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1. Introduction

Quantum algebras were introduced at first in Refs.[1,2].Then this
oonoept was developed in details in Refs.[3,4] and in the papers of
other authors (see for example [5-11] and the papers oited there). Be—
ocause of deep analogy oonsisting between quantum and usual Lie algeb-
ras whioh is reflected in the fact that the guantum algebra 4 q»( i,r) of
order I and rank r transforme into usual DLie algebra A(1,r) in the 1i-
mit g»7 a number of notations and theorems of the theory of Lie algeb-
ra representations can be iransferred onto quantum algebras. In parti-
ocular a8 it was shown in Refs [5-17] the g-analogs of well known quan-—
tities of Wigner-Racsh algebra (WRA) (3J, 6J, 9j-symbols etc.) ocan be
introduced. The detail investigation of the representation of guantum
algebras was begun with the simplest quantum algebra SUq(E) that is a
q-analog of the angular momentum theory (AMT) [18-21].

In this paper we apply to this problem. an original approach namely
the projeotion operator method that was developed by us for usual Lie
algebras in Refs [22,23] and appears rather effeotive as well in AMT
as for higher Lie algebras. The important advantage of this method is
the fact that for the oaloulation of quantities of WRA any explioit
realization of algebra generators is unnecessary. Only commutation ru-
les for generators, their Hermitian properties and the existence of
the highest vector are enough for the development of g-algebra unitary
representation theory. Below it will be shown that most part of AMT
formulae will oconeerve their shape in the ocase of SUq(E’) algebra ex-
cept for exchange of usual numbers (Z) by so ocalled q-numberse {Z]:

z], = Lz} = ( Q- q%iig -q") (1.1)

where q=eh. Obviously that [0]=0, [71]=7, [2]=g+3, {31=q2+?+§, [-z]=
=-[z}, limlzl=(Z), lz] =lz];. where G=q~ ' .Below we shall use the so

g1
called g-faoctorial
[nlt = [nln-11...021{1} {1.2)

for normegative integer n. As usually we assume [O]! = 1 and [-n]! = o
at n=1,2,.0c. .
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The Planck's oconstant h will be assumed real in our ocaloulation. The
special case when g is equal to the root of unit was oconeidered in
Refs.[12,13].

2. SUq(Z) algebra and its irreducible representations

The g-analog of SU(Z2) algebra is defined by three generators Jo’
J+. J_ with following properties

[Jgad,] = =, , (2.1)
27 -2 _
W,.J1=12,0=(q %-qa °/a-3 ., (2.2)
+ +
Iy =dy s J, = d,. (2.3)

The irreducible (IR) D oz highest weight J ocontains the highest
veoctor |JJ> satisfying the equations

JoIJJ> = -”Jj> y <-’J|Jj> =1, (2.4)
JNJJ> =0. (2.5)

The general baeis veotor of this IR having the weight m can be ocon-
structed using the lowering generator J_

[J+m]!
(Jm> = [t JIman . (2.6)
(2411 1J-m11

The normalizing factor ocaloulated by using the relation
n _ n n—1 _
JJ T =d 7, + Rl " T2 net] . (2.7)
For the finite dimensional IR I’ only J=0,7/2,7,... and m=J,J~1,... =]
are allowed. Thus the structure of SUq(2) IR's is similar to the IR's

of usual SU(2) algebra and the dimension of IR's are the same in both
of cases is equal to (2j+7).

Aoting by generators J_ and J, on veotor (2.6) we obtain
- +

J_tJm> = S JmIlg-m+11 | J,m-1> , (2.8)

I\ = S U-mLmer] [ met> (2.9)

Thus the explicit form of 7’ IR for .S'Uq(Z) coinoides with ocorres-
ponding formulae for SU(Z) except for the substitution of usual number
(Jtm) and (J+m+1) by g-numbers in two last rows.

