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ABSTRACT

The Laser Interferometer Space Antenna (LISA) and the Laser Interferometer
Gravitational-wave Observatory (LIGO) are designed to detect gravitational waves
from a wide range of astrophysical sources. The parameter estimation ability of these
detectors can be determined by simulating the response to predicted gravitational
wave sources with instrument noise and searching for the signals with sophisticated
data analysis methods. A possible source of gravitational waves will be beams of
radiation from discontinuities on cosmic length strings. Cosmic strings are predicted
to form kinks and cusps that travel along the string at close to the speed of light.
These disturbances are radiated away as highly beamed gravitational waves that
produce a burst-like pulse as the cone of emission sweeps past an observer. The
detection of a gravitational wave signal from a cosmic string cusp would illuminate
the fields of string theory, cosmology, and relativity. Gravitational wave sources
also include coalescing binary systems of compact objects. Colliding galaxies have
central black holes that sink to the center of the merged galaxy and begin to orbit
one another and emit gravitational waves. Previous LISA data analysis studies have
assumed that binary black hole systems have a circular orbit or an extreme mass
ratio. It is ultimately necessary to understand the general case of spinning black hole
binary systems in eccentric orbits and how LISA observations can be used to measure
the eccentricity of the orbits as well as the masses, spins, and luminosity distances of
the black holes. Once LISA is operational, the comparison of observations of eccentric
and circular black hole binary sources will constrain theories on galaxy mergers in
the early universe.
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CHAPTER 1

INTRODUCTION

In the next two decades, the field of gravitational wave astronomy will make

revolutionary contributions to both astronomy and physics. The ground based de-

tector network including the Laser Interferometer Gravitational-Wave Observatory

(LIGO) [1] and Virgo [2] has completed five science runs and is poised to make the

first direct detection of gravitational waves. The Laser Interferometer Space Antenna

(LISA) [3] will observe the low frequency gravitational wave region from 10−5 Hz

to 1 Hz to complement the frequency range for the ground based detectors from

approximately 10 Hz to 10 kHz. The LISA frequency range is guaranteed to contain

sources of strong gravitational waves and also offers tremendous potential for new

and possibly unexpected discoveries. Arrays of pulsars form a natural very long arm

length gravitational wave detector and the timing residuals of their pulses can also be

used to search for very low frequency gravitational waves in the range from 10−9 Hz

to 10−6 Hz distorting the space-time between the Earth and the observed pulsars [4].

The ability of these instruments to detect gravitational waves depends on ad-

vanced data analysis solutions to extract gravitational waveforms from the intrinsi-

cally noisy data. LIGO has developed a sophisticated pipeline to analyze their data

and has already made interesting astrophysical statements from gravitational wave

non-detections [5]. The LISA mission has demonstrated successful source parameter

determination with realistic simulated data for a wide range of possible LISA sources

through the Mock LISA Data Challenges [6].

For very wide frequency band gravitational wave sources we can study the ability

of LISA and the LIGO-Virgo network to make joint detections. Topological defects

known as cosmic superstrings are a consequence of several classes of theories about
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the early universe and their detection would illuminate the fields of string theory,

cosmology, and relativity. Cusps and kinks on long cosmic strings are predicted to

create beams of gravitational radiation with a wide frequency spectrum that would

be detectable by LISA and the network of gravitational wave detectors here on the

Earth. We have developed search techniques to find multiple cusp signals in simulated

data and estimate the parameters of each individual source. Our study demonstrates

the ability of space-borne and ground-based gravitational wave detectors to detect

and characterize the gravitational wave signals from cosmic string cusps. Our work

demonstrates that, should they exist, cosmic strings will indeed be a detectable source

for Advanced LIGO and the LISA mission.

Inspiraling binaries of compact objects such as black holes are promising sources

for current and future gravitational wave detectors. Binary black hole systems have

been studied in various special limits such as circular orbits, extreme mass ratio in-

spirals (EMRIs), or specific spin orientations (for example [7, 8, 9, 10]). The general

case of gravitational waveforms from spinning black hole binaries with comparable

masses and eccentric orbits includes the full seventeen parameters necessary to de-

scribe a generic binary black hole system. These general waveforms are necessary to

accurately measure parameter values for binary black hole systems, constrain galaxy

merger scenarios, and test the theory of general relativity in the strong field regime.

There is substantial observational evidence for black holes with M ∼ 10M� with

stellar companions in x-ray binaries (XRB) (see [11] for a review). There could also

exist binary systems of these stellar mass black holes that would be difficult to detect

with electromagnetic astronomy. Conventional telescopes cannot see through the

plane of our galaxy because their view is obscured by gas and dust. Gravitational

waves however travel unimpeded through the obscuring material that blocks photons,

so the gravitational waves emitted by millions of binaries of stellar remnants in our
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galaxy can reach us here in our solar system. The data from gravitational wave

detectors will have a large impact on our understanding of stellar evolution and

compact binary formation.

The history of galaxy evolution in the universe will be illuminated by the study

of massive black hole mergers with black hole masses in the range M ∼ 105−107M�.

There exists mounting evidence that when galaxies collide their central black holes

sink to the center of the merged galaxy and begin to orbit one another, losing energy

and angular momentum in the form of gravitational waves [12, 13]. These systems

will be strong sources for LISA [14]. While it has previously been assumed that the

gravitational wave signals from most massive black hole binary systems will enter the

LISA band only after the orbit has been circularized, there are models that predict

that LISA could observe systems with significant orbital eccentricity [15]. We have

thus relaxed the assumption of circular orbits to calculate gravitational waveform

templates that make it possible to accurately measure the eccentricity of binary black

hole systems with LISA, along with precise measurements of the masses, spins, and

luminosity distances. These other parameters will be quite well determined for black

hole binary systems and a bias in these parameters can be avoided by using the

general eccentric waveforms, even in the case of very small eccentricity.

Our studies show that even very small values of orbital eccentricity are detectable

for LISA on the order of e = 10−3. Neglecting the effects on the waveforms due

to eccentricity results in a loss of estimated power and a bias in the values of the

other parameters [16]. Finding departures from the theory of general relativity with

black hole waveforms also requires the fully eccentric waveforms since the eccentricity

effects are on the order of possible departures from theory [17]. The strong field

regime around supermassive black holes offers the best tests for Einstein’s theory
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by measuring coherent residuals left after subtracting an eccentric binary black hole

template from the data.

Our data analysis methods use comparisons of templates generated for different

source parameters with synthesized LISA data. We focus on examples of supermassive

black hole binaries, but these methods are also useful for studying gravitational wave

signals from the stellar mass black hole binary population. The seventeen dimensional

parameter space describing binary black hole systems makes grid based template

searches computationally prohibitive and successful hierarchical grid searches unnec-

essarily demanding of specific tailoring. Our search methods avoid these problems by

using Markov Chain Monte Carlo (MCMC) techniques, including parallel tempering

of the chains to ensure full exploration of the available parameter space. MCMC meth-

ods have the added benefit of producing the posterior distribution function (PDF)

of the search space, yielding accurate uncertainty values for each parameter. Our

eccentric binary black hole study establishes how well the various source parameters

will be resolved by the LISA mission and provides the first steps in creating the

templates necessary for measuring orbital eccentricity and comparing theories that

make predictions about the shapes of the orbits of binary black holes in the center of

merged galaxies.
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CHAPTER 2

CONVENTIONS

The units in this document will be based on the usual choice of geometrical units

for relativity topics where Newton’s gravitational constant and the speed of light are

set to 1, G = c = 1. This choice results in mass, distance, and time all measured in

seconds. Frequencies will still be given in Hertz. The exception is the gravitational

wave detector section 3.3.1 where c will be used explicitly.

Vector quantities will be written in bold face type, while their magnitudes will be

reported in standard type. For instance V is a vector with magnitude V .

A time derivative will be denoted by an over-dot, such that

ḟ(t) =
d f(t)

dt
.
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CHAPTER 3

GRAVITATIONAL WAVES

3.1 Introduction

The General Theory of Relativity [18] predicts disturbances in space-time pro-

duced by time varying mass distributions. These ripples in space are known as

gravitational waves. A binary system of two stars orbiting one another will create

gravitational waves that will carry away energy and angular momentum from the

system. Gravitational waves have been indirectly detected in this context with the

observations made by Russell Hulse and Joseph Taylor of the pulsar PSR B1913+16,

also known as the Hulse-Taylor pulsar [19]. Their observations of this neutron star

that emits beams of radiation indicated that it was in a binary orbit with a com-

panion star. General relativity makes exact predictions for how much energy the

system should lose due to gravitational wave emission. Long term observation of the

pulsar revealed a decay in the orbit of the stars that exactly matched the prediction

of general relativity and Hulse and Taylor were awarded the Nobel Prize for Physics

in 1993 for their discovery.

The direct detection of gravitational waves is the challenging and exciting next

step toward the era of gravitational wave astronomy. There exists a network of grav-

itational wave detectors here on Earth and there are plans to build a space based

detector in the next decade. The ground based detectors include the LIGO instru-

ments in Hanford, Washington and Livingston, Louisiana [1, 20], the Virgo detector

near Pisa, Italy [2, 21] and GEO 600 near Sarstedt, Germany [22, 23]. These are

L-shaped laser interferometric detectors that seek to measure the distance changes

in their long arms as gravitational waves pass through the Earth. The LIGO-Virgo
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network has completed five science runs and though they have yet to make a direct

detection of a gravitational wave signal they have already made significant contribu-

tions to astronomy. In 2007 a Gamma Ray Burst (GRB) event detected from the

direction of the nearby Andromeda Galaxy was ruled out as a neutron star merger

in the Andromeda Galaxy with high confidence by the non-detection of gravitational

waves from the event by LIGO [5].

The future of gravitational wave astronomy lies with the upgrade of the ground

based detectors to their advanced configurations and the launch of the LISA ob-

servatory. The advanced ground based detectors will have increased sensitivity to

gravitational waves more than a factor of ten beyond initial LIGO, resulting in an

increase in event rates by one thousand fold. LISA will be able to detect gravitational

wave frequencies unaccessible to the ground based instruments in a range guaranteed

to be rich in sources of gravitational waves.

With the new generation of gravitational wave detectors we will begin the era of

gravitational wave astronomy. Electromagnetic observatories will be able to work to-

gether with gravitational wave observatories and the pulsar timing arrays to answer

some of the outstanding questions in astronomy as well as make new and exciting

discoveries. In preparation for the first direct detection of gravitational waves, grav-

itational wave astronomers have been developing the tools that will be necessary to

analyze the data from their detectors to determine the characteristics of the sources

they will be observing. Understanding the instruments and their sources of noise

as well as the possible sources of gravitational waves is essential to our ability to do

precision gravitational wave astronomy and finally test general relativity in the strong

field regime near massive bodies such as black holes.
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3.2 Sources of Gravitational Waves

The description of gravity as the curvature of space-time leads to the concept of

the propagation of gravity. Massive bodies such as stars warp the space around them.

When two bodies orbit one another, moving through space-time, the curvature moves

with them. Such time varying asymmetric mass distributions produce gravitational

radiation, ripples in space-time that propagate at the speed of light. The universe

creates a number of systems predicted to be sources of gravitational waves.

Mountains on rotating neutron stars and the asymmetric collapse of the core of an

exploding star will radiate energy in the form of gravitational radiation. Most stars

in the universe come in systems of two or more objects orbiting around one another.

The strongest sources of gravitational waves will be the systems consisting of compact

objects such as white dwarfs, neutron stars, or black holes. These compact binary

star systems emit gravitational waves in three phases: as they spiral in toward one

another, as they merge to create a single object, and as the merged star rings down

to a symmetric configuration. Understanding each of these phases adds to our ability

to detect the gravitational wave signals from binary star systems.

