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Recently, we read a beautiful paper by Ninomiya and Tan (NT)l who dis- 

cussed the index theorem, as a special case of a general index theorem proved by 

Atiyah, Patodi and Singer (APS),2 for the manifold with a boundary in terms 

of “handed” non-local boundary conditions. For a manifold with boundaries NT 

obtained the general expression of the index theorem, including the boundary 

contributions: 

n+ -nn- = J A(X)dX - c f (5) , (1) 
X i 

where A(X) is the anomaly density, n+(x) is the number of chirality positive 

(negative) zero-energy solutions to the Dirac eigenvalue equation, and f (Yj) is 

the surface contribution of the j-th boundary. 

In physics, we usually use two kinds of coordinates, the coordinates with 

length dimension and the angular coordinates. There are some characteris- 

tics for the angular coordinates which should be dealt with carefully. Unfortu- 

nately, NT made some mistakes in the index theorem for the angular coordinates. 

In order to make the problem clear, we only discuss the index theorem for a two- 

dimensional disk with a boundary in this note. We use the same notation as NT.l 

In a two-dimensional manifold we introduce a circular boundary about an 

appropriate origin, i.e., restricting 0 5 r 5 p in polar coordinates (r, 8). Adopting 

a “radial” gauge where the general gauge potential is along e^ direction, 

$ = e^V(r,B) = (- sin 82 + cos 06) V(r, 0) . 

The massless Dirac operator is 

L+ 
qb = --ia2 (a,- iVz) + ia (a, - iv,) = 

( > L 

(2) 

(3) 
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L = eie [a, +B,(e)] , L+ = emie [-a, +B,(e)] , (4 

h(e) = E &I + V(r,O) . (5) 

where V(r,O) is real, and &(8) is, for a fixed r, self-adjoint over the 

periodic interval. 

The eigenfunction of ig is denoted by T/J~: 

(6) 

WY = Ex, , L+x, = Ed, (7) 

As a first step towards deriving an index theorem, proper boundary con- 

ditions must be imposed so that L and L+ are true adjoint of each other, 

that is, (cjIL+lx) = (xlLItj)*. H owever, owing to the factor eie ( eWie) in L (L-f), 

the global boundary condition has a different form from Eq. (3.2) in Ref. 1. 

From Eq. (4) we have 

L= $E [a, + B,(e)] eie12 fi 
r 

(4’) 
L+ = 7 [-it+. + B&9)] esiei2 fi 

r 

The two components in tiE have different 8 dependences: 

& = f 
[ 

erniei &E (t-, 0) 1 eiei2 X1& 0) ’ (6’) 
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Therefore, we obtain the eigenvalue equations 

h = a, + s(e) , L; = -a, + Br(e) 

L14E = ExlE 3 L:xlE = E& 

(8) 

(7’) 

and the global boundary condition 

Trde 2’ x;,he) 4,(d) = Tde x*,&,0) q5Jr,e) = 0, r = Oorp. 

0 0 
(9) 

Define the continuous effective potential 

2r 

V(r) = & J v(r,e) de . 
0 

The anomaly is 

(10) 

A=& JJ Ftdrde = & JJ [ ;; rV b-, 0) 1 t-drd 8 = pv(p) - rv(r)l, = o . 

(11) 

Usually we demand v(O) = 0 in order to make gauge potential 7 single-valued at 

the origin. Only for the manifold with a hole around the origin, the nonvanishing 

v(6) is allowed, where 6 is the radius of the hole, and the anomaly is 

A = /I!+) - @(6) . (11’) 



Solving the eigenvalue problem of Br(8), we obtain 

e,(r,f3) = exp iJB + ir 
1 

e 

J [V(r,B’) - V(T)] de’ , (13) 
0 

A, = -C+V(r) , (14 

where J is half of the odd integer so that $J~ is single-valued. Now, at the 

boundaries, r = 6 and p, we expand q5,,(r, 0) and xIE(r, 8) 

r = 6 and p (15) 
xlE (6 e, = c !hE(r) ei4(ry e> , 

x 

and impose the “left-handed” global boundary condition at r = 6 and the 

“right-handed” one at r = p.3 

fan = 0 for X6 2 0 , 

gAE(b) = 0 for X6 < 0 , 

fAE(P) = 0 for & < 0 , 

gXE(P) = 0 for xp 10, 

fiE @) - = -X6 for X6 < 0 , 
fAE(6) 

dE@ = 
gXE(b) 

X6 for X6 2 0 , (164 

fiE b) - = -A, for A, 2 0 , 
fAE(P) 

dE(d _ - - 
gXE (J’) 

A, for A, < 0, ow 
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With these conditions, L1 and Lr are adjoints of each other and the APS theo- 

rem (1) can in principle be applied. The boundary contributions are 

f(P) = a b(P) - &I] , (17) 

r](P) = - 8Ql c [sign &I I&r 9 ~(6) = &g C [sign X61 IhI-” , 

h, = dim ker B, . 

