacement

(−�)−→ (−�)+ k2 R(0)
(
−�
k2

)
. (3.26)

Here R(0)(z) is an arbitrary “shape function” interpolating between R(0)(0) = 1
and R(0)(∞) = 0, with a transition region centered around z = 1. These conditions
guarantee that the effective inverse propagator of the long- and short-wavelength
modes is−�+k2 and−�, respectively, and that the long/short-transition is at the
−�-eigenvalue k2, as it should be.

The coarse graining scale ` = `(k) corresponding to the cutoff value k is found
by investigating the properties of the −�-eigenfunction with eigenvalue k2, the
so-called “cutoff mode” [34; 35]: one determines its typical scale of variation
with respect to x (a period, say) and converts this coordinate length to a physical,
i. e. proper length using gµν . The result, `(k), is an approximate measure for the
extension of the spacetime volumes up to which the dynamics has been “coarse
grained”. If gµν is close to a flat metric, `(k) equals approximately π/k. (See
[34; 35] for a detailed discussion.) It is in this sense that the background metric
gµν , or rather its conformal factor χB, determines the physical (proper) scale of k.

Defining the scale k as a cutoff in the spectrum of the covariant Laplacian
built from gµν is in accord with the construction of the exact gravitational average
action in [8]; there, too, it is the background metric which sets the scale of k.

(D) Matter fields versus quantized gravity While the above choice of Rk appears
very natural, and in fact is the only meaningful one in the gravitational context,
every standard quantization and RG scheme which treats φ as an ordinary scalar
uses a differently defined cutoff, namely one based upon �̂. Here �̂ denotes the
Laplace–Beltrami operator pertaining to the reference metric, �̂= ĝ−1/2 ∂µ ĝ 1/2 ĝ µν ∂ν ,
and Rk is designed to implement the replacement

(−�̂)−→ (−�̂)+ k2 R(0)

(
−�̂
k2

)
. (3.27)
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In this case, the proper scale of k is determined by the metric ĝµν which, however,
at no stage of the construction acquires any physical meaning. As we empha-
sized, ĝµν is never varied. It “knows” nothing about the true (“on-shell”) metric of
spacetime, namely the particular background metric which adjusts itself dynami-
cally upon setting 〈 f 〉= 0. The scheme (3.27) is the correct choice if one considers
χ a standard scalar field on a non-dynamical spacetime with metric ĝµν , on flat
space (ĝµν = δµν ), for instance. The average action formalism based upon (3.27)
reproduces all the familiar results of perturbation theory, the ln(k)-running of the
quartic coupling in φ 4-theory, for instance.

Since ĝµν is a rigid metric, the flow resulting from the substitution (3.27) is
not “background independent” in the sense of [2; 3; 4; 5], while (3.26) does indeed
give rise to a “background independent” RG flow.

As we shall see, the flow based upon the �-scheme (3.26) is extremely dif-
ferent from the one for standard scalars. The reason is, of course, that via the
χB-dependence of � the gravitational field itself sets the scale of k. The difference
between (3.26) and (3.27) becomes manifest when we recall that the Laplacians
of ĝµν and gµν = χ2ν

B ĝµν are related by

� = χ
−2ν

B �̂+O(∂ χB). (3.28)

The factor χ
−2ν

B leads to dramatic modifications of the RG flow whereas the
O(∂ χB)-terms are less important; within the Einstein–Hilbert truncation they play
no role.

(E) Defining Γk The remaining steps of the construction follow the familiar rules
(for detailed reviews of asymptotic safety in gravity see [43; 44]), [42; 52; 53].
One defines the k-dependent field expectation value

f (x)≡
〈

f (x)
〉

k =
1√
ĝ(x)

δWk[J; χB]
δJ(x)

, (3.29)

solves for the source, J(x) = Jk[ f ; χB](x), and finally defines the effective average
action Γk as the Legendre transform of Wk with ∆kS[ f ; χB] subtracted:

Γk[ f ; χB] =
∫

ddx
√

ĝ f (x)Jk[ f ; χB](x)−Wk
[
Jk[ f ; χB]; χB

]
−1

2

∫
ddx

√
ĝ f Rk[χB] f . (3.30)