There also exists the possibility that gravitational wave detections will provide

observational tests for some of the exotic theories in cosmology, including string theory

and alternative theories of gravity. There may be a network of long strings in the

universe with a gravitational wave signature that would be detectable by the next

generation of gravitational wave instruments. Cusps would tend to form on these

cosmic length strings and a segment of the cusp could be moving near the speed of

light. This time variation in the concentration of energy would produce a beam of

gravitational radiation.
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Figure 3.1: The characteristic strain sensitivity curves for LISA (blue) and Advanced
LIGO (red). Frequency and characteristic strain ranges for several gravitational wave
source types are indicated by shaded regions. Image from the LISA Science Case
document [24].

Theories of gravity that pass observational tests in the solar system and in binary

pulsar systems still need to be tested in the strong field regime near a black hole.

The orbits of small bodies spiraling in toward a supermassive black hole will be

sensitive probes of the structure of space-time near a supermassive black hole. The

gravitational waves from these Extreme Mass Ratio Inspirals (EMRIs) will provide

the evidence we need to test competing theories of gravity.

Gravitational wave observations have the potential to reach back farther than the

oldest light in the universe to probe times before the universe had cooled enough to

allow photons to propagate freely through space. The Comic Microwave Background

(CMB) radiation is the isotropic signal reaching us from 380,000 years after the Big

Bang, when the hot young universe had cooled enough to allow neutral atoms to

form and light to propagate through the expanding universe [25]. Electromagnetic
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observations cannot reach back farther than the last scattering surface, but primordial

gravitational waves are reaching us from earlier times carrying information about the

very early universe.

One of the most exciting aspects of opening the door to an entirely new branch

of astronomy will be the unpredicted discoveries. Just as each new band of the elec-

tromagnetic spectrum brought predicted and totally new discoveries to light, gravi-

tational wave astronomy will teach us unexpected lessons about our universe.

3.3 Gravitational Wave Detectors

To detect gravitational waves an instrument must be designed that can mea-

sure small changes in the distance between free moving masses. There are three

primary ways to achieve this goal, with resonant mass bar detectors, pulsar timing

experiments, or interferometers. Bar detectors made the first attempts to measure

gravitational waves, but have not proved sensitive enough to make detections. The

sensitivities needed to capture gravitational wave signals can be reached by building

large scale laser interferometer detectors or by using a natural detector formed by the

local array of millisecond pulsars.

3.3.1 The Laser InterferometerGravitational-wave Observatory

The Laser Interferometer Gravitational-wave Observatory (LIGO) is a National

Science Foundation (NSF) project designed to directly detect gravitational waves [1,

20]. The two LIGO sites in Hanford, Washington and Livingston, Louisiana consist

of L-shaped interferometers with 4 kilometer long arms. Laser light is divided by a

beam splitter and travels down the long vacuum tubes to mirrors at the end stations

that reflect the light back to the central station. Precise measurements determine if
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the relative lengths of the two arms have changed due to a passing gravitational wave.

To be sensitive to gravitational waves, the LIGO detectors must be able to measure

distance changes one thousand times smaller than the width of a proton.

The sensitivity of ground based interferometers such as LIGO to gravitational

wave signals can be understood by describing the fundamental noise sources and

the instrument response. The gravitational wave amplitude that can be detected

depends on the search for the specific kind of signal in question, but we expect a

possible gravitational wave amplitude at the Earth of h ∼ 10−21. For the LIGO

detectors with arm length L = 4 km, the interferometer needs to be able to measure

distance changes ∆L = (1/2)hL ∼ 2 × 10−18 m. The possibility of such precision

measurements with laser interferometry was thoroughly analyzed in Ref. [26]. The

displacement measurement accuracy represents the coherent displacement of all of

the atoms of the macroscopic mirrors. It may be more illuminating to consider the

corresponding phase shift of the laser light for detection at this level. Following

the calculations in Ref. [27], the phase shift ∆φ can be calculated for a Michelson

interferometer and for a Michelson interferometer with Fabry-Perot cavities as is the

case for LIGO:

∆φMich =
4π

λL
hL

∆φFP =
2F
π

∆φMich (3.1)

where λL = 1µm is the laser wavelength and F = 200 is the finesse of the cavity with

LIGO values. So we aim to measure a phase shift with LIGO ∆φFP ∼ 10−8 rad.

The sensitivity of an interferometer to gravitational wave signals is often expressed

as the transfer function T (f), relating the detector input to the detector output.

The transfer function of a Michelson interferometer with Fabry-Perot cavities can be
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approximated by

TFP(f) ' 8FL
λL

1√
1 + (f/fp)

2
(3.2)

where fp is the pole frequency related to the storage time in the cavity τS and defined

by

fp ≡
1

4πτS

' c

4FL . (3.3)

If we consider various noise sources as the detector input in the absence of a gravi-

tational wave signal and divide by the transfer function we can calculate the strain

sensitivity of the detector to compare with a gravitational wave signal h.

We can understand the frequency range where LIGO is sensitive to gravitational

waves by finding the strain sensitivity due to some of the fundamental noise sources.

The LIGO noise sources associated with the laser system are the shot noise and radi-

ation pressure. The laser light comes in discrete photon packets and there are uncer-

tainties associated with the counting statistics for the arrival of discrete independent

events. The number of photons Nγ arriving at the photodetector in an observation

time T follows the Poisson distribution. For large N the Poisson distribution becomes

a Gaussian with standard deviation equal to
√
N and we find a fluctuation in the

number of photons ∆Nγ =
√
Nγ. This results in a fluctuation of the observed power

(∆P )shot =
1

T

√
Nγ~ωL =

√
~ωL

T
P (3.4)

where P = Nγ~ωL/T .

The strain sensitivity due to shot noise in units of Hz−1/2 is given in Ref. [27]:

S1/2
n (f)

∣∣∣
shot

=
1

8FL

(
4π~λL

ηPbs

)1/2√
1 + (f/fp)

2 (3.5)

where η = 0.93 is a typical value of the efficiency of the photodiode and Pbs is the

power on the beam-splitter after recycling.
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We can see that S
1/2
n (f)

∣∣∣
shot

is flat up to the pole frequency and then rises linearly

in f . This is due to the combination of the shot noise itself, which is independent of

f , with the transfer function which degrades linearly with f after the pole frequency.

This result suggests that shot noise can be reduced by increasing the laser power on

the beam-splitter Pbs. However, the radiation pressure of a beam of photons on the

reflecting mirrors also fluctuates due to uncertainty in the number of photons arriving

at the mirror, generating a force that shakes the mirrors. This force grows as
√
Pbs

while the shot noise decreases as 1/
√
Pbs. The thermal excitations are overcome by

averaging over many vibrations since the atomic vibrations are random and incoher-

ent. The ∼ 7 cm wide laser beam averages over about 1017 atoms and at least 1011

vibrations per atom in a typical measurement. The effect is thus suppressed by a

factor of ∼
√

1028. It turns out that the atomic vibrations are completely irrelevant

compared to the coherent effect of a gravitational wave.

The strain sensitivity due to radiation pressure is also given in Ref. [27]:

S1/2
n (f)

∣∣∣
rad

=
16
√

2F
ML(2πf)2

√
~Pbs

2πλLc

1√
1 + (f/fp)

2
(3.6)

where M is the mass of the mirror and we see that S
1/2
n (f)

∣∣∣
rad

falls off as f−2. For the

ground based detectors the low frequency limit in sensitivity is actually set by seismic

noise below ∼ 75 Hz that overwhelms the radiation pressure. There are also other

thermal vibrations that are relevant for the LIGO noise spectrum. For a continued

discussion of the sensitivity of the ground based interferometers to gravitational waves

see Ref. [27]. The composite sensitivity curve for the Advanced LIGO configuration

as a function of frequency can be seen in Figure 3.1.

Advanced engineering designs and implementations have brought the LIGO de-

tectors to their design concept sensitivity. Collaborating with other ground based
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gravitational wave detectors in Europe, the sixth science run with the various de-

tectors operating simultaneously will be completed in 2010. The array of detectors

is essential for making the marginal detections predicted as possible for the initial

design of the LIGO-Virgo network. There are thousands of understood noise sources

for detectors fastened to the Earth, including seismic activity and weather. Noise

sources are local, while a gravitational wave signal of cosmic origin would produce

a predicted pattern of responses in the various detectors of the network and cross

correlation of the detector outputs would be able to uncover a weak signal.

Significant upgrades will be made to the LIGO and Virgo detectors to produce

the advanced generation of gravitational wave detectors by 2015. Improvements in

laser power, seismic isolation, and other systems will result in at least a factor of ten

improvement in sensitivity across the frequency band. This will result in sensitivity

to signals in a volume of space one thousand times larger than that accessible to the

initial detectors. While the astrophysical prediction for the rate of events producing

gravitational waves detectable by initial LIGO was small, a significant increase in pos-

sible detections is predicted for the advanced detectors ranging from a few detections

per year to a few detections per week [28].

3.3.2 The Laser Interferometer Space Antenna

The National Aeronautics and Space Administration (NASA) and the European

Space Agency (ESA) have plans to launch a space-based gravitational wave detector

known as the Laser Interferometer Space Antenna (LISA) [3, 29]. The concept for

LISA places test masses in space and tracks the distances between them to indicate

the passage of a gravitational wave. In practice the LISA array will consist of three

satellites in an equilateral triangle configuration each housing two proof masses and

laser systems to accurately monitor the distances between the proof masses. The
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masses will be freely floating within each satellite, protected from external forces

such as the solar wind by the satellite housing. The distance between the satellites

will have a mean value of five million kilometers (5×109 m) and distance changes will

be measured to less than the width of an atom (∼ 10−11 m). LISA’s long arms make

it sensitive to a region of the gravitational wave frequency spectrum between roughly

10 µHz and 1 Hz. This range in frequencies will be rich in sources of gravitational

waves from tens of thousands of detectable galactic compact binary systems [30] as

well as extragalactic sources such as massive binary black hole systems.

The basic LISA configuration will have the center of mass of the constellation

in a nearly circular orbit around the Sun, 20◦ behind the Earth. The plane of the

constellation will be tilted 60◦ with respect to the ecliptic, tumbling in retrograde

motion as it orbits the Sun (see Figure 3.2).
8 Gravitational waves

Earth 

Sun 

Venus 

Mercury 

20o 

60 o 

5x106 km 
LISA 

Figure 2: Schematic of the LISA constellation in orbit about the sun. Each arm of the triangle is 5× 106

km; the centroid of the constellation lags the Earth by 20◦, and its plane is inclined to the ecliptic by 60◦.
Note that the spacecraft orbit freely; there is no formation flying in the LISA configuration. Instead,
each spacecraft is in a slightly eccentric, slightly inclined orbit; their individual motions preserve the
near-equilateral triangle pattern with high accuracy for a timescale of decades.

Somewhat smaller than LISA, The Japanese GW community has proposed DECIGO (DECI-hertz
Gravitational-wave Observatory), a space antenna to target a band at roughly 0.1 Hz. This straddles the
peak sensitivities of LISA and terrestrial detectors, and may thus act as a bridge for signals that evolve
from one band to the other. See Ref. [50] for further discussion.

3 Comparable mass binary waves

We now at last begin to examine how the characteristics of black holes and strong-field gravity are
imprinted on the GWs these systems generate. We first must go somewhat beyond the leading-order
waveform discussed in Sec. 1.1. After developing the necessary formal tools, we discuss how the interesting
characteristics appear in the waves.

3.1 Going beyond leading order

In the analytic treatment of comparable mass binary waves, one begins by considering the post-Newtonian,
or pN, expansion. This expansion in turn begins by considering the binary in so-called harmonic or
deDonder coordinates. In these coordinates, one defines

hµν ≡ √−ggµν − ηµν , (32)

where g is the determinant of gµν . This looks similar to the flat spacetime perturbation defined in Sec.
1.1; however, we do not assume that h is small. We next impose the gauge condition

∂αhαβ = 0 . (33)

With these definitions, the exact Einstein field equations are

!hαβ =
16πG

c4
ταβ , (34)

where ! = ηαβ∂α∂β is the flat spacetime wave operator. The form of Eq. (34) means that the radiative
Green’s function we used to derive Eq. (7) can be applied here, yielding

hαβ = −4G

c4

∫
ταβ(x′, t− |x− x′|/c)

|x− x′| d3x′ . (35)

Figure 3.2: The basic LISA configuration as it orbits the Sun [31].

