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Summary

In the present view, the ATLAS High Level Trigger will base its event selection software

on the o�ine reconstruction framework, Athena. It is therefore imperative that the

o�ine software { and its relevant components { are able to handle the large CPU

and bandwidth loads required in a real-time environment. This note presents a �rst

set of measurements aimed at validating Athena as the ATLAS online event selection

framework. Although Athena is at an early development stage, detailed pro�ling can

already yield clues as to which components can be optimized. In this note such areas

are identi�ed and a proposal is made on a road map to full performance.

1 Introduction

The ATLAS High Level Trigger [1] will use reconstruction algorithms developed by the
o�ine community in its Event Filter selection stage [6]. This requirement minimizes
duplication of work and ensures consistency between the o�ine and the online event
selections.

The re-use of o�ine algorithms in the online environment implies that the online frame-
work, where the algorithms reside, must provide the same interfaces and services as the
o�ine framework. Furthermore, the demanding online environment at the LHC places
severe constraints on the performance of the event selection software.

This note presents a �rst study of the suitability of Athena [3] as the event selection
framework for the ATLAS High Level Trigger (HLT), addressing the use of Athena at the
Event Filter (EF) only. Re-using Athena code in the Level-2 trigger is a possibility that
will be studied once Athena is validated as an EF framework.

In addition to the validation activities, an important aim of this work is to establish
reference points and metrics that can be used to monitor the performance of Athena as it
evolves. This is especially important given that Athena is in full development.

It is important to remember that the framework choice in
uences the programming model
(i.e., architecture) used for the HLT software. For example, the separation of data and
algorithms in Athena requires an \intelligent" Event Data Model (EDM), which may have
performance consequences because algorithms are forced to communicate via a Transient
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Event Store (TES). The HLT software Design Document [4] already foresees a TES-based
framework.

The evaluation of alternatives to Athena is beyond the scope of this note.

2 Athena as an Online Event Selection Framework

2.1 Scope of Validation

Both functional and performance aspects need to be considered when evaluating Athena as
an HLT candidate framework. Since the ATLAS o�ine software is in an early development
stage, it is impossible to conclude today whether Athena is a reasonable basis for the HLT
software or not. However, it is essential to evaluate Athena now with an HLT point-of-
view, so that weaknesses and problems can be identi�ed early.

The functional aspects of Athena must be considered in the context of the HLT software
requirements [6, 7]. Although it is too early for such a functional evaluation, the validation
of Athena must include an appraisal of its capabilities as a trigger framework.

In addition to ful�lling the functional requirements { and since the online software is
a mission-critical application { the Athena framework must be designed and use core
software components that are fast, 
exible, and reliable.

2.2 Caveats on Athena Validation

The HLT requirements will eventually translate into a detailed architectural design of the
trigger software. Until such a design is available, only preliminary evaluations of Athena
can be made. This note is based on a very simple \computing model" of the Event Filter.
This model, shown in Figure 1, incorporates the basic elements of event selection at the
Event Filter:

� Reconstruction algorithms: imported from the o�ine and including, e.g., steering,
calorimetry, tracking.

� Data
ow and data model: a critical component since it controls how much and in
what way data is organized and accessed.

� Raw data conversion: conversion of event data from raw Event Builder (EB) format
to a format that algorithms understand (using the EDM).

� Meta-data handling: includes \low-frequency" components like con�guration, cali-
bration, monitoring, and run control.

However, presently all of these components are either under development or in a prototype
stage. In this note we concentrate on the more critical \high-load" components, including
algorithms, data 
ow, and raw data conversion.
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Figure 1: A validation perspective of Event Filter components. The domain of the EF
considered here falls within the dotted lines.

3 Performance Measurements

As mentioned in Section 1, one of the aims of measuring the performance of the software is
to provide a \�rst data-point" in order to gauge whether development of Athena compo-
nents that are relevant for the HLT is headed in the right direction. Many measurements
of ATRECON-based HLT software exist (see [1] and references therein). However, per-
formance measurements of Athena and Athena-related components must be brought { at
least { to the same level as presented in the HLT/DAQ/DCS Technical Proposal [1].

Performance measurements of the HLT framework should include, for example, measure-
ments of:

� Execution time

� Memory utilization

� I/O requirements

Ideally, the above should be measured using a representative data sample on a full or a
prototype HLT system. The measurements presented in this note are mainly on execution
time, although memory utilization issues will be addressed.

A decision on the suitability of Athena as an HLT framework will follow only after the
HLT software is mature and its performance is well understood. The consequences of not
adopting the o�ine framework and associated reconstruction algorithms for the Event
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Package Athena version Gaudi version

EFTDRCnv 2.0.2 0.7.4

RD Event 2.0.2 0.7.4

XKalman+Calo. 1.3.5 0.7.2

Table 1: ATLAS release versions used in TAU instrumentation.

Filter need to be carefully examined. Adopting a di�erent framework at the HLT would
demand much more manpower than presently available, it would increase the complexity
of the ATLAS software, and it would slow the transfer of new physics selections to the
online system.