In analogy with (3.10) and (3.11) we also introduce

Γk[φ ,χB]≡ Γk[ f = φ −χB; χB] (3.31)

Γ k[φ ] ≡ Γk[φ ,φ ] = Γk[ f = 0; χB = φ ]. (3.32)

(F) The flow equation The main properties of Γk are easily established along the
same lines as in standard scalar theories (for detailed reviews of asymptotic safety
in gravity see [43; 44]), [45; 52; 53]. In particular, differentiating (3.23) with
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respect to k leads to the following FRGE which governs the scale dependence
of Γk:

k∂k Γk[ f ; χB] =
1
2

Tr
[(

Γ
(2)

k [ f ; χB]+Rk[χB]
)−1

k∂k Rk[χB]
]
. (3.33)

Here Γ
(2)

k is the matrix of second functional derivatives of Γk[ f ; χB] with respect
to f at fixed χB. In bra–ket notation,

〈x|Γ (2)
k |y〉=

1√
ĝ(x)

√
ĝ(y)

δ 2Γk[ f ; χB]
δ f (x)δ f (y)

. (3.34)

Note that the metric appearing in formulas such as (3.29) or (3.34) is ĝµν (and
not gµν ). Correspondingly Tr(· · ·)≡

∫
ddx

√
ĝ 〈x|(· · ·)|x〉. Notice also that, since

the f -derivatives are to be performed at fixed χB, the FRGE (3.33) cannot be for-
mulated in terms of the single-argument functional Γ k alone. Hence the relevant
theory space consists of functionals depending on two fields, f and χB, or alterna-
tively φ and χB.

By construction Rk vanishes for k → 0. As a consequence, Γk reduces to the
ordinary effective action in this limit:

Γk=0[ f ; χB] = Γ [ f ; χB]

Γ k=0[φ ] = Γ [φ ].
(3.35)

Hence Γk→0 and Γ k→0 satisfy the relations (3.14) and (3.15), respectively. They
entail that Γk=0[ f ; χB] actually depends on the sum χB + f only. This is not true for
k 6= 0, the reason being that in general ∆kS[ f ; χB] depends on f and χB separately,
not only on their sum. In the opposite limit k→∞, Γk[ f ; χB] approaches S[χB + f ]
plus a computable correction term, see [91] for a detailed discussion of this point.

4 The CREH truncation

4.1 The Ansatz for Γk

In this section we specialize the as to yet exact flow (3.33) for the “CREH trunca-
tion”.3 It involves two approximations:

1. The usual Einstein–Hilbert truncation.
2. The conformal reduction: only the conformal factor is quantized while all

other degrees of freedom contained in the metric as well as the Faddeev–
Popov ghost fields are neglected.

To make the presentation as transparent as possible we specialize for d = 4 in the
following.

3 For a different approach to the quantization of conformal fluctuations see [92].
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The truncation ansatz for Γk[ f ; χB] is given by the reduced functional SEH[χB +
f ] from (2.7) with a k-dependent Newton constant Gk and cosmological constant
Λk:

Γk[ f ; χB] = − 3
4π Gk

∫
d4x

√
ĝ
{
−1

2
(χB + f )�̂(χB + f )

+
1
12

R̂(χB + f )2− 1
6

Λk (χB + f )4
}

. (4.1)

Here χB and f are still arbitrary functions of x. Parametrically the average action
also depends on the, equally arbitrary, reference metric ĝµν with Ricci scalar R̂
and Laplace–Beltrami operator �̂. For this action the Hessian (3.34) has the form
〈x|Γ (2)

k |y〉= Γ
(2)

k δ 4(x−y)/
√

ĝ(x) where Γ
(2)

k is to be interpreted as a differential
operator acting on x; it reads

Γ
(2)

k [ f ; χB] =− 3
4π Gk

{
−�̂x +

1
6

R̂(x)−2Λk
(
χB(x)+ f (x)

)2
}

. (4.2)

We shall come back to this operator shortly.