Noticing that J is half of the odd integer, we obtain 

f(P) = (PV(P) + ;) - a , 

where 

(A) = A - [A] , 

and [A] denotes the largest integer less than or equal to A. 

(18) 

(19) 

(20) 

Substituting Eqs. (11’) and (19) into Eq. (1) we find the index of the massless 

Dirac operator ;@ 

n+ - n- = A - f(p) - f (6) (1’) 

= pV(p) - m(6) - pF(p) + t + m’(6) + 1 
( 2) ( 2) 

= [pV(p)+j - p(a)+;] . (21) 
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For the disk without a hole around the origin 

f(P) = (PVCP) + ;) - ; 
, 

f(0) = 0 

n+ - n- = PV(P)-(Pv(P)+;)+; 

= [PVO + ;] 

(19’) 

(21’) 

As a check, we discuss a symmetric gauge with V(r, 0) = V(r) in a disk, 

0 5 r 5 p, without a hole around the origin. For this case we have 

(22) 
e,(O) = exp(iJB} , A, = -f + V(r) , 

L1 = a, - 5 + V(r) , L;t = 4, - 5 +V(r) . (23) 

The chirality positive and negative zero-energy solutions to the Dirac eigenvalue 

equation are the following: 



fA0(r> = ev { / [$--WI] dr’) 

(234 

gx0(r) = exl: 

crJ , 

[;“iV(r’)] dr’ 

L 1 

i 
crsJ , 

-Jlnp+ j V(r’)dr’ 
1 

fio(d = t [J - pV(p)] = -A, 
ho(P) P 

do(p) = 1 [-J+pV(p)] = A, 
ino P 

where we assume that p > 1 without loss of generality. 

r-0 

, 
r=p 

r-0 

. 
r=p 

Imposing the global 

boundary conditions (16) at r = 0 and r = p, we get (J is half of the odd integer!) 

f L J I PV(P) for fX0 

(25) 
-ii J > pV(p) for sxo 
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and 

n+ = [PIP) + i] v(p)] 

n- = - [PVP) + i] q-v(p)] 

so Eq. (21’) follows. 

If, for example, 

, 

(26) 

(27) 

we have 

n+ -n- = [ 1 F+; . (28) 

Boyanovsky and Blankenbecler4 also obtained this result for F + i # integer. 

For the constant H-field example, 

V(r) = i Hr , (2% 

we have 

40(r, 8) = rJ--(1/2) exp {i(J--i)t9-iHr2} (30a) 

xo(r, e) = r-J-(1/2) exp {i(J+i)0+iHr2} (30b) 

Due to the left-handed condition at r = 0, only J 2 i, i.e., J - i 2 0, is accepted 

for Eq. (30a), and J 5 -f, i.e., J + i 5 0, for Eq. (30b). Equation (16b) at 
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r = p leads to the result that i 5 J 5 i Hp2 for 40 and -i 2 J > f Hp2 for x0. 

Together we obtain a compact expression for the index 

n+ - n- = [; Hp2+;] . (31) 

For the r.h.s. of the APS theorem (l’), the first term contributes f H p2, and 

the surface term, from Eq. (19’), is 

f(P) = ( ;Hp?+; -; 
> 

f(O) = 0 
(33) 

which is precisely what is needed for the APS theorem (1’). This result holds 

whether or not there is a small hole around the origin, because the boundary 

conditions (9) and (16a) at r = 0 are satisfied even though J = &l/2. If there is 

a small hole with a radius 6 around the origin and V(6) # 0, we have 

f(6) = f - (; Hii2+ ;) , 

and f H 62 < J 5 k Hp2 for ~$0 and -k H 62 2 J > i Hp2 for ~0, 

n+ - n- = [; Hp2+;] - [; HJ2+;] 

= ; H (p2 - S2) - f(p) - f(b) . 

(35) 

In summary, Ninomiya and Tan wrote a beautiful paper; unfortunately, 

with a defect. This note is only a complement for their paper. 
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