3.1 Benchmarking tools

In order to measure execution time, the HLT prototype code has been instrumented with
the TAU pro�ling tool [12]. More details on TAU and technical aspects of the instrumen-
tation can be found in Appendix A.

All available components of a prototype EF system (shown in Figure 1) have been instru-
mented, including:

� The Event Filter byte stream converter [5] (only the Silicon and Pixel detectors were
available at the time of this study);

� The event data model (\RD Event");

� All Gaudi base libraries and selected Athena components;

� One full set of algorithms, including XKalman++ and the calorimeter reconstruc-
tion.

Since the ATLAS software is developing at a fast rate and since the instrumentation
work is very time-consuming, the instrumentation has only been carried out on oÆcially
tagged and released ATLAS code. This approach should help ensure reproducibility in
benchmarking. Table 1 shows the ATLAS software versions that were instrumented for
this study.

3.2 Platforms and data sets

While development work was carried out in two di�erent machines, the results shown here
were obtained in a 733 MHz Pentium III machine with 512 MB of RAM, running Linux
6.1 (Standard CERN installation). The machine is a standard desktop residing at CERN
in building 32. The equivalent SpecInt95's for this machine is approximately 30.

The data sets used for benchmarking Athena were Z ! bb events and jets (electron
stream). The latter sample was used in pro�ling the algorithms. Samples with and
without pileup were used.
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3.3 Pro�ling Results

In the following, the measurements performed on Athena, and related components, are
summarized. Since we are presently most concerned with Athena's steady-state perfor-
mance in the High Level Trigger framework, all methods that are solely part of the ini-
tialization or �nalization phase of program execution were excluded from the analyses
described in this section.

The absolute execution times presented in this section, even today, do not re
ect the
best possible performance of the software. The source code has not been optimized for
performance and the executables have not been built with optimal compilation 
ags.
However, the scaling behavior and the measurements of the relative performance of the
components are not a�ected by this lack of optimization.

3.3.1 Algorithms (electron-ID)

The electron ID test example of the LAR group [11] was used as an example for a typical
algorithm application. Based on Atlas release 1.3.5/1.3.6, it was integrated with Store-
Gate2 and included the complete reconstruction chain from the raw data handling to the
�nal identi�cation of electrons. As mentioned above, the code was not run in an optimized
form, In addition, due to a memory leak not more than 30 pileup events could be pro-
cessed. This memory leak should also a�ect the execution times, so that any total times
should be taken with caution.

The algorithm was executed in the following con�gurations:

� On single electron data;

� On jet data;

� On jet data with pileup;

� On jet data with pileup and a p? = 15 GeV cut for the calorimeter and a p? = 5 GeV
cut for XKalman++;

� On jet data with pileup with a seeded reconstruction from the calorimeter3.

In the �rst four cases the reconstruction was attempted for the complete detector; in the
last case only in a certain region de�ned by the seed.

Detailed pro�les for each case can be found in Appendix B. It can be observed that
typically the execution times are dominated by methods for building the calorimeter in-
formation. The contribution to the total execution time from reconstruction algorithms
like Xkalman++ is very small in the case of high p? electrons but it dominates for pileup
events, where reconstruction in the complete detector (B physics case) was attempted.
With increased p? cuts and with seeded reconstruction for events with pileup, the execu-
tion times are again dominated by methods for building the calorimeter information.

2This is the version referred in Section 3.3.4 as \old StoreGate".
3At the time of the test the code to do this was not yet oÆcially released. A private version was

used [10].
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The total execution times for the algorithm, run in the aforementioned con�gurations,
were: 2.35 sec./event (electrons), 7.35 sec./event (jets), 80 sec./event (jets with pileup),
31 sec./event (jets with pileup, p? cuts), and 24 sec./event (jets with pileup, seeded
reconstruction).

3.3.2 EFTDREventCnv

The EFTDREventCnv package [5] is an Athena service designed to convert packed raw
event persistent data, in the format expected from the Event Builder (EB), into a form
suitable for access from the TES of Athena. To simulate the input from the EB several
samples of packed raw events were produced for both high and low luminosity using
another package called TE2REConverter (See Figure 1.)

The EFTDREventCnv package was instrumented with TAU along with a copy of the Gaudi
software. TAU pro�ling output was produced by running the instrumented package via
a simple test algorithm over two di�erent packed raw event data samples: one with 100
low luminosity Z ! bb events and one with 20 high luminosity jet events. For each
run the resulting pro�le output �le was used to extract the following information for all
steady-state methods of the EFTDREventCnv package called during the given run:

� Average total exclusive time consumed per event (including multiple calls to the
method).

� Average exclusive time consumed per call to the method.

� Average total inclusive time consumed per event (includes total exclusive times of
all subroutines called by the method).

� Average number of calls to the method.

� Average number of subroutine calls made by the method.

Similar information was obtained for all steady-state methods of the Gaudi framework
that were called during the run. Figure 2 shows a sample pro�ling output from TAU.

Analysis of the pro�le data is discussed in the following sections.