4.2 The projected RG equations

(A) The strategy In order to determine the β -functions for the running Newton
constant Gk and cosmological constant Λk we proceed as follows. The first step
consists in inserting the ansatz into the flow equation, both on its LHS, where we
get k-derivatives of Gk and Λk, and on its RHS where we are left with the problem
of calculating a functional trace involving Γ

(2)
k . It is sufficient to compute this trace

in a derivative expansion which retains only those terms which are also present
on the LHS of the flow equation, namely those proportional to the monomials
φ �̂φ , R̂φ 2, and φ 4 where φ ≡ χB + f . If we then equate the coefficients of equal
monomials on the LHS and RHS we find the desired RG equations of Gk and Λk.

(B) The derivative expansion Without loosing information this calculation can
be performed with a homogeneous background field: χB(x) = const ≡ χB. The
following two calculations are necessary then in order to “project out” the three
monomials of interest:

(i) Evaluation of the functional trace for a flat metric ĝµν = δµν and a non-zero,
non-constant field f (x). Only the term f �̂ f must be retained. Comparing it
to the relevant term of the LHS,

k∂k Γk[ f ; χB] = +
3

4π
k∂k

(
1

Gk

) ∫
d4x

1
2

f �̂ f + · · · (4.3)

yields the β -function of Gk.



The role of background independence for asymptotic safety in QEG 17

(ii) Evaluation of the functional trace for f ≡ 0 and ĝµν arbitrary whereby only
the monomials χ4

B and R̂ χ2
B are retained. Comparison with the correspond-

ing terms on the LHS,

k∂k Γk[0; χB]

=− 3
4π

∫
d4x

√
ĝ
{

1
12

k∂k

(
1

Gk

)
R̂ χ

2
B−

1
6

k∂k

(
Λk

Gk

)
χ

4
B + · · ·

}
(4.4)

allows for the computation of ∂k(Λk/Gk) and an alternative determination
of ∂kGk.

Since both the φ �̂φ and the R̂φ 2 term appear with the same prefactor 1/Gk we
can derive a β -function for Gk from either of them. They involve the anomalous
dimension ηN, and the two versions stemming from the kinetic and the potential
term ∝ φ 2 will be denoted η

(kin)
N and η

(pot)
N , respectively. We do not expect these β -

functions or anomalous dimensions to be exactly equal, but if our approximation
makes sense they should be similar at least.

(C) The explicit form of Rk Before we can embark on these calculations we must
address the question of how Rk is to be adjusted. The IR cutoff at k must be
imposed on the spectrum of �, not that of �̂. Since χB = const in the case at
hand, the two operators are related by

�̂ = χ2
B � (4.5)

so that we may reexpress Γ
(2)

k as

Γ
(2)

k [ f ; χB] =− 3
4π Gk

{
−χ

2
B �+

1
6

R̂−2Λk (χB + f )2
}

. (4.6)

Now we define Rk in such a way that it leads to the replacement (3.26) when
added to Γ

(2)
k :

Γ
(2)

k [ f ; χB]+Rk[χB]

=− 3
4π Gk

{
χ

2
B [−�+ k2 R(0)(−�/k2)]+

1
6

R̂−2Λk (χB + f )2
}

. (4.7)

As a consequence, the cutoff operator has an explicit dependence on the back-
ground field:

Rk[χB] = − 3
4π Gk

χ
2
B k2 R(0)

(
−�

k2

)
= − 3

4π Gk
χ

2
B k2 R(0)

(
− �̂

χ2
B k2

)
(4.8)

The two factors of χ2
B appearing in the second line of (4.8) are the crucial dif-

ference between our treatment of the conformal factor and a standard scalar. If,
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instead of (3.26), we had applied the “substitution rule” (3.27) they would have
been absent.

(D) The functional trace Upon inserting the above Rk and reexpressing � as �̂/χ2
B

the flow equation assumes the form

k∂k Γk[ f ; χB]

= χ
2
B k2 Tr

[{(
1− 1

2
ηN

)
R(0)

(
− �̂

χ2
B k2

)
−
(
− �̂

χ2
B k2

)
R(0)′

(
− �̂

χ2
B k2

)}

×

(
−�̂+

1
6

R̂+ χ
2
B k2 R(0)

(
− �̂

χ2
B k2

)
−2Λk

(
χB + f

)2

)−1]
.

