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Howard Georgi Topics in Little Higgs Physics Spencer Chang

Abstract

The Standard Model is the currently accepted model of elementary particle interactions

as determined by many years of particle physics experiments. It is both highly predictive and

successful in its predictions, which is one of the great achievements of the last half century of

science. However, there are indications that the Standard Model is incomplete with the main

evidence being the so called hierarchy problem. In general terms, the hierarchy problem

suggests that the parameters of the Standard Model have to be severely fine tuned in order

to describe the real world. Motivated by the naturalness issues the hierarchy problem

provokes, many theories of beyond the Standard Model physics have been proposed that

alleviate the fine tuning. Continuing this approach, recently a new scenario called “Little

Higgs” theories has been suggested as a viable alternative to the Standard Model, which

has some novel features compared to the other competitive theories. The fact that these

Little Higgs models may describe the real world is interesting and motivates their study.

In the first chapter, an introduction describing in elementary terms what the hierarchy

problem is and how Little Higgs theories are a solution to this problem is presented. After

this short introduction, two topics in Little Higgs theories are analyzed. The first subject is

determining if Little Higgs theories are consistent with the precision experiments performed

to date. This is covered in chapters two and three, where two different Little Higgs models

with approximate custodial SU(2) symmetry are presented. This symmetry increases the

range of parameter space where these Little Higgs theories are both consistent with precision

tests and are natural under the sense of the hierarchy problem. Thus, these theories are

viable candidates for beyond the Standard Model physics. The fourth chapter is on the

second subject, which is analyzing the constraints that unitarity places upon the Little

Higgs theories. The important consequence is that requirements for unitarity suggest that

there is new physics in these theories at lower scales than previously expected. This can
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have implications for future experiments, as this physics can consist of particles light enough

to be produced at the next generation of particle accelerators.
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Chapter 1: Introduction

1 The Hierarchy Problem

Particle physics has been a vast overachievement in the last half century, where enormously

courageous and ambitious experiments have been performed in step with the proposal of

new imaginative theories. Through this endeavor, particle interactions have been probed

down to 10−16 centimeters and one clear theory has emerged for what governs this known

physics. That theory is called the Standard Model (SM) and is suprisingly accurate and

seemingly complete.

Although there is no experimental reason to doubt this completeness, there is a more

abstract reason to do so [1]. In the SM, there is a mass scale given by the masses of the

electroweak gauge bosons (the mediators of the weak force). This mass scale is called the

weak scale and is approximately MW ≈ 100 GeV. This scale is determined by minimizing

the potential energy of a scalar field called the Higgs H. Schematically this is done by

minimizing a potential of the form

V = −m2
HH2 + H4. (1.1)

which has a minimum at H = mH/
√

2 that is required by experiment to be near the

weak scale MW and thus forces mH ≈ 100 GeV. The hierarchy problem can be simply

stated as the fact that this scenario requires fine tuning of the parameters of the theory.

This problem occurs since there are much larger mass scales in the SM that can enter

into the potential. For instance, interactions generate corrections to the mass parameter

of the potential (called radiative corrections) and since the interaction strengths are given

by dimensionless quantities, these corrections tend to scale with the largest masses in the

theory. In the worst case scenario, the highest scale where the SM could be valid up to as

a consistent theory is the Plank scale MP ≈ 1019 GeV where quantum gravitational effects

are expected to get strong (requiring a quantum theory of gravity). Thus, the main concern

will be why there is this large hiearchy of 17 orders of magnitude between MW and MP .
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Schematically what occurs is that the mass parameter in the above potential has the

following form

m2
H = m2

0 + m2
rad (1.2)

where m2
0 is the mass parameter with the interactions turned off and m2

rad is the radiative

correction induced by the interactions. If the SM is complete up to the Planck scale, then

we expect that m2
rad ≈ M2

P . Therefore to get the experimental result m2
H ≈ M2

W requires

that m2
0 +M2

P . M2
W . This means that not only is the size of m0 near the Planck scale but

has to be extremely close to it, as seen by dividing by M 2
P on both sides, giving

m2
H

M2
P

=
m2

0

M2
P

+
m2

rad

M2
P

≈ m2
0

M2
P

+ 1. (1.3)

The left hand side has the size (100 GeV/1019 GeV)2 = 10−34 while we can see from the

equation that
m2

0

M2
P

= −1 + 10−34. Therefore, these two terms have to cancel to fantastic

precision. If one varies m2
0 alone, there is a need to have a parameter precisely tuned

to its first 30 or so digits! It is in this sense that the Standard Model is considered to

be unnaturally fine tuned, since only with non-generic parameters can it describe the real

world.

Now, it is important to note that there is nothing wrong in principle with this fine

tuning in terms of the theory being consistent. However the fact that there is a need to do

such a large fine tuning suggests that an extension of the SM that does not require such a

fine tuning is more natural and thus more attractive.

Using this abstract guideline to motivate new theories would be merely philosophy unless

these new theories could be differentiated from each other. Thankfully the resolution of the

hierarchy problem should be accessible to the Large Hadron Collider, the upcoming particle

accelerator experiment at CERN. This is suggested by the above analysis since the theory is

only natural if mrad is near the weak scale, which in turn requires that there is new physics

near the weak scale.

2



2 Little Higgs Theories

In the last two years, new solutions to the hiearchy problem, called “Little Higgs” theories

were proposed. In these theories, each interaction preserves enough symmetry so that no

single interaction gives radiative corrections to the Higgs mass (mH in Eq. 1.2). However,

two interactions together do generate a Higgs mass, but this is further suppressed since it

is proportional to the two coupling strengths. In contrast, the Standard Model Higgs only

requires a single interaction to generate a mass so it has larger radiative mass corrections

compared to Little Higgses. This suppression of the radiative corrections is what improves

the naturalness of the theory and helps alleviate the hierarchy problem.

In these theories there are two interesting subjects to consider, which will comprise the

bulk of this thesis. The first subject is determining if Little Higgs theories are consistent

with the high precision measurements that the SM already predicts well. In essence, it’s

important to determine whether the new physics that solves the hiearchy problem gives pre-

dictions in conflict with known data. To begin with, one of the reasons that the SM works

so well is that there is an approximate symmetry called custodial SU(2) which gives pre-

dictions confirmed by experiment. Thus, in models of beyond the Standard Model physics,

it is beneficial to maintain this symmetry. To try to improve consistency with experiments,

it is interesting to try and implement this symmetry into Little Higgs models. This is

accomplished in chapters 2 and 3 in two different Little Higgs models. The implemented

symmetry indeed allows Little Higgs theories to be consistent with the precision tests and

thus confirms that these theories are viable candidates for what comes beyond the Standard

Model.

The second subject is analyzing the constraints that unitarity impose on a Little Higgs

theory. Unitarity is a strong constraint on quantum field theories and corresponds to the

reasonable requirement that the sum of the probability of all possible outcomes must equal

1. In the Little Higgs theories above a certain energy scale unitarity is violated. Thus, if

Little Higgs theories are indeed unitary, they must have new physics appearing at this new

energy scale. The reason this can be interesting is the fact that this energy scale is much

3



lower than what other considerations indicate, which has an impact on experiment. New

particles are expected to appear at this scale, and a factor of 2 or 3 change in the mass

of the particle can be crucial in determining whether or not it can be detected in future

experiments. Using this as motivation, in chapter 4, the unitarity violation scales in some

general Little Higgs theories are calculated. The scales that are calculated suggests that

the new physics is borderline in terms of being visible at the Large Hadron Collider. Some

speculation on the new particles, their detectability, and their physics signatures is given.

In summary, Little Higgs theories are very interesting theories of what might extend the

Standard Model. They are not in conflict with up to date experiments, but will be more

stringently tested in the near future. It will be exciting when the new data is analyzed, to

see if Little Higgs theories have any part in describing the real world.

Note: The work in the chapters that follow has been published in separate papers before

in the References [2–4].
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Chapter 2: Little Higgs and Custodial SU(2)1

3 Introduction

Recently the Little Higgs mechanism has been proposed as a way to stabilize the weak

scale from the radiative corrections of the Standard Model. In Little Higgs models the

Standard Model Higgs boson is a pseudo-Goldstone and is kept light by approximate non-

linear symmetries [5–11], see [12, 13] for summaries of the physics and [14–17] for more

detailed phenomenology. The Little Higgs mechanism requires that two separate couplings

communicate to the Higgs sufficient breaking of the non-linear symmetry to generate a Higgs

mass. The weak scale is radiatively generated two loop factors beneath the cut-off Λ ∼ 10−

30 TeV. Little Higgs models predict a host of new particles at the TeV scale that cancel the

low energy quadratic divergences to the Higgs mass from Standard Model fields. The Little

Higgs mechanism has particles of the same spin cancel the quadratic divergences to the Higgs

mass, i.e. a fermion cancels a quadratic divergence from a fermion. In models described

by “theory space,” such as the Minimal Moose, particles of the same spin and quantum

numbers cancel quadratic divergences, for example a TeV scale vector that transforms as a

SU(2)L triplet cancels the W quadratic divergence. To avoid fine-tuning the Higgs potential

by more then O(20%) the top quark one loop quadratic divergence should be cut off by

roughly 2 TeV , the quadratic divergence from SU(2)L should be cut off by 5 TeV , while

the quadratic divergence from the Higgs quartic coupling should be cut off by 8 TeV .

These TeV scale particles are heavier than the current experimental limits on direct

searches, however these particles may have effects at low energy by contributing to higher

dimension operators in the Standard Model after integrating them out. The effects of in-

tegrating out the TeV scale partners have been considered in [18–20] and have provided

constraints on some Little Higgs models from precision electroweak observables. Under-

standing what constraints are placed on each Little Higgs model is a detailed question but

their themes are the same throughout. The arguments for the most severe constraints on the

1This chapter is based on reference [2] done in collaboration with Jay Wacker.
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“Littlest Higgs” model discussed in [19,20] arise from the massive vector bosons interactions

because they can contribute to low energy four Fermi operators and violate custodial SU(2).

Consider the B ′ which cancels the quadratic divergence of the B, the gauge eigenstates are

related to the physical eigenstates by:

B = cos θ′B1 + sin θ′B2 B′ = cos θ′B2 − sin θ′B1 (3.1)

where the mixing angles are related to the high energy gauge couplings through:

g′1 =
g′

cos θ′
g′2 =

g′

sin θ′
(3.2)

where g′ is the low energy U(1)Y gauge coupling. With the Standard Model fermions

charged only under U(1)1, the coupling to the B ′ is:

LB′F Int = g′ tan θ′ B′
µ jµ

U(1)Y
(3.3)

where jµ
U(1)Y

is the U(1)Y current. The mass of the B ′ goes as:

m2
B′ ∼ g′2f2

sin2 2θ′
(3.4)

where f is the breaking scale. After integrating out the B ′ there is a four Fermi coupling

of the form:

L4 Fermi ∼
sin4 θ′

f2

(

jµ
U(1)Y

)2
(3.5)

The coefficient of this operator needs to be roughly less than (6 TeV )−2 and can be achieved

keeping f fixed as θ′ → 0.

The Little Higgs boson also couples to the B ′ through the current:

LB′ H Int ∼ g′ cot 2θ′ B′
µ (ih†←→D µh). (3.6)

6



Integrating out the B ′ induces several dimension 6 operators including:

L(h†Dh)2 ∼
cos2 2θ′

f2

(

(h†Dh)2 + h.c.
)

(3.7)

This operator violates custodial SU(2) and after electroweak symmetry breaking it lowers

the mass of the Z0 and gives a positive contribution to the T parameter. This operator

needs to be suppressed by (5 TeV )−2. Thus the Higgs coupling prefers the limit θ ′ → π
4 .

There are additional contributions to the T parameter that can negate this effect, this

argument shows the potential tension in Little Higgs models that could push the limits on

f to 3 – 5 TeV.

The reason why the B ′ contributes to an SU(2)C violating operator is because it, like

the B, couples as the T 3 generator of SU(2)r
2 and its interactions explicitly break SU(2)C .

The most straight-forward way of softening this effect is to complete the B ′ into a full

triplet of SU(2)C
3. This modification adds an additional charged vector boson W r±. By

integrating out these charged gauge bosons there is another dimension 6 operator that gives

a mass to the W± compensating for the effect from the B ′. This can be implemented by

gauging SU(2)r instead of U(1)2. At the TeV scale SU(2)r × U(1)1 → U(1)Y . With these

additional vector bosons, it is possible to take the θ ′ → 0 limit without introducing large

SU(2)C violating effects while simultaneously decoupling the Standard Model fermions from

the B′ and keeping the breaking scale f fixed. Thus the limits on the model will roughly

reduce to limits on the SU(2)r coupling and the breaking scale.

It is not necessary to have a gauged SU(2)r for the Little Higgs mechanism to be

viable because the constraining physics is not crucial for stabilizing the weak scale. The

B′ is canceling the U(1)Y quadratic divergence that is only borderline relevant for a cut-off

Λ<∼ 10 − 15 TeV but is providing some of the main limits through its interactions with

the Higgs and the light fermions. The light fermions play no role in the stability of the

2Recall that in the limit that g′ → 0 there is an SU(2)l × SU(2)r symmetry of the Higgs and gauge
sector. Only the T 3 generator is gauged inside SU(2)r and g′ can be viewed as a spurion parameterizing
the breaking. After electroweak symmetry breaking SU(2)l × SU(2)r → SU(2)C .

3The W ′ transforms as a triplet of SU(2)C so no SU(2)C violating operators are generated by its inter-
actions.
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weak scale, therefore the limits from their interactions can be changed without altering the

Little Higgs mechanism. It is straightforward to avoid the strongest constraints [21]. The

easiest possibility is to only gauge U(1)Y and accept its quadratic divergence with a cut-off

at 10 – 15 TeV. Another way of dealing with this issue is to have the fermions charged

equally under both U(1) gauge groups. With this charge assignment the fermions decouple

from the B ′ when θ′ → π
4 which also decouples the Little Higgs from the B ′. There are

other ways of decoupling the B ′ by mixing the Standard Model fermions with multi-TeV

Dirac fermions in a similar fashion as [11]. However having a gauged SU(2)r allows for a

particularly transparent limit where TeV scale physics is parametrically safe and does not

add significant complexity.

In this note a new Little Higgs model is presented that has the property that it has

custodial SU(2) as an approximate symmetry of the Higgs sector by gauging SU(2)r at the

TeV scale. To construct a Little Higgs theory with an SU(2)C symmetry we can phrase the

model building issue as: “Find a Little Higgs theory that has the Higgs boson transforming

as a 4 of SO(4).” This is precisely the same challenge as finding a Little Higgs theory that

has a Higgs transforming as a 2 1

2

of SU(2)L×U(1)Y . In the latter case it was necessary to

find a group that contained SU(2) × U(1) and where the adjoint of the group had a field

transforming as a 2 1

2

and the simplest scenario is SU(3) where 8 → 30 + 21

2

+ 10. For a

4 of SO(4) the simplest possibility is SO(5) where an adjoint of SO(5) decomposes into

10→ 6+4. The generators of SO(5) are labeled as T l, T r, and T v for the SU(2)l, SU(2)r

and SO(5)/SO(4) generators respectively.

The model presented in this paper is a slight variation of the “Minimal Moose” [7] that

has four non-linear sigma model fields, Xi:

Xi = exp(ixi/f) (3.8)

where xi is the linearized field and f is the breaking scale associated with the non-linear

sigma model. The Minimal Moose has an [SU(3)]8 global symmetry associated with trans-

8



formations on the fields:

Xi → LiXiR
†
i (3.9)

with Li, Ri ∈ SU(3). To use the SO(5) group theory replace the SU(3) → SO(5) keeping

the “Minimal Moose module” of four links with an [SO(5)]8. The Minimal Moose had an

SU(3)× [SU(2)×U(1)] gauged where the [SU(2)×U(1)] was embedded inside SU(3) while

this model has an SO(5) × [SU(2) × U(1)] gauge symmetry, using the T l a generators for

SU(2) and T r 3 generator for U(1).

The primary precision electroweak constraints arise from integrating out the TeV scale

vector bosons. In this model there is a full adjoint of SO(5) vector bosons. Under SU(2) l×

SU(2)r they transform as:

W l ∼ (3l,1r) W r ∼ (1l,3r) V ∼ (2l,2r) (3.10)

Because only U(1)Y is gauged inside SU(2)r the W r a split into W r± and W r3. The W r3 is

the mode that is responsible for canceling the one loop quadratic divergence of the U(1)Y

gauge boson and is denoted as the B ′. Finally the V has the same quantum numbers as

the Higgs boson but has no relevant interactions to Standard Model fields.

In the limit where the SO(5) gauge coupling becomes large the Standard Model W and

B gauge bosons become large admixtures of the SU(2) × U(1) vector bosons. This means

that the orthogonal combinations, the W ′ and B′, are dominantly admixtures of the SO(5)

vector bosons. The Standard Model fermions are charged only under SU(2) × U(1) which

means that the TeV scale vector bosons decouple from the Standard Model fermions in this

limit.

In the remaining portion of the paper the explicit model is presented and the spectrum is

calculated along with the relevant couplings for precision electroweak observables in Section

4. This model has two light Higgs doublets with the charged Higgs boson being the heaviest

of the physical Higgs states because of the form of the quartic potential. This potential is

different than the quartic potential of the MSSM and has the property that it forces the
9



Higgs vacuum expectation values to be complex, breaking SU(2)C in the process. This

will result in the largest constraint on the model. In Section 5 the TeV scale particles

are integrated out and their effects discussed in terms of the dimension 6 operators that

are the primary precision electroweak observables. For an SO(5) coupling of g5 ∼ 3 and

f ∼ 700 GeV and for tanβ <∼ 0.3 the model has no constraints placed on it. The limit on

tanβ ensures a light Higgs with mass in the 100 – 200 GeV range. With the rough limits

on the parameters, the masses for the relevant TeV scale fields are roughly 2.5 TeV for

the gauge bosons, 2 TeV for the top partner, and 2 TeV for the Higgs partners. Finally

in Section 6 the outlook for this model and the state of Little Higgs models in general is

discussed.