The frequency range where LISA will be sensitive to gravitational waves is de-

termined by the various noise sources and the detector arm length. Similar to the

situation for the ground based detectors, there will be shot noise and radiation pres-
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sure associated with the lasers. It has been shown that the frequency fluctuations of

the lasers and the noise due to the mechanical vibrations of the optical benches would

overwhelm gravitational wave signals but that these noise sources can be cancelled

by optimal combinations of the six measured phase outputs with appropriate time

delays [32, 33]. The formation of these so called Time Delay Interferometry (TDI)

channels is described below in Eqn. 3.15 and Eqns. 3.17. The sensitivity of LISA to

gravitational wave signals after noise cancellation with TDI is limited at low frequen-

cies by the test-mass acceleration noise, in part due to laser radiation pressure. At

mid frequencies the laser shot noise and optical-path measurement errors contribute to

sensitivity limits. At high frequencies the gravitational wavelength becomes shorter

than the LISA arm length, reducing the efficiency of the interferometric measure-

ment [29]. The composite sensitivity curve for LISA as a function of frequency can

be seen in Figure 3.1.

An accurate model for the motion of the LISA spacecraft is essential for deter-

mining the response it will have to gravitational wave signals. The time dependent

locations of the LISA spacecraft can be written in the solar system barycenter frame.

The eccentricity of the LISA orbit around the Sun will be small and it is sufficient

to write the Cartesian coordinates of the three spacecraft to second order in the
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eccentricity of the orbit,

x(t) = R cos(α) +
1

2
eLR

(
cos(2α− β)− 3 cos(β)

)

+
1

8
e2
LR
(

3 cos(3α− 2β)− 10 cos(α)

−5 cos(α− 2β)
)

y(t) = R sin(α) +
1

2
eLR

(
sin(2α− β)− 3 sin(β)

)

+
1

8
e2
LR
(

3 sin(3α− 2β)− 10 sin(α)

+5 sin(α− 2β)
)

z(t) = −
√

3eLR cos(α− β)

+
√

3e2
LR
(

cos2(α− β) + 2 sin2(α− β)
)
. (3.7)

Here R = 1 AU is the radial distance to the guiding center, eL is the eccentricity of

the LISA orbit, α = 2πfmt + κ is the orbital phase of the guiding center, and β =

2πn/3 +λ (n = 0, 1, 2) is the relative phase of the spacecraft within the constellation.

The parameters κ and λ give the initial ecliptic longitude and orientation of the

constellation.

Using these coordinates the instantaneous separations between spacecraft are

given by

L12(t) = L

(
1 +

eL
32

[
15 sin

(
α− λ+

π

6

)

− cos
(

3(α− λ)
)])

L13(t) = L

(
1 +

eL
32

[
− 15 sin

(
α− λ− π

6

)

− cos
(

3(α− λ)
)])

L23(t) = L

(
1− eL

32

[
15 cos(α− λ)

+ cos
(

3(α− λ)
)])

, (3.8)
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with L = 2
√

3Re. For the mean LISA arm length of L = 5 × 109 m the eccentricity

of the spacecraft orbits eL = 0.00965 and the second order effects are one hundred

times smaller than the leading order.

The response of the instrument to a passing gravitational wave is encoded in the

changing separation between the spacecraft.

Just as EM waves are generated by accelerated charges, GWs are generated by accelerated 

masses. Because of charge conservation, an oscillating charge dipole is the lowest-order time-

dependent distribution that can produce EM waves; because of mass and momentum (i.e., mass 

dipole) conservation, a variable mass quadrupole is needed to produce GWs.  (Technically  it is 

the second time derivative of the transverse-traceless part of the quadrupole moment that 

generates GWs.)

EM waves arise from the interactions of atoms, nuclei, or other particles within astrophysical 

sources.  EM  waves are typically generated in numerous individual emitting volumes, much 

smaller than the astrophysical object of interest, so the wavelength of radiation is also much 

smaller than the object.  For this reason, EM waves permit us to image the object if it is close 

enough or big enough.  But the short  wavelength has a disadvantage: we typically receive an 

incoherent superposition of radiation from many independent regions in the source, and if the 

source is not close enough to resolve then it  is often a difficult  and uncertain job to model the 

emission process well enough to go from the information we get about many different 

wavelength-scale regions up to the much larger scale of the entire astrophysical system.

  LISA: PROBING THE UNIVERSE WITH GRAVITATIONAL WAVES

 PAGE 11

 

Figure 1-1:  The effect of linearly  polarized gravitational waves is to alternately  stretch and 
squeeze the intervening matter and energy  in perpendicular directions, as visualized here 
by  the motions of a set of freely-floating test particles (i.e., bodies small enough that their 
own gravitational field is negligible).

Figure 3.3: The effect of a gravitational wave passing through the plane of the page
on a ring of test masses. The top row shows the change in position of the test masses
for the + polarization and the bottom row shows the corresponding response to the
× polarization. This cartoon illustrates how distance changes can be used to monitor
the passage of a gravitational wave.

An arbitrary gravitational wave signal can be written as a linear combination of

two independent polarizations, known as h+ and h×. The polarization vectors are

perpendicular to the direction of propagation of the gravitational wave, k̂. The effect

of a passing gravitational wave on a ring of test masses is illustrated in Figure 3.3.

The metric tensor of the gravitational wave at some location x is written as

h(ξ) = h+(ξ)ε+ + h×(ξ)ε× (3.9)

where the wave variable ξ = t− k̂ · x gives surfaces of constant phase.
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The polarization tensors can be expanded in terms of the basis tensors e+ and

e× [34]

ε+ = cos(2ψ)e+ − sin(2ψ)e×

ε× = sin(2ψ)e+ + cos(2ψ)e× , (3.10)

where ψ is the principle polarization angle and the basis tensors e+ and e× are

expressed in terms of two orthogonal unit vectors,

e+ = û⊗ û− v̂ ⊗ v̂

e× = û⊗ v̂ + v̂ ⊗ û . (3.11)

These vectors, along with the propagation direction of the gravitational wave

k̂, form an orthonormal triad, which may be expressed as a function of the source

location on the celestial sphere (θ, φ),

û = cos θ cosφ x̂ + cos θ sinφ ŷ − sin θ ẑ

v̂ = sinφ x̂− cosφ ŷ

k̂ = − sin θ cosφ x̂− sin θ sinφ ŷ − cos θ ẑ . (3.12)

The three arms of the LISA constellation will form three independent interferom-

eters. We can construct the three Michelson signals using each spacecraft as a vertex.

The Michelson signal for spacecraft 1 is

S1(t) = Φ12(t21) + Φ21(t)− Φ13(t31)− Φ31(t) , (3.13)

where t21 and t31 are found from

t21 = t− `21(t21)

t31 = t− `31(t31) (3.14)
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where `ij(tij) is the length of the arm between spacecraft i and spacecraft j at time

tij.

The Michelson channels can be used in the absence of noise, but the intrinsic

fluctuations in the phase of the lasers will be larger than the fluctuations due to

gravitational waves. This can be mitigated by combining the different Michelson

channels in such a way as to cancel the laser phase noise. The TDI signals are

constructed by combining time-delayed Michelson signals in such a way as to reduce

the overall laser phase noise down to a level that will not overwhelm the detector’s

output [33]. For instance the X signal is given by [35]:

X(t) = Φ12(t21) + Φ21(t)− Φ13(t31)

−Φ31(t)− Φ12(t′21)− Φ21(t13)

+Φ13(t′31) + Φ31(t12) , (3.15)

where the new times t12, t13, t′21, and t′31 are defined through the implicit relationships

t12 = t21 − `12(t12)

t13 = t31 − `13(t13)

t′21 = t13 − `21(t′21)

t′31 = t12 − `31(t′31) . (3.16)

By permutations of the indices similar forms for the Y and Z-signals can be

constructed. A noise orthogonal set of TDI variables can be formed as a linear

combination of the X-Y-Z signals.

A =
2X − Y − Z

3

E =
Z − Y√

3

T =
X + Y + Z

3
(3.17)
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The instrument response will be given in terms of the TDI variables as the optimal

combination of the detector phase output.

The well modeled LISA constellation and its understood noise sources can be

combined with expected gravitational wave signals to produce a simulated LISA data

stream. Realistic simulated LISA data are necessary for demonstrating the ability of

the gravitational wave community to do astrophysics with LISA by extracting signals

and source parameters from inherently noisy data.
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CHAPTER 4

PARAMETER ESTIMATION

Beyond the first direct detection of a gravitational wave signal, gravitational wave

astronomy seeks to contribute to the fields of astrophysics and relativity by making

precise measurements of signals from systems unprobed by electromagnetic obser-

vations to complement traditional astronomy. The ability of gravitational wave de-

tectors to extract astrophysical information from their data hinges on the advanced

data analysis techniques necessary to identify gravitational wave signals and their

dependence on the physical source parameters. The challenge lies in the noisy data

and large parameter spaces of the expected sources.

A wide range of expected gravitational wave signals can be modeled to build

templates to compare to the data. This process is known as template matching and

can raise quiet signals above the noise to make detections. For the large parameter

spaces of many expected gravitational wave signals stepping along a grid of templates

can be too computationally expensive to be used for accurately characterizing a signal.

A successful technique for data analysis using template matching that avoids using a

grid is the Markov Chain Monte Carlo method.

4.1 Posterior Distribution Function

The goal of a parameter estimation study is to find how accurately we can deter-

mine the values of the source parameters for a given signal. For complicated search

spaces it is not sufficient to find the parameters that best fit the data and estimate

their errors as Gaussian curves about this peak. The surface is often not Gaussian

and multi-modal structures are not captured in such an estimate. It is preferable to
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determine the true distribution about the best fit values. In the Bayesian framework,

this is called the posterior distribution function (PDF), and is calculated by

p(x) ∝ L(x)Π(x) . (4.1)

Here the physical parameters are contained in the vector x and the measure of the

fit of the template h(x) to the data s is defined as the likelihood

L(x) = Ce−
1
2

(s−h(x)|s−h(x)) , (4.2)

where C is a normalization constant that does not depend on the signal or the tem-

plate. The noise weighted inner product used in the likelihood calculation is defined

as

(a|b) = 2

∫ ∞

0

a∗(f)b(f) + a(f)b∗(f)

Sn(f)
df , (4.3)

where Sn(f) is the one-sided noise spectral density.

The factor Π(x) in Eqn. 4.1 is known as the prior probability density for x and

reflects our knowledge, however uninformative, about the PDF before analyzing the

data. For example, the prior for angular parameters such as sky location keep the

parameters in their proper range, cos θ = [−1 : 1] and φ = [0 : 2π].

The global maximum of the PDF occurs where the template parameters are the

best fit to the data, weighted by the prior distribution. The distribution about this

location in parameter space gives the uncertainties in the parameters. Sampling the

PDF with Markov Chain Monte Carlo techniques provides a practical way to find

both best fit parameters and the distribution that reveals the uncertainty in each

parameter.
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4.2 Markov Chain Monte Carlo Techniques

The Markov Chain Monte Carlo (MCMC) method provides a powerful tool for

exploring large parameter spaces without creating a large grid of templates [36, 37].

Instead of stepping along a grid to find the best fit to the data, a template h(x) is

generated at some place in parameter space, x, and compared to the data, s. Each

of the parameters is then varied by some amount to reach a new place in parameter

space, y. The quality of the fit at each location is evaluated as a likelihood calculation

(Eq. 4.2) and the Hastings Ratio H is formed to compare the two templates [38]:

H =
Π(y)L(y)q(x|y)

Π(x)L(x)q(y|x)
. (4.4)

The Hastings ratio is built with Π(x), the prior distribution for the template

parameters, and q(y|x), the proposal distribution, which is the function that generates

proposals for moves from x to y. Once a jump is proposed, the parameters y are

adopted with probability α = min[1, H]. When y is a better fit to the data than x,

H is greater than 1 and the parameters y are adopted. If y is a worse fit to the data,

H is less than 1, and there is a probability equal to H that the parameters y will be

adopted. This process is repeated until some convergence criteria are reached.