(4.9)

In evaluating the derivative ∂kRk we encountered the anomalous dimension ηN,
defined in the same way as in [8]:

ηN ≡+k∂k lnGk. (4.10)

Note that in (4.9) the overall minus sign of Rk, and hence k∂kRk, got canceled
against the overall minus sign of Γ

(2)
k +Rk in (4.7). This is the step where, within

the present setting, the transition from the “original” to the “inverted” picture has
taken place. The factor (· · ·)−1 under the trace of (4.9) is the propagator of a
mode with positive kinetic, but negative potential energy. This is an example of
the “Zk = zk rule” discussed in [8] and [12].

The only specialization which entered (4.9) is χB = const; the reference metric
ĝµν and the fluctuation average f are still arbitrary. Therefore (4.9) can serve as
the starting point for the two calculations (i) and (ii) which must be performed at
this point.

(E) The resulting beta functions The details of the calculations, for an arbitrary
shape function R(0) and any spacetime dimension d can be found in [36]. Here we
only present the final result for the RG equations, in d = 4 dimensions, employing
the “optimized” shape function of [93; 94; 95]:

R(0)(z) = (1− z)θ(1− z). (4.11)

It is convenient to express the coupled system of differential equations for New-
ton’s constant and the cosmological constant in terms of the dimensionless cou-
plings

gk ≡ k2 Gk, λk ≡Λk/k2. (4.12)

This choice of variables makes the system autonomous:

k∂k gk = βg(gk,λk) = [2+ηN(gk,λk)] gk (4.13)
k∂k λk = βλ (gk,λk). (4.14)

For the anomalous dimension coming from the kinetic term we obtain explicitly

η
(kin)
N (gk,λk) =− 2

3π

gk λ 2
k

(1−2λk)4 . (4.15)
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The one derived from the potential has the familiar structure [8]

η
(pot)
N (gk,λk) =

gk B1(λk)
1−gk B2(λk)

(4.16)

with the following B-functions:

B1(λk) =
1

3π

(
1
4
−λk

)
1

(1−2λk)2 (4.17a)

B2(λk) = − 1
12π

(
1
3
−λk

)
1

(1−2λk)2 . (4.17b)

For βλ one finds

βλ (gk,λk) =−(2−ηN)λk +
gk

4π

(
1− 1

6
ηN

)
1

1−2λk
(4.18)

where either η
(kin)
N or η

(pot)
N is to be inserted for ηN.

Using η
(kin)
N the β -functions have poles at λ = 1/2 and are regular otherwise.

The physically relevant part of the parameter space is the half plane to the left of
this line (λ < 1/2), as in the full theory [11].

With η
(pot)
N the boundary of the “physical” parameter space is given by a curve

to the left of the λ = 1/2-line. Along this line, 1− gB2(λ ) = 0, so that η
(pot)
N

diverges there, |η (pot)
N | = ∞. Parameterizing this curve as g = g(pot)

η (λ ) we have
explicitly

g(pot)
η (λ ) = 12π

(1−2λ )2

λ −1/3
. (4.19)

In either of the two cases, the existence of a boundary in (g,λ )-space entails
that some of the RG trajectories terminate already at a finite value of k when they
run into the boundary line. Within the full Einstein–Hilbert truncation, the status
of the singularities has been discussed in detail in the literature [11; 16; 17; 28;
29; 30; 31; 73]. They have been interpreted as a breakdown of the truncation in
the infrared. The continuation to k = 0 would presumably require a more general
ansatz for Γk.

4.3 Comparison with the standard scalar FRGE

One might wonder how the RG equations for the conformal factor relate to those
for a standard scalar [52; 53]. The comparison reveals that both the structure of
the equation and their solutions are quite different in the two cases. We shall see
this in more detail in Sect. 5. Here we only mention the most striking deviation.