In the theory of S'Uq(:?) IR the important role plays the Casimir
operator

2 2
C,=Jdd, + [ ,#+1/2] =J,d_+ I,-1/21, (2.10)
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whioh is Hermitian one. The veotors (2.6) are its eigenveotors

C,lJm> =[J+1/21% | Jm> . (2.11)

3. Projection operators for suq(Z) algebra

First of all we are interesting in the projection operator (PO)
P‘;' J=Pj having the propertiy

Plrm=p> = 8, 4o 1> (3.1)
i.e. aoting on an arbitrary veotor [J) of weight m=]
im=f) =3 B, 10 (3.2)
J' 2

the operator bl projects the component [JJ> being the highest weight
veotor of IR DV

Py = B - (3.3)

Similarly to Refs.[22-25] we seek this PO as a power series of ge—
herators J, and J_

s
= rrr

P =209, . (3.4)
The exponents of these generators are the same due to ocondition

[P,7,1=0. (3.5)
Sinoce

Plap = 10>, (3.6)
we obtain beocause of (2.6) that
and

N Ty r
J, P =4, rzoc" JTITI) = 0. (3.8)

By using of Eq. (2.7) the following recurrent relation for Gr ooeffi-
oients oan be found

C,._, + [rl[2y+r+11C, = O . (3.9)
Bolving it we have
[2J+1]}
Gr = (—1)"' _— (3.10)

[r11[2J+r+1]1
Obvicusly the PO is Hermitian one
(Fl)t = P, (3.11)
By Hermitian oconjugation of Eq.(3.8) we obtain an important property
of PO
PJ_=0. (3.12)
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The operator

[+ 4]
P, ;= 20 JIT (3.13)

with the same ococeffiocients G as in Eq.(3.10) is an extremal projeotor
on the lowest weight of IR DJ

The most general form of projecting
operator

,= __.[i‘in_]!_JJ—mpf JJ-'"" _ﬂi_ (3.14)
My (24111 J-ml1t ~ + (2711 0J-m' 11

will need in further oaloulations. These P08 have the properties

(P )t =B WP m) =By lUm> . (3.15)

m,m m ym

4. "Vector coupling” of g-angular momenta

Now we turn to the of "veotor ooupling" of angular momenta in the
oase of SUq(E) algebra . The generators of summary angular momentum
J(1,2) are of the form

Jg(1,2) =d (1) + J,(2), (4.1a)

J(2) =J.(1)
JU1,2) =d,(1)q% "+ q % g2 . (4.1b)

In standard notation for Hopf algebras the relations (4.1) must be
written in the following form

Jg =dJ ol + I&J, ,

J -J
o} o
Jq = Jiaq +q @, .

+ %
However we shall use below notation (4.1) in order to conserve the ma-
ximal possible similarity with usual AMT.

It is eaBy to prove that the operators (4.1) are satisfying to com-—
mutation relations (2.1) and (2.2).

The action of generators (4.1) on basis vectors |j1m1>|j2m2> of the
tensor product of IRs is given by formulae

Jg(1.2)|J1m1>|jzm2> = (mmy) | J,m > T m> (4.2a)
J;(1,2)|J1m,>ljzm2> = qm2<J,.m7t1|Jt|J mo>|Jmrt>| I m> +

£ QT Mt T [ > [T 5 | S gt > (4.2b)
It should be remarked that the gq-analog of the binomial expansion

formula is valid
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[Jg(1’2)]r - [ Ji(1)qu(2)+ q—JO(1}i(2)]r=

[rlt o r-g 850(2)~(P—B)J0(’)
= Z ————J (1) J, (2)q . (4.3)

- fgltir-si!