3.3.2.1 Low Luminosity Results The average total real time consumed per event
was measured to be approximately 470 ms. The largest contribution to the total exclusive
time (231 ms) came from some encapsulated methods of the EFTDREventCnv package
called GetID which are used to extract the o�ine identi�er of a Digit from its online
representation. Although the average exclusive times per call for these methods were
quite small (' 23�s) they had to be called for every Digit. The pro�le output shows that
the average number of Digits for the Pixel and SCT detectors in the low luminosity data
sample are approximately 2,800 and 7,000, respectively.

The second largest total exclusive time (101 ms) was consumed by methods of the EFT-

DREventCnv package called UnpackRob, which performs the following tasks: Loop over
each of the event's RODs; For each ROD, loop over all of its Digits; Unpack each Digit
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Average     Average      Average     Average  Average  Method
Exclusive   Exclusive    Inclusive   #Calls   #Subrs   Name  
Total Time  Time Per     Total Time                          
(msec)      Call (msec)  (msec)                              
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
75          1            239         64       6982     void EFRE::SCTTEBuilder::UnpackRob(PRE::ROD, EFRE::TEBuilder<SiDetector,  32U>::DigitCollectionMap 
58          0.008        164         6982     6982     Identifier EFRE::SCTTEBuilder::getID(AtlasEF::Nat32) *this
55          0.015        55          3657     0        Identifier EFRE::SCTTEBuilder::Barrel::getID(AtlasEF::Nat32) *this
51          0.015        51          3325     0        Identifier EFRE::SCTTEBuilder::Endcap::getID(AtlasEF::Nat32) *this
46          46           428         1        135      Event *EFTDREventSource::next_event() *this
33          17           33          2        0        void EFTDREventSiliconStrategy::add_detector_properties() *this
33          0.015        33          2185     0        Identifier EFRE::PixelTEBuilder::Barrel::getID(AtlasEF::Nat32) *this
26          0.381        93          68       2818     void EFRE::PixelTEBuilder::UnpackRob(PRE::ROD, EFRE::TEBuilder<SiDetecto r, 16U>::DigitCollectionMa
24          0.009        67          2818     2818     Identifier EFRE::PixelTEBuilder::getID(AtlasEF::Nat32) *this
10          0.015        10          632      0        Identifier EFRE::PixelTEBuilder::Endcap::getID(AtlasEF::Nat32) *this
0.850       0.429        34          2        2        void EFTDREventSiliconStrategy::next_event(DecoderStrategy::detector_vec  *) *this
0.760       0.760        0.760       1        0        std::istream &operator>>(std::istream &, PackedRawEvent &)  
0.200       0.200        0.400       1        8        StatusCode ReadEFTDREventData::execute() *this
0.150       0.150        0.150       1        0        bool EFRE::Builder::expect(std::ifstream &, std::string, std::string)  
0.040       0.040        0.120       1        6        StatusCode EFTDREventCnv::createObj(IOpaqueAddress *, DataObject *&) *th is
0.010       0.010        0.010       1        1        void EFTDREventAddress::setTDREvent(const Event *) *this
0.010       0.010        0.070       1        3        IOpaqueAddress *EFTDREventIterator::operator*() const *this
0.009       0.009        0.040       1        1        IOpaqueAddress *EFTDREventSelector::reference(const IEvtSelector::Iterat or &) const *this
0.009       0.009        0.010       1        1        bool EFTDREventIterator::operator==(const IEvtSelector::Iterator &) cons t *this
0.008       0.008        409         1        1        IEvtSelector::Iterator &EFTDREventSelector::next(IEvtSelector::Iterator &) const *this
0.008       0.008        0.760       1        1        const PackedRawEvent *EFTDREventSourceFile::nextPackedRawEvent() *this
0.006       0.003        0.007       2        2        const Event *EFTDREventSelector::current() const *this
0.005       0.005        409         1        1        IEvtSelector::Iterator &EFTDREventIterator::operator++(int) *this
0.004       0.004        0.004       1        0        StatusCode EFTDREventCnvSvc::updateServiceState(IOpaqueAddress *) *this
0.002       0.002        0.002       1        0        EFTDREventAddress &EFTDREventAddress::EFTDREventAddress(const CLID &, co nst std::string &, int, co
0.002       0.001        0.002       2        0        Event *EFTDREventSource::current_event() const *this
0.001       0.001        0.001       1        0        void EFTDREventAddress::~EFTDREventAddress() *this
0.001       0.001        0.002       1        1        bool EFRE::Builder::expectInt(std::ifstream &, std::string, std::string,  int &)  
0.001       0.001        0.001       1        1        void EFTDREventSource::get_strategies(const Identifier &, bool, EventSou rce::decoder_vec &) const 
0.001       0.001        0.001       1        0        IEvtSelector::Iterator *EFTDREventSelector::end() const *this
0.000       0.000        0.000       1        1        StatusCode EFTDREventSelector::queryInterface(const IID &, void **) *thi s
0.000       0.000        0.001       1        1        bool EFRE::Builder::expectInt(std::ifstream &, std::string, std::string,  int &, int)       