Let us consider an RG trajectory in a regime where the anomalous dimension
is small so that we may approximate ηN = 0. (In the next section we shall see
that there are indeed trajectories with ηN ≈ 0 over a large range of scales.) Then
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(4.10) integrates to Gk = const ≡ G, and the equation for λk involves the corre-
spondingly simplified β -function (4.18), with gk ≡ Gk2. In terms of the ordinary,
dimensionful cosmological constant Λk ≡ k2 λk this RG equation reads

k∂k Λk =
G
4π

k6

k2−2Λk
. (4.20)

In particular, when Λk � k2 it simplifies to

k∂k Λk =
1

4π
Gk4. (4.21)

Obviously the RG equations of the CREH truncation imply a quartic running of
the cosmological constant as long as is small and G is approximately constant.

With quantum gravity in the back of our mind this result is no surprise. It is
exactly what one finds in the full Einstein–Hilbert truncation [8], except for the
prefactor of Gk4 which is anyhow non-universal. In fact, the k4-running (4.21) is
what all methods for summing zero-point energies would agree upon. In particular
it can be seen as a reflection of the well known quartic divergences which appear
in all Feynman diagram calculations (and are usually “renormalized away”). So
there can be no doubt that (4.21) is the physically correct answer for the regime
considered.

On other hand, from the scalar field perspective, the quartic running is a sur-
prise. In the CREH ansatz for Γk the cosmological constant Λk plays the role of
a φ 4-coupling constant which behaves as Λk ∝ k4 here. This very strong scale
dependence has to be contrasted with the much weaker, merely logarithmic k-
dependence one finds in an ordinary scalar theory on a 4-dimensional flat space-
time (provided k is above all mass thresholds, if any).

The origin of this significant difference in the RG running of the φ 4-coupling,
proportional to ln(k) for a standard scalar and ∝ k4 for the conformal factor, is
clear: the conformal factor determines the proper scale of the cutoff, while a
scalar matter field does not. When we constructed the operator Rk in Sect. 4.2
we explained how the special status of the conformal factor comes into play. We
saw that if the coarse graining scale is to be given a physical meaning, k should
be a cutoff in the spectrum of the background field dependent operator �, and this
led to the substitution rule (3.26).

Thus it becomes obvious that “background independence” leads to RG equa-
tions different from those of a scalar matter field. In the construction of the exact
gravitational average action in [8] where all degrees of freedom carried by the
metric are quantized “background independence” has likewise been taken care of.
There it is the full background metric gµν , the generalization of χ2

B here, which
enters Rk and sets the scale of k.

5 Asymptotic safety in the CREH truncation

In this section, we analyze the physical contents of the RG flow in the CREH
truncation, being particularly interested in the asymptotic safety issue.
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5.1 Antiscreening

From the definition (4.10) it follows that the RG running of the dimensionful New-
ton constant is given by

k∂k Gk = ηN Gk. (5.1)

If ηN > 0, Newton’s constant increases with increasing mass scale k, while it
decreases if ηN < 0. In analogy with gauge theory one refers to the first case as
“screening”, the second as “antiscreening”. In the full4 calculation, ηN was of the
antiscreening type in the entire physical part of the (g,λ )-plane.

If we determine ηN from the kinetic term, the corresponding CREH result
η

(kin)
N is negative for any value of g > 0 and λ . This corresponds to the antis-

creening case: Newton’s constant decreases at high energies. So the remarkable
result is that the quantization of the conformal factor alone is already sufficient to
obtain gravitational antiscreening. The spin-2 character of the metric field seems
not essential and its selfinteractions (vertices) coming from

∫
d4x

√
g R seem not to

play the dominant role.
If we take the ηN from the potential we find that, if g > 0,

η
(pot)
N ≤ 0, if λ ≥ 1/4,

η
(pot)
N > 0, if λ < 1/4.

(5.2)

The anomalous dimension η
(pot)
N vanishes along the line λ = 1/4.

5.2 Fixed points

Next we search for fixed points of the system of differential equations (4.13),
(4.14), i. e. points (g∗,λ∗) such that βg(g∗,λ∗) = 0 = βλ (g∗,λ∗).