4 SO(5) Minimal Moose

Little Higgs models are theories of electroweak symmetry breaking where the Higgs is a

pseudo-Goldstone boson and can be described as gauged non-linear sigma models. In this

model there is an SO(5) × [SU(2) × U(1)] gauge symmetry with standard gauge kinetic

terms with couplings g5 and g2, g1, respectively. There are four non-linear sigma model

fields, Xi, that transform under the global [SO(5)]8 = [SO(5)L]4 × [SO(5)R]4 as:

Xi → LiXiR
†
i . (4.1)

Under a gauge transformation the non-linear sigma model fields transform as:

Xi → G2,1XiG
†
5 (4.2)

where G5 is an SO(5) gauge transformation and G2,1 is an SU(2) × U(1) gauge transfor-

mation with SU(2)×U(1) embedded inside SO(4) ' SU(2)l×SU(2)r, see Appendix A for

a summary of the conventions. The gauge symmetries explicitly break the global [SO(5)]8

symmetry and the gauge couplings g5 and g2,1 can be viewed as spurions. Notice that g5

only breaks the [SO(5)R]4 symmetry, while g2,1 only breaks the [SO(5)L]4 symmetry.

10



The non-linear sigma model fields, Xi, can be written in terms of linearized fluctuations

around a vacuum 〈Xi〉 = 11:

Xi = exp(ixi/f) (4.3)

where f is the breaking scale of the non-linear sigma model and xi are adjoints under the

diagonal global SO(5). The interactions of the non-linear sigma model become strongly

coupled at roughly Λ ' 4πf where new physics must arise. The kinetic term for the

non-linear sigma model fields is:

Lnlσm Kin =
1

2

∑

i

f2 TrDµXiD
µX†

i . (4.4)

where the covariant derivative is:

DµXi = ∂µXi − ig5XiT
[mn]W

[mn]
SO(5)µ + i

(

g2 T la W la
µ + g1 T r3 W r3

µ

)

Xi (4.5)

where W
[mn]
SO(5) are the SO(5) gauge bosons, W la are the SU(2) gauge bosons and W r3 is

the U(1) gauge boson. One linear combination of linearized fluctuations is eaten:

ρ ∝ x1 + x2 + x3 + x4 (4.6)

leaving three physical pseudo-Goldstone bosons in adjoints of the global SO(5) that decom-

pose under SU(2)l × SU(2)r as:

φl ∼ (3l,1r) φr ∼ (1l,3r) h ∼ (2l,2r) (4.7)

Under U(1)Y , φr splits into φr 0 and φr ±.

Radiative Corrections

There are no one loop quadratic divergences to the masses of the pseudo-Goldstone bosons

from the gauge sector because all the non-linear sigma model fields are bi-fundamentals
11



of the gauge groups. This occurs because the g5 gauge couplings break only the SO(5)Ri

global symmetries, while the g2,1 couplings only break the SO(5)Li
symmetries. To generate

a mass term it must arise from an operator |TrXiX
†
j |2 and needs to simultaneously break

both the left and right global symmetries. This requires both the g5 and g2,1 gauge couplings

which cannot appear as a quadratic divergence until two loops. This can be verified with

the Coleman-Weinberg potential [22]. In this case the mass squared matrix is:

(

WA
5 WA′

2,1

)







g2
5f

2 TrT AXiX
†
i T

B g5g2,1f
2 TrT AXiT

B′
X†

i

g5g2,1f
2 TrT A′

X†
i T

BXi g2
2,1f

2 TrT A′
X†

i XiT
B′













WB
5

WB′

2,1






(4.8)

Because the fields are unitary matrices, the entries along the diagonal are independent of

the background field, xi, and so is the trace of the mass squared. Therefore:

V1 loop CW Λ2 =
3

32π2
Λ2 TrM2[xi] = Constant (4.9)

There are one loop logarithmically divergent, one loop finite and two loop quadratic di-

vergences from the gauge sector. All these contributions result in masses for the pseudo-

Goldstone bosons that are parametrically two loop factors down from the cut-off and are

O(g2f/4π) in size.

4.1 Vector Bosons: Masses and Couplings

The masses for the vector bosons arise as the lowest order expansion of the kinetic terms

for the non-linear sigma model fields. The SO(5) and SU(2) W l vector bosons mix as

do the SO(5) and U(1) W r 3 vector bosons. They can be diagonalized with the following

transformations:

B = cos θ′W r3 − sin θ′W r3
SO(5) B′ = W ′ r3 = sin θ′W r3 + cos θ′W r3

SO(5)

W a = cos θW la − sin θW la
SO(5) W ′a = W ′ la = sin θW la + cos θW la

SO(5)

12



where the mixing angles are related to the couplings by:

cos θ′ = g′/g1 sin θ′ = g′/g5

cos θ = g/g2 sin θ = g/g5 (4.10)

The angles θ and θ′ are not independent and are related through the weak mixing angle by:

tan θw =
sin θ′

sin θ
(4.11)

and since θw ' 30◦, sin θ '
√

3 sin θ′.

The masses for the vectors can be written in terms of the electroweak gauge couplings

and mixing angles:

m2
W ′ =

16g2f2

sin2 2θ
m2

B′ =
16g′2f2

sin2 2θ′
m2

W r ± =
16g′2f2

sin2 2θ′
cos2 θ′ (4.12)

These can be approximated in the θ′ → 0 limit as:

m2
B′ ' m2

W ′(1− 2

3
sin2 θ) m2

W r ± ' m2
W ′(1− sin2 θ) (4.13)

Note that the B ′, the mode that is canceling the quadratic divergence of the B, is not

anomalously light4. The U(1)Y quadratic divergence is borderline relevant for naturalness

and could be neglected if the cut-off Λ <∼ 10−15 TeV . The corresponding mode is contribut-

ing to electroweak constraints but doing little to stabilize the weak scale quantitatively.

The Higgs boson couples to these vector bosons through the currents:

jµ a
W ′ = g cot 2θjµ a

H =
g cos 2θ

2 sin 2θ
ih†σa←→D µh

jµ
B′ = g′ cot 2θ′jµ

H = −g′ cos 2θ′

2 sin 2θ′
ih†←→D µh (4.14)

where Dµ is the Standard Model covariant derivative and jµ a
H is the SU(2)L current that

4The B′ in the “Littlest Higgs” is a factor of
√

5 lighter and in the SU(3) Minimal Moose it is a factor
of

√
3 lighter.
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the Higgs couples to and jµ
H for U(1)Y .

The Higgs also couples to the charged SU(2)r vector bosons through:

jµ
W r + = − g′ cos θ′√

2 sin 2θ′
ihDµh

jµ
W r − = jµ

W r +

†. (4.15)

where the SU(2)L indices are contracted with the alternating tensor. Notice that this

interaction is not invariant under rephasing of the Higgs: h→ eiφh sends jW r + → e2iφjW r + .

4.2 Scalar Masses and Interactions

In order to have viable electroweak symmetry breaking there must be a significant quartic

potential amongst the light fields. It is useful to define the operators:

Wi = XiX
†
i+1Xi+2X

†
i+3 (4.16)

where addition in i is modulo 4. There is a potential for the non-linear sigma model fields:

LPot. = λ1f
4 TrW1 + λ2f

4 TrW2 + h.c. (4.17)

There is a Z4 symmetry where the link fields cycle as Xi → Xi+j that forces λ1 = λ2. This

is an approximate symmetry that is kept to O(10%). This potential gives a mass to one

linear combination of linearized fields:

uH =
1

2
(x1 − x2 + x3 − x4). (4.18)

The other two physical modes are the Little Higgs and are classically massless:

u1 =
1√
2
(x1 − x3) u2 =

1√
2
(x2 − x4). (4.19)
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The potential in Eq. 4.17 can be expanded out in terms of these physical eigenmodes using

the Baker-Campbell-Hausdorff formula:

LPot. = λ1f
4 Tr exp

(

2i
uH

f
+

1

2

[u1, u2]

f2
+ · · ·

)

+λ2f
4 Tr exp

(

− 2i
uH

f
+

1

2

[u1, u2]

f2
+ · · ·

)

+ h.c. (4.20)

The low energy quartic coupling is related to the previous couplings through:

λ−1 = λ−1
1 + λ−1

2 λ1 = λ/ cos2 ϑλ λ2 = λ/ sin2 ϑλ

The approximate Z4 symmetry sets θλ ≈ π
4 and the symmetry breaking parameter is

cos 2ϑλ ∼ O(10−1). The mass of the heavy scalar is:

m2
uH

=
16λf2

sin2 2ϑλ
. (4.21)

After integrating out the massive mode the resulting potential for the Little Higgs is the

typical commutator potential:

V (u1, u2) = −λTr [u1, u2]
2 + · · · (4.22)

In order to have stable electroweak symmetry breaking it is necessary to have a mass

term ih†
1h2 + h.c. . This can arise from a potential of the form:

LT r 3 Pot. = iεf4 TrT r 3
(

W1 +W2 +W3 +W4

)

+ h.c. (4.23)

where T r 3 is the U(1) generator. The size of the effects are radiatively stable and they

are set to be a loop factor less than λ, ε ∼ 10−2λ. The coefficients are taken to be pure

imaginary because the imaginary coefficient will be necessary to ensure stable electroweak

symmetry breaking while the real parts are small SO(5) splittings amongst the various
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modes. Expanding this out to quadratic order:

VT r3 Pot. = 4εf2 TrT r3i[u1, u2] + · · · (4.24)

In terms of the Higgs doublets, h1,2 ∈ u1,2, the potentials are:

V (h1, h2) '
λ

2

(

|h†
1h2 − h†

1h2|2 + 4|h1h2|2
)

+ (4iεf 2h†
1h2 + h.c. ) (4.25)

where the h1h2 term is contracted with the SU(2) alternating tensor. This potential is

not the same as the MSSM potential and will lead to a different Higgs sector5. There are

radiative corrections to this potential whose largest effect gives soft masses of O(100 GeV)

to the doublets:

Veff ' λ

2

(

|h†
1h2 − h†

2h1|2 + 4|h1h2|2
)

+
(

(ib + m2
12)h

†
1h2 + h.c.

)

+ m2
1|h1|2 + m2

2|h2|2 (4.26)

where b ≈ 4εf 2. Typically m2
12 is taken to be small to simplify the phenomenology so that

the Higgs states fall into CP eigenstates.

Radiative Corrections

There are no one loop quadratic divergences to the Higgs mass from the scalar potential6.

The symmetry breaking pattern in the potential is more difficult to see, but notice that if

either λ1 or λ2 vanished then there is a non-linear symmetry acting on the fields:

δε1u1 = ε1 + · · · δε1u2 = ε1 + · · · δε1uH = − i

4f
[ε1, u1 − u2] + · · ·

δε2u1 = ε2 + · · · δε2u2 = ε2 + · · · δε2uH = +
i

4f
[ε2, u1 − u2] + · · · . (4.27)

5In the SU(3) Minimal Moose the Higgs potential was identical to the the MSSM because of the close
relation between Little Higgs theories and orbifolded extra dimensions, see [8] for the precise relation.

6More generally potentials that only contain any non-linear sigma model field at most once can only give
a quadratically divergent contribution to themselves.
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TrW1 preserves the first non-linear symmetry but breaks the second, while TrW2 preserves

the second but breaks the first. Either symmetry is sufficient to keep u1 and u2 as exact

Goldstones, this is why λ→ 0 as λ1 or λ2 → 0.

There are one loop logarithmically divergent contributions to the masses of the Little

Higgs as well as one loop finite and two loop quadratic divergences. These are all positive

and parametrically give masses of the order of λ2f/4π.

4.3 Electroweak Symmetry Breaking

At this point electroweak symmetry can be broken. The Little Higgs are classically massless

but pick up O(100 GeV) masses from radiative corrections to the tree-level Lagrangian. The

gauge and scalar corrections to the Little Higgs masses give positive contributions to the

mass squared of the Little Higgs while fermions give negative contributions. The mass

matrix for the Higgs sector is of the form:

LSoft Mass =

(

h†
1 h†

2

)







m2
1 µ2

µ∗2 m2
2













h1

h2






(4.28)

where µ2 = m2
12 + ib. To have viable electroweak symmetry breaking requires:

m2
1 > 0 m2

2 > 0

m2
1m

2
2 −m4

12 > 0 (4.29)

m2
1m

2
2 −m4

12 − b2 < 0.

The vacuum expectation values are:

〈h1〉 =
1√
2







0

v cos β






〈h2〉 =

1√
2







0

v sinβeiφ






(4.30)

17



The potential has a flat direction when β = 0, π
2 and when φ = 0. Unfortunately when

φ 6= 0 custodial SU(2) is broken7. The phase can be solved for in terms of the soft masses

as:

cos φ =
m2

12

m1m2
. (4.31)

The breaking of SU(2)C by the Higgs sector provides one of the strongest limits on the

model. For simplicity µ2 = ib is taken to be pure imaginary forcing φ = π
2 . Taking φ = π

2

is clearly the worst-case scenario for SU(2)C and not generic because there is no reason for

m12 to be significantly smaller than any of the other masses.

The parameters of electroweak symmetry breaking can be solved for readily in the limit

φ = π
2 in terms of the masses:

2λv2 = (m2
1 + m2

2)

( |b|
m1m2

− 1

)

tan β =
m1

m2
(4.32)

tan 2α =

(

1− 2m1m2

|b|

)

tan 2β.

where α is the mixing angle for the h0 −H0 sector. The soft masses should not be much

larger than v otherwise it either requires some tuning of the parameters so that b ' m1m2

or λ becoming large. These arguments will change when m2
12 6= 0. The masses for the five

physical Higgs are:

m2
A0 = m2

1 + m2
2

m2
H± = m2

1 + m2
2 + 2λv2 = x m2

A0

m2
h0 = m2

H±

(

1−
√

1−m2
0/m

2
H±

)

2
(4.33)

m2
H0 = m2

H±

(

1 +
√

1−m2
0/m

2
H±

)

2
= m2

H± −m2
h0

7This can be seen by going back to the SO(4) description. By having a phase it is the same as having
two SO(4) vectors acquire vacuum expectation values in different directions leaving only SO(2) ' U(1)Y

unbroken.
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where

x = |b|/m1m2 m2
0 =

8λv2 sin2 2β

x
(4.34)

The heaviest Higgs is the charged H± and this has consequences for precision electroweak

observables. The mass of the lightest Higgs is bounded by:

1

4
m2

0 ≤ m2
h0 ≤ 1

2
m2

0 (4.35)

where the lower bound is saturated as m2
H± → ∞ and the upper bound is saturated as

m2
H± → m2

0.

4.4 Fermions

The Standard Model fermions are charged only under the SU(2)×U(1) gauge group. Since

all the fermions except the top quark couple extremely weakly to the Higgs sector, the

standard Yukawa coupling to the linearized Higgs doublets can be used without destabilizing

the weak scale. These small Yukawa couplings are spurions that simultaneously break flavor

symmetries as well as the chiral symmetries of the non-linear sigma model. There are many

ways to covariantize these couplings but they only differ by irrelevant operators.

LYuk = yu qhuc + yd qh†dc + ye lh†ec (4.36)

There is no symmetry principle that prefers type I or type II models. This can have

significant implications for Higgs searches.

The couplings of the Standard Model fermions to the heavy gauge bosons is:

LInt = g tan θ W ′a
µ jµ

Fa + g′ tan θ′ B′
µ jµ

F (4.37)

where jµ a
F is the SU(2)L electroweak current involving the Standard Model fermions and

jµ
F is the U(1)Y electroweak current involving the Standard Model fermions. In the limit
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g5 →∞ both θ, θ′ → 0 and the TeV scale gauge bosons decouple from the Standard Model

fermions.

Top Yukawa

The top quark couples strongly to the Higgs and how the top Yukawa is generated is crucial

for stabilizing the weak scale. The top sector must preserve some of the [SO(5)]8 global

symmetry that protects the Higgs mass. There are many ways of doing this but generically

the mechanisms involve adding additional Dirac fermions. To couple the non-linear sigma

model fields to the quark doublets it is necessary to transform the bi-vector representation

to the bi-spinor representation, see Appendix A. The linearized fields are re-expressed as:

x̃iα
β = xi[mn]σ

[mn]
α

β (4.38)

where m,n are SO(5) vector indices running from 1 to 5, α, β are SO(5) spinor indices

running from 1 to 4 and σ[mn]
α

β are generators of SO(5) in the spinor representation. The

exponentiated field, X̃i = exp(ix̃i/f), has well-defined transformation properties under the

global SO(5)’s and the operator, X = (X̃1X̃
†
3), transforms only under the SU(2) × U(1)

gauge symmetry:

X → G̃2,1X G̃†
2,1 (4.39)

where G̃2,1 is an [SU(2)×U(1)] ⊂ SO(5) gauge transformation in the spinor representation

of SO(5).

It is necessary to preserve some of the global SO(5) symmetry in order to remove the

one loop quadratic divergence to the Higgs mass from the top. As in the Minimal Moose,

it is necessary to add additional fermions to fill out a full representation, in this case a 4

of SO(5) for either the q3 or the uc
3. The large top coupling is a result of mixing with this

TeV scale fermion. The most minimal approach is to complete the q3 into:

Q = (q3, ũ, d̃) Uc = (02, u
c
3, 0) (4.40)
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where ũ ∼ (3c,1+ 2

3

) and d̃ ∼ (3c,1− 1

3

) with charge conjugate fields ũc and d̃c canceling the

anomalies. The top Yukawa coupling is generated by:

Ltop = y1fUcXQ+ y2fũũc + ỹ2fd̃d̃c + h.c. (4.41)

The ũ and uc
3 mix with an angle ϑy and after integrating out the massive combination the

low energy top Yukawa is given by:

y−2
top = 2(|y1|−2 + |y2|−2) tanϑy =

|y1|
|y2|

. (4.42)

After electroweak symmetry breaking the top quark and the top partner pick up a mass:

mt =
ytopv cos β√

2
mt′ =

2
√

2ytopf

sin 2ϑy

(

1− v2 cos2 β sin2 2ϑy

32f2

)

. (4.43)

The decoupling limit is the y2 →∞ limit where ϑy → 0.