The generalization of the veotor coupling procedure on the ocase of
SU (2) oconsists in the following. It is necessary to oonstruct from
the temsor product basis vectors |J 1m1>}.72m2> suoch linear combinations

W dpedmy = 3 <Jmidmoldmy 1S,m> 10 my> (4.4)
MyoMa
which belong to the IR Y oor SUq(2), i.e. they are eigenveotors of the
Cagimir operator Cg( 1,2) with eigenvalues A=[J+%]2.‘

031,210 Jpsdmy = LI+1/20%10 5 0my (4.5)
The ooefficient <J1m1;,72m2|,fma in linear combinations (4.4) are called
as Olebsoh—-Gordan ocoefficients (g-CGC) for SUq(Z) quantum algebra. To
find them we shall use the P0 approach. Simultaneously the struciure
of Clebsch-Gordan series for SU qt’ 2) will be found or more correctly it
will be oconfirmed that the Clebsch—Gordan series for SU _(2) ocoinocides
with the Eq.(4.1).However before to turn to this point it is pertinent
to 1list the orthormality relations for the g-0GCs

Y I lImy <INy =8, L8 (4.5a)
m1 ’"“2 1 ’
ng I3 Ima | Imy < M3 Mol = O e Ot (4.5b)

The q-CGCs form an orthogonal matrix and the following equation
whioch i inverse with respeot to transformation (4.4) is valid

|, > 10 mp> wjgm <Jmy I mobimy 1, Jo0my (4.6)

5. Q-analogs of Clebsch-Gordan coefficients
Using PO we can write the veoctor (4.4) in a form
1,0 g5dmy = (@B (1,2) 15 m (1514 my(2)>, (5.1)

where m’ =m’7+m’2. Thug the @-CGC can be caloulated as the matrix element
of PO

<J1m1 ljzr”'zljma =
= QT (1)< 2) | B8, (1,2)10,m,(1)> | T g (2)> (5.2)

where @’ is a normalizing faotor. A for values of m',and m’z in Egs.
(5.1) and (5.2) they oan be chosen in arbitrary manner but for simpli-
fTioation of ocaloculations it 1is oonvenient to take m',=j, and m;._,=j—-J1.
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Then the Egq.(5.2) can be rewritten in the form
<Fymyidgmatdmy =
= Q)T M (I (2D |\ B 3(1,2) 10,0, (1510 0 d=0,(2)>, (5.3)

where
Q7 = I 05 d=0, NP 31,2) 14,0, (1)> U d-0 (2)>. (5.4)

Sinoce lj J (1)> is a highest weight veotor the generators J (1) in PO
PJ’Q(1 2) oan be omitted and for the normalizing factor Q we obtain

Q% = <0 3050001 ID5% = <JZ.J—J,(2):f13“,(2)IJZ,J—J,(2)>. (5.5)

where

(-1)T[2J+11Y  -2rj
Pl (2) = - "7 T2y ,Te2). 5.6
(-’1)( ) Z (riti2g+r+1]t a - (B) 02 (5-6)

Let's adopt an usual phase oonvention for Q being positive (arithme-
tio) square root of Q 2, A8 a results all q—CGCs will be real.

It is olear from Eq.(5.3) that only values of summary angular mo-
mentum J satisfying the oonditions —J2<J—j1<j2 are possible.It means
the following resitrioction

Il $ 1€ J 4,
Since angular momenta j, and J2 are "equal in rights" the restriction
I, €1 € 0,40,
is valid too. Combining two these conditions we obtain for SU (Z2) the
same "rule of veotor coupling" of angular momenta as for usual SU(2)
algebra:|J ~J,1< J € J,+1,.

Finally the general expression for g-CGCs can be written in form
Myt gl Imy =

DI (2B 1.2)10 0, (1051 5000, (2)> 5.7)
T J (118 d=0,(2) 1P 19(1,2) 1,8, (1)5] 0 0-F,(2)>77Z '

To caloulate the numerator of this expression it is necessary to exp—
ress PO Pi:?(1,2) in terms of generators J1(1,2), then to do the bino-
mial expansion of thelr powers in terms of Ji(7) and J;(Z) using the
Eg.(4.3). The lasi Btep i a ocaloulation of matrix elemente of Jia(i)
using formulas (2.8), (2.9).Here we give an expliocit expression only
for denominator:
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I (105000 (2HIB 301,201,001 50 -0, (2> =

-a2rd,

(2J+11400,+J~J 1! (=171 J-J. +J 4111
- J H 2 Z J J1 2 q (5.8)

[J-7+ It [(rlt[2J+r+110 LS +J =Jr]?