Figure 2: Pro�ling results for EFTDREventCnv for low luminosity Z ! bb events.

and 2 data words and get its o�ine identi�er (via a call to GetID); For each o�ine iden-
ti�er corresponding to a new wafer, a SiDetector object is created; For each Digit, a new
SiDigit object is created and added to the SiDetector object. Then a pointer to the latter
is inserted into a map using the o�ine identifyer as its key. Similarly to the GetID meth-
ods, the average exclusive time per call for the UnpackRob methods was relatively small
(0.38 ms for Pixel and 1.00 ms for SCT) but they had to be called for an average of 68
RODs for the Pixel detector and 64 RODs for the SCT detector. In addition, for each
ROD, the above mentioned operations had to be performed.

The third largest contribution to the total exclusive time (46 ms) came from a single call
to the method EFTDREventSource::next event. This method is dominated by uninstru-
mented ATLAS software. Further analysis using time stamps showed that most of the
time is consumed by the Event::accept method, which �lls the detector hierarchy struc-
ture with the information of a given event. This software is part of the old event data
model (\RD Event"), which will eventually be replaced.

The time taken to read in the packed raw event from the input stream was measured to be
0.76 ms. The total average time consumed per event by all of the Gaudi methods called
was approximately 12 ms, which is less than 3% of the total average event time.

3.3.2.2 High Luminosity Results The average total real time consumed per event
was measured to be approximately 4900 ms. This is an order of magnitude greater than
the average total time consumed per event at low luminosity.

The largest contribution to the total exclusive time (2200 ms) again resulted from the
GetID methods. This is about 10 times greater than the time consumed in the case of low
luminosity, which is consistent with the fact that there are about 10 times more Digits for
the pileup date sample: ' 26; 000 for Pixel and ' 64; 000 for SCT. The average exclusive
time per call remained the same at 23�s.

This time the second largest contribution to the total exclusive time (1600 ms) came from
the single call to the method next event. This is about 35 times greater than the time
consumed for the low luminosity case and therefore it does not scale with the increased
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Step Input data Read byte-stream Unpack ROBs Fill maps RD Event

no pileup 9.8K digits 0.76 ms 231 ms 101 ms 46 ms

pileup 90K digits 12 ms 2200 ms 830 ms 1600 ms

Table 2: Execution times for the main EFTDRConverter tasks. For each task, the times
are given without pileup and with design luminosity pileup. \RD Event" denotes the time
it takes to �ll event objects using the EDM.

number of Digits. Again, this method is dominated by software from the \RD Event"
event data model, which is discussed in Section 3.3.3.

The third largest total exclusive time (830 ms) was consumed by the UnpackRob methods.
The average number of RODs accessed by these methods did not increase very much from
the low luminosity case: 80 RODs for Pixel and 70 RODs for SCT. However, as mentioned
above, the number of Digits increased by an order of magnitude for the high luminosity
case which accounts for the factor of 10 increase in the total average exclusive time. The
average exclusive times per call of the UnpackRob methods for pileup (3 ms for Pixel and
9 ms for SCT) are also consistent with the increase in the number of Digits.

The time taken to read in the packed raw event from the input stream was measured
to be about 12 ms which scales well with the increased number of Digits. The average
time consumed per event by the Gaudi framework was approximately 116 ms, which is
consistent with the increase in Digits and is again less than 3% of the total average event
time.

The results from the analysis of the EFTDREventCnv benchmarks can be summarized as
follows:

� The average number of Digits in the high luminosity sample is about 10 times greater
than that in the low luminosity sample.

� The average time per event is dominated by Digit processing and scales linearly with
increasing number of Digits.

� The old Raw Event Data Model makes a signi�cant contribution to the average event
time and increases non-linearly with increased pileup.

� The average time taken to read an event from the byte stream is relatively small
and scales linearly with increasing number of Digits.

� The time consumed by the Gaudi framework scales linearly with pileup and makes
a negligible contribution to the total event time.

Table 2 contains the results discussed in the last two sections.

3.3.2.3 Results with Time Stamps In order to obtain an independent measurement
of the real time consumed per event and test the consistency of the TAU results, time
stamps were placed in the test algorithm of the EFTDREventCnv package.

The algorithm was executed over both the 100 low luminosity Z ! bb events and the 20
high luminosity jet events. The results were used to calculate the average time consumed
per event for both samples.
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Figure 3: Fraction of events as a function of measured time using time stamps for low
luminosity Z ! bb events. To generate this plot, 8 events were processed with EFT-

DREventCnv 10 times each. For each event, the 10 execution times were then normalized
to the minimum execution time. The �gure shown is the integral of the latency distribu-
tion.

In addition, the TAU pro�ling tool was turned o� and the above procedure was repeated
to get an estimate of the overhead due to TAU itself.