From (4.15), (4.17), and (4.18) it is obvious that for either choice of ηN the
system has a fixed point at the origin, referred to as the Gaussian fixed point (GFP):
gGFP
∗ = λ GFP

∗ = 0.
A non-Gaussian fixed point (NGFP), if any, would satisfy the condition βg = 0

with non-zero values of g∗ or λ∗ such that ηN(g∗,λ∗) =−2. Upon inserting ηN =
−2 into (4.18) the condition βλ = 0 assumes the simple form

g∗ = 12π λ∗ (1−2λ∗). (5.3)

The second condition for g∗ and λ∗ depends on the choice for ηN.
If we use the ηN from the kinetic term given by (4.15) the condition η

(kin)
N (g∗,λ∗)=

−2 reads

g∗
λ 2
∗

(1−2λ∗)4 = 3π. (5.4)

4 Here and in the following “full calculation” always refers to the complete calculation within
the Einstein–Hilbert truncation in [8].
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The system of (5.3), (5.4) is easily decoupled by inserting g∗ of (5.3) into (5.4).
Remarkably, one does indeed find a real solution:

λ∗ =
1
2

21/3(
1+21/3

) ≈ 0.279 (5.5a)

g∗ = 6π
21/3(

1+21/3
)2 ≈ 4.650. (5.5b)

The existence of this NGFP comes as a true surprise; it has no counterpart in
ordinary 4-dimensional φ 4-theory.

If instead we use the ηN from the potential given by (4.16) with (4.17) the
condition η

(pot)
N (g∗,λ∗) =−2 can be written as

g∗

(
λ∗−

5
18

)
= 4π (1−2λ∗)

2 . (5.6)

The coupled equations (5.6) and (5.3) can be solved analytically again and they,
too, give rise to real and positive fixed point coordinates:

λ∗ =
7

36
(
√

481/49 −1)≈ 0.415 (5.7a)

g∗ = 12π λ∗ (1−2λ∗)≈ 2.665. (5.7b)

The individual values of g∗ and λ∗ as obtained from the two calculational
schemes do not quite agree. However, this does not come unexpected. The mere
coordinates of the fixed point are not directly related to anything observable and,
in fact, are scheme dependent or “non-universal”. On the other hand, the product
g∗λ∗ has been argued [10; 12] to be universal and can be measured in principle.
And indeed, the products of the numbers in (5.5) and in (5.7) agree almost per-
fectly within the precision one could reasonably expect:

(g∗λ∗)(kin) ≈ 1.296, (g∗λ∗)(pot) ≈ 1.106. (5.8)

According to both calculations the respective NGFP is always located within
the physical part of the (g,λ )-plane.

It is straightforward to generalize the calculations for arbitrary dimensional-
ities d, see [36]. The numerical results for d between 3 and 10 are displayed
in Table 1. In all dimensions considered a NGFP is found to exist, with g∗ > 0
and λ∗ > 0. For each value of d, the table contains the results obtained within
the full Einstein–Hilbert (EH) truncation as well as the “pot” and “kin” vari-
ants of the CREH truncation. It contains also the generalization of g∗λ∗, namely
τd ≡ λ∗g

2/(d−2)
∗ which is the fixed point value of the dimensionless combina-

tion ΛkG2/(d−2)
k = λkg2/(d−2)

k . (Note that in d dimensions gk = kd−2 Gk and λk =
k−2 Λk.) It is impressive to see how well the “pot” and “kin” values of τd agree
for any d ≥ 4. As compared to the full Einstein–Hilbert result, the τd-values are
always larger by about a factor of 10.

We interpret this factor as indicating that the conformal factor is not the only
degree of freedom driving the formation of a NGFP, but its contribution is typical
in the sense that it leads to an RG flow which is qualitatively similar to the full
one.
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Table 1 This table compares the properties of the NGFP as obtained from the full Einstein–
Hilbert calculation and the corresponding CREH results based upon η

(kin)
N and η

(pot)
N , respec-

tively

d Trunc. g∗ λ∗ τd θ ′ θ ′′

3 Full EH 0.202139 0.0651806 0.00266329 1.11664 0.827598
CREH, pot 0.172872 0.233092 0.00696588 −3.54754 4.92795
CREH, kin 0.391798 0.126945 0.0194868 2.04572 3.60445

4 Full EH 0.707321 0.193201 0.136655 1.4753 3.04321
CREH, pot 2.6654 0.41477 1.10553 1.47122 9.30442
CREH, kin 4.65005 0.278753 1.29622 4.0 6.1837