Radiative Corrections

The top coupling respects a global SO(5) symmetry. This ensures that there are no one

loop quadratically divergent contributions to the Higgs mass and can be seen through

the Coleman-Weinberg potential. The one loop quadratic divergence is proportional to

TrMM †, where M ∼ PUcX is the mass matrix for the top sector in the background of the

Little Higgs and PUc = diag(0, 0, 1, 0) is a projection matrix from the U c. Expanding this

out:

V1 loop CW Λ2 = −12Λ2

32π2
TrPUcXX †PUc

∼ TrPUc = Constant (4.44)

which gives no one loop quadratic divergences to any of the xi fields. One loop logarithmi-

cally divergent, one loop finite and two loop quadratically divergent masses are generated

at the order O(y2
topf/4π). Since the top only couples to h1 amongst the light fields, it only
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generates a negative contribution to m2
1. This drives tanβ to be small since this is the only

interaction that breaks the h1 ↔ h2 symmetry explicitly.

Note that the d̃ can be decoupled without affecting naturalness. This is because there

is an accidental SU(3) symmetry that is identical to the SU(3) symmetry of the Minimal

Moose.

LTop = y1fucũ +
i√
2
y1u

ch1q −
1

4

y1

f
uch†

1h1ũ + · · · (4.45)

is invariant under:

δh1 = ε δq =
i
√

2

f
ε∗ũ δũ =

i
√

2

f
εq. (4.46)

This can be seen by imagining an SU(4) symmetry acting on X . With only the ũ there is an

SU(3) acting in the upper components. The SU(4) symmetry is just the SO(6) ⊃ SO(5).

The SU(3) is not exact but to quadratic order in h it is an accidental symmetry. This means

that in principle it is possible to send ỹ2 → 4π without affecting naturalness and therefore

it is safe to ignore this field. Performing the same calculation as above, the charged singlet,

φr ±
1 , gets a quadratically divergent mass and is lifted to the TeV scale.

5 Precision Electroweak Observables

Throughout this note the scalings of the contributions of TeV scale physics to precision

electroweak observables have been discussed. The contributions to the higher dimension

operators of the Standard Model are calculated in this section. The most physically trans-

parent way of doing this is to integrate out the heavy fields and then run the operators

down to the weak scale. The most difficult contribution to calculate is the custodial SU(2)

violating operator because there are several sources. Beyond that there are four Fermi oper-

ators and corrections to the Z0 and W± interactions. There are no important contributions

to the S parameter besides the contributions from the Higgs that turn out to be small. In

Sec. 5.4 we summarize the constraints on the model from precision electroweak observables
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and state the limits on the masses.

5.1 Custodial SU(2)

Custodial SU(2) provides limits on beyond the Standard Model physics. When written in

terms of the electroweak chiral Lagrangian, violations of SU(2)C are related to the operator:

O4 = c4v
2
(

TrT3ω
†Dµω

)2
(5.1)

where ω are the Goldstone bosons associated with electroweak symmetry breaking. The

coefficient of this operator is calculated in this section. This is directly related to δρ.

However, typically limits are stated in terms of the T parameter which is related to δρ∗

which differs from δρ when there are modifications to the W ± and Z0 interactions with

Standard Model fermions. In Sec 5.4 this difference is accounted for.

There are typically five new sources of custodial SU(2) violation in Little Higgs models.

The first is from the non-linear sigma model structure itself. By expanding the kinetic

terms to quartic order there are operators that give the W ± and Z0 masses. If SU(2)C had

not been broken by the vacuum expectation values of the Higgs, then there could not be

any operators that violate SU(2)C . Custodial SU(2) is only broken with the combination

of the two vacuum expectation values which means that the only possible operator that

could violate SU(2)C must be of the form (h†
2Dh1)

2. However, the kinetic terms for the

non-linear sigma model fields never contain h1 and h2 simultaneously meaning that any

operator of this form is not present.

Vector Bosons

The second source of custodial SU(2) violation is from the TeV scale gauge bosons. The

massive W ′ never gives any SU(2)C violating contributions to the W± and Z0 mass. The

B′ typically gives an SU(2)C violating contribution to the electroweak gauge boson masses

but the additional contributions from the W r± vector bosons largely cancel this. Summing
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the various contributions:

δρ = − v2

64f2
sin2 2θ′ +

v2

64f2
sin2 2β sin2 φ. (5.2)

The second term is a result of the phase in the Higgs vacuum expectation value that breaks

the SU(2)C and arises because the W r± interactions are not invariant under rephasing

of the Higgs. The phase is generally taken to be π
2 to have the Higgs states fall into CP

eigenstates. This is not generic and requires tuning m2
12 to be small. Numerically this

contribution is:

α−1δρ ' 1

8
sin2 2β

(1 TeV )2

f2
(5.3)

where the sin2 2θ′ term has been dropped because it cancels in the conversion to ρ∗ as will be

shown in Sec. 5.4. This prefers β to be small which is the direction that is radiatively driven

by the top sector. For instance at sin 2β ∼ 1
3 , this contribution to δρ is negligibly small for

f ∼ 700 GeV. By going to small tanβ the mass of the lightest Higgs becomes rather light,

for instance, for sin 2β ' 1
3 the mass of the lightest Higgs is bounded by mh0 ≤ v with most

of the parameter space dominated by mh0 ≤ 150 GeV.

Triplet VEV

Another possible source of SU(2)C violation is from a triplet vacuum expectation value.

The form of the plaquette potential in Eq. 4.20 ensures that the tri-linear couplings are of

the form:

h†
1φ

l
Hh2 − h†

2φ
l
Hh1. (5.4)

There are two equivalent ways of calculating the effect, either integrating out φl
H to produce

higher dimension operators or by calculating its vacuum expectation value. The operator
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appears as:

LuHu1u2
= λ cot 2ϑλf i TruH [u1, u2] (5.5)

After integrating out uH the leading derivative interaction is:

Leff = −cos2 2ϑλ

16f2
TrDµ[u1, u2]D

µ[u1, u2] (5.6)

where Dµ are the Standard Model covariant derivatives. Expanding this out there is a term

that gives a contribution to ρ:

δρ =
v2

4f2
cos2 2ϑλ sin2 2β sin2 φ (5.7)

The approximate Z4 symmetry of the scalar and gauge sectors sets ϑλ ' π
4 with cos 2ϑλ ∼

10−1 meaning that this contribution is adequately small.

One might also worry that the light triplets in u1,2 get tadpoles after electroweak sym-

metry breaking (through radiatively generated h†φh terms), which due to their relatively

light masses could lead to phenomenologically dangerous triplet vevs.8 However, these light

scalars are not involved in canceling off the quadratic divergences to the Higgs masses.

Thus these triplets can be safely raised to the TeV scale by introducing “Ω plaquettes”

as described in [8], where Ω = exp
(

2πi T r3
)

= diag (−1,−1,−1,−1, 1). These operators

suitably suppress the magnitudes of the light triplet vevs and do not affect naturalness.

Two Higgs Doublets

The ρ parameter also receives contributions from integrating out the Higgs bosons. It is

known that this contribution can be either positive or negative. It is positive generically if

the H± states are either lighter or heavier than all the neutral states, while it is negative

if there are neutral Higgs states lighter and heavier than it. The Higgs potential of this

theory generically predicts that the charged Higgs is the heaviest Higgs boson. There are

8We thank C. Csaki for pointing out that integrating out heavy quarks might generate these terms.
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four parameters of the Higgs potential: m2
1, m2

2, b, and λ where one combination determines

v = 247 GeV. If φ 6= π
2 then this analysis becomes much more complicated. The contribution

to ρ∗ from vacuum polarization diagrams is:

δρ∗ =
α

16π sin2 θwm2
W±

(

F (m2
A0 ,m

2
H±)

+ sin2(α− β)
(

F (m2
H± ,m2

h0)− F (m2
A0 ,m

2
h0) + δρ̂SM(m2

H0)
)

(5.8)

+ cos2(α− β)
(

F (m2
H± ,m2

H0)− F (m2
A0 ,m

2
H0) + δρ̂SM(m2

h0)
)

)

where

F (x, y) =
1

2
(x + y)− xy

x− y
log

x

y
(5.9)

δρ̂SM(m2) = F (m2,m2
W±)− F (m2,m2

Z0)

+
4m2m2

W±

m2 −m2
W±

log
m2

m2
W±

− 4m2m2
Z0

m2 −m2
Z0

log
m2

m2
Z0

(5.10)

In two Higgs doublet models setting an upper limit on the lightest Higgs mass from precision

electroweak measurements is less precise. There can be cancellations but it appears as

though the T parameter is quadratically sensitive to the mass of the heaviest Higgs. The

spectrum of Higgs generated by the Higgs potential keeps the splittings between the masses

of the Higgs bosons constant:

m2
H± −m2

A0 = 2λv2 m2
H± −m2

H0 = m2
h0

with m2
h0 ≤ 4λv2 sin2 2β. This means that if λ is kept small then the T parameter is

insensitive to the overall mass scale of the Higgs. With α − β = π
4 the contribution to ρ∗

goes as:

α−1 δρ∗ ' 1

10
− m2

h0

(500 GeV)2
− 1

4

m2
h0

m2
H±

− 1

30
log

m2
H±

(500 GeV)2
λ =

1

2

' 1

3
− m2

h0

(500 GeV)2
− 1

2

m2
h0

m2
H±

− 1

30
log

m2
H±

(500 GeV)2
λ = 1. (5.11)
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As λ becomes larger the contributions to the T parameter typically become larger, positive

and favoring heavier Higgs with smaller mass splittings to satisfy precision electroweak fits.

Notice that even for λ = 1
2 where the contributions to δρ∗ are quite small the mass of the

lightest Higgs is only bounded by mh0 ≤ 350 GeV. However the contributions to ρ from the

gauge boson sector prefer a small β to keep the contributions small, thus favoring a light

Higgs.

Top Partners

The top partners provide another source of SU(2)C violating operators arising from inte-

grating out the partners to the top quark: ũ and ũc. Since this is a Dirac fermion it decouples

in a standard fashion as y2 becomes large [23]. The contribution after subtracting off the

Standard Model top quark contribution is:

δρt′∗ =
Nc sin2 θL

8π2v2

[

sin2 θLF (m2
t′ ,m

2
t ) + F (m2

t′ ,m
2
b)− F (m2

t ,m
2
b)− F (m2

t′ ,m
2
t )
]

' Nc sin2 θL

16π2v2

[

sin2 θLm2
t′ + 2 cos2 θL

m2
t′ m2

t

m2
t′ −m2

t

log
m2

t′

m2
t

− (2− sin2 θL)m2
t

]

(5.12)

where θL is the t′ and t mixing angle after electroweak symmetry breaking and can be

expressed in terms of the original Yukawa and the mixing angle ϑy:

sin θL '
v sin2 ϑy cos β

2f
(5.13)

Using this and the expressions for the mass of the t and t′ in Eq. 4.43 the expression for

the δρt′∗ parameter reduces to:

δρt′∗ '
3y2

topv2 sin4 ϑy cos4 β

128π2f2

(

tan2 ϑy − 2
(

log
v2 sin2 ϑy cos2 ϑy cos2 β

4f2
+ 1
)

)

(5.14)

This contribution vanishes as ϑy → 0 which is the limit y1 → 0 while keeping ytop fixed. In

the limit of ϑy = π
4 − δϑy near where mt′ is minimized, the contribution for small β goes as:

α−1δρt′∗ '
(1− 4.4 δϑy + 7.5 δϑ2

y)

25

(

1− 1.8 sin2 β + 0.7 sin4 β
)(1 TeV )2

f2
. (5.15)
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This is adequately small for any β and the contribution quickly drops with δϑy. For instance,

with δϑy ' 0.1, δρt′∗ drops by 40% while mt′ only rises by 2%. This means that this

contribution can be taken to be a subdominant effect.

5.2 S parameter

The main source for contributions to the S parameter is from integrating out the physical

Higgs bosons. As for the case with the ρ parameter, a two Higgs doublet spectrum leaves

a great deal of room for even a heavy spectrum where all the states are above 200 GeV.

Generically the S parameter does not lead to any constraints in the Higgs spectrum because

of cancellations:

S =
1

12π

(

sin2(β − α) log
m2

H0

m2
h0

− 11

6
+

cos2(β − α)G(m2
H0 ,m

2
A0 ,m

2
H±) + sin2(β − α)G(m2

h0 ,m
2
A0 ,m

2
H±)

)

(5.16)

where

G(x, y, z) =
x2 + y2

(x− y)2
+

(x− 3y)x2 log x
z − (y − 3x)y2 log y

z

(x− y)3
. (5.17)

This can be approximated by expanding around large m2
H± masses and taking α− β = π

4 :

S = SSM −
5

144π
− 1

16π

2λv2

m2
H±

+
1

48π

m2
h0

m2
H±

+
1

24π
log

m2
H±

m2
h0

(5.18)

These are adequately small in general for all reasonable values of λ and m2
h0 .

5.3 Electroweak Currents

The last source of electroweak constraints comes from the modifications to electroweak

currents and four Fermi operators at low energies. These come from two primary sources,
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the Higgs-Fermion interactions from the current interactions in Eqs. 4.14 and 4.37:

LH F = −
ja
µW ′H jµa

W ′F

M2
W ′

− jµB′H jµ
B′F

M2
B′

= −sin2 θ cos 2θ

8f2
jH

a µjFa µ −
sin2 θ′ cos 2θ′

8f2
jH

µjFµ (5.19)

and the direct four Fermi interactions:

LF F = −
(ja

µW ′F)2

2M2
W ′

− (jµB′F)2

2M2
B′

= −sin4 θ

8f2
jF

a µjFa µ −
sin4 θ′

8f2
jF

µjFµ. (5.20)

It requires a full fit to know what the limits on these interactions are, but to first

approximation these interactions are fine if they are suppressed by roughly Λlim ∼ 6 TeV

[24]. Since sin θ '
√

3 sin θ′, the biggest constraints come from the effects of the W ′. The

constraints reduce to a limit on the g5 − f plane of:

2
√

2f

sin θ
>∼Λlim. (5.21)

Clearly for f ∼ 2.5 TeV there are no limits on g5, for f ∼ 1.5 TeV, g5 ∼ 1.5 and for f ∼ 0.7

TeV, g5 ∼ 3. 9 These are clearly all in the natural regime for the Little Higgs mechanism

to be stabilizing the weak scale. This limit is very closely related to the mass of the W ′:

MW ′ >∼
g√

2 cos θ
Λlim (5.22)

Thus, the mass of the W ′ >∼ 2
5Λlim. This sets a lower limit on the mass of the W ′ of 2.5 TeV.

5.4 Summary of Limits

To state the limits it is necessary to convert ρ to ρ∗ which is related to the T parameter.

While ρ is related to custodial SU(2), ρ∗ is related to physical results and differs from ρ

9It is not possible to push g5 much larger than 3 because perturbativity is lost when the loop factor
suppression T2(A)g2

5/8π2 becomes roughly 1. This requires g5 <∼ 5.
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when there are modifications to electroweak current interactions. The difference is due to

the discrepancy between the pole mass of the W ± and the way that the mass of the W± is

extracted through muon decay.

In this model the Standard Model fermions couple to the W ′ and B′ and integrating

out the heavy gauge bosons generates both four Fermi interactions and corrections to the

JY , JW fermionic currents after electroweak symmetry breaking. Following the analysis

in [20, 25], the Fermi constant is corrected by:

1

GF
=
√

2v2

(

1 +
δM2

W

M2
W0

− v2

64f2
sin2 2θ

)

. (5.23)

To determine ρ∗, it is necessary to integrate out the Z0 and express the four Fermi operators

as

−4GF√
2

ρ∗(J3 − s2
∗JQ)2 + αJ2

Q (5.24)

which gives us to order (v2/f2)

δρ∗ = αT =
δM2

W

M2
W0

− δM2
Z

M2
Z0

+
v2

64f2
sin2 2θ′

= δρ +
v2

64f2
sin2 2θ′. (5.25)

Because all the other contributions to ρ are small, the primary limit on the theory comes

from the SU(2)C violation in the gauge sector.

At this point the limits can be summarized for the masses of the particles. The limit

on the breaking scale, f , is roughly 700 GeV from the contributions to T from the gauge

bosons. The Higgs contributions to ρ∗ could have been large, but because tanβ is small it

turns out to be subdominant. The mass of the lightest Higgs is bounded to be less than

250 GeV with most of the parameter space dominated by masses less than 150 GeV. The

TeV scale vector bosons are all roughly degenerate with masses greater than 2.5 TeV. The

mass of the top partner is roughly 2 TeV. While the mass of the heavy Higgs are roughly
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2 TeV from the limits on f .

If we chose to exclude the AFB
b measurement as an outlier, the implications for this

model are significant. Discarding this measurement might be reasonable since it deviates

from other Standard Model measurements by roughly 3σ. This model does not significantly

alter the physics of AFB
b from the Standard Model. This measurement is not generally

excluded because doing so pulls the fit for the T parameter positive which favors a very

light Higgs in the Standard Model and is excluded by direct searches. However there are

additional positive contributions that mimic a light Higgs boson in this model. On a general

principle, the connection between a light Higgs boson and a positive contribution to the

T parameter does not hold in two Higgs doublet models and it is quite easy to have the

Higgs sector produce δT ∼ 0.2. By ignoring AFB
b the best fit for the S − T plane moves

to T ∼ 0.15 ± 0.1. See [26, 27] for more details. This significantly reduces the constraints

on this model because all TeV scale physics pulls towards positive T . The contribution

from the gauge bosons becomes roughly about the best fit for T even with tan β ∼ 1 and

f ∼ 700 GeV. This in turn can lower the limit on mt′ and also remove the preference for

lighter Higgs.