This sum may be ocalculated using one of Vandermonde formulas [27).4is8 a
result we find

? LI+ =T 1 LT ]+
It should be noted that the maitrix element (5.8) can be caloulated al-

80 in reourrent manner {28]. Thus we obtain the following expliocit
analytiocal formula for g-CGCs

1
AP DI EX BT BES DR BN S I )

. - 21tz 1*92 1Mz 2™

< ymyid Mgl Imy = 6J.m1+m2

AN IR L AT O I AN I N SR MRS R SV AR S R S T
-mitlg,-m I LS +m 10T am Y -0+ 1

z(J1+m1)

1) 12 oy a1 +p.mezliq
N E: 2 FPldgTd o * (5.9)

(211 0], +T~J-2) [ -m-2]t ]+ +J+1-2]!
In a "olassical" limit @=7 it coincides with the general formula for

CGOe obtained in Ref.[18]. It ie once more version of q-CGCs formulae
alternative to ones derived in Refs.[9-11,14-17].

Simple analytical formulae can be found for important particular
cases [28]

<OO;jm{j'm'z = <jm;OO{J’m75 = 6J,J‘ 6m,mf, {(5.10)
mJmooy =8, 6 T . (5.11)
<Jm,J'm |00 = &,, y—_— g, 5.11
q J sd my-m
EVATIESS

SERYERFE

7
Jo-m, S(J 4 ~JII=F FIF T (J+T)(F,—m,)
=8 (-1) 171 qz 17v2 172 1
j.m1+m2

[2J+111 0 #m U #m 1t LT+ -0 18
R T R N R YT R T T Y T T

(5.12)
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1

(I 4 -0 (I=d y+ I o+ 10=) , (J-m)
. — 21 Y2 1°v2 1
<j1J1l-’2m2Ijma - 6%--’1 m'z X

"/J (2J+111J#mI (2] 1L m, 1 L=+ 0,0 (5.13)

I R I Y Y R T T RS I I T

6. 3)-symbols and their symmeiry properiies
In Ref.[11] the g-analog of 3j-symbols was defined as a follows
J,;=do-m
{J I, .;'3] (-1)"7 7873 q—;:,-m,-mz)
m, m, M =
Viajg#]

2 3
In order to include the Regge symmetry properties of 3j-symbols 1t
is oconvenient 4o introduce the Regge symbol

[J J J } [j1+m7 j2+m2 J3+m3
3

SENTERT (6.1)

m, m,m J7_m1 Jz—m'g Jg—'m'_'; (6.2)
2 3_J7+J2 J3+J1_J2 “J3+J1+J q

that is invariant with respeot transposition and even permutations of

rows and columns. At odd permutations of rows and ocolumms the phase
JHi g

factor (-1) appears and the substitution g » g takes place.

7. Tensor operators, Wigner-Eckart theorem

As a g-analog of rank R tensor operator we shall consider a set of
2R+1 operators Ig(q) (=k,k-1,...,~k+1,~R) patisfying the following
oommutation relations with generators of SUQ(Z) algebra

19, To(q)] = % To(q) , 7.1)
—F
PR Tb — Tk 0
%(Q) = CTR(q)T, + / [Reel[Rear1] Ty, (@) °. (7.2)

Aoting by generators J ,+ on veotors QJ k(q)zf{’k(q)ljm> and taking ao-
count (7.1) and (7.2) we obtain

To(T(@Im] = (me)Th(q)|m> (7.3)
[Z‘k(q)um] g JUmIlgeme1] TR(q) | S, meT> +
™/ [Es®] [Rte+1] a&H[q)i.ﬁr» . (7.4)
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From the ocomparison of these expressions with (4.2) it iB olear that
vectors db" 'k( q) are transforming as basis vectors of the tensor pro-

duot B"@D}a of IRs of SU {2) algebra. Therefore it is possible to ex-
pand these vectors on oomponents d}" kig” {q)velong to the IR Dot
SUq(E)

