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Recently, we read a beautiful paper by Ninomiya and Tan (NT)! who dis-
cussed the index theorem, as a special case of a general index theorem proved by
Atiyah, Patodi and Singer (APS),? for the manifold with a boundary in terms
of “handed” non-local boundary conditions. For a manifold with boundaries NT
obtained the general expression of the index theorem, including the boundary
contributions:

ny—n_ = /A(X)dX - F@) (1)
i

X

where A(X) is the anomaly density, n4(n-) is the number of chirality positive
(negative) zero-energy solutions to the Dirac eigenvalue equation, and f(Y;) is
the surface contribution of the j-th boundary.

In physics, we usually use two kinds of coordinates, the coordinates with
length dimension and the angular coordinates. There are some characteris-
tics for the angular coordinates which should be dealt with carefully. Unfortu-
nately, NT made some mistakes in the index theorem for the angular coordinates.
In order to make the problem clear, we only discuss the index theorem for a two-
dimensional disk with a boundary in this note. We use the same notation as NT.!

In a two-dimensional manifold we introduce a circular boundary about an
appropriate origin, i.e., restricting 0 < r < p in polar coordinates (r,6). Adopting

a “radial” gauge where the general gauge potential is along § direction,
— A
V = 6V(r,0) = (—sinbz + cosbg) V(r,0) . (2)
The massless Dirac operator is
Lt
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L =é¢%0,+B,0) , LY =e%Y[-8,+B.(9), (4)

B.(0) = ; 39 +V(r,0) . (5)

where V(r,0) is real, and B,(0) is, for a fixed r, self-adjoint over the

periodic interval.

The eigenfunction of ] is denoted by ¥

. _ | og(r.0)
DYy = Eyy Ygp = [XE(r,o) ] (6)
L¢E = EXE ’ L+XE = E¢E (7)

As a first step towards deriving an index theorem, proper boundary con-
ditions must be imposed so that L and L* are true adjoint of each other,
that is, (¢|L*|x) = (x|L|#)*. However, owing to the factor e (e"w) in L (L"),
the global boundary condition has a different form from Eq. (3.2) in Ref. 1.

From Eq. (4) we have

L =22 [, 4B(0) R
- \/; r r
(4)
e—10/2 .
Lt = S 0+ B0 O
The two components in 1  have different 6 dependences:
b = 1 e"/2 ¢1E("’ 0) (6"
E \/; et/2 X1 (r,0)



Therefore, we obtain the eigenvalue equations

Li¢,p = Exyp > L;rxlE = E¢ g (7')

and the global boundary condition

2 2w
/rda ¥ x;z,(r,ﬂ) ¢p(r,0) = /do X;E,(r,e) ¢,p(r,0) =0, r =0orp.
0 0
(9)
Define the continuous effective potential
1 27
Vi) = o / V(r,0)do . (10)
0

The anomaly is

= — //Frdrdo = — // [;—a—; rV(r 0)} rdrd 0 = pV (p) — rV(r)|r —0"
(11)
Usually we demand V' (0) = 0 in order to make gauge potential Vv single-valued at

the origin. Only for the manifold with a hole around the origin, the nonvanishing

V(6) is allowed, where § is the radius of the hole, and the anomaly is

A = pV(p) -6V () . (11)



Solving the eigenvalue problem of B,(6), we obtain

By (0) ex(r,0) = A; ex(r,0) , (12)
9
ea(r,8) = exp {z’Jﬂ—}—ir/ [V(r,6") -V (r)] d0'} , (13)
0
J
A1' = —7+V(T) ) (14)
where J is half of the odd integer so that Y is single-valued. Now, at the
boundaries, r = § and p, we expand ¢, (r,0) and x, (r,9)
¢1E(ra0) = Z fAE(T) e)\(rao) ’
A
r=¢6andp (15)
x50 = 3 a5l ex(no),
A
and impose the “left-handed” global boundary condition at »r = 6 and the
“right-handed” one at r = p.2
!
HEe(6) =0 for Xs>0, Hie(®) _ —X; for A; <O,
fre(5)
— e(6) _
g,\E(5) =0 for As<O, = As; for As>0, (16a)
9e(6)
U
hHe() = 0 for A, <0, f35(p) = —X, for XA, >0,
fre(p)
are(p) = 0 for A, >0, 9:£(p) = A, for A, <0, (16b)
9:£(p)