6 Conclusions and Outlook

In this paper we have found a Little Higgs model with custodial SU(2) symmetry that is

easily seen to be consistent with precision electroweak constraints. This demonstrated that

Little Higgs models are viable models of TeV scale physics that stabilize the weak scale

and that the breaking scale, f , can be as low as 700 GeV without being in contradiction

to precision electroweak observables. This theory is a small modification to the Minimal

Moose having global SO(5) symmetries in comparison to SU(3). Most of the qualitative

features of the Minimal Moose carried over into this model including that it is a two Higgs

doublet model with a colored Dirac fermion at the TeV scale that cancels the one loop

quadratic divergence of the top and several TeV scale vector bosons. By having custodial

SU(2) it is possible to take the simple limit where the g5 coupling is large where the
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contributions from TeV scale physics to precision electroweak observables become small.

In the model presented, a breaking scale as low as f = 700 GeV was allowed by precision

electroweak observables. The limits on the W ′ and B′ are around 2.5 TeV and the mass of

the top partner is roughly 2 TeV . These are the states that cancel the one loop quadratic

divergences from the Standard Model’s gauge and top sectors and their masses are where

naturalness dictates. The charged Higgs boson was typically the heaviest amongst the

light Higgs scalars this resulted in a positive contribution to T . The limits from custodial

SU(2) violating operators favored a light Higgs boson coming not from the standard oblique

corrections from the Higgs boson, but indirectly from integrating out the TeV scale gauge

bosons. These already mild limits might be reduced by going away from a maximal phase.

Changing this phase would also require recalculating the contributions to δρ from the Higgs

sector when the states do not fall into CP eigenstates. There are additional scalars that

could be as light as 100 GeV that came as the SO(5) partners to the Higgs. As mentioned

earlier in the section on triplet vevs, these states can be lifted by “Ω plaquettes” to the

multi-TeV scale and therefore their relevance for phenomenology is model dependent.

This model predicts generically a positive contribution to T mimicking the effect of a

light Higgs in the Standard Model. This is interesting because if one excludes the AFB
b

measurement as an outlier then the fit to precision electroweak observables favors a positive

T ∼ 0.15 ± 0.1. This is generally stated as the Standard Model has a best fit for a Higgs

mass of 40 GeV if the AFB
b measurement is excluded.

There has been recent interest in the phenomenology of the Higgs bosons inside Little

Higgs models. Most of the recent work we believe carries over qualitatively including the

suppression of h→ gg, γγ [16,17]. The LHC should be able to produce copious numbers of

the TeV scale partners in the top and vector sectors [14].

Another possible way of removing limits arising from the phase in the Higgs vacuum

expectation value is to construct a model that has only one Higgs doublet. All “theory

space” models automatically have two Higgs doublets so one possibility would be to follow

the example of the “Littlest Higgs” and construct a coset model such as SO(9)/(SO(5) ×

SO(4)) [3]. There may be other two Higgs doublet models that have a gauged SU(2)r that
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do not force the Higgs vacuum expectation value to break SU(2)C .

To summarize the larger context of this model, it provides a simple realistic Little Higgs

theory that is parametrically safe from precision electroweak measurements. While it is not

necessary to have a gauged SU(2)r, it allows for transparent limits to be taken where the

TeV scale physics decouples from the physics causing constraints while still cutting off the

low energy quadratic divergences. There are other ways of avoiding large contributions to

electroweak precision observables without a gauged SU(2)r. The important issue is that

the physics that is stabilizing the weak scale from the most important interactions is not

providing significant constraints on Little Higgs models. This is the deeper reason why the

model presented worked in such a simple fashion. Precision electroweak constraints are

coming from the interactions of either the B ′ or the interactions of the light fermions. The

quadratic divergence from U(1)Y only becomes relevant at a scale of 10 – 15 TeV and is

oftentimes above the scale of strong coupling for Little Higgs models. The interactions of

the light fermions with the TeV scale vector bosons is not determined by electroweak gauge

symmetry and can be altered by either changing the charge assignments or by mixing the

fermions with multi-TeV scale Dirac fermions.

In a broader view Little Higgs models offer a rich set of models for TeV scale physics

that stabilize the weak scale. Each Little Higgs model has slightly different contributions to

precision electroweak observables, but they do not have parametric problems fitting current

experimental measurements. In the next five years the LHC will provide direct probes of

TeV scale physics and determine whether Little Higgs models play a role in stabilizing the

weak scale.

Acknowledgments

We would like to thank N. Arkani-Hamed, T. Gregoire, C. Kilic, R. Mahbubani, and M.

Schmaltz for useful discussions and comments on this work. We would also like to thank

C. Csaki for pointing out that radiatively generated tadpoles could give additional triplet

vevs. S.C. is supported through an NSF graduate student fellowship.

33



A Generators

The SO(5) commutation relations are:

[T mn, T op] =
i√
2
(δmoT np − δmpT no − δnoTmp + δnpTmo) (A.1)

where m,n, o, p run from 1, . . . , 5. These generators can be broken up into

T l a =
1

2
√

2
εabcT bc +

1√
2
T a4 T r a =

1

2
√

2
εabcT bc − 1√

2
T a4

T v 0 = T 45 T v a = T a5 (A.2)

The commutation relations in this basis are of SO(5) are

[T l a, T l b] = iεabcT l c, [T r a, T r b] = iεabcT r c, [T l a, T r b] = 0,

[T v 0, T l a] = −[T v 0, T r a] =
i

2
T v a, [T v 0, T v a] =

i

2
(T r a − T l a),

[

T v a, T l b
]

= − i

2
T v 0δab +

i

2
εabcT v c, [T v a, T r b] =

i

2
T v 0δab +

i

2
εabcT v c, (A.3)

[

T v a, T v b
]

=
i

2
εabc(T l c + T r c).

Vector Representation

The vector representation of SO(5) can be realized as:

Tmn op =
−i√

2
(δmoδnp − δnoδmp) (A.4)

where m,n, o, p again run over 1, . . . , 5 and m,n label the SO(5) generator while o, p are

the indices of the vector representation. In this representation:

Tr T ATB = δAB . (A.5)
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Spinor Representation

The spinor representation is given by the form

σl a =







σa/2 0

0 0






σr a =







0 0

0 σa/2






,

σv 0 =
1

2
√

2







0 11

11 0






σv a =

1

2
√

2







0 iσa

−iσa 0






(A.6)

In this representation

Tr T ATB =
1

2
δAB . (A.7)
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Chapter 3: A “Littlest Higgs” Model with Custo-

dial SU(2) Symmetry10

7 Introduction

In the near future, experimental tests at the LHC will begin to map out physics at the TeV

energy scale. With this data, a determination of the Higgs sector, and more importantly,

discovering the physics that stabilizes the weak scale from radiative corrections should be

achievable goals. However, in the interim, the industry of precision electroweak observables

has given us some indirect evidence on what the theory beyond the standard model must

look like. And given the unreasonably good fit of the standard model to these observables,

these constraints generically suggest a theory with perturbative physics at the TeV scale.

For many years, the only models that could stabilize the weak scale and be weakly

perturbative were supersymmetric models, most notably the MSSM. In the past two years,

it has been shown that there is a new class of perturbative theories of electroweak symmetry

breaking, that of the “Little Higgs” [2,5–11,28]. For reviews of the physics, see [12,13] and

for more detailed phenomenology see [14–17]. Little Higgs theories protect the Higgs boson

from one-loop quadratic divergences because each coupling treats the Higgs boson as an

exact goldstone boson. However, two different couplings together can break the non-linear

symmetries protecting the Higgs mass, and thus the Higgs is a pseudo-goldstone boson

with quadratic divergences to its mass pushed to two-loop order. This allows a separation

of scales between the cutoff and the electroweak scale, so that physics can be perturbative

until the cutoff is reached at Λ ≈ 10 TeV.

Having weakly perturbative physics at the TeV scale is probably necessary but definitely

not sufficient to guarantee a theory is safe from precision electroweak constraints. Currently

precision observables have been measured beyond one-loop order in the standard model,

and since Little Higgs model corrections are parameterically of this order, these observables

can put constraints on these theories [18–20, 29–31]. However, these constraints are not

10This chapter is based on reference [3].
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unavoidable, and isolating the strongest constraints can point to the necessary features to

make Little Higgs models viable theories of electroweak symmetry breaking. First of all,

there are modifications of the original models which address these strongest constraints

and greatly ammeliorate the issue [29]. However, just recently, a Little Higgs model was

introduced containing a custodial SU(2) symmetry, the SO(5)×SU(2)×U(1) moose model

[2]. In the limit of strong coupling for the SO(5) gauge group, the precision electroweak

constraints due to the T parameter were softened and in general, there is a large region of

parameter space consistent with precision electroweak constraints and naturalness [32].

Let’s briefly summarize the physics that gives the custodial SU(2) symmetry. The

important point is that in models with a gauged U(1)×U(1) subgroup and standard model

fermions gauged under just one of the U(1)’s, the massive B ′ of these theories provides two

constraints. The first constraint is that integrating out the B ′ generates a custodial SU(2)

violating operator that after electroweak symmetry breaking corrects the standard model

formula for the mass of the Z gauge boson. This gives corrections to the ρ parameter, and

vanishes as the two U(1) gauge couplings become equal. However, the second constraint

pulls in the opposite direction in gauge parameter space. This is because the coupling of the

B′ to standard model fermions generates corrections to low energy four-fermi operators and

also to coefficients of the SU(2)W × U(1)Y fermion currents. These corrections vanish in

the limit in which the U(1) that the standard model fermions is not gauged under becomes

strong. Thus, these two constraints prefer different limits in parameter space and can

constrain the model.

As pointed out before [2], there are simple modifications that evade these two con-

straints, such as only gauging U(1)Y , charging the SM fermions equally under both U(1)’s,

or through fermion mixing. Another simple approach that gives custodial SU(2) symmetry

is to complete the B ′ into a custodial SU(2) triplet. If the triplet is exactly degenerate in

mass, integrating it out does not contribute to a custodial SU(2) violating operator. To

include these new states, instead of gauging two U(1)’s, SU(2)R × U(1) is gauged. After

being broken down to the diagonal U(1)Y , B′ and W r± are put into a “SU(2)R” triplet.

Integrating out the W r± generates an operator which only gives mass to the W giving a ρ
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contribution of the opposite sign of the B ′ contribution. Numerically, the total ρ contribu-

tion from the gauge sector cancels in the strong SU(2)R coupling limit (where the triplet

becomes degenerate), which is the same limit that reduces corrections to fermion operators.

However, this cancelation is not quite exact for the SO(5)×SU(2)×U(1) moose model.

The Higgs quartic potential of that theory has a flat direction when the two Higgs vevs have

the same phase, thus viable electroweak symmetry breaking requires the Higgs vevs to have

different phases. This phase difference changes the ρ contribution due to the W r± gauge

bosons. The Higgs currents of the W r± are not invariant under a vev phase rotation, and

thus the cancelation in the strong coupling limit only occurs if the phase is 0 or π. Indeed,

this remnant of custodial SU(2) violation puts the strongest constraint on the theory.

The situation can be easily resolved if the Little Higgs theory contains only a single light

Higgs doublet. In this case, the W r± current just transforms by a phase under the vev phase

rotation, which cancels out of the contribution. It turns out that the SO(5)×SU(2)×U(1)

moose’s defect can be removed by imposing a Z4 symmetry inspired by orbifold models [33],

which leaves only a single light Higgs doublet that still has an order one quartic coupling.

In this paper, we will take a different approach and construct a “Littlest Higgs” model with

custodial SU(2) symmetry and just one higgs doublet.

This “Littlest Higgs” model will be based on an SO(9)
SO(5)×SO(4) coset space, with an

SU(2)L×SU(2)R×SU(2)×U(1) subgroup of SO(9) gauged. The pseudo-goldstone bosons

are a single Higgs doublet, an electroweak singlet and a set of three SU(2)W triplets,

precisely the content of one of the original custodial SU(2) preserving composite Higgs

models [34]. The global symmetries protect the Higgs doublet from one-loop quadratic di-

vergent contributions to its mass. However, the singlet and triplets are not protected, and

will be pushed to the TeV scale. Integrating out these heavy particles will generate an order

one quartic coupling for the Higgs. To complete the theory with fermions, the minimal top

sector contains two extra colored quark doublets and their charge conjugates.

Since the primary motivation of the model is to improve consistency with precision

electroweak observables, the model’s corrections to these observables will be calculated.

First, we will see that aside from some third generation quark effects, a limit will exist where
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non-oblique corrections vanish. This limit was recently described as “near-oblique” [31] and

we will continue to use this terminology. The existence of this limit allows a meaningful S

and T analysis of the oblique corrections, which will be performed in this model to order

(v2/f2). The dominant contributions come from the extended top sector and the Higgs

doublet, which are quite mild in most of parameter space. In fact, this analysis will show

that there is a wide range of Higgs masses allowed in a large region of parameter space

consistent with naturalness.

The outline of the rest of the paper is as follows: in section 8 we describe the model’s

coset space, light scalars and the symmetries that protect the Higgs mass. We also analyze

the gauge structure and then describe the minimal candidate top sectors. In section 9, we

will show how the quartic Higgs potential is generated as well as describe the log enhanced

contributions to the Higgs mass parameter. There will be vacuum stability issues, and we

will point out ways which these can be resolved. Also as usual, the top sector contributions

will generically drive electroweak symmetry breaking. In section 10, some precision elec-

troweak observables will be calculated and the constraints on the theory will be detailed.

In section 11, we conclude and finally in appendix B, we describe our specific generators

and representations of SO(4).

8 The Model

The first ingredient necessary for custodial SU(2) symmetry is the breakdown of SU(2)L×

SU(2)R × SU(2) × U(1) down to the diagonal SU(2)W × U(1)Y subgroup. Therefore the

global symmetry group must be at least rank 4. Two rank 4 groups are easy to eliminate–

SU(5) does not contain the gauged group and the SO(8) adjoint contains no Higgs doublets.

This leaves SO(9), Sp(8) and F4 as the only remaining rank 4 candidates. In this paper,

we’ll focus on the SO(9) group as it is the easiest to analyze. However, we do mention here

that it appears to be difficult to get a single light Higgs doublet in the Sp(8), F4 groups.

Isolating our attention to SO(9), it is straightforward to implement the “Little Higgs”

construction. Using the vector representation, the top four by four block will contain the
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gauged SO(4) ∼= SU(2)L × SU(2)R and the bottom four by four block will contain the

gauged SU(2) × U(1) ⊂ SO(4). The coset space should break these two SO(4)’s down

to their diagonal subgroup, which can be achieved by an off-diagonal vev for a two-index

tensor of SO(9). In order to have the largest unbroken global symmetry (and thus reduce

the amount of light scalars), a symmetric two-index tensor should be chosen.

This construction can be described in the following way: take an orthogonal symmetric

nine by nine matrix, representing a non-linear sigma model field Σ which transforms under

an SO(9) rotation by Σ→ V ΣV T . To break the SO(4)’s to their diagonal, we take Σ’s vev

to be

〈Σ〉 =













0 0 114

0 1 0

114 0 0













(8.1)

which breaks the SO(9) global symmetry down to an SO(5)×SO(4) subgroup.11 This coset

space guarantees the existence of 20 = (36− 10− 6) light scalars. Of these 20 scalars, 6 will

be eaten in the Higgsing of the gauge groups down to SU(2)W ×U(1)Y . The remaining 14

scalars consist of a single Higgs doublet h, an electroweak singlet φ0, and three triplets φab

which transform under the SU(2)L × SU(2)R diagonal symmetry as12

h : (2L,2R) φ0 : (1L,1R) φab : (3L,3R). (8.2)

This spectrum is particularly nice as each set of scalars can have vacuum expectation values

that preserve custodial SU(2); we will see later that this is approximately true. These fields

parameterize the direction of the Σ field and can be written in the standard way

Σ = eiΠ/f 〈Σ〉eiΠT /f = e2iΠ/f 〈Σ〉 (8.3)

11We could separate the trace from Σ to make it transform as an irreducible representation of SO(9),
however this equivalent vev is chosen so that Σ can be orthogonal.