.h - W PR #
@ = ) w2 g) (7.5)
J'm"
Multiplying both sides of this equation by veotor <J'm'| and iaking
aoccount the orthogonality property

(o [0k @) = 00 40 0,0 @) (7.6)

where fJ 33‘ (@) is independent on m’, M, ® we obtain the g-analog of
well known Wigner-Eckart theorem:

Jm | TR(@) | Im> = <Jmikely my (317N (@) (7.7)
or in more standard form .
jl l
g'm ;r*(q}{1m> -—————l————gf 1)2B 1 1% (1> (7.8)
[2J+11

As an example the tensor operator the first rank J;(q) (e=0,t1) is

oconstructed by us from generators Jo , in explioit form:

- -
Jq = E_q%g,, (7.92)
J121
g = L (q7'120,) + (g-q7"00 ) -
(2]
= L (q7127,0 + (g7 a0, 10,m17217)) (7.9b)
(2]

It is olear that these expressions are more complioate then in SU(2)
oase but in the limit g=7 they ocoincide with standard oyolic oompo-
nents of angular momentum. Caloulating necessary CGCs we find the fol-
lowing expression for the reduced matrix elements of the tensor (7.93)

AT = %’“{é} J1211125+11124+2] . (7.10)

For the unit operator we have

(7L = 5”:\/ [25+11 . (7.11)
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On the base of the definition (7.1) and Wigner-Eokart thecrem the
total g-analog of the tensor operator algebra can be formulated.

In oonolusion of this seotion it should be noted that the deriva-
tion of Wigner-Eckart theorem in terms of quantum group SUq(E) wag gi-
ven by A.Klimyk.The definition of tensor operators olose to our one
was given and actively exploited in the frame of g-boson ocaloulus by
L. Biedenharn [6].

8. Recoupling of angular momenta, 6j-symbol

The veoctor ocoupling of three angular momenta can be realized in two
ways: (J1+Jz)+J3 and J1+(JZ+JS). The transition between two these
schemes oan be done eing Raocah coefficients

IJ, 050,50, Ja-Jm>= U Jplg3d 120 230 g1 1050 300 550 20m> 8.1)

It is useful to f%troduoe a q-analog of 6j-symbol instead of Raoah
coeffioients

abe
U(abed;ef), =/ 12e+11[2f+1] (-1)3tPb+e+d { } (8.2)

de
If to express it in terms of 3j-symbols

X

.71 Jz 7} Z(_q)—m,—mz —Mma-n, NNy (-1)J1+12+J3+11+12+13
q mn

[J '72'7] [J1 Ly 13] [11 Iz a] [11 1 -73] 8.3
GRS R O R R O T O I [ O Y .

then the symmetry properties of 6j-symbole can be easy found. Namely
the 6j-symbols are invariant with respect to permutations of columns

{“'1 Je "3} ={’2 /i Ja} - (8.4)
L lzlaq LPRT 13q

AlBo they are invariant with respeot to substitution two arbitrary mo-
menta in the first row by ocorresponding momenta from the second row

S S | 1,1,
{ 12 3} = {J’ 2 3} = e . (8.5)
Lyl 150, 192 lalg

Finally Racah ooefficients U(...) and 6j-symbols are invariant with

respeot to substitution g+G as it can be seen from the general analy-
tical formula (8.14) for Racah ccefficients. The last one may be deri-
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ved using the projeotion operators in the manner used in Ref [18] for
usual AMT. As a resuli we have

I-dog=F 4 o+d
UCT I pdd5idyadna)q = V121, 11120 5#1) (-1)7 22 1272

ATt ) ATt pe) A pdad) A doad)
0 =d ot d 1 T 40 ot o1 L =T gt T g 1 =T+ 5 55 1

x

{J12+J3+J+1]![J1+J23+J+1]!
[J,~J gt I 1t =0, 54T 5+ 1

(8.6)

}: (=1)TLS #J=d ot T 1 LI gt =T AT I U = I 4T 4 S 55T 1
= [P 2Hr+1 1L =4 P I L bl o d =P 1 Lt =T pmd T 1
Here

[a+rb-clt[a-b+c]![-a+b+C]!
A(abe) = .
[a+brc+1]!