Relatively large variations in event-to-event execution times were observed. In addition to
the variations due to event occupancy, an additional execution time variation was observed
by running the code on the same event multiple times. Figure 3 shows such a spread when
executing the converter on a few low luminosity events. For example, for a single event,
5% of the time the measurement will yield a latency 50% higher than \normal". This
same event latency tail can be attributed to system- and OS-related contributions, e.g.,
context switching. One way to minimize these contributions is to repeat the measurement
a few times and quote the minimum observed latency as the �nal result.

The following conclusions were drawn from the time-stamped code:

� The average time per event for low luminosity is 430 ms, which is consistent with
the TAU pro�ling result of 470 ms (see Section 3.3.2.1);

� The average time per event for high luminosity is 4800 ms, which is consistent with
the TAU pro�ling result of 4900 ms (see Section 3.3.2.2);

� The overhead due to TAU was estimated at 15% for both the high and low luminosity
data samples. This is consistent with estimates obtained from studying the pro�le
output mentioned in section 3.3.2 with the aid of the TAU overhead speci�cations
mentioned in Appendix A;

� OS-related overheads can contribute up to 50% of additional latency per event,
skewing the performance measurements.
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3.3.3 RD Event

The electron ID application was used to estimate the overhead due to the present Atlas
Event Data Model. In addition to the standard libraries, also the code for the present
EDM was instrumented with TAU . However, due to the design of the EDM software,
certain sections of the code with fast execution times were called very frequently during
a typical run. They, in turn, caused considerable distortions of the time pro�les in the
case of a complete instrumentation of the EDM due to the additional TAU overhead (see
Appendix A). TAU was therefore only used to identify the main entry and exit points to
the EDM, which were then instrumented to get an estimate of the integral time spent in
the EDM during a run.

In the case of pile-up events, about 30% of the total execution time was spent in the
EDM code. However, it should be mentioned that the present EDM also handles certain
geometry information, so that the access time for this is included in the above estimate.

3.3.4 StoreGate

Two versions of the Atlas Transient Event Store (TES) management software StoreGate
(StG) have been evaluated and compared to the standard Gaudi TES implementation.
A �rst implementation of StoreGate on top of the existing Gaudi TES implementation
(subsequently called \old StoreGate"), as it was available in Athena release 1.3.2, was
�rst evaluated. An improved version (subsequently called \new StoreGate"), which was
available as a private implementation4 at the time of this test, was also evaluated. The
software was not compiled in an optimized form; however, all tests were done with the same
settings on the same machine so that relative comparisons are still valid. The software
was instrumented with TAU to get an idea about the distribution of execution times
among the di�erent modules. When possible, timing measurements were done with the
uninstrumented software and simple timestamps in dedicated places to avoid distortions
of the execution times due to TAU overheads.

The test algorithm �rst stores N objects in the plain Gaudi TES and reads them back
afterwards. The time for each step is measured with the Athena ChronoSvc. The same
procedure is then repeated in the same run with StoreGate as the TES management
software. Running the two tests in the same job exposes the last run test to all objects
stored by the �rst test in the TES, i.e if the pure TES test is run �rst and the StoreGate
test afterwards, the StoreGate test will be exposed not only to the objects created by itself
but also to the objects created by the TES test before.

In the case of the \old StoreGate" implementation the following observations can be made:

� The execution time did not scale linearly with the number of handled objects (see
Figure 4).

� The measured times for StoreGate were completely di�erent if the TES test was run
�rst or the StoreGate test was run �rst (Column 3 and 4 in Figure 4 show di�erent
heights).

4The functionality of this version is now available in the oÆcial Atlas software since the recent Atlas
release 2.4.1
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Figure 4: Total access times for registering and retrieving N objects of the same type with
TES or the \old StoreGate" implementation. The 4 columns show the access times for
running the TES test only (TES only, column 1), the StG test only (StG only, column
2), �rst the StG test and then the TES test (StG+TES, column 3) in the same job and
�nally the reversed combination (TES+StG, column 4). Since in this implementation of
StG also the objects which have been registered by the TES test are exposed to StG the
columns 3 and 4 don't show the same access times.

� If TES and StoreGate tests were run individually, so that no interaction could take
place between them, the time to store and retrieve objects with StoreGate was
about �ve times the time needed by the original Gaudi TES implementation. This
was due to 5 times more calls to the \Gaudi RegistryEntry" module in the \old StG"
implementation when searching through objects for retrieving.

The same tests were repeated with the \new StoreGate" implementation in the same
environment. The main observations were now:

� TES and StoreGate showed the same total execution times (see Figure 5).

� There was no interaction anymore between the StoreGate and the TES tests if they
were run one after the other in the same job (Column 3 and 4 in Figure 5 have
almost the same height).

� Registering objects was very fast for the \new StoreGate" : 1 ms for StG compared
to 16 ms for the plain TES with 1000 objects of the same type (see Figure 6).

� Reading back objects with a key was about two times slower with StG than with
the plain TES (see Figure 6).
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Figure 5: Total access times for registering and retrieving N objects of the same type with
TES or the `new StoreGate" implementation. The 4 columns show the access times for
running the TES test only (TES only, column 1), the StG test only (StG only, column
2), �rst the StG test and then the TES test (StG+TES, column 3) in the same job and
�nally the reversed combination (TES+StG, column 4).