12See appendix B for specific representation and generator conventions.
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where

Π =
−i

4













0
√

2~h −Φ

−
√

2~hT 0
√

2~hT

Φ −
√

2~h 0













. (8.4)

In Π, the would-be goldstone bosons that are eaten in the Higgsing down to SU(2)W×U(1)Y

have been set to zero. The singlet and triplets are contained in the symmetric four by four

matrix Φ where

Φ = φ0 + 4φab T l aT r b. (8.5)

It is now simple to determine the global symmetries that protect the Higgs mass at one

loop. Under the upper five by five SO(5)1 symmetry, the scalars transform as:

δ~h = ~α + · · · δΦ = − 1

2f

(

~α~h T + ~h ~α T
)

+ · · · (8.6)

Similarly, under the lower five by five SO(5)2, the scalars transform as:

δ~h = ~β + · · · δΦ =
1

2f

(

~β ~h T + ~h ~β T
)

+ · · · (8.7)

Any interaction that preserves at least one of these SO(5) symmetries treats the Higgs

as an exact goldstone boson. Thus, if all interactions are chosen to preserve one of these

symmetries, the Higgs mass will be protected from one loop quadratic divergences. In the

next two subsections, that motivation is used to determine the requisite interactions of the

theory.
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8.1 Gauge Sector

The gauge group structure obviously follows the preserving SO(5) symmetry logic. The

gauged SO(4) ∼= SU(2)L × SU(2)R is generated by

τ l a =







T l a

05






τ r a =







T r a

05






(8.8)

and preserves SO(5)2 whereas the gauged SU(2)× U(1) is generated by

ηl a =







05

T l a






ηr 3 =







05

T r 3






(8.9)

and preserves SO(5)1. The kinetic term for the pseudo-goldstone bosons can now be written

as

Lkin =
f2

4
Tr [DµΣDµΣ] (8.10)

where the covariant derivative is given by

DµΣ = ∂µΣ + i [Aµ,Σ] (8.11)

with the gauge boson matrix Aµ defined by

A ≡ gLW la
SO(4)τ

l a + gRW ra
SO(4)τ

r a + g2W
laηl a + g1W

r3ηr 3. (8.12)

Due to the vev of Σ, the vector bosons mix and can be diagonalized with the following

transformations:

B = cos θ′W r3 − sin θ′W r3
SO(4) B′ = W ′ r3 = sin θ′W r3 + cos θ′W r3

SO(4)

W a = cos θW la − sin θW la
SO(4) W ′a = W ′ la = sin θW la + cos θW la

SO(4) (8.13)
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where the mixing angles are related to the couplings by:

cos θ′ = g′/g1 sin θ′ = g′/gR

cos θ = g/g2 sin θ = g/gL. (8.14)

Notice that there is no relation between θ and θ ′ since SO(4) has two arbitrary gauge

couplings gL and gR. They could of course be set equal by imposing a Z2 symmetry, which

we will choose to do when describing the limits on the model. In this L-R symmetric limit,

the constraint on the angles in order to get the correct θW is sin θ ≈
√

3 sin θ′. The masses

for the heavy vectors can now be written in terms of the electroweak gauge couplings and

mixing angles:

m2
W ′ =

4g2f2

sin2 2θ
m2

B′ =
4g′2f2

sin2 2θ′
m2

W r ± =
4g′2f2

sin2 2θ′
cos2 θ′. (8.15)

8.2 Fermion Sector

For all fermions besides the top quark, the yukawa couplings are small, and thus it is not

necessary to protect the Higgs from their one loop quadratic divergences. However, there is

the requirement that low energy observables such as four-fermi operators do not receive large

corrections. This can be achieved by gauging the light fermions only under SU(2) × U(1).

In the strong SO(4) coupling limit, these fermions will decouple from the W ′ and B′ and

will not give strong precision electroweak corrections.

To implement the Yukawa couplings for the light fermions, we add

LLF =
√

2f






yu (04 uc 04) Σ







05

~qu






+ yd (04 dc 04) Σ







05

~qd






+ yl (04 ec 04)Σ







05

~l













+ h.c. (8.16)

In this expression, we have defined the “SO(4)” representations corresponding to the
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SU(2)× U(1) representations by

~qu ↔ Qu = (q 02) ~qd ↔ Qd = (02 q) ~l↔ L = (02 l) (8.17)

where q and l are the standard quark and lepton doublets. The exact correspondence

between the two equivalent representations is presented in appendix B. At first order, these

interactions reproduce the standard yukawa interactions for the light fermions.

On the other hand, the top yukawa is the strongest one loop quadratic divergence of

the standard model and therefore the top sector must be extended in order to stabilize the

Higgs mass parameter. From the symmetry considerations given earlier, the top sector has

to preserve either the SO(5)1 or SO(5)2 symmetry. The minimal approach is to preserve

the SO(5)1 symmetry, which can be accomplished by adding tc to an SO(4) gauge vector

~X c. In addition to this new vector, we add its charge conjugate ~X and add a Dirac mass

for the two fermions. The interactions are:

Ltop = y1f ( ~X c T tc 04)Σ







05

~qt






+ y2f ~X T ~X c + h.c. (8.18)

Now, the choice is whether or not to make ~qt a “full” SO(4) vector. Since it is only charged

under SU(2) × U(1), it does not have to be a full SO(4) vector, but can contain just one

doublet like ~qu above. For the sake of simplicity, we will choose to analyze the most minimal

case of one doublet.

In this minimal case, the gauge charges of the fermions are:

SU(3)c SU(2)L SU(2)R SU(2) U(1)

q 3 1 1 2 1/6

tc 3̄ 1 1 1 −2/3

~X 3 2 2 1 2/3

~X c 3̄ 2 2 1 −2/3

(8.19)

Under the diagonal SU(2)W ×U(1)Y , ~X contains two doublets X1,X2 with hypercharge 1/6
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and 7/6 respectively. Expanding the terms, we find a mass term linking X c
1 with a linear

combination of q and X1. Integrating out the heavy fermion gives a top yukawa coupling

yt =
y1y

∗
2

√

2(|y1|2 + |y2|2)
. (8.20)

9 Potential and EWSB breaking

By construction, the interactions of the theory do not generate one loop quadratic diver-

gences for the mass parameter of the Higgs. To demonstrate this explicitly, the Coleman-

Weinberg potential will be computed. The one loop quadratic divergent piece will generate

a potential for Φ and h, including a quadratically divergent mass for the Φ. Similar to the

SU(6)/Sp(6) model [10], the gauge interactions will introduce an instability in the vacuum.

The problem is a bit more serious here because the gauge contributions are opposite in

sign for the singlet and triplet masses; thus, the origin of the potential is a saddle point.

However, as in the SU(6)/Sp(6) paper, there are ways to cure this instability issue. Once

the instability has been addressed, integrating out the massive Φ will generate an order one

quartic coupling for h, but no mass term.

For the log divergent piece of the Coleman-Weinberg potential, we will only analyze the

contributions to the Higgs mass parameter. As usual, gauge and scalar sectors will give

positive contributions whereas the top sector gives a large negative contribution that drives

electroweak symmetry breaking.

One Loop Quadratic Term

The one loop quadratically divergent piece of the Coleman-Weinberg Potential is given by

Vone loop Λ2 =
Λ2

32π2
Str (M †M [Σ]) (9.1)
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By the symmetry arguments given earlier, the different SO(5)i preserving interactions can

generate operators depending on

SO(5)1 : Φ +
1

2f
~h ~h T or SO(5)2 : Φ− 1

2f
~h ~h T . (9.2)

It will also be convenient to introduce some notation, where

1

2f
~h ~h T = H0 + 4Hab T l aT r b. (9.3)

H0 and Hab are quadratic in the h fields and their explicit expressions appear in appendix

B.

The gauge contribution can be calculated from the kinetic term for Σ, which gives

Vgauge = −9f2

8

[

(g2
L + g2

R)(φ0 −H0)2 + (g2
2 + g2

1/3)(φ
0 +H0)2

]

+ (9.4)

3f2

8

[

(g2
L + g2

R)(φab −Hab)2 + (g2
2 + g2

1)(φab +Hab)2 − 2g2
1(φ

a3 +Ha3)2
]

where we have ignored a constant term, expanded to second order in Φ and fourth order

in h, and set Λ = 4πf . There are two important points to make about this result. First

of all, there is a sign difference between the mass terms for the singlet and triplets. Thus,

the gauge interactions introduce a saddle point instability in the vacuum. This is expected

since the gauge groups would prefer the Σ vev to be proportional to the identity; at this

vacuum, no gauge groups are broken and indeed the negative mass squared for the singlet

attempts to rotate the vev to this non-breaking vacuum. However, as we will see later, the

top sector gives equal sign contributions to both mass terms. Also from the point of view of

the effective field theory, operators can be written down that give equal sign contributions

to both masses or even just to the singlet. The second thing to note about the gauge

contribution is that only the gauged U(1) introduces explicit custodial SU(2) violation into

the potential. As a matter of fact, this will be the only interaction that can give the triplets

a custodial SU(2) violating vev. Since g1 will be approximately equal to the standard model

hypercharge coupling, the triplet vevs usually give suitably small contributions to ρ. We
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will analyze the triplet vevs in greater detail in section 10.

Now, analyzing the top sector, we find the contribution

Vfermion = 3|y1|2f2
[

(φ0 +H0)2 + (φab +Hab)2
]

(9.5)

where again we have ignored a constant piece and set Λ = 4πf . As noted earlier, the fermion

sector gives equal sign contributions to singlet and triplet masses and does not introduce

custodial SU(2) breaking at this order.13 Following the SU(6)/Sp(6) Little Higgs [10], we

could also extend the top sector with an interaction that preserves the SO(5)2 symmetry.

This would have the added benefit of giving equal sign contributions to the (φ−H)2 terms

and could lift the saddle point into a local minimum. Another way to do this is through

operators such as

L1 = a1f
2

4,4
∑

i=1,j=1

ΣijΣij = a1f
2
[

(φ0 −H0)2 + (φab −Hab)2
]

(9.6)

or

L2 = a2f
2(

4
∑

i=1

Σii)
2 = 4a2f

2
[

(φ0 −H0)2
]

(9.7)

which respect the SO(5)2 symmetry and give contributions to both singlet and triplet

masses or just masses for the singlets. Depending on the UV completion of the model,

these operators can be generated; for instance, they might appear naturally in an extended

technicolor like completion.

These radiative corrections tell us that we must put in these operators with coefficients

of their natural size of the form

V = λ−
1
f2(φ0 −H0)2 + λ+

1
f2(φ0 +H0)2 +

λ−
3
f2(φab −Hab)2 + λ+

3
f2(φab +Hab)2 + ∆λ3f2(φa3 +Ha3)2. (9.8)

13If we had chosen ~qt to contain two doublets, there would be no custodial SU(2) breaking at any order.
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As mentioned before, since g1 will be small, ∆λ3 � λ±
3

is expected, which leads to approxi-

mately custodial SU(2) preserving triplet vevs. We will assume that the singlet and triplet

masses are positive; integrating out these heavy particles then leads to a quartic coupling

of the Higgs (ignoring ∆λ3 for simplicity):

λ|h|4 where 4λ = λ1 + 3λ3 (9.9)

and we’ve defined 1/λ(1,3) = 1/λ−
(1,3) +1/λ+

(1,3). Requiring a positive order one λ puts some

mild constraints on the λ±
(1,3) parameters.

Log Contributions to the Mass Parameter

Even though the Little Higgs mechanism protects the Higgs from one-loop quadratic di-

vergences, there are finite, one loop logarithmically divergent, and two loop quadratically

divergent mass contributions, all of the same order of magnitude. Here we will analyze the

logarithmically enhanced pieces as given by the one loop log term in the Coleman-Weinberg

potential

Vone loop log =
1

64π2
Str

[

(M †M)2 ln
M †M

Λ2

]

. (9.10)

The gauge contribution to the mass squared is positive

m2
gauge =

3

64π2

[

3g2m2
W ′ ln

Λ2

m2
W ′

+ g′2m2
B′ ln

Λ2

m2
B′

]

(9.11)

but the fermion contribution is negative

m2
fermion = −3|yt|2

8π2
m2

t′ ln
Λ2

m2
t′

(9.12)

where we have defined m2
t′ = (|y1|2 + |y2|2)f2.14 This large top contribution generically

dominates and drives electroweak symmetry breaking. We’ve chosen not to consider the

14The heavy t′ quark is the only heavy quark whose mass shifts when the Higgs vev is turned on. Thus,
it is the new heavy state that appears and cuts off the top yukawa quadratic divergence, which is also why
the fermionic contribution to the Higgs mass parameter only depends on mt′ .
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scalar contribution since it depends on the specifics behind the generation of the potential

(Eq. 9.8). However, we mention that it is typically positive and subdominant to the fermion

contribution.

10 Precision Electroweak Observables

Now that we have described the model’s content and interactions, the contributions to

electroweak observables can be calculated. In general, we will work to leading order in

O(v2/f2) and neglect any higher order effects. First in section 10.1, we will focus on non-

oblique corrections to electroweak fermion currents and four-fermi interactions. We will

demonstrate how the limit of strong gL, gR coupling is a “near-oblique” limit as discussed

recently in [31]. This limit validates the usefulness of an S and T analysis and in sections

10.2 and 10.3 we will calculate the model’s contributions to these parameters. We will

choose to keep the S and T contributions from the Higgs sector, but will subtract out all

other standard model contributions. Finally in section 10.4, the results of the full S-T

analysis will be presented.

10.1 Electroweak Currents

First of all, there are non-oblique corrections due to the exchange of the heavy gauge bosons.

Specifically, integrating out the heavy vectors generates four Fermi operators and Higgs-

Fermi current current interactions (the Higgs-Higgs interactions give oblique corrections

and will be considered in the Higgs contribution to T in section 10.2). The former are

constrained by tests of compositeness and the latter after electroweak symmetry breaking

induce corrections to standard model fermionic currents which are constrained by Z-pole

observables. As pointed out recently by Gregoire, Smith, and Wacker [31], the S and T

analysis is reliable when there exists a “near-oblique” limit where most of the non-oblique

corrections vanish. The limit is called “near-oblique” since third generation quark physics

still has non-vanishing effects. In this model this limit turns out to be the strong gL, gR →∞

limit that decouples the light generations from the heavy gauge bosons. A discussion of the
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non-decoupling third generation effects is outside the scope of this paper and thus they will

not be analyzed. However, for a preliminary discussion of the important operators in such

an analysis, see reference [31].

To calculate these induced effects, we first write down the relevant currents to the heavy

gauge bosons starting with the Higgs (leaving off Lorentz indices for readability)

ja
W ′H = g cot 2θja

H =
g cos 2θ

2 sin 2θ
ih†σa←→D h

jB′H = g′ cot 2θ′jH = −g′ cos 2θ′

2 sin 2θ′
ih†←→D h (10.1)

and also for the standard model fermions (aside from the third generation quarks)

ja
W ′F = g tan θ ja

F jB′F = g′ tan θ′ jF (10.2)

where they are given in terms of the standard model SU(2)W , U(1)Y currents ja
(HF ) and

j(HF ). The one heavy gauge boson current left out is the Higgs current to W r±, but

since there is no corresponding fermionic current, integrating out W r± does not generate

four-fermi operators or standard model current corrections.

Integrating out the heavy gauge bosons generates the Higgs-Fermi interactions

LH F = −
ja
µW ′H jµa

W ′F

M2
W ′

− jµB′H jµ
B′F

M2
B′

= −sin2 θ cos 2θ

2f2
jH

a µjFa µ −
sin2 θ′ cos 2θ′

2f2
jH

µjFµ (10.3)

and the four Fermi interactions

LF F = −
(ja

µW ′F)2

2M2
W ′

− (jµB′F)2

2M2
B′

= −sin4 θ

2f2
jF

a µjFa µ −
sin4 θ′

2f2
jF

µjFµ. (10.4)

As a rough guide, these operators have to be suppressed by about (4 TeV)2 to be safe [24,31].

To simplify the analysis, we will take the SO(4) symmetric limit gL = gR. In this restricted
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case, in order to get the correct sin θW requires the relation
√

3θ′ ≈ θ at small θ’s. Thus,

the SU(2) operators give the tightest bound. Of these, the Higgs-Fermi SU(2) operator

turns out to be the most constrained giving a constraint

mW ′ & 1.8 TeV . (10.5)

For the value f = 700 GeV, this corresponds to a limit θ . 1/4. However, to be safe

we’ll later take as a benchmark value θ ′ = 1/5
√

3, θ ≈ 1/5 from which to compare with

experiment. Note that for this near-oblique limit to exist, it was crucial that the light

generations could be decoupled from the heavy gauge bosons. Again, only in this limit is

an analysis of the oblique corrections S and T meaningful.

10.2 Custodial SU(2)

Custodial SU(2) violating effects are highly constrained by precision electroweak tests and

this model’s primary motivation is to minimize any such violation. Custodial SU(2) viola-

tion is conveniently parameterized by corrections to the ρ parameter (or equivalently the T

parameter). In a Little Higgs model, there are potentially five sources of custodial SU(2)

violation. The first possible contribution is that of expanding out the kinetic term in terms

of the Higgs field. The non-linear sigma model kinetic term contains interactions at high

order that could give custodial SU(2) violating masses to the W and Z. However, in this

model there is no violation at any order. This is due to the fact that the kinetic term is

invariant under a global SO(4)D that is broken down by the Higgs vev to custodial SU(2).

As a matter of fact, all terms in the expansion of the kinetic term just shift the value of the

Higgs vev v, which gives δρ = 0.
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Vector Bosons

The second possibility is that integrating out the TeV scale gauge bosons (the W ′, B′,W r ±)

can generate a custodial SU(2) violating operator. This is typically denoted as

O4 = |h†Dµh|2. (10.6)

In all previous Little Higgs theories, integrating out the W ′ gauge bosons does not generate

this operator at O(v2/f2) and this holds true for this model as well. On the other hand,

integrating out the B ′ and W r± does generate this operator, but with opposite sign! There

is a cancelation with the total contribution

δρGauge Boson = − v2

16f2
sin2 2θ′. (10.7)

Note that as advertised this vanishes in the limit θ ′ → 0, which is the same limit where the

standard model fermions decouple from the B ′. At the benchmark values θ′ = 1/5
√

3, f =

700 GeV, this gives a contribution Tgauge = −.056. One can see that the addition of the

extra W r± gauge bosons has provided an extra suppression factor of sin2 2θ′ ≈ 1/20.