A properly constructed MCMC search will sample the parameter space with the

number of iterations spent at each parameter value proportional to how well that

value fits the data. The chain of values for each parameter is used to form histograms

that represent the marginalized PDFs that show the resolution and expected error

for the parameter.
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4.3 Proposal Distributions

An MCMC search is guaranteed to eventually converge on the posterior distri-

bution regardless of choice of proposal distribution. In practice the performance

of the algorithm is quite sensitive to the choice of proposal distribution, and care

must be taken to ensure that the chains do not get stuck on local maxima of the

likelihood surface. We employ several techniques to ensure rapid exploration of the

full parameter space including Gaussian proposals, moves that exploit symmetries of

the likelihood surface to encourage jumps between local maxima, variable jump sizes,

and parallel tempering to encourage wide exploration of the parameter space.

4.3.1 Gaussian Proposals

The Fisher Information Matrix, Γ, can be used to propose a jump to parameter

values y based on the Gaussian approximation to the likelihood at x. These propos-

als efficiently explore local maxima by calculating the eigenvectors and eigenvalues

from the Fisher Matrix to propose appropriate sized jumps along independent eigen-

directions rather than the correlated coordinate directions.

The elements of the Fisher matrix are given by

Γij(x) = (h,i|h,j) (4.5)

where h,i = ∂xi
h.

A Gaussian Fisher proposal distribution is useful for local exploration of a param-

eter space, but more global proposal distributions are needed to ensure full coverage

of the possible parameter values.
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4.3.2 Parallel Tempering

Global exploration of the parameter space is enhanced by creating a set of parallel

chains with likelihood surfaces at different “temperatures” T such that

Li(x) = L(x)1/Ti . (4.6)

Chains that explore surfaces with T � 1 tend to more frequently accept bigger

steps since the contrast between maxima and minima is decreased, and this encourages

wider exploration of the parameter space [39, 40, 41]. The chains can exchange

parameters according to the Hastings ratio for parallel tempering

HPT =
La(xb)Lb(xa)
La(xa)Lb(xb)

, (4.7)

for chains with temperature Ta and Tb and parameters xa and xb, respectively.

It is usual to implement the parallel tempering method for NC chains with the T

values given by

Ti = (∆T )i−1 (4.8)

where

∆T = (Tmax)
1

NC−1 . (4.9)

Each chain explores its own likelihood surface until an exchange of parameters

with a neighboring chain is proposed as a step in the MCMC algorithm. The two

chains trade parameter values and continue to explore from their new locations. Ide-

ally, the chain with the highest T value has an effective likelihood surface that is

smooth enough such that the chain freely explores the entire range of parameters.

The discovery of a favorable location in parameter space is then propagated down to

the T = 1 chain as adjacent chains continue to exchange parameters. Only the T = 1

chain samples the true PDF and is used to produce the parameter histograms.
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There are several trade-offs that go into the choice of ∆T and NC . The signal in

each chain has an effective signal-to-noise ratio that can be approximated by

SNReff ∼
SNR√
Tmax

. (4.10)

It is ideal to have the hottest chain with SNReff < 5 so that it searches a smooth

likelihood surface and tends to explore widely [42]. The temperature increment be-

tween chains should not be larger than ∆T < 2 to ensure good mixing between

chains [41, 43]. The parallel chains need to remain in contact with one another so

they are able to exchange parameters. The geometric spacing given in Eqn. 4.8 is

designed to create a set of chains that tend to exchange parameters. The choice

of ∆T and NC thus depends on the expected SNR of the signal. For example, to

explore a signal with SNR = 30, a good choice of parameters would be ∆T = 1.4

and NC = 12, giving Tmax ≈ 40 and the corresponding SNReff < 5. While the

cost per iteration of a parallel tempered MCMC algorithm is NC times larger than

a standard MCMC algorithm, the improvement in the mixing, especially between

widely separated maxima, ultimately leads to a far more efficient exploration of the

posterior.

4.3.3 Variable Jump Size

Among the various useful jump proposals are very simple proposals such as small

and large jumps along either the parameter directions or the eigen-directions. The

biggest proposed jumps should cover the entire parameter range and are not very

likely to be accepted. Very small jumps are likely to be accepted but are not efficient

as the only type of proposal since they do not explore widely. It is useful to include

some mix of large and small jump proposals in the set of proposal distributions to

keep the chain moving.
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For parallel tempered chains the size of the jumps can be scaled by the temper-

ature. The hotter chains are more likely to accept larger jumps in their flattened

likelihood surface and wide exploration by these hot chains is important for deter-

mining the global structure of the search space. Jump proposals are thus scaled by a

factor of
√
T .

4.3.4 Symmetry Proposals

While MCMC techniques are general and work for searching arbitrary likelihood

surfaces it can be an advantage to understand the search space for a specific problem.

Multimodal likelihood surfaces often contain a pattern relating the global maximum

to other local maxima. It often speeds up the convergence of an MCMC search to

propose jumps that might move the parameters to a new local maximum.

Examples of symmetries in the likelihood surface have been found in gravitational

wave data analysis problems such as EMRI sources [44] and bursts from cosmic string

cusps [41]. The use of symmetry based proposals has been shown in these cases

to produce a thorough exploration of the global structure of the likelihood surface.

The example of gravitational wave bursts from cosmic string cusps and their signal

symmetries will be discussed in the next chapter. We take advantage of our knowledge

of the symmetries for this type of source and use symmetry based proposals in our

search.

4.4 Parameter Uncertainties

The use of MCMC techniques in gravitational wave data analysis is well docu-

mented as a solution to parameter estimation problems [41, 10, 45]. The result of

a well constructed MCMC is a set of samples from the posterior distribution. The
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number of samples from a particular region of parameter space is proportional to the

posterior weight contained in that region. This feature avoids the need to estimate

the error in a parameter as a Gaussian distribution around the maximum likelihood

value. The uncertainty in each parameter is given by the distribution produced by

the MCMC.

We have found that in combination, the proposal distributions discussed above

provide a variety of jump proposals that tend to produce an MCMC that efficiently

maps out the desired PDF and provides accurate parameter uncertainties even for

very large search spaces. The probability that the source parameters take values in

a certain interval is easily calculated from the MCMC output by normalizing the

number of iterations spent in that intervals by the total number of iterations in the

chain. Two specific examples of this technique will be described in Chapters 5 and 7.
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CHAPTER 5

COSMIC STRING CUSPS

5.1 Introduction

Cosmic strings were first predicted to form during symmetry breaking in the very

early universe [46]. Strings with Gµ ∼ 10−6, where µ is the string tension and G

is Newton’s constant, were studied as possible seeds for structure formation and the

source of anisotropies in the cosmic microwave background (CMB) radiation [47].

Observations of the CMB combined with other cosmological data sets imply that

Gµ < 2.3 × 10−7, which rules out cosmic strings as the source of structure in the

universe [48]. This bound makes field theoretic cosmic strings poor candidates for

detection by current gravitational wave observatories, but the next generation of

detectors will have increased sensitivity to gravitational waves from field theoretic

strings [49].

Interest in detecting gravitational wave signatures from cosmic string networks has

recently been revived in the context of cosmic superstrings, which can be produced in

a variety of string inspired inflationary models [50, 51, 52, 53, 54, 55, 56, 57]. Cosmic

superstrings could potentially be observed via gravitational lensing, pulsar timing,

observations of the cosmic microwave background, or from the energy they radiate in

the form of gravitational waves [47].

A string network consists of long, horizon sized strings and loops that tend to

intersect and reconnect, forming sharp edges known as kinks. Cusps with high Lorentz

boosts will also generally form on strings and loops. A cosmic string network will

produce a gravitational wave background, as well as bursts of gravitational waves

from cusps and kinks that stand out above the background. The strongest bursts
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come from cusps, where small portions of the string will be traveling near the speed

of light, leading to the emission of a beam of gravitational radiation [58, 59]. Current

and future ground based gravitational wave detectors (LIGO-Virgo and Advanced

LIGO) and the planned NASA/ESA space based detector (LISA) may be able to

detect such signals and determine several properties of the string network [60, 61, 62].

In this chapter we consider how these cusp signals may be detected, and how

well the signal parameters may be inferred using data from ground and space based

gravitational wave observatories. The broad spectrum nature of the signals raises

the possibility of joint detection in space and on the ground, and we investigate how

this impacts parameter estimation. Our original paper with these results represents

the first time that joint LIGO-Virgo-LISA observations have been considered for any

gravitational wave source [41].

The signal parameters that can be measured depend on combinations of the key

physical parameters, so observations of individual bursts are not enough to constrain

the string model. Ultimately it will be quantities such as the event rate as a function

of burst amplitude, and the power spectra of the un-resolved confusion background

from more distant bursts and the decay of loops that will provide the strongest model

constraints. In this chapter we focus on individual bursts and defer the analysis of

what can be learned from a global analysis for future work [62].

It has been pointed out that detecting cosmic strings with a microlensing quasar

survey has been essentially ruled out by the low event rates (∼ 1010 quasar sources

would have to be monitored for a year to expect a few events) and the long lensing

periods (20-40 years) that are predicted [63]. Still, loops of cosmic string with tensions

in the range 10−10 < Gµ < 10−6 are predicted to produce microlensing of stars in the

local group of galaxies [64]. A detection of a cosmic string by a gravitational wave

detector could thus be followed by an electromagnetic observation by looking in the
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direction determined by the gravitational wave observation for microlensing events.

This possibility motivates accurate parameter estimation from the gravitational wave

detection to provide well determined sky location and orientation information for the

string.

5.2 Gravitational Wave Signature

The gravitational wave signature from a cosmic string cusp is very simple. In the

limit that the line of sight to the cusp is coincident with the axis of the emission cone,

the waveform is linearly polarized and described by the power law

h(t) = 2πA|t− t∗|1/3 . (5.1)

Here t∗ denotes the time when the observer sees the intensity peak. The equation

holds for times near t∗ as discussed in [60]. The overall amplitude A is related to the

distance to the cusp r, the string tension Gµ, and the characteristic length scale of

the cusp L as

A ∼ GµL2/3

r
. (5.2)

Since L and r are unknown, a measurement of A does not directly reveal the string

tension.

The signal is slightly more complicated for off-axis observations. For small viewing

angles α, defined as the angle between the line of sight and the axis of the emission

cone, the main effect is to round off the cusp waveform (Eqn. 5.1) such that the power

spectrum decays rapidly for frequencies greater than fmax ∼ 2/(α3L). Once again,

the observable quantity fmax does not directly reveal the physical quantity of interest,

L, since it also involves the unknown viewing angle α.
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The observed gravitational wave signal will also depend on how the waveform

is projected onto the detector, which will depend on the sky location (θ, φ) and

the polarization angle ψ. Thus, the detected signal depends on the parameters

A, t∗, fmax, θ, φ, ψ. These six measurable quantities depend on the two intrinsic

source parameters (Gµ,L) and the six extrinsic (observer dependent) quantities

(r, α, t∗, θ, φ, ψ). Clearly the observation of a single burst is insufficient to uniquely

determine the intrinsic source parameters. These can only be determined by consid-

ering the full gravitational wave signal from a string network, including the spectrum

of the background and the rate distribution of the brighter bursts [62].

5.2.1 Template Generation

Cosmic string cusp templates are easy to generate in the frequency domain as the

time dependence of the detector response can be ignored: The effective duration of

the burst is set by the lowest frequencies the gravitational wave detector can detect.

For LISA this is fmin ∼ 10−5 Hz, and for Advanced LIGO the limit is fmin ∼ 10 Hz,

which leads to effective durations of 105 seconds and 0.1 seconds respectively. In both

cases the duration of the burst is short compared to the time scale over which the

antenna pattern varies - a year for LISA and a day for LIGO.