� The total time for registering and reading back objects was the same for TES and
StG. With the TES it took about the same time to register and retrieve an object,
whereas in the case of StG registering an object was much faster than reading back
an object (see Figure 6).

The above tests were all done with N objects of the same time. For the more realistic
case of N objects of di�erent types the \new StG" implementation showed a performance
advantage over the plain TES implementation.

� For reading back e.g. 1000 objects of 5 di�erent types (= 5000 objects in total) a
performance advantage of the \new StG" respective to the TES was observed (see
Figure 7):

newSTG read(N objects of M types) ' 0:3 � TES read(N objects of M types)

� The approximate scaling of access times for reading back N objects of M di�erent
types (= N �M objects in total) were (see also Figure 7) in the case of the TES

TES read(N �M objects of 1 type) ' TES read(N objects of M types)

and

newStG read(N �M objects of 1 type) 'M � newStG read(N objects of M types)

for the \new StG".
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Figure 6: Access times for registering and retrieving N objects of the same type with the
TES or the \new StoreGate" implementation. For the access to the TES almost equal
times for registering and reading objects are observed, whereas in the case of the \new
StG" the time is dominated by reading back the objects. The time to register objects with
the \new StG" is almost invisible in the plot.

4 Implications for the HLT

4.1 Conclusions of validation exercise

The bottom line when evaluating Athena for online use is whether it adds undue resource
requirements to the trigger system. A �rst measurement of these overheads, in the context
of Figure 1, was presented in Section 3.

It is worth noting that the notion of what is a \reasonable overhead" can be diÆcult
to de�ne. Depending on how the various system components factorize, it can be very
diÆcult to cleanly separate algorithmic work from data movement work. This is especially
important in the case of the Data Model, where the data organization and access methods
have intelligent { and thus algorithmic { components. For example, if a data model is
very \smart", it can make event selection work more eÆcient while making the data model
appear slow. This performance trade-o� needs to be optimized during the ATLAS EDM
and the HLT selection software design process.

One way to place bounds on what a reasonable overhead should be is to compare with other
frameworks or experiments. For the electron identi�cation studies presented in the HLT
Technical Proposal [1], the data access and framework overheads of ATRECON amounted
to 40% to 50% of the algorithm execution time. Similar overheads in BaBar amount to
10% to 15% [8].
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Figure 7: Comparison of access times for registering and retrieving n objects in total of the
same type and of 5 di�erent types with the TES or the \new StoreGate" implementation.

Section 3.3.3 shows that the EDM benchmarked in this study can take up to 30% of the
total execution time for an event. This is a very large fraction of the CPU budget for
selecting events and is an area that should be monitored closely.

A question that must be answered, however, is how smart does the EDM need to be for the
HLT (this is being addressed by the PESA Requirements Document [6]). The danger is
that the \o�ine EDM" may incorporate functionality that { while essential for the o�ine
task { is not necessary for the HLT. This excess functionality may, in turn, degrade the
performance of the HLT software. This is especially crucial for the HLT because the HLT
software su�ers the ineÆciencies of the EDM in two fronts: in the byte-stream conversion
to EDM format; and in algorithm access to the data.

Another area that must be monitored is data unpacking. As shown in Section 3.3.2, con-
verting raw digits to an o�ine format can take considerable time; typically unpacking
times are more than algorithm execution times. Pure framework overheads, that is, over-
heads due to Gaudi/Athena methods, consume just a few percent of the overall budget,
as shown in Section 3.3.2.

Clearly, as of today, the ATLAS o�ine software is not good enough to be used as an HLT
event selection framework. However, this is not unexpected since ATLAS software is in an
early development phase. The HLT validation work must ensure that Athena development
follows a course compatible with the HLT performance requirements.

Ultimately, the decision on whether an overhead is acceptable will rely more on costing
constraints than on code eÆciency arguments. However, the same \performance vs. cost"
issues that the HLT is facing today will be faced eventually by the o�ine. In this sense,
the HLT software can be a \testbed" for the o�ine community.
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4.2 Recommendations

More work needs to be done before making an informed decision on the suitability of the
o�ine software for the HLT. Although we are years away from full deployment, a few
steps taken today can ease tremendously the task of using the o�ine software (or a subset
thereof) in the High Level Trigger.

First, the functional evaluation of the o�ine software should be an integral part of the
validation exercise. Compliance with requirement documents (e.g., [6], [7]) should also be
monitored. There are a few requirements of PESA SW that are particularly important
for the validation work:

� modularity: We should start to test framework modularity now. For example, one
should be able to build and run Athena without certain services. (Experience says
things do not become modular, they start modular.)

� independence: We must be able to build Athena (and its components) completely
stand-alone, with all libraries, auxiliary �les, and services on a local processor. The
possibility to build a stand-alone version should be a standard option in the regular
builds. Otherwise, we need a special EF repository.