Triplet Vev

The third contribution to custodial SU(2) violation comes from the triplet vevs. The key

point is that the potential (Eq. 9.8) is custodial SU(2) invariant except for the ∆λ3 term

generated by the gauged U(1). The non-oblique corrections already prefer small θ ′ and

thus small g1. Therefore custodial SU(2) violation in the potential should be small, and we

should expect that ∆λ3 � λ±
3
. Calculating the triplet vev contribution, we find

δρtriplet =
v2

16f2

[

(

λ−
3
− λ+

3
−∆λ3

λ−
3

+ λ+
3

+ ∆λ3

)2

−
(

λ−
3
− λ+

3

λ−
3

+ λ+
3

)2
]

≈ v2

4f2

λ−
3
(λ+

3
− λ−

3
)

(λ−
3

+ λ+
3
)3

∆λ3. (10.8)

where we have expanded to first order in ∆λ3/λ±
3

to get the end result. In comparison with

the “Littlest Higgs”, there is now a beneficial ∆λ3/λ
±
3

suppression. We cannot really
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Figure 1: Triplet Contribution to T as a function of θ ′ with y1 = 2, gL = gR, and f =
700 GeV.

say anything more in the effective field theory since there are unknown order one factors in

the relation between the λ3’s and the coefficients as calculated in the Coleman-Weinberg

potential. However, to get a feel for the expected size of the contribution, we can take the

Coleman-Weinberg coefficients at face value which for y1 = 2, gL = gR, and f = 700 GeV,

gives the plot T vs. θ′ as shown in figure 1. In the limit gL = gR, there is an upper bound

θ′ . π/5 (in order to get the correct sin θW ) which is why the graph is cut off on the right.

Order one factors aside, it is obvious that the triplet contribution to T is negligibly small

due to the extra suppression described above.

Top Sector

The fourth source of custodial SU(2) violation is the introduction of new fermions in the

top sector. To calculate the effects of the extra fermions, it is easiest to compute the

contributions to T through vacuum polarization diagrams by the definition

T ≡ e2

α sin2 θW cos2 θW m2
Z

[Π11(0)−Π33(0)]. (10.9)

If we ignore the small mixing effects induced by the b quark mass, the contribution is

parameterized by the single parameter θt where

y1 =

√
2yt

sin θt
y2 =

√
2yt

cos θt
. (10.10)
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Figure 2: Top Sector Contribution to T as a function of θt. The solid line is for f = 700
GeV while the dashed line is for f = 900 GeV.

In figure 2, plots of the T contribution versus θt are plotted for f = 700 GeV and f = 900

GeV, centered around θt = π/4. Note that the standard model contribution to T has already

been subtracted off from the total top sector contribution, in order to give the final plotted

results. A good fit to the T contribution in the range of θt plotted is cos2 θt cot θt, where the

fit gets bad in the θt ≤ 1/2 region. As we change f , the constant of proportionality roughly

scales as 1/f 2. In figure 3, the dependence of mt′ on θt is also plotted. An important point

is that naturalness puts an upper bound constraint on the mass mt′ . By the standard given

in [9], for a 200 GeV Higgs, 10% fine-tuning restricts mt′ . 2 TeV. Fortunately, as the

figures show, it appears possible to get corrections to T within the 1-σ bound at f scales

consistent with this amount of fine tuning. It is also important to keep in mind that these

T contributions are quite mild (this appears to be a generic feature of Little Higgs models).

For instance, the standard model top quark contribution is T ≈ 1.2 which is quite larger

than the largest value in the plot of 0.35. It is also well known that moderate positive values

of T increase the upper bound on the Higgs mass [35]. Since θt will be varied during the

fit, this will dramatically change the allowed Higgs masses.

Higgs

Finally, the Higgs itself will contribute to T. The contribution is well known and we will

use the explicit formula contained in [36]. For the purposes of this paper, we will take the
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Figure 3: The heavy top mass mt′ as a function of θt. The solid line is for f = 700 GeV
while the dashed line is for f = 900 GeV.
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Figure 4: Top Sector Contribution to S for f = 700 GeV as a function of θt.

S,T origin when mHiggs, ref = 115 GeV. As we increase the Higgs mass, this T contribution

gets large and negative.

10.3 S Parameter

The S parameter along with the T parameter gives a good handle on the oblique contribu-

tions of any new physics. To the order at which we have been calculating (i.e. v2/f2), there

are only two sources of S contributions. The first contribution is that of the Higgs. Again,

we use the result in [36]. This gives a positive S contribution for Higgs masses larger than

our chosen reference mass.

The second contribution to S comes from the extended top sector and again is best
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Figure 5: The approximate 1σ ellipse in the S-T plane. The origin (S=0,T=0) corresponds
to the reference values mh = 115 GeV and mt = 174.3 GeV. The Higgs contribution
for increasing Higgs mass is plotted for the values (115,200,300,500,700,1000) GeV which
slopes down and to the right. Two representative points of the extra fermion and gauge
contributions have also been plotted for θt = π/4, θ′ = 1/5

√
3 and f = 700, 900 GeV.

calculated via vacuum polarization diagrams using the definition

S ≡ −16πΠ′
3Y (0). (10.11)

In figure 4, we have plotted the beyond the standard model S contribution from the top

sector for f = 700 GeV. For the region of naturalness, the contributions to S are quite small

and do not measurably affect the fit of the model.

10.4 Summary of Limits

Now, the fit to S and T can be performed. In figure 5, the approximate 1σ ellipse in

the S-T plane as given in [37] has been plotted. Note that the (S=0,T=0) origin has
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been set to the reference values mh = 115 GeV and mt = 174.3 GeV. Sloping down and

to the right, the exact contribution due to the Higgs has been plotted for the masses

mh = (115, 200, 300, 500, 700, 1000) GeV. To represent the other two contributions, two

points of the beyond the standard model fermion and gauge contributions have also been

plotted for the values θt = π/4, θ′ = 1/5
√

3, and f = 700, 900 GeV. The fermionic contri-

bution generically points up and slightly to the right whereas the gauge contribution points

downward. To find where the model is on the S-T plane, these three contributions should

be added.

To be specific, we’ll focus on the value f = 700 GeV as this limits the amount of fine-

tuning in the model. In figure 6, the S and T contributions for the Higgs and fermions are

summed for θt = π/4 and θ′ = 1/5
√

3. From the graph there appears to be a generous

range of mh that falls within the 1σ limits, at least 115 GeV ≤ mh . 400 GeV. If θt is

changed, larger Higgs mass can be attained. Although changing θt from the equal mixing

value π/4 increases fine-tuning, as mh increases the Higgs mass parameter also increases

which will reduce the fine-tuning, and thus θt can be manipulated as the Higgs gets heavier.

This freedom helps since reducing θt will increase the fermion contribution to T (and only

slightly increase S) as required to stay within the ellipse [35]. For instance, at θt = π/6,

we can still tolerate a 1 TeV Higgs mass. Changing θ ′ produces less of an effect, but as

it goes to zero, it can also help improve the fit at large Higgs mass. Of course, at Higgs

masses about a TeV, the Little Higgs mechanism is not even required if the cutoff is taken

to be 10 TeV. However, within our model, we see that a large region of parameter space is

allowed by both the S-T fit and naturalness. In figure 7, θ ′ and f have been fixed while θt

and mh are scanned; all points in the shaded region fit within the 1σ S-T ellipse, while all

points above a dashed line are consistent with that percentage of fine-tuning (again using

the fine-tuning definition of [9]). There is quite a large range of Higgs masses allowed by

precision constraints, and most of it is within ten percent fine-tuning or better.

As a brief comment on more general f values, the positive fermion contribution to T

decreases as f increases at a given θt, so it is more difficult to get within the ellipse for very

large Higgs mass at large f . For instance, going up to f = 900 GeV pushes the range for
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that percentage of fine-tuning.
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θt = π/4 and θ′ = 1/5
√

3 down to about 115 GeV ≤ mh . 350 GeV. However, it is our

hope that naturalness will help to keep f low, so that the TeV scale particles can still be

discovered at the LHC.

Two more comments on this fit should be made. First of all, the experimental error in

the top mass gives an uncertainty in the standard model contribution to S and T. With

the current error of ±5 GeV, this introduces an unknown ±.07 contribution to T (the

change in S is small), which can significantly affect the fit. The other thing to note is

to remember that O(v4/f4) effects and higher have been neglected. For instance, as seen

in [31], S contributions from O(v4/f4) and dimension 6 operators suppressed by Λ2 are of

the order ±.02. Thus, to go beyond the O(v2/f2) analysis as presented here will require

some assumptions about the UV completion.

As a conclusion to this section, we plot some sample spectrums for an allowed region of

parameter space in figure 8, with f = 700 GeV. For the heavy quark sector, we have allowed

θt to vary. The t′ quark is the heavy charge 2/3 quark that cuts off the top yukawa quadratic

divergence, and is nearly degenerate with the charge −1/3 b′ quark (the b′ is usually about

5-10 GeV heavier). The T and Ψ quark (charge 2/3 and 5/3 respectively) are exactly

degenerate at tree level and are not important in cutting off the top quadratic divergence.

In general, the (T,Ψ) pair is lighter than the (t′, b′) pair. In the heavy gauge boson sector,

the W ′ is generally the heaviest and the B ′ and W±
r are nearly degenerate (with the B ′

heavier). As θ decreases, all of the states get heavier and more degenerate. Finally, in the

scalar sector, the simplifying assumption that naturalness in the gauge contribution sets

λ±
1

= 3λ±
3

has been assumed. This naturalness condition sets the scalars to be heavier than

the triplets by a factor of
√

3. To simplify it even further, we’ve also assumed that λ−
3

= λ+
3

and picked a Higgs mass of 200 GeV. All these particles have TeV scale masses and should

be searched for at the LHC.
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11 Conclusion

In this paper, a new “Littlest Higgs” model with custodial SU(2) symmetry has been

analyzed. Precision electroweak analyses of Little Higgs models has given suggestions on

what features Little Higgs theories should realize, and with this motivation, the SO(9)
SO(5)×SO(4)

model has been proposed in order to be easily compatible with precision constraints. Some

of the unique features of the model include:

• Psuedo-goldstone bosons with custodial SU(2) preserving vevs, comprised of a single

light Higgs doublet and at the TeV scale, a singlet and three SU(2)W triplets, similar

to [34].

• At O(v2/f2), the 1σ S-T fit allows a generous range of Higgs masses in a large region

of parameter space that is consistent with naturalness.

The other features follow that of the original “Littlest Higgs”, including the generation of

the Higgs potential through gauge and fermion interactions as well as the fermion sector

driving electroweak symmetry breaking. At low energies, the effective theory is the standard

model, with extra states at the TeV scale to cut off the quadratic divergences to the Higgs.

Once again, we emphasize that the precision constraints are mild and a large region of Higgs

masses is allowed in parameter space where the Higgs mass is natural.

In analyzing the one loop quadratically divergent term in the Coleman-Weinberg poten-

tial, we discovered that the gauge interactions introduced a saddle point instability in the

vacuum. Two solutions to stabilize the vacuum were presented, either through extending

the top sector or writing down operators that could give same sign contributions to the sin-

glet and/or triplet masses. As an aside, we mention here briefly two “Littlest Higgs” models

that also contain custodial SU(2) where the preferred vacuum is stable. Firstly, changing

the global symmetry from SO(9) to SU(9) changes the breaking pattern to SU(9)→ SO(9).

In this model, the upper SU(4) gauge group can be gauged instead of SO(4). The SU(4)

gauge interactions prefer the off-diagonal vacuum and stabilize the (φ − X)2 terms. This

along with the top sector given earlier can stabilize the vacuum. This theory contains 2
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Higgs doublets, 3 singlets, and 6 triplets and should preserve custodial SU(2) in the same

way as the SO(9) model.

Recently, the idea of UV completing the “Littlest Higgs” via strong interactions giving

rise to composite fermions and composite Higgs was introduced [38]. This idea requires

the top sector to be comprised of full multiplets of the global symmetry. A model with

custodial SU(2) symmetry that conceivably could be UV completed in this manner is one

based on the coset SU(8)
Sp(8) , where the upper 4 components of the 8 is 4 ≡ (2L + 2R) and

SU(2)L×SU(2)R×SU(2)×U(1) is gauged. This time the gauge interactions naively make

the vacuum a local maximum, but the sign could depend on the UV completion and is

just a discrete choice. The spectrum of this theory turns out to be 4 Higgs doublets and 5

singlets! However, as one can see from these other examples, the model presented in this

paper has the simplest spectrum, displays all the important physics, and is a complete and

realistic model.

In summary, Little Higgs models are exciting new candidates for electroweak symmetry

breaking. They contain naturally light Higgs boson(s) that appear as pseudo-goldstone

bosons through the breaking of an approximate global symmetry. With perturbative physics

at the TeV scale, these models produce relatively benign precision electroweak corrections.

In this paper, one model that realizes custodial SU(2) symmetry has been described, which

may give some insight into why the standard model has worked so well for so long. In the

near future, experiments at the LHC should start giving indications whether or not these

candidate theories play a role in what comes beyond the standard model.
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B Generators and Notation

The SO(4) commutation relations are:

[T mn, T op] =
i√
2
(δmoT np − δmpT no − δnoTmp + δnpTmo) (B.1)

where m,n, o, p run from 1, . . . , 4. These generators can be broken up into

T l a =
1

2
√

2
εabcT bc +

1√
2
T a4 T r a =

1

2
√

2
εabcT bc − 1√

2
T a4

(B.2)

where a, b, c run from 1, . . . , 3. The commutation relations in this basis of SO(4) are equiv-

alent to SU(2)L × SU(2)R:

[T l a, T l b] = iεabcT l c, [T r a, τ r b] = iεabcT r c, [T l a, T r b] = 0.

Vector Representation

The vector representation of SO(4) can be realized as:

Tmn op =
−i√

2
(δmoδnp − δnoδmp) (B.3)

where m,n, o, p again run over 1, . . . , 4 and m,n label the SO(4) generator while o, p are

the indices of the vector representation. In this representation:

Tr T ATB = δAB . (B.4)
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Higgs Representations

For the Higgs doublet, we have three equivalent forms of the representation. First, there is

the SO(4) vector representation, denoted as

~h ≡







ha

h4






where a = 1, 2, 3, (B.5)

the SU(2)W doublet representation (with Y = − 1
2)

h ≡ 1√
2







h4 + ih3

−h2 + ih1






(B.6)

and the two by two matrix

H ≡ (h4 + σa ha)/
√

2 =

(

h −εh∗
)

(B.7)

where the antisymmetric tensor ε = iσ2. Under SU(2)L × SU(2)R, this matrix transforms

as

H → LH R† (B.8)

and thus a vev in the h4 direction breaks SU(2)L × SU(2)R to custodial SU(2).

The Coleman-Weinberg potential depends on the fields H0 and Hab as defined by

1
2f

~h ~h T = H0 + 4Hab T l aT r b. These are given in terms of the Higgs fields as:

H0 =
1

4f
|h|2 Hab =

1

8f

[

(

hchc − h4h4
)

δab − 2hahb − 2εabchch4
]

(B.9)

Singlet and Triplet Representations

In this theory, there are TeV scale scalars transforming as a singlet and as triplets under

SU(2)W , which appear in the symmetric product of two SO(4) vectors, i.e. (4 × 4)S =

1 + 9 = (1L,1R) + (3L,3R). In the non-linear sigma model field Σ, these appear in the
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symmetric four by four matrix Φ and can be written as

Φ = φ0 + 4φab T l aT r b. (B.10)

Note that since the left and right generators commute, this is a symmetric matrix. These

fields are canonically normalized and for the triplets, SU(2)W acts on the a index in the

triplet representation and U(1)Y acts on the b index by T r 3 in the triplet SU(2)R repre-

sentation.

Fermion representation

The SO(4) vector representation fits nicely for the scalars, but is a bit cumbersome for

the fermion sector. However, taking inspiration from the ~h,H transformation properties, it

isn’t hard to see the correct correspondence. Let’s first start with a set of doublets q1, q2 in

a two by two matrix

Q ≡ (q1 q2) (B.11)

which transforms under SU(2)L × SU(2)R as

Q→ LQR†. (B.12)

Thus the q’s are SU(2)L doublets and the SU(2)R rotates them into each other. Now, Q

can be transformed into an SO(4) vector by tracing

~q T = (qa, q4) ≡ 1√
2

(Tr (−iσaQ), Tr (Q)) (B.13)

where ~q transforms under the T l, T r generators of the SO(4) representation. The normal-

ization out front is important if this is to be completed into an SO(5) vector by the addition

of a singlet fermion Ψ (this is just in order to keep canonical normalization under group

action).
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Finally, the generalization of this correspondence to a fermion transforming under an

SU(2)× U(1) gauge group is straightforward.
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Chapter 4: Unitarity and Little Higgs Models15

12 Introduction

The Standard Model (SM) with an elementary Higgs scalar is a remarkably simple theory,

but despite the simplicity, it still successfully accommodates all known experimental data

(aside from neutrino oscillations). However, the hierarchy problem [1] puts the naturalness

and completeness of this theory in doubt. Already at one-loop level, quadratic radiative

corrections to the Higgs mass parameter destabilize the weak scale, pulling it up to the

intrinsic ultraviolet (UV) cutoff. At best, the SM is an effective field theory behaving

naturally only up to an UV cutoff ΛSM that could be higher than the weak scale by merely

a loop factor, ΛSM ∼ 4πv ' 3 TeV.

This hierarchy problem (or naturalness problem) has motivated most of the major ex-

tensions of the SM since the seventies. The two earliest and best known directions are

dynamical symmetry breaking [39] and the addition of supersymmetry [40]. More recently,

theories with large or small extra dimensions [41] have been used to eliminate the hierarchy

problem. These avenues are quite rich and have been explored in depth.

The newest addition to this list of candidates is an attractive idea called the “Little

Higgs” [2, 3, 5–7, 9–11, 28, 42]. Little Higgs theories seek to solve a little hierarchy, by only

requiring the Higgs mass be safe from one-loop quadratic divergences. In this mechanism,

the extended global symmetries enable each interaction to treat the Higgs particle as a

Goldstone boson. However, once all interactions are turned on, the Higgs becomes a pseudo-

Goldstone boson [43]. Thus quadratic divergences in the mass parameter can only appear

at two-loops and higher. This allows the theory to be natural with an UV cutoff up to

two-loop factors above the weak scale, roughly Λ ∼ (4π)2v ∼ 10 − 30 TeV. The required

particle content and interactions are usually quite economical; there may be new heavy

gauge bosons (W ′, Z ′ and B′ for instance), new heavy quarks (t′ and possible exotics), and

new heavy scalars (electroweak singlets, triplets and/or extended Higgs doublet sector).