5 Full EH 2.85863 0.234757 0.472851 2.76008 5.12941
CREH, pot 26.9696 0.557727 5.01577 5.81627 12.0556
CREH, kin 42.3258 0.417188 5.06681 6.27681 8.6899

6 Full EH 13.8555 0.255477 0.950958 4.48592 7.07967
CREH, pot 243.547 0.674559 10.5272 10.8493 14.3777
CREH, kin 361.57 0.537523 10.221 8.81712 11.1844

7 Full EH 76.3589 0.269073 1.5241 6.51007 8.9431
CREH, pot 2134.67 0.77282 16.5886 17.0223 15.9635
CREH, kin 3069.3 0.641211 15.9154 11.591 13.6754

8 Full EH 464.662 0.279376 2.16389 8.78536 10.7446
CREH, pot 18744.8 0.857143 22.7691 24.6444 16.0092
CREH, kin 26451.9 0.730796 21.7745 14.5789 16.1597

9 Full EH 3066.23 0.287851 2.85326 11.2969 12.4932
CREH, pot 167205.0 0.930559 28.9135 33.9881 12.4239
CREH, kin 233516.0 0.808694 27.6432 17.7666 18.6307

10 Full EH 21673.5 0.295179 3.58153 14.044 14.1871
CREH, pot 1.52489×106 0.995177 34.9712
CREH, kin 2.11943×106 0.876935 33.4597 21.1433 21.0813

5.3 Critical exponents of the NGFP

The properties of the RG flow on (g,λ )-space linearized about the NGFP are
determined by the stability matrix

B =

 ∂βλ

∂λ

∂βλ

∂g
∂βg
∂λ

∂βg
∂g

 (5.9)

evaluated at (g∗,λ∗). Using the same notation as in [10; 11] we write the corre-
sponding eigenvalue problem as BV =−θ V and refer to the negative eigenvalues
θ as the “critical exponents”. In general B is not expected to be symmetric.

Employing the ηN from the kinetic term the resulting eigenvalues are non-zero
and complex. The two critical exponents θ1,2 = θ ′± iθ ′′ form a complex conjugate
pair with real and imaginary parts given by, respectively,

θ
′ = 4, θ

′′ = 2
√

2
√

1+3 ·21/3 ≈ 6.1837 (5.10)

The positive real part indicates that the NGFP is UV attractive (attractive for
k → ∞) in both directions of the (g,λ )-plane. The non-vanishing imaginary part
implies that near the NGFP the RG trajectories are spirals. This is exactly the same
pattern as in the full Einstein–Hilbert truncation [11].
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Fig. 1 The figure shows the RG flow on the (g,λ )-plane which is obtained from the CREH
truncation with η

(kin)
N . The arrows point in the direction of decreasing k

Using instead the ηN from the potential we find the same qualitative behavior,
but the exponents are somewhat different:

θ
′ ≈ 1.471, θ

′′ ≈ 9.304 (5.11)

The discrepancy between (5.10) and (5.11) can serve as a rough measure for
the accuracy of the calculation. First of all it is gratifying to see that both cal-
culations lead to the same qualitative behavior: attractivity in both directions of
parameter space, and a non-zero imaginary part. Numerically, the values for θ ′

and θ ′′ probably can be trusted only within a factor of 2 or so. In Table 1 we dis-
play the critical exponents also for the other dimensions and compare them to the
values in the full calculation.

It has to be emphasized, however, that even in an exact treatment of the con-
formally reduced theory the resulting critical exponents would have no reason to
agree with those from full QEG which quantizes also the other degrees of freedom
contained in the metric. The field contents of the two theories is different, and so
one would expect them to belong to different universality classes, with different
θ ’s.

5.4 The phase portrait

Finally we solve the coupled equations (4.13), (4.14) numerically in order to
obtain the phase portrait of the CREH flow. Using the anomalous dimension η

(kin)
N

we find the result displayed in Fig. 1. This flow diagram is strikingly similar to the
corresponding diagram of the full Einstein–Hilbert truncation.5 The flow is domi-
nated by the NGFP and the GFP at the origin, and we can distinguish three types
of trajectories spiraling out of the NGFP. They are heading for negative, vanish-
ing, and positive cosmological constant, respectively, and correspond exactly to
the Type Ia, IIa, and IIIa trajectories of the full flow [11]. The trajectories of the
CREH Types Ia and IIa extend down to k = 0, those of Type IIIa terminate at a
non-zero kterm when they reach λ = 1/2, exactly as in the full theory.