With these conditions, L; and L'I" are adjoints of each other and the APS theo-

rem (1) can in principle be applied. The boundary contributions are

f6) = 5 (o) —hel »  J(6) = % [n(6) + sl , (17
n(p) = —lim > [sign A (X7,  n(8) =lim D [sign As] |As|7°,
Ap#0 As#0

(18)

hy = dim ker B,

Noticing that J is half of the odd integer, we obtain

10 = (W +3)-5. 10 = 3-(7@+3).  09)
where
(d) = A—[4], (20)

and [A] denotes the largest integer less than or equal to A.

Substituting Egs. (11') and (19) into Eq. (1) we find the index of the massless

Dirac operator ¢Ip

ny—n- = A— f(p) - £(6) (1)
= pV(p) — 6V (6) - <pV(p) + -,1;> + < V(6)+ %>
= |70 +3] - [V + 3] (21)



For the disk without a hole around the origin

10) = (W0 +3) -2 | "
£(0) = 0
ne=ne = o¥lo) - (V) + 1) + 3
(21
= [pV(p) + %]

As a check, we discuss a symmetric gauge with V(r,0) = V(r) in a disk,

0 < r < p, without a hole around the origin. For this case we have

—i8/2
Yp(r,0) = _'1: [ee¢9/2 fAE(T)] ex(6)

ae(r)
(22)
ex(f) = exp{iJo}, A = _% +V(r),
Ll S ar_%+v(r)’ L-l'- = —a,-—%—{-V(r) (23)

The chirality positive and negative zero-energy solutions to the Dirac eigenvalue

equation are the following:



i <o | [ [5ver] o
1

(23a)
cr’ T~ 0
~ exp {Jlnp—f V(r')dr'} ) r=pe ,
ng(r) = exp {__/ [%—V(r’)] drl}
1

(23b)
er—’ ’ T~ 0
exp {—Jﬁnp+,lf V(")dr’} ’ e
et = 5 U0 =

(24)
) =5 ) =

where we assume that p > 1 without loss of generality. Imposing the global

boundary conditions (16) at r = 0 and r = p, we get (J is half of the odd integer!)

<J<LpV(p) for  fro
(25)
—% >J>pV(p) for g



and

= e+ 3] avo
(26)
n = = |0 +3] AV
so Eq. (21') follows.
If, for example,
0, r~0
V(r) ~ : (27)
g , rSp
we have
ny—n_ = [F+%] . (28)

Boyanovsky and Blankenbecler? also obtained this result for F + % # integer.

For the constant H-field example,

V(r) = -;— Hr, (29)
we have
— I-(1/2) (7-Yo_lg,
¢, (r,0) r exp {z <J 2) 6 1 Hr } (30q)
Xo(r,0) = r=I=(1/2) ezp {z (J + %) 0+ %Hrz} (300)

Due to the left-handed condition at »r = 0, only J > %, t.e., J —% > 0, is accepted

for Eq. (30a), and J < —%, te., J +% < 0, for Eq. (30b). Equation (16b) at
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r = p leads to the result that % <J<L %sz for ¢o and —% >J > %H,o2 for xo.

Together we obtain a compact expression for the index

al2+1] : (31)

T = [2 2

For the r.h.s. of the APS theorem (1'), the first term contributes 7 H p?, and

the surface term, from Eq. (19}, is

10 = (3E°43) -3

f(0) =0

(33)

which is precisely what is needed for the APS theorem (1'). This result holds
whether or not there is a small hole around the origin, because the boundary
conditions (9) and (16a) at r = O are satisfied even though J = £1/2. If there is

a small hole with a radius § around the origin and V' (§) # 0, we have

/1, 1\ 1
(34)
1 J1 .1
f(&)_2 <2H6 +2>,
and 3 H 62 < J < 3 Hp? for ¢p and —} H 62 > J > 1 Hp? for xo,
1 1 1 1
—_n_ = _H 2 -1 —H52 ol
(35)

= %H(pz—fsz) — f(p) — £(5) .

In summary, Ninomiya and Tan wrote a beautiful paper; unfortunately,

with a defect. This note is only a complement for their paper.
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