15This chapter is based on reference [4] done in collaboration with Hong-Jian He.
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Many Little Higgs models have been constructed, most of which take just the minimal

solution towards stabilizing the little hierarchy. This approach requires a very minimal

addition of extra particles and interactions. At first glance, both experimentalists and

theorists might find this approach depressing, since this just predicts a sparsely filled little

desert at the LHC. However, as we will show in this Letter, the situation luckily seems much

better. In fact, a new scale in the multi-TeV range is found to demand new physics beyond

that required by the minimal Little Higgs mechanism.

To begin, we can take inspiration from our knowledge of the SM. After observing the

W and Z gauge bosons, we could wonder whether their mere existence predicts any new

physics to be discovered. The lesson here is well known. Since the scattering amplitudes

for longitudinal weak bosons grow with energy, perturbative unitarity would be violated

at a critical energy E = ΛU in the absence of Higgs boson [44–49]. The classic unitarity

analysis determines this energy scale as ΛU ' 1.2 TeV [46–51]. Note that this is noticeably

lower than the cutoff scale for strong dynamics, Λ ∼ 4πv ' 3TeV, as estimated by naive

dimensional analysis (NDA) [52, 53].

The possible resolutions to this unitarity crisis are well known. If a Higgs scalar exists,

the Higgs-contributions to the scattering amplitude cut off the growth in energy. Alterna-

tively, if strong dynamics breaks the electroweak symmetry, possible new vector particles

(such as techni-ρ ’s) will save unitarity. Imposing perturbative unitarity, these new states

must appear below or around the scale ΛU ' 1.2 TeV for the high energy theory to make

sense. Independent of details in the UV completion, this bound ensures new physics to be

seen at LHC energies.

Essentially the same lesson can be relearnt for the Little Higgs models. The low energy

dynamics of the Little Higgs theories are described by the leading Lagrangian under the

momentum expansion, which is the analog of the two-derivative operator in the usual chiral

Lagrangian. Due to the two derivatives, the scattering amplitude of these scalars is expected

to grow as E2, and will eventually violate unitarity at an energy E = ΛU. So far, the only

difference from the SM case is the symmetry breaking structure. The different effective chiral

Lagrangians will predict different interaction strengths and relations which determine the
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unitarity bound. Most importantly, the bound ΛU points to the UV completion scale of

the Little Higgs mechanism, and in analogy with the SM, is expected to be at accessible

energy scales, lower than the NDA cutoff Λ ∼ 4πf ∼ 10 TeV. Moreover, because the

breaking of extended global symmetries of the Little Higgs models results in a large number

of additional (pseudo-)Goldstones in the TeV range, we expect the collective effects of the

Goldstone boson scatterings in a coupled channel analysis to further push down the unitarity

bound ΛU.

The rest of this Letter is organized as follows. We first perform a generic unitarity

analysis for a class of Little Higgs models in Sec. 12, and then carry out an explicit unitarity

study for the Littlest Higgs model of SU(5)/SO(5) in Sec. 13. We discuss the potential

new physics signals in Sec. 14, which is not intended to be exhaustive, but just gives a

flavor of the possible phenomenology at the LHC. This section ends with a discussion of

the interpretation and implications for the unitarity violation scale versus the NDA cutoff

scale. Finally, we conclude in Sec. 15.

13 Unitarity of Little Higgs Models: A Generic Analysis

As described in the introduction, Little Higgs models predict new physics in the TeV range,

such as new gauge bosons and new fermions. However, there can be substantial variation

in these extra ingredients and thus their analysis is usually model dependent. On the

other hand, the symmetry breaking structure of a given Little Higgs theory is completely

determined. For instance, the scalars in the Littlest Higgs model [9] arise from the global

symmetry breaking SU(5)→ SO(5). This guarantees the existence of 14 “light” (pseudo-

)Goldstone bosons, most of which are expected in the TeV range. At leading order in

the momentum expansion, the interactions of these Goldstones are completely fixed by

the global symmetry breaking pattern. This allows us to perform a generic analysis of

the Goldstone boson scatterings and the corresponding unitarity bounds. Note that the

local symmetries (as well as the fermion sector) in the Little Higgs theories can vary, but

according to the power counting [54, 55] they do not affect our analysis of the leading
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Goldstone scattering amplitudes. So we can apply our generic unitarity formula to each

given theory and derive the predictions.

The setup is rather simple. As mentioned above, a Little Higgs model is defined by

breaking its global symmetry G down to a subgroup H. This guarantees the existence of

|G| − |H| = N Goldstone bosons, denoted by πa (a = 1, · · · ,N ). At the lowest order of

the derivative expansion [54], the Goldstone interactions are fully fixed by the symmetry

breaking structure,

LKE =
f2

8
Tr |∂µΣ|2 . (13.1)

In this expression, we define the nonlinear field Σ ≡ exp [2iπaT a/f ], where Tr (T aT b) = δab

ensures the canonical normalization for the πa’s. The specific form of the broken generators

T a depends on the particular model under consideration. The scale f is the Goldstone

decay constant and is usually taken to be order 0.7− 1 TeV for naturalness. Note that the

factor of 1/8 is a consequence of the normalization Tr (T aT b) = δab and the definition for

Σ. Changing the factor 1/8 will correspond to a simple rescaling of f . We note that in

general the ∂µ ’s should be raised to covariant derivatives by gauge invariance. However,

since we will be concerned only with the leading Goldstone scatterings (instead of the more

involved gauge boson scatterings), it is enough to include the partial derivatives. This

restriction also does not weaken the analysis because power counting [55] shows that the

leading energy growth of the Goldstone scattering amplitudes completely arises from the

derivative terms and is independent of the gauge couplings. Finally, we note that the only

Little Higgs models which cannot be described by this Lagrangian are the Simple Group

Little Higgses [11]. This is due to the fact that in those models, the vacuum expectation

value 〈Σ〉 is not unitary and leads to a different structure.

Expanding Eq. (13.1) up to quartic Goldstone interactions, we arrive at

LKE =
1

2
∂µπa∂µπa +

Γabcd

3f2
(∂µπa)πb(∂µπc)πd + O(π5) (13.2)
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where we have defined

Γabcd ≡ Tr
[

T aT bT cT d − T aT cT bT d
]

. (13.3)

To proceed with a coupled channel analysis, we will consider a canonically normalized singlet

state under H, consisting of N pairs of Goldstone bosons,

|S〉 =

N
∑

a=1

1√
2N
|πaπa〉 , (13.4)

where the factor 1/
√

2 is conventionally used to account for the identical particle states.

The state |S〉 is a singlet since the πa ’s form a real representation of the H symmetry in

non-Simple Group models. Since the πa ’s also form an irreducible representation of H, this

is the only singlet formed from two πa ’s. The scattering amplitude T [S → S] will contain

N 2 number of individual ππ → ππ channels, and is expected to be the largest amplitude for

deriving the optimal unitarity bound. For instance, experience with the QCD SU(2) chiral

Lagrangian or the SM Higgs sector shows that the isospin singlet channel of ππ scattering

results in the strongest unitarity bound [47,49–51]. We also note that among the πa ’s there

are would-be Goldstone bosons whose scattering describes the corresponding scattering of

the longitudinal gauge bosons [such as (WL, ZL) and (W ′
L, Z ′

L, B′
L)] in the high energy

range (s� m2
W ,m2

W ′) via the equivalence theorem [45, 47, 49, 56]. So, at high energies our

analysis is equivalent to a unitary gauge analysis.

Using the interaction Lagrangian in Eq. (13.2), we can readily determine the singlet

scattering amplitude at tree level,

T [S → S] =
C
Nf2

s , (13.5)

where we have defined the group-dependent coefficient

C =

N
∑

a,b=1

Γaabb . (13.6)
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To derive this result, we have used the relation for Mandelstam variables s+ t+u ≈ 0 after

ignoring the small pion masses relative to the large energy scale
√

s . Here we note that

because Γaaaa = 0, only the N (N −1) inelastic channels, πaπa → πbπb (a 6= b), contribute.

It is now straightforward to compute the 0th partial wave amplitude from Eq. (13.5),

a0 [S → S] =
1

32π

∫ 1

−1
dz P0(z)T (s, z) =

C
16πNf2

s , (13.7)

which, as expected, grows quadratically with the energy and is subject to the unitarity

constraint,

|<e a0| <
1

2
. (13.8)

Hence, we find that perturbative unitarity holds for energy scales

√
s <

√

8πN
|C| f ≡ ΛU . (13.9)

Since C tends to scale as N 3/2 for large N , the unitarity bound should scale as N −1/4 [57].

Hence, we expect the unitarity bound to be quite low since N is reasonably large in the

Little Higgs models.

Using this general formula, we can readily compute the coefficient C and determine the

unitarity bounds on the various Little Higgs theories. We compile our results in Table 1.

Note that for moose models, there is a four times replicated non-linear sigma model struc-

ture. But, we have chosen to analyze only one of the non-linear sigma model fields. Any

interaction between the different non-linear sigma model fields is model-dependent, so this

restriction is consistent with our approach.

Table 1 shows that indeed the Little Higgs models generically contain a large number

of Goldstone bosons, N = O(10 − 20), and our unitarity bound ΛU is significantly lower

than the conventional cutoff of the theory, Λ ∼ 4πf ' 12.6f , as estimated by NDA. The

observation that the unitarity violation scale turns out much lower than Λ is an encouraging

sign, indicating that aspects of the Little Higgs UV completions may be possibly explored

at the LHC. We will discuss more about the interpretations of our results and highlight the
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Table 1: Summary of unitarity bounds in various Little Higgs theories.

Little Higgs Model G H N |C| ΛU/f mW ′/f mt′/f

Minimal Moose [5] SU(3)2 SU(3) 8 24 2.89 2.37 1

Littlest Higgs [9] SU(5) SO(5) 14 35 3.17 1.67 2

Antisymmetric
SU(6) Sp(6) 14 26 3.68 1.67 2

Condensate [10]

SO(5) Moose [2] SO(5)2 SO(5) 10 15 4.09 3.35
√

2

SO(9) Littlest
SO(9) SO(5)⊗ SO(4) 20 35 3.79 2.37 2

Higgs [3]

possible collider signatures in Sec. 14.

To add a reference frame for the unitarity bounds in Table 1, we also give the masses of

the W ′ gauge boson and the t′ quark (using our current normalization of f). For the gauge

boson, the mixing angle between the two SU(2) gauge couplings has been set to θ = 1/5.

To scale to a different angle θnew, just multiply by sin (2/5)/ sin 2θnew. A relatively small

mixing angle is required since electroweak precision analysis restricts mW ′ & 1.8 TeV

[2, 29, 31]. For the t′ quark, we have minimized its mass, corresponding to maximizing the

naturalness; in the particular case of two Higgs doublet models we have set sinβ = 1 (for

other β values, just divide by sinβ ).

A striking feature of Table 1 is that 2mW ′ > ΛU holds for almost all Little Higgs

models except the Antisymmetric Condensate model [10] where ΛU is only slightly higher

than the corresponding value of 2mW ′ . Such a low ΛU means that for the center of mass

energy
√

s < ΛU, the W ′W ′ scattering processes will not be kinematically allowed. From

the physical viewpoint, this strongly suggests that additional new particles (having similar

mass range) have to co-exist with W ′ ’s in the same effective theory so that their presence

can properly restore the unitarity. But these new states should enter the Little Higgs theory

in such a way as to ensure the cancellation of one-loop quadratic divergences [58]. From

the technical viewpoint, this obviously implies the equivalence theorem no longer holds
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for predicting the W ′
LW ′

L scattering amplitude by that of the corresponding Goldstone

scattering. But the exact W ′
LW ′

L scattering amplitude could only differ from the Goldstone

amplitude by m2
W ′/s = O(1) terms at most, and thus are not expected to significantly affect

our conclusion.

14 Unitarity of the Littlest Higgs Model: An Explicit Anal-

ysis

In this section we will explicitly analyze the Littlest Higgs model of SU(5)/SO(5) [9] by

writing all Goldstone fields in the familiar electroweak eigenbasis of the SM gauge group.

Then we will extract the leading Goldstone scattering amplitudes and derive the unitarity

bounds, in comparison with our generic analysis of Sec. 12.

As mentioned earlier, the Littlest Higgs model has the global symmetry breaking struc-

ture SU(5) → SO(5), resulting in 14 Goldstone bosons which decompose under the SM

gauge group SU(2)W ⊗ U(1)Y as

10 ⊕ 30 ⊕ 2±1/2 ⊕ 3±1 . (14.1)

Here the 10 ⊕ 30 denotes a real singlet χ0
y and a real triplet χ±,0. They will become the

longitudinal components of gauge bosons (B ′, W ′, Z ′) when the gauged subgroups [SU(2)⊗

U(1)]2 are Higgsed down to the diagonal subgroup GSM. The 2±1/2 includes a Higgs doublet

H and 3±1 a complex Higgs triplet Φ, defined as

HT =



























π+

v + h0 + iπ0

√
2



























, Φ =



























φ++ φ+

√
2

φ+

√
2

φ0− iv′



























, (14.2)

where the would-be Goldstones π±,0 will be absorbed by the light gauge bosons (W ±, Z0)

when electroweak symmetry breaking is triggered by the Yukawa and gauge interactions

via the Coleman-Weinberg mechanism [22]. There will be some small mixings between
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the scalars in H and Φ due to the nonzero triplet VEV v ′, but the condition MΦ > 0

requires [15]

v′ <
v2

4f
� v , (14.3)

so that for the current purpose it is enough to expand the tiny ratio v ′/v and keep only its

zeroth order at which the two sets of Goldstone bosons do not mix. This greatly simplifies

our explicit analysis.

Collecting all the 14 Goldstone bosons we can write the nonlinear field Σ = exp [i2Π/f ] Σ0

for the SU(5)/SO(5) model where the 5× 5 Goldstone matrix is given by

Π =
























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
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
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





1

2
X

1√
2
H† Φ†

1√
2
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2√
5
χ0

y

1√
2
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1√
2
HT 1

2
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
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, (14.4)

and

X =




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. (14.5)

Similar to Eq. (13.1), we derive the leading order Goldstone boson Lagrangian

LKE =
f2

8
Tr |∂µΣ|2

=
1

2
Tr (∂µΠ)2+

1

3f2
Tr
[

(Π∂µΠ)2−(∂µΠ)2Π2
]

+O(Π5),

(14.6)

where the the first dimension-4 operator gives the canonically normalized kinetic terms for

all Goldstone fields in Π, and the second term gives the quartic Goldstone interactions.

To derive the optimal unitarity limit from the Goldstone scatterings, we will consider a
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canonically normalized SO(5) singlet state consisting of 14 pairs of Goldstone bosons,

|S〉 =
1√
28

[

2
∣

∣π+π−〉+
∣

∣π0π0
〉

+
∣

∣h0h0
〉

+ 2
∣

∣χ+χ−〉

+
∣

∣χ0χ0
〉

+
∣

∣χ0
yχ

0
y

〉

+ 2
∣

∣φ++φ−−〉

+ 2
∣

∣φ+φ−〉+
∣

∣φ0
1φ

0
1

〉

+
∣

∣φ0
2φ

0
2

〉 ]

, (14.7)

where we have defined φ0 ≡ φ0
1 + iφ0

2 . This is essentially a re-expression of our general

formula (13.4) with all N = 14 Goldstone fields in the electroweak eigenbasis. But the

expanded form of the quartic interactions in (14.6) is extremely lengthy in the electroweak

eigenbasis, making the explicit calculation of the whole amplitude T [S → S] tedious. Before

giving a full calculation of T [S → S], we will explicitly expand Eq. (14.6) and illustrate the

unitarity limits for the two sub-systems (χa, χ0
y) and (π±,0, h0). From Eq. (14.6), we derive

the corresponding interaction Lagrangians

Lπh
int =

1

12f2

{ [

− (2vh + h2)(∂µπa∂µπa)−

− (∂µh)2πa2+2(v + h)(∂µh)(πa∂µπa)
]

+
[

(∂µπ+)2π−2−[(∂µπ0)2+∂µπ+∂µπ−]π+π−

+ 2(π0∂µπ0)(π+∂µπ−)−π02
(∂µπ+∂µπ−)+H.c.

]}

,

Lχ
int =

1

6f2

{

(∂µχ+)2χ−2− [(∂µχ0)2+∂µχ+∂µχ−]χ+χ−

+ 2(χ0∂µχ0)(χ+∂µχ−)−χ02
(∂µχ+∂µχ−)+H.c.

}

,

(14.8)

where the U(1) Goldstone χ0
y does not enter Lχ

int at this order. The Goldstones (π±,0, h0)

form the SM Higgs doublet H which also has a renormalizable Coleman-Weinberg potential.

But unlike Lπh
int, this potential only contributes constant terms to the Goldstone amplitudes

and thus do not threaten the unitarity, especially when the pseudo-Goldstone Higgs h0 is

relatively light as favored by the electroweak precision data.

The Lagrangian Lπh
int describes the leading derivative interactions of the Higgs doublet
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H, characterized by the Goldstone decay constant f and originated from the global sym-

metry breaking SU(5)→ SO(5). In analogy with the SM case [47], we find that (π±,0, h0)

form an electroweak singlet state |SH〉 = 1√
8

[

2 |π+π−〉+
∣

∣π0π0
〉

+
∣

∣h0h0
〉]

. The correspond-

ing s-wave amplitude is a0[SH → SH ] = (3s/64πf 2), where we have dropped small terms

suppressed by the extra factor (v/f)2 � 1 . Imposing the condition (13.8), we deduce the

unitarity limit
√

s < ΛU =

√

32π

3
f ' 5.79f , (14.9)

which is lower than the NDA cutoff Λ ∼ 4πf by a factor of 2.2. Note that contrary

to the scatterings of Goldstone πa ’s (or WL/ZL ’s) in the SM, the ππ scatterings in the

Littlest Higgs model grow with energy due to the derivative interactions in Lπh
int. Next, we

turn to the (χ±, χ0) system. The Lagrangian Lχ
int for the Goldstone triplet is the same

as the familiar SU(2) chiral Lagrangian. So we define the normalized isospin singlet state

|Sχa〉 = 1√
6

[

2 |χ+χ−〉+
∣

∣χ0χ0
〉]

, and derive its s-partial wave amplitude a0 [Sχa → Sχa ] =

s/(16πf 2). Using the condition (13.8), we arrive at

√
s < ΛU =

√
8π f ' 5.01f , (14.10)

which is lower than Λ ∼ 4πf by a factor of 2.5.