If we solve the RG equations with the second version of the anomalous dimen-
sion, η

(pot)
N , we obtain the phase portrait shown in Fig. 2. In the vicinity of the GFP

and NGFP, respectively, the structure of the flow, again, is exactly the same as in
the full theory. The only new feature here is that there exist trajectories which
begin and end on the boundary of the physical part of (g,λ )-space which is given
by (4.19). Even though this feature is different from the full EH flow we see that
the conformal factor drives the flow in the same direction as the full metric and
is in this sense representative. It is, however, too weak to push the trajectories
sufficiently strongly away from the hyperbolic shape they have in absence of any
non-trivial RG effects [73].

5 See the diagram in Fig. 12 of [11].
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Fig. 2 As in Fig. 1, but with η
(pot)
N . The fat line is the boundary of the physical parameter space

on which η
(pot)
N diverges

The overall conclusion of this anaysis is that the RG flow implied by the scalar-
like CREH theory, at least in a neighborhood of the two fixed points, is qualita-
tively identical to that of the full Einstein–Hilbert truncation. In particular both
versions of ηN agree on the existence of a NGFP with precisely the properties
required for asymptotic safety.

6 Summary

The ultimate theory of quantum gravity we are aiming at should be able to explain
rather than merely postulate the spacetime we are living in. Therefore the con-
ceptual foundations of this theory, at no point, should depend on any special non-
dynamical spacetime. For QEG this entails that the quantization must not involve
any distinguished metric, that is, it should be performed in a “background inde-
pendent” way. Within the asymptotic safety program one tries to define QEG in
terms of an RG trajectory on the theory space of the gravitational average action
Γk, and this trajectory is supposed to possess an ultraviolet fixed point. Since renor-
malization group concepts are crucial in this context one is led to ask what is the
significance and role of “background independence” for RG flows.

Among all the fields we use in order to describe Nature the metric enjoys a
special status since it fixes the proper value of any dimensionful physical quantity.
When one applies the Kadanoff–Wilson interpretation of RG flows as a sequence
of consecutive coarse graining steps to quantum gravity one would like to give an,
at least approximate, physical meaning to the notion of a coarse graining scale.
The effective average action Γk[gµν ,gµν ] meets this requirement by introducing
k as a cutoff in the spectrum of the covariant Laplacian pertaining to the back-
ground metric gµν . Hence the mass scale k is “proper”, in the sense of the “cutoff
modes” [34; 35], with respect to gµν . Therefore the mode suppression term ∆kS
and, as a result, the cutoff operator Rk depend on the background field in a non-
trivial way which has a strong impact on the resulting RG flow. We saw that to
some extent asymptotic safety, the formation of a non-Gaussian fixed point, is an
essentially “kinematical” phenomenon resulting from this gµν -dependence of the
cutoff operator. This specific gµν -dependence is forced upon us by the require-
ment of “background independence”; it has no analog in matter field theories on a
non-dynamical spacetime.

We illustrated these issues by means of the CREH truncation which quantizes
only one of the degrees of freedom contained in the metric, the conformal factor.
If we proceed naively and ignore the special status of the metric we arrive at
the φ 4-theory with a negative quartic coupling which, according to Symanzik, is
asymptotically free. If, instead, the metric itself is used to set the proper scale of k,
then the RG flow is different; in particular there exists a non-Gaussian fixed point
which is suitable for the asymptotic safety program.

It is quite remarkable that, at the qualitative level, this simple scalar–like the-
ory has exactly the same flow diagram as the full Einstein–Hilbert truncation.
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It is therefore plausible to conjecture that the complicated selfinteractions of the
helicity-2 modes, another feature that distinguishes the metric from matter fields,
is possibly not at the heart of asymptotic safety in gravity. Rather, a “background
independent” quantization scheme seems to be essential.
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