Direction Reconstruction of IceCube Neutrino Events with Millipede

Alexander Wallace

Thesis submitted for the Degree of Master of Philosophy

Principal Supervisor: Doctor Gary Hill Co-Supervisor: Professor Bruce Dawson

> The University of Adelaide School of Physical Sciences Department of Physics

> > May 2016

Abstract

To conduct neutrino astronomy with the IceCube detector at the South Pole, the direction of the incoming neutrino must be known accurately to within one degree. When a muon neutrino interacts in the ice at the South Pole, it produces a muon which produces Cherenkov light as it travels through the detector. Using the direction of the muon, the direction of the original neutrino can be determined and used for astronomy. Millipede is an algorithm used to numerically determine the properties of the muon track by making predictions about the light signal seen in the detector and checking how this compares to the observed signal using a likelihood maximisation.

With this algorithm, the muon track direction is expected to be resolved to within one degree. However, problems have been encountered with simulated muons where millipede finds a direction which is very different from the true direction or millipede fails to reconstruct the event. After analysis of the likelihood grid scans of some of these events, the problems with millipede seem to be due to the minimiser finding a local minimum in the likelihood surface rather than the desired global minimum. These local minima arise from fluctuations in the likelihood surface. These fluctuations were observed in all dimensions including track position.

The source of these fluctuations was investigated in simulations by first using millipede's predictions as the input waveforms. Poisson fluctuations were then added and produced a less accurate likelihood scan with more fluctuations. Finally, the effect of photomultiplier after-pulses was investigated by removing all signal more than 3μ s after the median time. Removing this signal dramatically improves some of the likelihood scans but many show no change.

After this analysis, the main factors causing these fluctuations in the likelihood surface seem to be a combination of bin-wise fluctuations in the waveform and the presence of after-pulses which are not taken into account by millipede. The after-pulses and other late light seem to be the dominant cause across a range of energies, though generally high energy events, while the fluctuations are the dominant cause for the low energy events.

Declaration of Originality

I, Alexander Wallace, certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Alexander Wallace

Acknowledgements

I would like to thank my supervisors Gary Hill and Bruce Dawson for their constant guidance and support during the last two years and helping to edit this thesis. I would like to thank Ben Whelan for his extensive help with the technical side of this work.

It has been great working alongside other members of the High Energy Astrophysics Group. In particular I would like to thank the people I shared an office with over the last two years: Mark Aartsen, Sally Robertson, Rebekah Little and Alexander Kyriacou have all been friendly and supportive over the course of this work.

Finally, I would like to thank my parents, Debbie and Steve, for their endless support and encouragement throughout all my studies.

Contents

1	Net	ıtrinos	1
	1.1	Background and Discovery	1
	1.2	Neutrinos in the Standard Model	2
	1.3	Neutrino Interactions	3
		1.3.1 Lepton Family Conservation	4
	1.4	Summary	5
2	Hig	h Energy Astrophysics	7
	2.1	Cosmic Rays	7
		2.1.1 Cosmic Ray Acceleration	7
		2.1.2 Cosmic Ray Propagation Through Space	8
	2.2	Production of Secondary Particles	9
		2.2.1 Neutral Messenger Particles	10
	2.3	Particle Detection On Earth	13
		2.3.1 Cherenkov Radiation	13
		2.3.2 Detection Methods	14
	2.4	Summary	16
3	The	e IceCube Neutrino Observatory	17
	3.1	Detector Layout	17
	3.2	Light Signal in DOMs	18
		3.2.1 Detection of Cherenkov Light	18
		3.2.2 Signals of Different Flavours	21
	3.3	Optical Properties of the Ice	23
	3.4	Discovery of Astrophysical Neutrinos	24
4	Eve	nt Reconstruction	27
	4.1	IceCube Coordinate System	27
		4.1.1 Definition of Vertex	28
	4.2	Line-Fit	29
	4.3	SPE and MPE	30
	4.4	Millipede	32
		4.4.1 Millipede Time Binning	34

		4.4.2Millipede Likelihood	36 38
5	Init	ial Testing of Millipede	39
-	5.1	Comparison of Reconstructions	39
	5.2	Grid Scans	11
	-	5.2.1 Healpix Grid	12
		5.2.2 Example Scans of HESE Neutrinos	13
		5.2.3 Testing with HESE Track Event	14
		5.2.4 Scans of Four Simulated Events	16
	5.3	Test of Statistical Errors	18
		5.3.1 1-dimensional Scans and Curve Fitting	18
		5.3.2 Results from multiple events	54
		5.3.3 Test of Overall Smoothness	56
		5.3.4 Comparison to smooth function	58
	5.4	Summary	59
6	Inv	estigation of Likelihood Fluctuations	61
	6.1	Close Grid Scan	52
		6.1.1 Vertex Shifts	52
	6.2	Vertex Scans	38
		6.2.1 Three-dimensional Vertex Scan	38
		6.2.2 Plane Scan	39
	6.3	Fixed Vertex	70
		6.3.1 Fixed Energy Losses	70
		6.3.2 Only Fitting Energy Losses	72
	6.4	Summary	73
7	Pos	sible Causes of Vertex Fluctuations 7	$\mathbf{'5}$
	7.1	Using Millipede Predictions as Input	75
		7.1.1 Adding Poisson Fluctuations	76
	7.2	Attempts to Remove After-pulses	77
		7.2.1 Reconstructions with Time Cut	30
		7.2.2 Tightness of the Minimum	35
		7.2.3 Overall Accuracy of Scans	39
		7.2.4 Comparison of Fluctuations)1
	7.3	Adding After-pulses and Fluctuations)3
		7.3.1 Adding Poisson Fluctuations)3
		7.3.2 Adding After-pulses)5
	7.4	Summary	98
8	Cor	nclusions 10)1
	8.1	Future Work)2

Appendix A Derivations	103			
A.1 Cosmic Ray Acceleration and Spectrum	. 103			
A.1.1 Second Order fermi Acceleration	. 103			
A.1.2 First Order Fermi Acceleration	. 105			
A.1.3 Cosmic Ray Spectrum	. 106			
A.2 Geometric Time for SPE and MPE	. 108			
A.3 Space Angle Formula	. 109			
A.4 Chi Squared Critical Value	. 110			
A.5 Perpendicular Plane Coordinates	. 111			
Appendix B Technical Details of Simulation and Reconstruction B.1 The IceTray Software	n 113 . 113			
B.2 The MC Tree	. 113			
B.3 Using the Millipede Likelihood Function as the Simulation	. 115			
B.4 Added Poisson Fluctuations	. 117			
B.5 Added After-pulses	. 118			
Appendix C Reconstruction Python Code	119			
C.1 Millipede Free Fit	. 119			
C.2 Grid Scan	. 120			
References				