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Abstract. We study noncommutative black holes, by using a diffeomorphism
between the Schwarzschild black hole and the Kantowski-Sachs cosmological
model, which is generalized to noncommutative minisuperspace. Through the
use of the Feynman-Hibbs procedure we are able to study the thermodynamics
of the black hole, in particular, we calculate Hawking’s temperature and entropy
for the “noncommutative” Schwarzschild black hole.

1. Introduction

In the last years, noncommutativity (NC) has attracted a lot of attention [1,
2]. Although most of the work has been in the context of Yang-Mills theories,
noncommutative deformations of gravity have been proposed (see for example [3]
and references therein). If we attempt to write down the field equations and solve
them, it turns to be technically very difficult, due to the highly non linear character
of the theory. In [4], an alternative procedure to incorporate noncommutativity to
cosmological models has been proposed, by performing a noncommutative deformation
of the minisuperspace. Further, we know that from quantum mechanics we can get the
thermodynamical properties of a system. This already has been used in connection
with black holes [5]. In [6], the authors use the Feynman-Hibbs path integral procedure
[7] to calculate the temperature and entropy of a black hole, in agreement with previous
results [8].

In this paper we apply some of these ideas to obtain thermodynamical properties
for a quantum black hole and its noncommutative counterpart. We propose a quantum
equation for the Schwarzschild black hole, starting from the WDW equation for
the Kantowski-Sachs cosmological model. We apply the Feynman-Hibbs method
to calculate the thermodynamical properties. We extend this procedure to include
noncommutativity by making the same kind of ansatz as in [4], namely, imposing
that the minisuperspace variables do not commute; from this we are able to define
the WDW equation for the noncommutative Schwarzschild black hole and following
a similar procedure as in [6], we find the noncommutative wave function, the
temperature and entropy of the “noncommutative Schwarzschild black hole”.

This contribution is based on the paper [9] and a parallel talk given in the VII
Mexican School on Gravitation and Mathematical Physics.
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2. Non Commutative Quantum Cosmology and the Quantum Black Hole

Let us begin by reviewing the relationship between the cosmological Kantowski-Sachs
metric and the Schwarzschild metric [10]. The Schwarzschild solution can be written
as

ds2 = −
(

1 − 2m

r

)

dt2 +

(

1 − 2m

r

)−1

dr2 + r2
(

dθ2 + sin2 θdϕ2
)

.(1)

For the case r < 2m, the gtt and grr components of the metric change in sign and
∂t becomes a spacelike vector. If we make the coordinate transformation t ↔ r, and
compare to the parametrization by Misner of the Kantowski-Sachs metric

ds2 = −N2dt2+e(2
√

3γ)dr2+e(−2
√

3γ)e(−2
√

3Ω) (

dθ2 + sin2 θdϕ2
)

,(2)

we identify

N2 =

(

2M

t
− 1

)−1

, e2
√

3γ =
2M

t
− 1, e−2

√
3γe−2

√
3Ω = t2, (3)

where this metric with the identification of the N , γ, and Ω functions is also a
classical solution for the Einstein equations. The metric (2) can be introduced into
de ADM action and a consistent set of equations for N , γ, and Ω can be obtained,
these equations are equivalent to Einstein equations. The corresponding Wheeler-
DeWitt equation for the Kantowski-Sachs metric, with a particular factor ordering
(see Ref.[4]), is

[

− ∂2

∂Ω2
+

∂2

∂γ2
+ 48e−2

√
3Ω

]

ψ(Ω, γ) = 0. (4)

The solution of this equation is given by [11] ψν = e±iν
√

3γKiν

(

4e−
√

3Ω

)

, where ν

is the separation constant and Kiv are the modified Bessel functions. Although the
wave functions are not normalizable, by constructing a gaussian wave packet and
analyzing the maximum of the probability density, the authors in [12] show that this
wave function describes quantum planck size states.

The noncommutative deformation for this cosmological model, has been proposed
in [4]. We begin by modifying the simplectic structure in minisuperspace, by assuming
that the coordinates Ω and γ obey the commutation relation [Ω, γ] = iθ, in a similar
fashion as in noncommutative quantum mechanics. As usual this deformation can
be reformulated in terms of the Moyal product [4, 13], by replacing in the Wheleer-
DeWitt equation in all products between functions, by Moyal products. It is possible
to reformulate in terms of the commutative variables and the ordinary product of
functions, if the new variables Ω → Ω + 1

2
θPγ and γ → γ − 1

2
θPΩ are introduced.

As a consequence, the original WDW equation changes, with a modified potential
V (Ω, γ) ∗ ψ (Ω, γ) = V

(

Ω − θ
2
Pγ , γ + θ

2
PΩ

)

ψ (Ω, γ) as done in [13], so the NC-WDW
equation takes the form

[

− ∂2

∂Ω2
+

∂2

∂γ2
+ 48e(−2

√
3Ω+

√
3θPγ)

]

ψ(Ω, γ) = 0. (5)

This choice for the shift of the variables is the same used in reference [4], and has
the advantage that the classical solutions obtained through a WKB type method
are the same that the ones we find by modifying the Poisson brackets to include
noncommutativity [14]. We solve this equation by separation of variables with the
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ansatz ψ(Ω, γ) = ei
√

3νγχ (Ω), where
√

3ν is the eigenvalue of Pγ . Thus χ (Ω) satisfies
the equation,

[

− d2

dΩ2
+ 48e(−2

√
3Ω+3νθ) − 3ν2

]

χ(Ω) = 0. (6)

The resulting wave functions are not normalizable, but as in the commutative
case a normalizable gaussian wave packet can be constructed. As a result of
noncommutativity the probability density has several maxima [4], which correspond
to new stable states of the Universe, opposite to the commutative case where only one
stable state exists [4].