� Athena light: We should have a minimal version of Athena (related to modularity
above). We should be able to build the Athena \kernel" and nothing more (just an
event loop for example), in order to be able to replace services at will. Once the
core functionality (minimal set of ATLAS components) is factorized, performance
evaluations will be much easier.

The strategy of evaluating the system performance of development code needs to be ac-
cepted as a valid approach in validation. The HLT cannot a�ord to wait until a fully-
optimized and �nalized version of the o�ine software is available. This strategy has the
distinct advantage of ensuring that the o�ine software performance improves by provid-
ing concrete feedback to the o�ine community. A recent instance of this feedback is
documented in Section 3.3.4.

Once the ART migration is complete in ATLAS, the o�ine code should be instrumented
with a pro�ling tool. All components relevant to the HLT must be fully instrumented (e.g.,
reconstruction, StoreGate, converters). It is not necessary to use TAU { certain compilers
have suÆcient pro�ling options. This instrumentation should be part of a standard release,
and a user ought to be able to turn it on or o� at will. System metrics, both CPU and
memory utilization, should be integral parts of the o�ine code. It should also be possible
to correlate these metrics to events or to sections of an event.

Ideally, the pro�ling work documented in this note should be carried out in the ATLAS
o�ine community. It should also fall in the domain of code quality control. Code devel-
opers should also have access to the pro�ling results { they are the people best suited for
optimizing their code. Creating a standard \test suite" that is executed after each release
may help automate this procedure. Achieving quality software (in terms of system per-
formance) will be ensured by integrating this activity in the o�ine software early enough.
This, in turn, will guarantee an eÆcient spending of the CPU budget, both for the HLT
and for the o�ine.
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The High Level Trigger will probably only need a subset of the full o�ine functionality
in the online environment. It should be possible to have a light version of Athena, where
unnecessary functionality can be stripped away or disabled with no performance penalties.
For example, neither graphic displays nor MC truth bookkeeping will be needed in the
Event Filter farms. This requires a high level of modularity in the framework.

On the HLT side, we need to create a \Trigger Coding Standards" document or guide-
lines that go beyond proper naming conventions and documentation requirements. These
guidelines would address known programming practices that { although possibly elegant
{ may make trigger code slow and ineÆcient5.

The �nal evaluation of Athena as an online framework will have to rely on a detailed
computing model { and an implementation { of the HLT selection processing. The HLT
community must provide such a model, including:

� Handling, frequency, and direction of meta-data 
ow

� Realistic environment description (e.g., what is disk-resident, memory-resident, and
network-resident)

� Ultimately, performance constraints

� List of Athena/Gaudi components relevant for HLT (\Athena Light").

A few speci�c recommendations can be gleaned from this report:

� The EDM performance is critical to the success of the HLT. It must therefore be
closely monitored. The �nal EDM design should be developed with the HLT func-
tional and performance requirements in mind, as the HLT is the weakest \perfor-
mance link".

� Adding the e-ID execution times of Section 3.3.1 to the raw data conversion times
of Section 3.3.2 yields a �rst rough estimate of EF execution time for electrons: 5 s
(30 s) at low (high) luminosity. Correction factors of 1.8 (3) for low (high) luminosity
were applied to the algorithm execution times to account for the expected gains from
a seeded reconstruction [9]. At low luminosity, this is equivalent to 0.8 s on a 180 SI95
machine. This extrapolation to 2006 performance is a factor of �ve [14] higher than
the budgeted CPU cycles for this trigger. A roadmap to reach this performance
should be provided by the o�ine community6.

� Performance goals should be set for the ATLAS o�ine software. These goals should
be monitored at each major release.

5 Summary and Outlook

No hard conclusions can presently be drawn { given the state of the software { on Athena's
suitability as a High Level Trigger event selection framework. However, by starting a

5This is of course a very diÆcult task since it depends on programming language, OS, platform, etc.
6This is a very rough �rst estimate that must be carefully monitored { it is given here as an \order of

magnitude" estimate of the improvements needed to reach full HLT performance.
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program of measurements now, the HLT community can provide feedback to the o�ine
community on possible areas for optimization.

The short term aim of this work is to establish software metrics to be monitored. The
longer term aim is to ensure that these metrics help point the way to eÆcient software
that satis�es the stringent performance requirements of the HLT.

The HLT validation studies so far have helped in optimizing the performance of the TES
access interface (StoreGate). They have also shown that the Event Data Model is a
performance-critical component of the event selection and that it must be monitored care-
fully. The raw data converter, unique to the Event Filter, is another component whose
performance will be critical to the success of the Event Filter.

This note contains a snapshot of the performance of the o�ine code at an early stage of
development. This one \data point" will be used as the �rst reference point from which
to track performance improvements over time. The next \data points" will be: the new
StoreGate, the full set of converters, and the new EDM.

Once a suitability decision is reached on Athena, two important points must be considered.
If Athena is validated as an HLT framework, then an understanding must be reached with
the o�ine community on the need and implications of maintaining Athena's suitability. If
instead Athena is found to be unsuitable for the HLT task, then an alternative solution
must be developed. Furthermore, in such a case, the implications on manpower and future
maintenance must be considered.