In the partioular case of one vanishing angular momentum in the 6j-
symbol we obtain

{Jz P f:} _ (1)’ 1"z . (8.7)
0 Jsldq  Sl2g 11120511

Authors are thankful to A.N. Kirillov, A.U. Klimyk and Ya. Soibel-
man for illuminating discussions.

Refereces

1. E.K. Sklyanin: Funot. Anal. Appl.16 263 (1982).

2. P.P. Kulish, N.Yu. Reshetikhin: Zapieki. Nauch. Semin. LOMI 101
112 (1980).

3. V.G. Drinfeld: DAN SSSR 32 254 (1985).

4. M. Jimbo: Lett. Math. Phys. 12 247 (1986).

5. N.Yu, Reshetikhin: ILOMI preprints E-4-87, B-17-87 (1988).
6. L.C. Biedenharn: J. Phys.i 22 I873 (1989).

7. A.J. Maofarlane: J. Phys.A 22 4581 (1989).

8. M. Rosso: Comm. Math. Phys. 117 581 (1988).

9. L.L. Vaksman: DAN SSSR 306 269 {1989).

193



10.
11.
12.
13.
14.
15.
16.

17
18.

19.

20.

21.

22.

23.

24.
25.
26.
27.

28.

A.N. Kirillov, N.Yu. Reshetikhin: Preprint LOMI BE-9-88 (1988).
Zhong-Qi-Ma: Preprint IQTP I0/89/162 (1989).

A.Ch. Ganchev, V.B. Petkova: Preprint ICTP IC/89/158 (1989).
R. Roche, D. Arnaudon: Lett. Math. Phys. 17 295 (1989).

I.I. Kachurik, A.U. Klimyk: Preprint ITP-89-48E (1989).

H. Ruegg: Preprint UGVA-DPT 1989/08-625 (1989).

H.T. Koelink, T.H. Kornwinder: Preprint of Mathematical Institu-
te, University of Leiden, W-88-12 (1988).

M. Nomura: J. Math. Phys. 30 2397 (1989).

D.T. Sviridov, Yu.F. Smirnov: Theory of optical spsctra of tran—
aition metal iona, Moscow, Nauka (1977) (in Russian).

D.A. Varshalovich, A.N. Moskalev, V.K. Knhersonsky: Quantum Theory
of Angular Momentum, Leningrad, Nauka (1975) (in Ruesian).

A.P. Yutsis, A.A. Bandzaifis: Theory of angular momentum {n guan—
tum mechanics, Vilnjus, Mintis (1965) (in Russian).

I..C. Biedenharn, J.D. Louck: 4ngular Nomenitum in Quantum Physiocs,
Addison-Wesley (1981).

R.M. Asherova, Yu.F. Smirnov, V.N. Tolstoy: Theor. Math.PRiz. 8,
255 (1971).

%.M. ?sherova. Yu.F. Smirnov, V.N. Tolstoy: Matem. Zameiki.36 15
1979},

J. Shapiro: J. Math. Phys. 6 1680 (1965).
D.P. Zelobenko: DAN SSSR 4 317 (1984).
G. Racah: Phys. Rev. 62 438 (1942).

G. Gasper, M. Rahman: Basi{c Hypergeometrioc seriees, Cambridge Uni-
versity Press (1989).

¥u.F.)Smirnov, V.N. Tolstoy, Yu.I. Eharitonov:Preprint LINP N1607
1990).

194