Following the previous discussion we consider Eq.(4). This equation depends on

two variables (Ω, γ), but after the anzats ψ(Ω, γ) = ei
√

3νγχ(Ω), the dependence on
γ is the one of a plane wave and is eliminated when computing the thermodynamical
observables. Therefore, we could consider this as a suitable approach for the black
hole, described by the following equation:

[

− d2

dΩ2
+ 48e−2

√
3Ω

]

χ(Ω) = 3ν2χ(Ω). (7)

From this quantum equation, we use the Feynman-Hibbs procedure to compute
the partition function of the black hole. This has the advantage that the relevant

information is contained in the potential function V (Ω) = 48e−2
√

3Ω. This exponential
potential can always be expanded, in particular, the calculations are simplified for
small Ω. After expanding to second order in Ω, we make the change of variable
α =

√
6Ω − 1/

√
2, multiply Eq. (7) by

Ep

12
, and finally rename α = x

lp
to arrive to,

[

−1

2
l2pEp

d2

dx2
+ 4

Ep

l2p
x2

]

χ (x) = Ep

[

ν2

4
− 2

]

χ (x) . (8)

When comparing with the usual harmonic oscillator we identify h̄ω =
√

3

2π
Ep in order

to obtain the correct Hawking temperature for the black hole. The factor corresponds
to an ambiguity in the value of the lowest eigenvalue of the spectrum [15].

Further, the Feynman-Hibbs procedure allows to incorporate the quantum
corrections to the partition function through the “corrected” potential [7], and
“corrected” partition function

U(x) =
3Ep

4πl2p

[

x2 +
βl2pEp

12

]

, ZQ =

√

3

2π

e−
β2E2

p

16π

βEp

. (9)

The internal energy of the black hole is Ē = − ∂
∂β

lnZQ = 1

8π
βE2

p + 1

β
= Mc2. Solving

for β in terms of the Hawking temperature βH = 8πMc2

E2
p

, the corrected temperature is

β =
8πMc2

E2
p

[

1 − 1

8π

(

Ep

Mc2

)2
]

= βH

[

1 − 1

βH

1

Mc2

]

. (10)

In order to calculate the entropy we use the known relationship S

k
= lnZQ +βĒ, from

which we arrive to the corrected entropy. In terms of the Bekenstein-Hawking entropy

[16], SBH

k
= 4π

(

Mc2

Ep

)2

= As

4l2p
, the black hole entropy takes the simple form,

S

k
=

SBH

k
− 1

2
ln

[

SBH

k

]

+ O
(

S
−1

BH

)

. (11)
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This result has the interesting feature that the coefficient of the first correction, the
logarithmic one, agrees with the one obtained in string theory [17], as well as in loop
quantum gravity [18].

For the thermodynamics of the noncommutative black hole, we proceed as before,
but instead we consider Eq. (6). A straightforward calculation, using the same steps
as in the commutative case, gives a modified version of Eq. (8),

(

−1

2
l2pEp

d2

dx2
+ 4

Ep

l2p
e3νθx2

)

χ (x) = Ep

(

ν2

4
− 2e3νθ

)

χ (x) , (12)

with the potential VNC(x) = 4
Ep

l2p
e3νθx2, and a “frequency”, h̄ωNC =

√

3

2π
Epe

3νθ
2 ,which coincides with the commutative case for θ = 0. By applying the

Feynman-Hibbs method to Eq. (12) we find the corrected partition function, from
which we calculate the temperature of the noncommutative black hole in terms of
the commutative Hawking temperature. If we define the noncommutative Hawking
temperature βNC

H = βHe
−3νθ, the black hole temperature takes the same form as in

the commutative case,

β = βNC
H

[

1 − 1

βNC
H

1

Mc2

]

. (13)

The entropy is calculated as before, and defining the noncommutative Hawking-
Bekenstein entropy as SNCBH = SBHe

−3νθ, we get

SNC

k
=

SNCBH

k
− 1

2
ln

[

SNCBH

k

]

+ O
(

S
−1

NCBH

)

. (14)

It has the same form as the commutative case; again the logarithmic correction to the
entropy appears with a − 1

2
factor. Also it is clear that we get the commutative entropy

in the limit θ → 0. As we can see, these thermodynamic quantities are modified due
to the presence of the noncommutative parameter. In particular noncommutativity
decreases the value of the entropy, which can be understood from the fact that
noncommutativity decreases the available physical states.

In this paper we have extended the proposal of noncommutativity in [4] to the
Schwarzschild black hole by using the diffeomorphism between the Kantowski-Sachs
and Schwarzschild metrics. The corresponding NC-WDW equation is used to describe
the noncommutative black hole. Its entropy and temperature are obtained by means of
the Feynman-Hibbs formalism on NC-WDW equation, the thermodynamic quantities
calculated are modified due to the presence of the noncommutative parameter.
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