A Pro�ling with TAU

TAU [12] is a free pro�ling tool, which can collect information in a distributed computing
system, it can deal with multi-threaded programs and it can handle programs using shared
libraries. TAU was also used for performance evaluations for the Atlas second level trigger
reference software [13].

Code instrumentation can be done in two ways

� Source code instrumentation : Each source code �le of the program parts which
should be instrumented has to be analysed by a sequence of special preprocessing
steps. They automatically modify the original source by inserting the necessary calls
to the TAU pro�ling API [15]. The newly generated instrumented source �les can
then be compiled and linked in the same way as the original program.

� Dynamic instrumentation : Here the executable object code of the program is mod-
i�ed by TAU . The main advantage is that code can be pro�led without recom-
pilation and access to the program sources is not required. This instrumentation
version, however, was at the time of writing still marked as \experimental" by the
TAU developers and was not used for the studies presented in this note.

A basic installation of TAU for source code instrumentation requires besides the distri-
bution kit for TAU itself also the distribution kit for the \Program Database Toolkit"
(PDT) [16]. It contains the necessary preprocessors for analysing the source code and
producing the \program databases", which are then used for automatic source instrumen-
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tation in TAU . For the studies presented in this paper version 2.9.13 of TAU and version
1.3 of PDT were used.

A.1 Source Code Instrumentation for Gaudi/Athena

The calls to the TAU pro�ling API can either be inserted by hand in the source code or
automatically with a sequence of preprocessors available from the TAU and PDT tool kits.
For the presented studies the second method was used.

The automatic instrumentation procedure inserts macro statements with the calls to the
TAU pro�ling API in the source code. These macro statements expand to zero when no
pro�ling options are used in the compile step. This makes it easy to produce instrumented
and not instrumented versions of a program from the same source code.

For automatic instrumentation the normal compile and link step has to be augmented by
the following sequence of preprocessing steps for a typical source �le (fn.cxx):

� cxxparse fn.cxx <options>

output �les: fn.il, fn.pdb

In cxxparse the original source �le fn.cxx is �rst parsed with the EDG compiler front
end edgcpfe [17] and the results are stored in an \intermediate-language tree" �le
fn.il. This �le is then analysed by taucpdisp and informations about the program
structure are written to a \program database" [16] �le fn.pdb for further use with
tau instrumentor.

� tau_instrumentor fn.pdb fn.cxx

output �le: fn.inst.cxx

tau instrumentor creates from fn.pdb and the original source code �le fn.cxx an
instrumented source code �le fn.inst.cxx, which contains macros with calls to the
TAU pro�ling API.

� g++ <options> <TAU_options> fn.inst.cxx

output �le: fn.inst.o

link step with fn.inst.o (+ TAU libraries)

output: executables, libraries

Builds with the instrumented source code �les the instrumented versions of the
object �les, the executable programs and the (shared) libraries. If the TAU options

are omitted, not instrumented program versions are produced.

For the Atlas software this sequence can be automatically initiated by overwriting the
normal compile and link process in the software release tools used by Atlas. At the time
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of writing these are, CMT for the management of the Gaudi base libraries and SRT for
all the other Atlas code7.

� For CMT a package \InstrumentTAU" was created, which automatically instruments
a source package when included in the respective requirements �le of the package.
Typically this is done with a CMT use directive

use InstrumentTAU v*

The package \InstrumentTAU" and more instructions together with an instrumented
example of the Gaudi base libraries can be found at [18].

� For SRT Make�le fragments have been created. They have to be manually inserted
in the Make�les of the packages which should be instrumented. Instructions and
examples can be found at [18].

Since the EDG compiler front end is used to parse the original C++ source code to produce
the \intermediate-language tree" �les and the \program database" �les, the source code
must support this front end as an additional compiler platform. This may produce parsing
errors on the di�erent platforms if e.g. not the same language set is implemented on both
platforms. Most of the parsing problems with edgcpfe with respect to g++ arise therefore
from di�erent resolution strategies for templates, from di�erent implementations of the
STL library and from language enhancements only supported by g++ and not by edgcpfe.

A.2 TAU overheads

The calls to the pro�ling API which are inserted in the source code produce an additional
time overhead which may signi�cantly distort timing pro�les for frequently called program
parts. As shown in Figure 8, the time overhead introduced by a typical call to the pro�ling
API was measured on an Intel Pentium III (733 MHz clock frequency) as ' 12 [�s] for
function registration and �rst call of the API within a function and as ' 1� 2 [�s] for all
subsequent calls. The time for registration depends on the length of the function name
and on the function type. The numbers are in good agreement with similar numbers [19]
quoted by the TAU developer team for measurements on SGI machines, namely 8�40 [�s]
for function registration and ' 0:8� 1:6 [�s] for all subsequent calls.

B Pro�les for Electron ID

In the following pro�les always the top 20 time consumers are shown for the respective
ordering of the pro�les.

7At the time of writing an evaluation is ongoing with the aim to make CMT as source code manager
available for the complete Atlas codebase.
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