The frequency domain waveform for a burst of gravitational waves from a cosmic

string cusp is a power law with an exponential decay beginning at the maximum

frequency given by the viewing angle [65].

h(f) =





Af−
4
3 f < fmax

Af−
4
3 e1−f/fmax f > fmax

(5.3)

When convolved with the instrument response and considered relative to the in-

strumental noise spectrum the effective duration of the bursts is even shorter than
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the simple estimates based on the low frequency limit. Figure 5.1 shows that for

LISA observations 99.9 + % of the full signal to noise ratio (SNR) is reached for

observation times of less than 400 seconds, so the stationary detector approximation

is very accurate.

The SNR for a template h is calculated:

SNR = (h|h)1/2 (5.4)

where the noise weighted inner product for the independent data channels β over

some observation time Tobs is defined as

(a|b) =
2

Tobs

∑

β

∑

f

a∗β(f)bβ(f) + aβ(f)b∗β(f)

Sβn(f)
(5.5)

and Sn(f) is the one-sided noise spectral density in each channel.
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Figure 5.1: The SNR as a function of observation time for three different sets of
parameter values for cosmic string cusp bursts of gravitational waves from the MLDC.
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5.2.1.1 LISA Instrument Response: To foster the development of LISA data

analysis techniques, and to demonstrate mission readiness, a series of Mock LISA

Data Challenges has been conducted [6]. The simulated data sets include anticipated

sources of instrument noise and a wide range of astrophysical sources. Data analysis

techniques can be used to separate the signals from the noise and estimate the param-

eters of the sources. The MLDC Taskforce has created both training data sets with

an answer key for the injected source parameters and blind data sets with a secret

answer key. The injected parameter values for the blind data sets are revealed after a

set deadline and submissions by data analysis groups are evaluated for accuracy [66].

Challenge 3.4 contains gravitational waveforms for burst signals from cosmic string

cusps and we demonstrate the ability of gravitational wave detectors to characterize

these sources.

We adopt the standard MLDC ecliptic coordinate system with origin at the

barycenter. The individual data streams from the six LISA phase meters can be

combined to cancel out the laser phase noise and form Time Delay Interferometry

(TDI) variables [33] as described in Chapter 3. The data sets for MLDC Challenge

3.4 included both the phase meter outputs and the complete set of Michelson style

TDI variable {X, Y, Z}. The latter can be used to construct three noise orthogonal

data streams that are similar to the {A,E, T} variables described in Ref. [67]. Each

data stream s contains the response to the gravitational wave signal and additive,

stationary, Gaussian distributed instrument noise: sβ = hβ + nβ.

The gravitational wave response is computed by convolving h(x, f) with the static

limit of the LISA instrument response [34]. The various time delays in the response
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appear as phase shifts that give rise to transfer functions of the form

Tij(f) =
1

2
sinc[

f

2f∗
(1− k̂ · r̂ij)] exp {−i[ f

2f∗
(3 + k̂ · r̂ij)]}

+
1

2
sinc[

f

2f∗
(1 + k̂ · r̂ij)] exp {−i[ f

2f∗
(1 + k̂ · r̂ij)]}

where k̂ is the propagation direction of the gravitational wave, r̂ij is the unit vector

pointing from spacecraft i to spacecraft j, and f∗ = 1/(2πL) is the LISA transfer

frequency for arm length L. The transfer function has zeros at frequencies that

depend on the propagation direction. This gives LISA angular resolution for burst

sources since bursts from different sky locations (θ, φ) will project differently onto the

detector.
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Figure 5.2: The low frequency approximation to the LISA response compared to the
full response for the same source.

It is the high frequency component of the gravitational wave signal (Eqn. 5.3)

from a cosmic string cusp that determines the resolution of the source on the sky.

Cusps seen with large viewing angles result in signals with frequency cut-offs below
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the transfer frequency, and as a result, little or no sky resolution. Figure 5.2 shows

the LISA instrument response in the low frequency limit compared to the full LISA

response to the same source. The specific locations of the minima of the full response

depend on the sky location of the source and angular resolution is achieved because

templates with different sky locations have different response shapes. The time do-

main LISA response to two of the MLDC training data sources in the A, E, and T

channels can be seen in Figures 5.3 and 5.4. The high frequency components are

absent in Figure 5.3 and clearly visible in Figure 5.4.
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Figure 5.3: The time domain A, E, and T channel responses to Mock LISA Data
Challenge 3.4 training source 0 with fmax = 2.36× 10−3 Hz.

5.2.1.2 LIGO-Virgo Instrument Response: The individual LIGO and Virgo

instrument responses are similar to the low frequency limit of the LISA response,
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Figure 5.4: The time domain A, E, and T channel responses to Mock LISA Data
Challenge 3.4 training source 1 with fmax = 1.15 Hz.

save for a factor of
√

3 because of the equilateral triangle configuration of LISA as

opposed to the 90◦ orientation of the ground based detector arms.

The orientation and location of each detector is most easily defined in an Earth

fixed coordinate system with origin at the geocenter [68]. The Earth can be considered

stationary for the short duration that the cusp signal is in the LIGO-Virgo band.

This allows us to generate the waveform templates in the frequency domain with the

different times of arrival at each detector appearing as relative phase shifts in the

signal.

During the epoch of joint LISA-LIGO-Virgo observations the ground based detec-

tors are expected to be operating in advanced configurations, so the baseline Advanced

LIGO wideband noise curve was used for the terrestrial network in our joint detection

studies.
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5.3 MCMC Techniques

5.3.1 Markov Chain Monte Carlo

The Markov Chain Monte Carlo search method provides a powerful tool for search-

ing large parameter spaces without creating a large grid of templates [36, 37]. For

studying bursts of gravitational waves from cosmic string cusps the signal was pa-

rameterized by x → {lnA, t∗, ln fmax, θ, φ, ψ}, and the priors were taken to be uni-

form in these quantities, save for θ, where a uniform sky distribution is given by

Π(θ) = 1
2

sin(θ).

5.3.2 Proposal Distributions

As discussed in Chapter 4, an MCMC search is guaranteed to eventually converge

on the posterior distribution regardless of choice of proposal distribution. In practice

the performance of the algorithm is quite sensitive to the choice of proposal distri-

bution, and care must be taken to ensure that the chains do not get stuck on local

maxima of the PDF. We employed several techniques to ensure rapid exploration of

the full parameter space: local coordinate transformations to uncouple the param-

eters; moves that exploit symmetries of the likelihood surface to encourage jumps

between local maxima; and parallel tempering to encourage wide exploration of the

posterior.

5.3.2.1 Detector Symmetry Based Proposals: Understanding the symmetries

associated with the detection of bursts provides another effective proposal distribu-

tion. Any burst short enough to treat the LISA detector as stationary will have a

degeneracy such that sky locations related by a reflection in the plane of the detec-

tor will produce an identical response. There are additional symmetries in the low
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frequency limit that result from 120◦ rotations in the plane of the detector. These

symmetries are broken at higher frequencies by the slightly different arrival times of

the gravitational waves across the LISA array. Rotations thus produce two sets of

secondary maxima (Figure 5.5).
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Figure 5.5: Reflection in the plane of the detector gives a degenerate set of parameter
values. Rotations in the plane of the detector give two sets of secondary maxima.

The MCMC searches for cosmic string cusps include proposal jumps from x to

the set of parameters y that give the degenerate detector response. The mapping

between these sets of parameters involves the sky location, polarization angle, and

the time of arrival at the solar barycenter. The symmetry reflection and rotations

are included as possible jumps, but the rotations are rarely accepted unless the chain

happens to be at a secondary maximum and the rotation takes the chain to one of

the two primary maxima.

Our Fisher matrix prediction uses the LISA symmetry and calculates the approx-

imation to the response at the two degenerate sky locations. While the likelihood

is identical at the two locations in parameter space, the curvature of the likelihood

surface is different. The Fisher matrix is useful for driving jumps in the MCMC

searches, but it is not a perfect prediction of the PDF for the source. The maps

shown in Figures 5.6 and 5.7 compare the marginalized PDFs for the sky location
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Figure 5.6: A sky location histogram of a Parallel Tempered MCMC search for Mock
LISA Data Challenge 3.4 source 2 (MLDC source 3.4.2) on the full sky with quartile
contours and a Fisher matrix approximation for the source location below for com-
parison (marginalized over the other source parameters). The all-sky figures use the
HEALPix pixelization of the sky (http://healpix.jpl.nasa.gov).



42

Figure 5.7: A sky location histogram of a Parallel Tempered MCMC search for Mock
LISA Data Challenge 3.4 source 4 (MLDC source 3.4.4) on the full sky with quar-
tile contours and a Fisher matrix approximation for the source location below for
comparison (marginalized over the other source parameters).
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derived from the Fisher matrix approximation and from Markov Chain Monte Carlo

explorations of two bursts in the Mock LISA Data Challenge 3.4 training data.

We compared MCMC runs with and without the symmetry based jumps, and

while parallel tempering did allow the chains to transition between the various max-

ima, the mixing was greatly enhanced by including the symmetry based jumps. A

chain with such symmetry jumps moves freely between the two degenerate locations

in parameter space, exploring both peaks and producing bimodal histograms for each

source parameter.

The use of a variety of proposal distributions is essential for an efficient search

of the parameter space. In the case of cosmic string cusp gravitational wave sources

the symmetry considerations are especially important to avoid getting stuck on a

single maximum. The detection of a cosmic string cusp by LISA must include the

two degenerate answers, with the possibility of the degeneracy being broken by a

simultaneous detection by the ground based gravitational wave detector network.

5.4 Mock LISA Data Challenges (MLDC)

Challenge 3.4 contains gravitational waveforms for burst signals from cosmic string

cusps, comprised of a month long data set (221 samples with 1 second sampling) with

cosmic string cusp waveforms injected with a Poisson event rate of five events per

month. The training data set includes an answer key with the number of injected

sources and their parameter values. The training data happens to contain five sources,

but the Poisson distribution of events means there is a good chance that the blind data

could have between two and eight sources. The MLDC sources have SNR uniformly

distributed in [10, 100] and log(fmax/Hz) uniformly distributed in [-3,1]. This is

also the first MLDC data set with non-symmetric instrument noise. The cusp burst
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sources can be found using a symmetric approximation for the noise (leading to a

small systematic bias in the recovered parameters), or the source parameters and

the individual noise levels can be fitted simultaneously in the search. The time of

arrival at the solar system barycenter (t∗) is highly correlated with the sky location

of the source. A search for t∗ leads to poor determination of the time of arrival of

the burst due to the inherently poor resolution of the sky location. A better choice

of variable is the time of arrival at the guiding center of the LISA constellation (t4).

The detector time of arrival is not as correlated with the sky location parameters,

resulting in better conditioned Fisher Information Matrices to drive the local jumps

of the Markov Chain.

5.4.1 Training Data Results

The training data were analyzed without reference to the answer key so as to

mimic the steps that will be taken to analyze the blind challenge data. The parallel

tempering technique takes care of both detection and characterization, so the analysis

does not have to be be broken up into distinct stages. On the other hand, running

the search on the full ∼ 2 × 106 seconds of data to find signals with duration ∼ 103

seconds is not very efficient, so we adopted the strategy of dividing the full data set

into 64 segments of length 32,768 seconds. Time domain filters were used to limit

spectral leakage, and the finite response of these filters meant that signals in the first

and last ∼ 10% of each segment had to be discarded. To ensure full coverage, a

second pass was performed using segments offset from the first by 16, 384 seconds.

The basic parallel tempered MCMC algorithm was able to both detect and char-

acterize the cosmic string cusp signals in each segment. The “burn-in” time for the

chains to lock onto the signals was shortened by several orders of magnitude by ana-

lytically maximizing over the time of arrival at the detector center and the amplitude.
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These maximizations render the chains non-Markovian, and must be turned off after

the burn-in is complete, and the samples from the burn-in must be discarded.

A fully-fledged Bayesian MCMC analysis of the data would involve conditions to

decide when the burn-in phase was complete, the ability to search for multiple cusp

signals simultaneously, and evidence based selection of the putative detections. While

parallel tempered MCMC algorithms can do all of these things, we settled on a less

sophisticated approach that could be implemented with less effort. The first stage of

the analysis was to search each data segment using NC = 12 chains with ∆T = 1.55

and N = 10, 000 iterations. A simple SNR threshold was used to decide if a source

had been found in the data segment. Triggers with SNR = (s|h)1/2 > 8 were recorded

for further analysis (the loudest noise triggers had SNR < 6). If a trigger was found

the signal was regressed from the data and the search repeated (in other words the

search is sequential rather than simultaneous).