After the above explicit illustrations, we will proceed with a full analysis of this model

in the electroweak eigenbasis. The key observation is that the SO(5) singlet state |S〉 in

Eq. (14.7) can be decomposed into 4 smaller orthonormal states formed from two πa’s,

|S〉 =
√

2

7
|SH〉+

√

3

14
|Sχa〉+ 1√

14
|Sχ0

y
〉+

√

3

7
|SΦ〉 , (14.11)
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each of which is an electroweak singlet state, defined as

|SH〉 ≡
1√
8

4
∑

a=1

|πaπa〉

=
1√
8

[

2
∣

∣π+π−〉+
∣

∣π0π0
〉

+
∣

∣h0h0
〉]

,

|Sχa〉 ≡ 1√
6

7
∑

a=5

|πaπa〉 = 1√
6

[

2
∣

∣χ+χ−〉+
∣

∣χ0χ0
〉]

,

|Sχ0
y
〉 ≡ 1√

2

∣

∣π8π8
〉

=
1√
2

∣

∣χ0
yχ

0
y

〉

, (14.12)

|SΦ〉 ≡
1√
12

14
∑

a=9

|πaπa〉

= ; 5
1√
12

[

2
∣

∣φ++φ−−〉+2
∣

∣φ+φ−〉+
∣

∣φ0
1φ

0
1

〉

+
∣

∣φ0
2φ

0
2

〉]

.

Now we will perform a full coupled-channel analysis for the Goldstone scatterings among

these 4 electroweak singlet states and prove that the maximal eigenchannel just corresponds

to the amplitude T [S → S] in Sec. 12 with |S〉 given by Eq. (14.11) [equivalently, Eq. (14.7)

or (13.4)]. There are 16 such individual scattering channels in total. Denoting each singlet

state in Eq. (14.12) as |Sj〉 ≡
1

√

2Nj

amin
j −1+Nj
∑

a=amin
j

|πaπa〉 with j = H,χa, χ0
y,Φ, we can now

readily derive any amplitude T [Sj → Sj′ ] by using the general formulas (13.5)-(13.6),

T [Sj → Sj′ ] =
Cjj′

√

NjNj′f2
s , (14.13)

where Cjj′ =
∑amin

j −1+Nj

a=amin
j

∑cmin

j′
−1+Nj′

c=cmin

j′
Caacc will be explicitly evaluated for SU(5)/SO(5).
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So, with all the singlet states |Sj〉, we deduce a 4×4 matrix of the leading s-wave amplitudes

A0 =
s

16πf2
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. (14.14)

It has the eigenvalues a0j =
s

16πf2

(

−1,
1

2
,

5

4
,

5

2

)

, where the maximum channel amax
0 =

5s/(32πf 2) corresponds to a normalized eigenvector (
√

2/7,
√

3/14,
√

1/14,
√

3/7), which

in this basis is precisely the singlet state in Eq. (14.11)! Imposing the condition (13.8), we

derive the best unitarity limit for the Littlest Higgs model,

√
s < ΛU =

√

16π

5
f ' 3.17f , (14.15)

in perfect agreement with the optimal bound in Table I.

With the information in Eq. (14.14), we can also analyze the optimal unitarity limits for

all sub-systems via partial coupled-channel analysis, as summarized below.

Subsystem ΛU Subsystem ΛU

{H}: 5.79f {H, χa}: 4.35f

{χa}: 5.01f {H, Φ}: 3.69f

{Φ}: 4.09f {χa, Φ}: 3.45f

{H,χa, χ0
y}: 3.71f {H,χ0

y,Φ}: 3.45f

{χa, χ0
y,Φ}: 3.45f {H,χa,Φ}: 3.27f

(14.16)

It clearly shows that as more states are included into the coupled channel analysis, the
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unitarity limit ΛU becomes increasingly stronger and approaches the best bound (14.15) in

the full coupled-channel analysis. It also demonstrates the limit ΛU to be fairly robust since

omitting a few channels does not significantly alter the result. Finally, for the subsystems

{H} = {π±,0, h0} and {χa}, we see that Eq. (14.16) nontrivially agrees with Eqs. (14.9)-

(14.10) derived from explicitly expanding (14.6).

In summary, taking the Littlest Higgs model as an example, we have explicitly analyzed

the unitarity limits from the Goldstone scatterings via both partial and full coupled-channel

analyses, with the Goldstone fields defined in the familiar electroweak eigenbasis. These

limits are summarized in Eqs. (14.16) and (14.15). We find that the best constraint (14.15)

indeed comes from the full coupled-channel analysis including all 14 Goldstone fields in the

SO(5) singlet channel (Eq. (13.4) or (14.11)), in complete agreement with Table I (Sec. 12).

We have also systematically analyzed the smaller subsystems where some channels are

absent. Most of the resulting unitarity limits in Eq. (14.16) are fairly close to the best limit,

so Eq. (14.15) is relatively robust.

15 Implications for New Physics Signals

As shown in Sec. 12-13, the unitarity constraints already indicate that Little Higgs theo-

ries have an important intermediate scale ΛU, which is in the multi-TeV region and below

the conventional NDA cutoff Λ ∼ 4πf . Somewhere below ΛU, new particles should ap-

pear in order to unitarize the Goldstone scattering of πa ’s. In particular, the longitudinal

WLWL/ZLZL scattering (or the corresponding Goldstone scattering ππ → ππ, hh) will

be measured by experiments. This process should start to exhibit resonance behavior at

least by the scale ΛU, although what actually unitarizes the amplitude depends upon the

UV completion. For the case of the Minimal Moose [5], we can rely on our intuition

from the QCD-type dynamics. If it is dynamical symmetry breaking that generates the

SU(3)2 → SU(3) breaking, the new states should be the analogous vector meson multiplet,

i.e., TeV scale (ρ, K∗, ω, φ) particles. On the other hand, we could envision a linear sigma

model completion (with/without supersymmetry). As an example, there could be a scalar
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Σ that transforms as a (3, 3̄) and gets a VEV proportional to the 3× 3 unit matrix. In this

case, we can expect new singlets and heavy octet scalars to appear in addition to the octet

of Little Higgs bosons. If the Little Higgs theory respects T-parity (cf. second reference

in [2]), these new states would have to be even under this parity. This means they can

be singly produced and also have restricted decay channels, allowing only an even number

of T-odd particles in the final state. So, selecting a specific UV completion can predict

a very interesting phenomenology. This direction will be pursued further [58]. In order

to investigate the phenomenology of these new states, realistic UV completions should be

searched for. For instance, Ref. [38] provides an interesting dynamical UV completion, but

more constructions should also be actively sought.

One might also wonder if small mixing angles or coupling constants would render these

new states hard to observe experimentally. We clarify this by noting that the approximate

global symmetry H relates the scattering of the H singlet to the scattering of light longi-

tudinal W/Z bosons in the following manner. Neglecting H breaking effects, the general

amplitude of ππ scattering is given by

T (πaπb → πcπd) =
∑

j

cabcd
j Aj(s, t, u) , (15.1)

where j is a finite integer, cabcd
j is a constant tensor invariant under H, and Aj(s, t, u) is a

kinematic function depending on the Mandelstam variables. The H singlet amplitude is a

specific linear combination of the kinematic functions. At the lowest order, we have seen

that these functions grow with s and this specific combination needs to be altered at least

by ΛU. However, longitudinal W/Z scattering is just another linear combination of these

kinematic functions. Thus, at the scale ΛU, unitarizing only the H singlet scattering but

keeping the SM-type scattering channels unaffected will require an accidental cancellation

in the group theory space. So, generically any new resonance should be shared among all

allowed individual scattering channels even though an amplitude for the SM-type channel

alone violates unitarity at a relatively higher scale [57]. At worst, a possibly suppressed

coefficient should only arise from the projection into the SM-type channel, rather than a
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small mixing or coupling (up to H breaking effects).

The scale ΛU certainly opens up encouraging possibilities at the LHC, not only to

test the minimal Little Higgs mechanism, but also to start probing possible new signs

of its UV completion dynamics. We note that the unitarity bound ΛU ∼ (3 − 4)f puts

an upper limit on the scale of new states which are going to restore the unitarity of the

Little Higgs effective theory up to the UV scale ∼ 10 TeV or above. So the masses of

these new states can be naturally at anywhere between ∼ f and ΛU, but their precise

values must depend on the detailed dynamics of a given UV completion. For instance,

QCD-like UV dynamics would predict the lowest new resonance to be a ρ-like vector boson

which is expected to be relatively heavy and close to our upper limit ΛU. But when the UV

dynamics invokes supersymmetry, the lowest new state that unitarizes the WLWL scattering

would be scalar-like and can be substantially below ΛU, say ∼0.5f according to the lesson

of supersymmetric SM. (Note that the classic unitarity bound for the Higgsless SM only

requires
√

s < ΛU =
√

8πv ' 5.0v ' 1.2 TeV [46–51], but the minimal supersymmetric SM

unitarizes the WLWL scattering by adding 2-Higgs-doublets with the lightest Higgs boson

mass Mh . 130GeV ' 0.5v [40], which is typically a factor ∼ 10 below ΛU.) So, it is

legitimate to expect the lightest new state in the UV completion of Little Higgs models

to lie anywhere in the range 0.5f . Mmin
new 6 ΛU, though its precise mass value is highly

model-dependent. The natural size for the scale f is ∼1TeV [5]– [3]. The updated precision

analyses [3, 29, 31, 59] showed that the Little Higgs models are readily consistent with the

current data which constrain f & 0.5 − 1 TeV at 95%C.L. (depending on details of the

parameter space in each given model) 16, so f is allowed to be around its natural size

∼ 1 TeV. Taking f ∼ 1 TeV for instance, we expect the lightest new state to be around

0.5TeV . Mmin
new . 3−4TeV. So, if lucky, the LHC may produce the lightest new resonance,

or if it is too heavy, detect the effect of its resonance-tail (via higher order model-dependent

contributions in the low energy derivative expansion) [60]. But a quantitative conclusion has

to be highly model-dependent. To be conservative, we warn that the limited LHC center-

of-mass energy does not guarantee the discovery for such state, especially when M min
new is

16E.g., it was shown [59] that the early precision bound in the Littlest Higgs model is essentially relaxed
by just gauging the subgroup SU(2) × SU(2) × U(1).
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close to the upper limit ΛU. Further precision probe may be done at future e+e− Linear

Colliders, and the proposed CERN CLIC with Ecm = 3− 5 TeV and L = 1035cm−2s−1 [62]

is particularly valuable. The definitive probe of the Little Higgs UV dynamics is expected at

the future VLHC (Ecm = 50− 200 TeV and L & 1035cm−2s−1) [61]. Incorporating the new

signatures of UV completion into relevant collider analyses will expand upon the existing

phenomenological studies [14–17, 59, 63–67].

Next, we discuss the meanings of the two estimated UV scales, ΛU and Λ, and their

implications for an effective field theory analysis in the Little Higgs models. We note that

these UV scales are determined by two different measures of perturbativity breakdown. Our

lowest unitarity limit ΛU is derived from the Goldstone scatterings in the singlet channel via

the s-partial wave. (Weaker bounds may be obtained for the non-singlet channels via the

higher order partial waves.) On the other hand, the NDA estimate of the UV cutoff is based

on the consistency of the chiral perturbation expansion, i.e., one estimates the coefficient of

an operator (counter term) of dimension-D from its renormalization-group running induced

by one-loop contributions of an operator of dimension-(D − 2) and so on [52, 54], because

the former’s size should be at least of the same order as the latter’s one-loop contribution

(about O(1)/16π2 multiplied by an O(1) logarithm) barring an accidental cancellation. So

one obtains the original NDA result [52],

f2

Λ2
&

O(1)

16π2
, ⇒ Λ . 4πf , (15.2)

which is a conservative upper bound on the UV cutoff. The true cutoff for the effective theory

should be min (ΛU, Λ). From low energy QCD, the chiral perturbation theory breaks down

as the energy reaches the ρ-resonance at Mρ = 0.77 GeV which is below but still close to

the upper limit 4πf ' 1.2 GeV. So we know this original NDA upper bound 4πf describes

the UV scale of the low energy QCD quite well 17. But, the dynamics of Little Higgs UV

17The best unitarity limit of the low energy QCD ππ scattering comes from the I = 0 isospin-singlet
channel, ΛU '

√
8πf ' 0.47 GeV. This lies significantly below the upper limit 4πf by a factor of 2.5. It

is interesting to note that in the physical spectrum, besides the ρ meson, there are good evidences for a
relatively light and broad σ meson in the ∼ 0.5 GeV range [68] which unitarizes the I = 0 channel and
agrees well with the unitarity limit ΛU ' 0.47 GeV. The fact that QCD chiral Lagrangian works quite well
is largely because σ is a very broad I = 0 resonance and hard to detect [68].
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completions can of course be very different from QCD dynamics (or even supersymmetric).

In fact, for an underlying gauge interaction with large color Nc and flavor Nf , a Generalized

Dimensional Analysis (GDA) [53, 57] gives

Λ . min

(

a√
Nc

,
b

√

Nf

)

4πf , (15.3)

where a and b are constants of order 1. So we see that as long as Nc or Nf is much larger

than that of QCD, the GDA cutoff will indeed be lower than the original NDA estimate.

Furthermore, the observation that the unitarity of Goldstone scatterings indicates a lower

UV cutoff for the chiral perturbation was made in [57], where it was shown that for a

symmetry breaking pattern SU(N)L ⊗ SU(N)R → SU(N)V (N > 2), the ππ scattering in

the SU(N)V -singlet and spin-0 channel would impose a unitarity violation scale

Λ .
4πf√
N

, (15.4)

signaling a significantly lower UV scale for new resonance formation in comparison with the

original NDA estimate. This is consistent with our current unitarity analysis for the Little

Higgs models.

Finally, in an effective field theory analysis of the Little Higgs models, which UV cutoff

is more relevant for suppressing the higher-dimensional operators? The precise answer has

to be very model-dependent, relying on what type of heavy state(s) is integrated out when

generating a given effective operator. Without knowing the true UV dynamics, the original

NDA estimate Λ ∼ 4πf could be considered as a conservative analysis where the UV scale is

the highest possible. So far all the electroweak precision analyses [18,19,29,31,59] adopted

the NDA estimate of Λ. But we should keep in mind that the actual UV cutoff Λ could

be significantly lower, as suggested by ΛU, although Λ has to be fixed by the underlying

dynamics [cf. GDA estimate in Eq. (15.3)]. Hence it will be instructive to take the two UV

scales ΛU and Λ ∼ 4πf as guidelines and allow the predictions to vary in between. The

ultimate determination of the UV scale can only come from future experiments.
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16 Conclusions

In this Letter, we systematically studied the unitarity constraints in various Little Higgs

models using a general formalism in Sec. 12. Our analysis of the Goldstone scatterings

is rather generic and mainly independent of the choices of parameters, gauge groups and

fermion interactions, etc. This is because the leading Goldstone interactions in the derivative

expansion are completely governed by the structure of global symmetry breaking, allowing

us to perform a coupled channel analysis for the full Goldstone sector in a universal way. We

observed that because the global symmetry breaking in the Little Higgs theories generically

predict a large number of (pseudo-)Goldstone bosons, their collective effects via coupled

channel analysis of Goldstone scatterings tend to push the unitarity violation scale ΛU

significantly below the conventional NDA cutoff Λ ∼ 4πf ' 12.6f . Specifically, ΛU ∼

(3− 4)f (cf. Table I), which puts an upper limit on the mass of the lightest new state, i.e.,

Mmin
new 6 ΛU ∼(3− 4)TeV for f ∼ 1TeV .

As a comparison, in Sec. 13 we took the Littlest Higgs model of SU(5)/SO(5) as an

example and explicitly analyzed the Goldstone scatterings in their electroweak eigenbasis.

We performed both partial and full coupled-channel analyses. We derived various unitarity

violation limits for this minimal model and demonstrated that as more Goldstone states

are included into the coupled channel analysis, the unitarity limit ΛU becomes increasingly

stronger, close to the best bound [cf. Eqs. (14.16) and (14.15)]. This concrete analysis shows

that the optimal unitarity limits in Sec. 12 are fairly robust.

We stress that these tight unitarity limits strongly suggest the encouraging possibility

of testing the precursors of the Little Higgs UV completion at the upcoming LHC (although

no guarantee is implied). A definitive test is expected at the future VLHC [61]. In Sec. 14

we discussed some implications for the UV completions and the related collider signatures.

Finally, we concluded Sec. 14 by discussing the meanings of the two estimated UV cutoff

scales ΛU (from unitarity violation) and Λ (from NDA/GDA). Deciding which estimate

to be more sensible in an effective field theory analysis of Little Higgs models is unclear

before knowing the precise UV dynamics. Only future experiments can provide an ultimate,
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definitive answer.

Note added: As this work was being completed, a related preprint [69] appeared which did

an explicit unitary-gauge calculation of only light WL/ZL scattering in the Littlest Higgs

model. Unfortunately its result is incorrect due to, for instance, mistaking the upper bound

on the Higgs triplet VEV which leads to erroneously large gauge-Higgs triplet couplings.
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