The initial search did not fit for instrument noise levels, but found all five signals in

the training data and recovered the source parameters to good accuracy (Table 5.4.1).

Since the segmented data are searched twice, we expect to find each source twice,

but one trigger happened to fall near the boundary between segments and was thus

discarded. The source was found on the offset pass.

The initial detection of the burst could be done at similar cost using the template

grid approach used to search for cosmic string bursts in LIGO data [60]. The main

value of the MCMC approach is that it allows us to construct the joint posterior

distribution function during the parameter estimation stage of the analysis.

5.4.2 Blind Data Results

The same methods employed in the search for cosmic string signals in the training

MLDC data were used to find the signals in the blind data. Three sources were found
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Table 5.1: The triggers produced by a search of the MLDC 3.4 training data. All but
one of the sources was detected in both passes through the data (one signal happened
to straddle a data segment boundary). The injected fmax values are listed, along
with the recovered values for SNR. The difference between the injected and recovered
parameter values for fmax and t4 are given in the last two columns. Note that sources
with fmax > f∗ have large ∆f ’s. These parameter errors are from the first stage of
the filtering - the fit improves after the second stage.

Source fmax (Hz) SNR ∆f (Hz) ∆t (sec)

3.4.0 2.36e-3 53.54 3.98e-5 4.64
53.99 7.70e-5 5.42

3.4.1 1.15 21.46 1.11 2.54
21.27 2.62 2.94

3.4.2 0.46 31.07 0.329 0.15
3.4.3 1.15e-2 73.87 3.82e-4 1.16

76.58 9.11e-4 0.38
3.4.4 2.27 14.07 2.25 3.44

14.12 4.14 2.45

in the month long data set. The triggers are listed in Table 5.2 and the recovered best

fit parameters are listed in Table 5.3. The evaluation of the recovered template can

be found in Table 5.4 with comparable ρ and SNR values indicating a good match to

the data.

Table 5.2: The triggers produced by a search of the MLDC 3.4 blind data with the
time of each trigger and the recovered SNR. One source was found on only one pass
through the data since it straddled the segment boundary.

SNR1 t∗ (sec) SNR2 t∗ (sec)

Source 0 40.461692 599202.3 40.764385 599242.1
Source 1 33.094462 1072929 33.071948 1072929
Source 2 43.264396 1603018

Table 5.5 shows the parameter estimation errors, SNRs, and individual TDI-

channel fitting factors (FFA and FFE) for the blind challenge sources. The recovered

SNR was computed by filtering the noisy data with the appropriate template, while
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Table 5.3: The recovered best fit parameters for the MLDC blind search.

θ (rad) φ (rad) ψ (rad) A t∗ (sec) fmax

Source 0 0.3094 3.926 4.552 9.912e-22 599287.64 Nyquist
Source 1 -0.3233 3.934 4.957 2.763e-21 1072739.28 1.056e-3
Source 2 -0.2325 5.899 5.919 1.512e-21 1602943.85 Nyquist

Table 5.4: The MLDC blind data best fit parameters recovered from the search
produce waveforms that can be compared with the data to test how well each source
was recovered.

MLDC source 0 SNR ρ Correlation

With Noise 40.34 42.09 0.748116

MLDC source 1 SNR ρ Correlation

With Noise 20.16 19.62 0.815867

MLDC source 2 SNR ρ Correlation

With Noise 42.71 42.80 0.679256
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the fitting factors were computed between noiseless signals. Although the accuracy of

parameters is poor, when computing the overlap between a template with the recov-

ered parameters and a template with the injected parameters, we find that the fitting

factors are very high. This suggests that these results are not due to shortcomings in

the search methods, but rather to the character of the waveforms. For relatively short

signals such as these bursts, LISA can be considered a static detector, and its response

is not imprinted with any modulations from the LISA orbit or from the rotation of

the constellation. The sky position of burst sources can then only be determined by

triangulation between the spacecraft. This is a weaker effect than determining sky

location with a time dependent LISA, and triangulation effects vanish in the limit of

long wavelengths.

The determination of sky position is intrinsically harder for burst sources, and it

is further complicated by the presence of degeneracies such as the reflection of sky

position across the instantaneous LISA plane. The time of arrival at the solar system

barycenter t∗ and the signal polarization are strongly coupled with sky position, and

therefore are also determined poorly. To compensate for this fact, the task force

calculate the error in the arrival time of the burst at the center of the detector

constellation t∆. This parameter has a weaker correlation with the sky position and

is constrained better by observations.

5.4.3 Parameter Estimation

An MCMC search for a signal in noisy data returns the PDF that maps out the

uncertainty in each parameter as discussed in Chapter 4. This can be compared to the

Gaussian approximation for the variance in each parameter derived from the Fisher

Information Matrix. To study the parameter estimation abilities of gravitational wave

detectors for cosmic string cusps, the five distinct triggers from the search phase of the
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Table 5.5: Select parameter errors, SNRs, and fitting factors from the MLDC task
force evaluation of the MLDC 3.4 entries [?]. There were three injected sources
and we recovered all three. Here ∆sky is the geodesic angular distance between the
recovered and true sky positions; t∆ is the time of burst arrival at LISA; ψ and A are
the gravitational wave polarization and amplitude.

∆sky (deg) ∆t∆ (sec) ∆ψ (rad) ∆A/A SNR FFA FFE

Source 0 106.6 2.071 2.600 0.745 43.287 0.99975 0.99565
Source 1 53.1 3.223 0.158 0.011 33.696 0.99926 0.99978
Source 2 137.9 0.980 0.110 0.161 41.418 0.99327 0.99948

training data were used as starting points for MCMC runs. Data segments of length

16, 384 seconds, centered on the time of arrival of the burst, were used in the second

stage of the analysis. The parallel tempering routine used NC = 12 chains with a

maximum temperature of Tmax = 125, spacing ∆T = 1.55, and N = 106 iterations.

Histograms for the six source parameters for MLDC training source 3.4.3 are shown in

Figure 5.8. The sky location parameters θ and φ have a bimodal distribution due to

the degeneracy of two sky locations from the detector symmetry. The time of arrival

of the signal at the detector is very well determined, matching a Gaussian distribution

with a variance of less than one second. The maximum frequency cutoff can also be

well determined for sources such as this with fmax below the LISA transfer frequency.

Although not much SNR is gained in the high frequency portion of the signal, the

LISA transfer function is essential for determining the direction to the source. This is

illustrated quite well by training data source 3.4.3 with SNR = 77 and fmax = 0.0115

Hz. Even this source with high SNR has poor angular resolution (Figure 5.9). A new

search for a source with identical parameters, and almost identical SNR, but with

fmax = 1.15 Hz reveals the importance of the high frequency component of the signal

(Figure 5.10).
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Figure 5.8: The distribution of recovered parameter values for an MCMC search for
MLDC training source 3.4.3 using simulated LISA data. The Fisher Matrix Gaussian
approximation is shown in blue for comparison.

Figure 5.9: An MCMC search for an MLDC training data source with high SNR but
a maximum frequency cutoff below the LISA transfer frequency.
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Figure 5.10: An MCMC search for a source with the same parameter values as Fig-
ure 5.9, except for a maximum frequency above the LISA transfer frequency.

5.5 Advanced Ground Based Detectors

The wide frequency range of gravitational wave signals from cosmic string cusps

allows them to be detected simultaneously by space based and ground based gravi-

tational wave detectors. The current ground based detectors have not yet reported

a detection of a gravitational wave signal, but the next generation of detectors, such

as Advanced LIGO, will have increased sensitivity to gravitational waves, including

bursts from cosmic string cusps. We investigated the performance of the advanced

terrestrial network by using the MLDC training source parameters, with the exception

of the fmax parameter, which we set at 500 Hz to ensure that the signal will be in

the LIGO-Virgo band. The value of fmax is related to the viewing angle α, defined

as the angle between the line of sight and the axis of the emission cone. The main

effect of off-axis observation is a rounding of the cusp waveform (Eqn. 5.1) such that

the power spectrum decays rapidly for frequencies greater than fmax ∼ 2/(α3L).
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The relative orientation of the ground and space based detectors was fixed by

setting the start of the LISA observations to the autumnal equinox in the year 2020.

When just considering the ground based network we use right ascension α and decli-

nation δ to describe the sky location, and the polarization basis defined in Ref. [68].

The time of arrival of the bursts is referenced to the Earth geocenter. We use the

reference Advanced LIGO wideband noise curve with strain spectral density

Sn(f) = 10−49

(
x−4.14 − 5

x2
+ 111

(
2− 2x2 + x4

2 + x2

))
, (5.6)

where x = f/215 Hz.

The ground based detector network of the 4 km LIGO detectors in Hanford, WA

and Livingston, LA and the Virgo detector in Italy, if operating at Advanced LIGO

design sensitivity should respond to the MLDC sources with network SNRs of 24.3,

7.9, 4.3, 35.8, and 5.7 for sources 3.4.0 → 3.4.4, respectively. Without the benefit

of joint LISA observations, sources 3.4.2 and 3.4.4 may not be bright enough to be

detected. Simulated data were generated for the LIGO-Virgo network and single

chain MCMC runs of 106 iterations were used to produced the parameter histograms

shown in Figures 5.11 and 5.12, corresponding to MLDC training source 3.4.0 and

3.4.3 respectively. The Fisher Matrix estimates for the parameter distributions are

also shown, and are seen to agree well with the MCMC derived PDFs. The fmax

parameter is poorly determined, resulting in a wide spread of fmax values visited by

the MCMC chains. The sky location of the burst is determined to an accuracy of

∼ 10 square degrees.

5.5.1 Combining Space andGround Based Detectors

The broad spectrum nature of signals from cosmic string cusps allows for joint

observations between a space based detector such as LISA and the network of ground
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Figure 5.11: The distribution of parameter values for an MCMC search of simulated
data using the parameters for MLDC training source 3.4.0 (with fmax boosted to 500
Hz) for the advanced ground based detector network. The Gaussian Fisher Matrix
approximation is included in blue for comparison.
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Figure 5.12: The distribution of parameter values for an MCMC search of simulated
data using the parameters for MLDC training source 3.4.3 (with fmax boosted to 500
Hz) for the advanced ground based detector network. The Gaussian Fisher Matrix
approximation is included in blue for comparison.
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based detectors. The LISA sensitivity range is from about 10−5 Hz to 1 Hz while

LIGO is sensitive in the range 10 Hz to 10 kHz. A burst from a cosmic string cusp

with a cut-off frequency above ∼ 50 Hz would produce a response across the LIGO-

Virgo-LISA network, and the extra information from joint detection would improve

estimates of the source parameters. One might expect that the large Earth-LISA

baseline (up to 170 seconds delay) would result in extraordinary angular resolution,

but the relatively poor determination of the time of arrival at the LISA guiding center

(of order 1 second) diminishes the effect.

For joint observations we adopted the Barycentric ecliptic coordinate system used

to describe LISA observations. For the time of arrival of the burst we used the

geocenter time of arrival (t⊕), as this choice gives the smallest correlation with the

sky location uncertainty.

Table 5.6 shows the parameter estimation improvement gained by combining LISA

with a ground based network detection. The gains in sensitivity can mostly be at-

tributed to the higher SNR. This can be understood by looking at the off-diagonal

components of the Fisher Information Matrix, and noting that even without the LISA

contribution the parameter correlations are already quite small. On the other hand,

the addition of the LISA data reduces the sky location uncertainty to less than a

square degree, which improves the prospects of performing a microlensing follow-up.

5.6 Conclusions

A matched filter analysis using parallel tempered Markov Chain Monte Carlo

techniques can both detect and characterize the gravitational wave signals from cosmic

string cusps in simulated LISA and LIGO-Virgo data. Some cosmic string cusp

waveforms have a broad enough frequency range that they can be detected jointly by
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Table 5.6: A joint detection by LISA and an advanced ground based network results
in improvements in parameter estimation as shown for three sources from the MLDC
3.4 training data. The Gaussian standard deviation σ is given for the sky location
parameters θ and φ and the time of arrival t.

MLDC 3.4.0 SNR σθ (rad) σφ (rad) σt (sec)

LIGO-Virgo 24.3 5.7e-02 3.8e-02 1.2e-03
LISA + LIGO-Virgo 76.2 2.5e-02 9.6e-03 5.1e-04

MLDC 3.4.1 SNR σθ (rad) σφ (rad) σt (sec)

LIGO-Virgo 7.9 1.0e-02 6.9e-02 4.5e-04
LISA + LIGO-Virgo 22.9 4.7e-03 4.8e-02 2.4e-04

MLDC 3.4.3 SNR σθ (rad) σφ (rad) σt (sec)

LIGO-Virgo 35.8 1.7e-02 2.4e-02 3.5e-04
LISA + LIGO-Virgo 84.8 5.3e-03 2.4e-03 5.9e-05

space and ground based detectors, and these joint detections significantly improve the

angular resolution over what can be achieved by LISA alone. The addition of LISA

observations to the ground based network leads to a more modest improvement that

may improve the prospects of finding electromagnetic counterparts from microlensing

of stars in foreground galaxies.

The analysis presented here can be improved in several ways. Rather than per-

forming the search with the SNR of the best fit template being used as a frequentist

detection statistic, the Bayesian evidence for the signal can be computed by thermo-

dynamic integration across the parallel chains [69]. The instrument noise levels must

be treated as search parameters when computing the evidence, and the noise model

should take into account the non-symmetric noise levels found in the Challenge 3.4

data. The signal model can be extended to account for multiple overlapping bursts,

which would be an improvement on the sequential regression used in the current anal-
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ysis. A more realistic analysis should also take into account the confusion background

that would accompany the bright burst signals.
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CHAPTER 6

BINARY BLACK HOLE FORMATION

A promising source of gravitational waves are compact binary objects, including

systems of black holes orbiting one another. Observations have shown that today there

are massive black holes in the center of nearly all galaxies [70, 71, 72]. Galaxy mergers

are also a common process, as evidenced by observations of galaxies in various stages

of merger. Various three-body interactions and gas driven processes cause the black

holes at the centers of the individual galaxies to sink toward the center of the merged

galaxy and begin orbiting one another [13]. Gravitational radiation eventually takes

over as the dominant mechanism driving the evolution of the system. The history

of galaxy evolution in the universe will be illuminated by the study of massive black

hole mergers with precise measurements of the source parameters including masses,

spins, orbital eccentricity, and luminosity distances. If black hole mergers are efficient

and there is roughly one binary black hole merger for every galaxy merger, then the

rate at which LISA measures these events could be several per year [73].

6.1 Observational Evidence for Massive Black Holes

There is strong observational evidence for the existence of astrophysical black

holes [72]. Our own Milky Way galaxy hosts a central massive black hole as evidenced

by observations of stellar proper motion around a dark object of mass M ' (3.7 ±

0.2)× 106 M� [74, 75, 76, 77] and size smaller than about one astronomical unit [78],

consistent with the identification of the object as a black hole.

There is also strong observational evidence for the presence of massive black holes

in the bulges of nearly all local, massive galaxies [70, 71]. These black holes have
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masses in the range M ∼ 105 − 109 M�, approximately proportional to the mass of

the host galaxies, M ∼ 10−3 Mgalaxy [79]. There is a nearly linear relation between

the mass of a massive black hole and the mass of the galactic bulge hosting the black

hole [80, 81]. The black hole mass is also tightly correlated with other properties of the

galactic bulge, such as the central stellar velocity dispersion σ (the M-σ relation) [82].

These observations suggest that the central black holes are linked to the evolution of

galactic structure in the universe.

Details of the formation process of massive black holes are not well known. A

major source of uncertainty in predicting the evolution of massive black holes comes

from the unknown fraction of galaxies containing a massive black hole (the occu-

pation number) at high redshifts. Early seed massive black holes can grow both

through gas accretion and through coalescence with other seed black holes. Improve-

ments in numerical simulations and electro-magnetic observations will continue to

constrain formation scenarios, but it will be gravitational wave observations of black

hole mergers at high redshift by LISA that will be able to discriminate between

formation mechanisms [83].

6.2 Binary Systems of Massive Black Holes

Galaxies tend to grow through the galaxy merger process. As galaxies with cen-

tral black holes merge, the black holes tend to form a bound system in the merged

galaxy [12]. Understanding the details of the formation of massive black hole binary

systems during galaxy mergers turns out to be a challenging problem in theoreti-

cal astrophysics [84]. The evolution of a massive black hole binary can be roughly

divided in three phases characterized by dynamical friction, slingshot interactions,

and gravitational radiation. As the galaxies merge, the massive black holes interact
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with the surrounding stellar population due to dynamical friction. The gravitational

interaction between the moving massive body and the surrounding stars causes the

smaller bodies to accelerate and gain energy and angular momentum, while the black

hole is slowed by an amount to conserve the energy and angular momentum of the

system. The black holes thus both tend to sink toward the center of the merged

galaxy. The binding energy of the binary then increases from gravitational slingshot

interactions ejecting stars on orbits intersecting the binary from the loss cone. The

loss cone is defined as the set of orbits that intersect the binary or that pass within

some distance of its center of mass. For example, stars within the tidal disruption loss

cone are on a close enough approach to the black holes that tidal forces disrupt the

star and these stars are removed in a single orbital period or less. For the binary to

continue to bind, a repopulation of the loss cone is required. The repopulation of the

loss cone is typically assumed to be driven by gravitational encounters between stars.

If the binary separation does eventually become small enough, gravitational radiation

then carries away the remaining angular momentum and the system mergers.

The infall of the black holes to this final stage characterized by gravitational wave

emission such that the binary will decay within a Hubble time has been referred

to as the “final parsec problem” [85]. Proposed mechanisms to overcome the final

parsec problem include gas accretion, star-star encounters, and triaxial distortions of

galactic nuclei [86]. Simulations show that if the galaxy is allowed to rotate binaries

do coalesce within a Hubble time and the last parsec problem is avoided [87].

These results are consistent with observational evidence indicating that efficient

coalescence is the norm. There is very little astrophysical evidence for binary black

holes at ∼1 parsec separation, suggesting that this is not in fact a physical limit.

If some galaxies were to contain uncoalesced binaries, galaxy mergers would bring a

third black hole into the nucleus, and the resulting gravitational slingshot interaction
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would eject one or more massive black holes from the nucleus. This would produce

massive black holes away from the center of the galaxy, but no such off-center objects

have been detected. It has also been suggested that ejections by three-body slingshot

interactions would weaken the tight M-σ correlations that are observed [88]. This

suggests that coalescence should proceed on short timescales. Studies have shown

that LISA will be able to detect the gravitational waves from a significant fraction of

such mergers in the universe [14].

We can also consider the fact that the gravitational wave coalescence time is

shorter for more eccentric binaries [89], and as a result high-eccentricity binaries

could be more likely to coalesce within a Hubble time [90, 83].

6.3 Eccentric Orbits of Binary Black Holes

The shape of the orbits of massive black hole binaries has been the subject of some

debate. Some galaxy evolution models predict that the resulting central binary black

hole system will enter the LISA band with significant orbital eccentricity [91, 92, 93],

while other models suggest that the orbits will already have circularized [94, 95].

Stellar dynamical hardening might also leave the binary with non-zero eccentricity,

where the binary is considered hard once the orbital velocity is larger than the velocity

dispersion of stars in the galactic nucleus. N -body simulations find that perturbations

of an initially circular binary from passing stars produce significant eccentricity by

the time the binary becomes hard [82]. Analytic calculations and N -body simulations

show that, in purely collisionless spherical backgrounds, the expected equilibrium

distribution of eccentricities is skewed towards high e ' 0.6−0.7, and that dynamical

friction does not play a major role in modifying such a distribution [96].
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Simulations that follow the dynamics of binary black holes orbiting in massive,

rotationally supported circumnuclear discs [97] suggest that if the binary is counterro-

tating with the disc the initial eccentricity does not decrease, and the black holes may

enter the gravitational wave emission phase with high eccentricity. Complementary

studies show that eccentricity evolution may occur in later stages of the binary’s life

because of close encounters with single stars [98] or gas-dynamical processes [99].

The gravitational interaction of the binary with a surrounding gas disc is likely to

increase the eccentricity of the system. Another interesting scenario producing highly

eccentric mergers that could be observed by LISA involves close triple supermassive

black hole encounters [100].

While galaxy merger theories and simulations will continue to improve, it will

be the LISA observations of massive black hole binary systems that will be able to

provide conclusive answers about the shapes of binary black hole orbits in the centers

of galaxies. In order to determine the eccentricity of a system of massive black holes

LISA data analysis methods will need to include gravitational waveform templates

for spinning black hole binaries in eccentric orbits. The next chapter discusses the

calculation of such waveforms and studies the parameter estimation abilities of LISA

for these sources.
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CHAPTER 7

ECCENTRIC BINARY BLACK HOLE SYSTEMS

NASA’s space based gravitational wave detector LISA will be able to detect grav-

itational waves from coalescing binary systems of compact objects. The gravitational

waveforms from such systems have been calculated in various limits such as circular

orbits or extreme mass ratios of the orbiting bodies. These limits can be extended to

study how LISA observations can be used to measure the eccentricity of the orbits

as well as the masses, spins, and luminosity distances of binary black holes. Once

LISA is operational, the comparison of observations of eccentric and circular black

hole binary sources will constrain theories on galaxy mergers in the early universe.

The waveforms for binaries in eccentric orbits may also be necessary for the detection

of highly eccentric binaries (e ' 0.9) predicted by some models. Gravitational wave

tests of general relativity in the strong field regime will require the eccentric orbits

from the full predictions of general relativity to measure deviations from theory. Al-

ternative theories of gravity predict different gravitational waveforms than those in

general relativity. A coherent residual left in the data stream after subtraction of the

waveform predicted by general relativity would indicate that another theory could

better match the data. Neglecting the effects on the waveform due to eccentricity

would also lead to a coherent residual, possibly masking a departure from general

relativity [17].

7.1 Spinning Binary Black Holes in Eccentric Orbits

Binary systems of compact objects will be ubiquitous sources for LISA [101, 83].

The gravitational waveforms from binary black hole systems have been studied in
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various special limits such as circular orbits, extreme mass ratio inspirals (EMRIs),

or specific spin orientations [7, 8, 9, 10, 102]. We have relaxed the assumption of

circular orbits to calculate gravitational waveform templates that make it possible to

accurately measure the eccentricity of binary black hole systems with LISA. Other

parameters such as the masses and luminosity distance will be quite well determined

for black hole binary systems and a bias in these parameters can be avoided by using

the general eccentric waveforms, even in the case of very small eccentricity.

The instantaneous gravitational waveforms describing the early inspiral of a black

hole binary with arbitrary spins, masses, and orbital eccentricity were calculated by

Majár & Vasúth [103]. Together with the angular momentum and energy dissipation

equations [104] we can build the time dependent gravitational waveforms for a general

binary black hole system with the full seventeen parameters necessary to describe the

system. These new waveforms will allow us to accurately measure parameter values

for binary black hole systems, constrain galaxy merger scenarios, and permit tests of

the theory of general relativity in the strong field regime.

Once LISA is operational, black hole studies with gravitational waves will con-

strain galaxy merger scenarios and provide critical new information on the distances

and rates of massive black hole coalescences. In the last minutes before two super

massive black holes collide the signal to noise ratio (SNR) of the source can grow into

the thousands. LISA will be able to detect such loud events at vast distances, provid-

ing information about previously unprobed regions of the very distant universe. These

strong field gravity events will also allow for testing the theory of general relativity

and will help to confirm or revolutionize our understanding of physics. Neglecting

the effects on the waveforms due to eccentricity results in a loss of estimated power

and a bias in the values of the other parameters. Finding departures from the theory

of general relativity with black hole waveforms also requires the fully eccentric wave-
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forms since the eccentricity effects are on the order of the largest possible departures

from theory. The strong field regime around supermassive black holes offers the best

tests for Einstein’s theory by measuring coherent residuals left after subtracting the

waveform template predicted by general relativity from the data.

Black hole binary systems in eccentric orbits may very well be sources for ground

based gravitational wave detectors such as LIGO and Virgo [105]. Some models

predict that inspiral signals may enter the LIGO band with e > 0.9 and that eccentric

templates could be necessary to detect such sources [106]. Current LIGO data analysis

uses circular templates and could be upgraded to include the search for eccentric

sources.

We present here a method for combining the work that has been done to calculate

the instantaneous gravitational waveforms for eccentric binary systems with the dis-

sipation equations for the orbital angular momentum and energy of the system and

the spin precession equations to build time dependent gravitational waveforms for the

general case of a spinning black hole binary system in an eccentric orbit [107].

7.2 Source Modeling

The general binary black hole gravitational waveform depends on seventeen pa-

rameters, including physical parameters and parameters describing the orientation

of the source and the observer. The physical source parameters include two masses,

three parameters to describe the spin of each body, the energy of the system, and three

angular momentum parameters. The waveform at the detector also depends on sky

location, the distance to the source, and two phase parameters. The specific choice

of representation determines the list of parameters, but not the physical waveform

output. For instance the concept of the eccentricity of the orbit is not a well defined
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quantity in relativity, but some definition based on well defined quantities such as the

energy and the magnitude of the orbital angular momentum can be adopted without

loss of generality. The energy and magnitude of the orbital angular momentum can

be replaced with an eccentricity e and semi-major axis a, defined as functions of E

and L.

The first step in calculating the gravitational waveform for a binary black hole

system is to solve the equations of motion for the orbital parameters, including the

effects due to the spinning bodies. The spins of the black holes in a binary system

contribute to the dynamics through both spin-orbit coupling and spin-spin coupling.

The spin-orbit precession equations for the two spin vectors and the orbital momen-

tum vector of the system are well known. There are also well known spin-spin effects

due to the interaction of the two spins [104].

Binary black hole dynamics have been solved to various post-Newtonian (PN) or-

ders, expanding in the small parameter
(
v2

c2

)
, assuming that the characteristic velocity

of the system is small compared to the speed of light. The post-Newtonian expansion

is valid at low orders for systems with v � c, which corresponds to times well before

merger. As the black holes approach each other their velocities increase and higher

order PN terms are required to accurately describe the system. We will focus on

times well before merger and consider carefully the regime when our approximations

begin to break down. The expansion parameter is related by Kepler’s law to the total

mass and semi-major axis of the binary
(
v2

c2
∼ M

a

)
.

We have solved the various dynamics of the binary black hole system to 1.5 PN

order
(
v3

c3

)
. The spin-spin effects come in at 2 PN order

(
v4

c4

)
and to remain self

consistent we have not included spin-spin terms. It is certainly possible to extend our

treatment to the next order to consistently include these effects, but that will be left

for future work.
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7.2.1 Equations of Motion

The relativistic equations of motion for a bound binary system have been solved

in a Kepler-like form in [108]. In the usual spherical coordinates and in terms of the

eccentric anomaly u,

r = r(cosφ, sinφ, 0) (7.1a)

nt = u− et sinu (7.1b)

r = a(1− er cosu) (7.1c)

φ = 2(k + 1) tan−1

[(
1 + eφ
1− eφ

)1/2

tan
u

2

]
(7.1d)

where r is the relative separation of the two bodies, n = 2πf is the mean motion,

k is the fractional periastron advance per orbit, a is the semi-major axis, and the

regular Keplerian eccentricity has split into the triad of time, radial, and angular

eccentricities et, er, and eφ.

The dynamics of the binary system are described by the Hamiltonian H. The

Hamiltonian can be decomposed into its contributions to 1.5 PN order as H1.5PN =

HN + H1PN + H1.5PN. The solutions to the Hamiltonian to 1 PN were calculated

in [108]. To isolate the spin-orbit effects which appear at 1.5 PN order
(
v3

c3

)
, the

Newtonian and spin-orbit contributions to the Hamiltonian can be combined to form

HNSO = HN + HSO. It is particularly useful to write the spin-orbit contribution in

terms of an effective spin parameter Seff :

HNSO =
p2

2µ2
− M

r
+

L · Seff

µr3
(7.2)

where the total mass of the system M ≡ m1 +m2, the reduced mass µ ≡ m1m2/M , L

is the orbital angular momentum, and the effective spin Seff , defined similarly in [109],

has been used to express the spin-orbit effects compactly:

Seff = δ1S1 + δ2S2 (7.3)
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Figure 7.1: The precession of periastron in the orbital plane for a binary system with
er = 0.3.

where

δ1 = 2

(
1 +

3m2

4m1

)
, (7.4a)

δ2 = 2

(
1 +

3m1

4m2

)
. (7.4b)

The Hamiltonian can be used to derive the equations of motion for the spins and

the orbital velocity. In [109] it is shown that

dL

dt
= {L, HNSO} =

1

r3
Seff × L , (7.5a)

dS1

dt
= {S1, HNSO} =

δ1

r3
L× S1 , (7.5b)

dS2

dt
= {S2, HNSO} =

δ2

r3
L× S2 , (7.5c)

where { } are Poisson brackets.



69

It was also shown in [109] that the quantity L · Seff is conserved for constant L,

since

dSeff

dt
= δ1Ṡ1 + δ2Ṡ2 =

1

r3
L× (δ2

1S1 + δ2
2S2)

d

dt
(L · Seff) =

dL

dt
· Seff + L · dSeff

dt
= 0 . (7.6)

We have derived the spin-orbit contribution to the orbital velocity from HNSO.

dr

dt
= {r, HNSO}

ṙ =
p

µ
+

Seff × r

r3
(7.7)

We are working to 1.5 PN order, so we do not need to keep the higher order cross

terms from v2 = ṙ · ṙ. Keeping only the leading order spin-orbit term we find

v2 =
p2

µ2
+

2

µ

L · Seff

r3

v2
⊥ =

L2

µ2r2
+

2

µ

L · Seff

r3
. (7.8)

The relative velocity vector can then be written in terms of the energy E, the

magnitude of the orbital angular momentum L, the relative separation between the

black holes r, and the spin-orbit effects from L · Seff .

v2 =
2E

µ
+

2M

r
−
[

3(1− 3η)

(
E

µ

)2

+ 2(6− 7η)
EM

µr
+ (10− 5η)

(
M

r

)2

− ηML2

µ2r3

]
,

v2
‖ = ṙ2 =

2E

µ
+

2M

r
− L2

µ2r2
−
[

3(1− 3η)

(
E

µ

)2

+ 2(6− 7η)
EM

µr
+ (10− 5η)

(
M

r

)2

− (2− 6η)
EL2

µ3r2
− (8− 3η)

ML2

µ2r3

]
− 2L · Seff

µr3
, (7.9)

and we find v⊥ using v2
⊥ = v2 − ṙ2. Here the dimensionless mass ratio η ≡ µ/M

(0 < η < 1/4).

The solutions to the Hamiltonian HNSO for the case of simple precession, with

either equal masses or with only one spinning body, can be found in [109]. There the
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orbits and precession equations are solved simultaneously, but this can only be done

for simple precession. The solutions for a system with general mass ratio and spin

orientations were calculated in [110]. We also calculated the solutions for the general

case, using the approximation that the orbital angular momentum is constant over an

orbit resulting in the adiabatic form of the spin-orbit correction to the orbital param-

eters. The simple precession results do not agree with our results in the limit where

the spin and angular momentum directions are aligned, a case where the adiabatic

approach is exact. We also note that the results in [109] have spin-orbit effects that

do not vanish for S = 0, where the total spin vector S ≡ S1 + S2.

7.2.2 Non-Inertial Frame Effects

There is another correction to the equations of motion that comes in at 1.5 PN

order due to the precession of the orbital angular momentum L from spin-orbit cou-

pling. The coordinate system fixed to L, with r defined to be in the orbital plane

perpendicular to L, is a non-ineritial precessing reference frame. The Keplerian style

parameterization of the orbits is most easily accomplished in this non-inertial frame

that precesses with the orbital plane, but the solutions must be modified to account

for the non-inertial frame effects.

The equations of motion in the interial frame are

dr

dt
=

p

µ
+

Seff × r

r3
, (7.10)

and

dL̂

dt
=

Seff × L̂
r3

. (7.11)

The precessing frame is defined by the condition

dL̂

dt

∣∣∣
pre

= 0 =
dL̂

dt
− ω × L̂ , (7.12)
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which implies that

ω =
Seff

r3
. (7.13)

The velocity in the precessing frame is given by

dr

dt

∣∣∣
pre

=
dr

dt
− ω × r =

p

µ
(7.14)

from which it follows that the orbital plane remains fixed in the precessing frame and

the radial motion looks identical in the inertial and precessing frames:

ṙpre = r̂ · dr
dt

∣∣∣
pre

= r̂ · dr
dt

= ṙ . (7.15)

Thus the solutions for a, er, n, and et are given as before in the inertial frame. In the

inertial frame we have

v2 = ṙ2 + v2
⊥ = 2

E

µ
+

2M

r
(7.16)

and

v2
⊥ =

L2

µ2r2
+

2

µ

L · Seff

r3
. (7.17)

In the inertial frame v⊥ comes from some combination of azimuthal and equitorial

motion. In the precessing frame the motion is purely azimuthal: v⊥|pre = rφ̇.

v2
pre = v2 − 2ω · L +O(ω2) (7.18)

so that

v2
⊥

∣∣∣
pre

=
L2

µ2r2
. (7.19)

Following the parameterization of [108] we can find the contribution to the orbital

parameters from L · Seff in terms of the coefficients in (7.20) and (7.21). We can

modify their coefficients to include the appropriate spin-orbit terms and solve for the

corrections to the various orbital parameters.

ṙ2 = A+ 2B/r + C/r2 +D/r3 (7.20)
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φ̇ = H/r2 + I/r3 (7.21)

where

v2
⊥ = r2φ̇2 (7.22)

v2 = ṙ2 + v2
⊥ . (7.23)

The solutions for the orbital parameters based on the coefficients of Eqns. 7.20

and 7.21 are also given in [108]:

n =
(−A)3/2

B
(7.24a)

et =

[
1− A

B2

(
C − BD

C0

)]1/2

(7.24b)

a = −B
A

+
D

2C0

(7.24c)

er = et

(
1 +

AD

2BC0

)
(7.24d)

k =
H

n ã2
(
1− e2

φ

)1/2
− 1 (7.25a)

eφ = et

(
1 +

AD

BC0

− AI

BH

)
(7.25b)

where C0 = −L2/µ2 and ã = a− I/(2H).

Suppressing the first post-Newtonian correction that can be found in various refer-

ences [108, 111, 109] to highlight the contribution from the spin-orbit term at 1.5 PN
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order we can express the orbital parameters as

a = −µM
2E

(
1− 2η

L · Seff

L2

E

µ

)
(7.26a)

e2
r = 1 + 2

EL2

µ3M2
+ 8

(
1 +

EL2

µ3M2

)
η
L · Seff

L2

E

µ
(7.26b)

n =
1

M

(
−2E

µ

)3/2

(7.26c)

et = er

(
1− 2η

L · Seff

L2

E

µ

)
(7.26d)

It is interesting to note that there is no spin-orbit correction to the mean motion

n = 2πf . The expressions for the angular eccentricity eφ and the fractional periastron

advance k each acquire an additional 1.5 PN correction due to the non-inertial frame

effects in this precessing reference frame. Since there is no spin-orbit correction to

v2
⊥ = r2φ̇2 in the precessing frame, we have a new solution for the two orbital param-

eters that come from the φ̇ equation Eqn. 7.21. For our solutions in the precessing

frame, the angular eccentricity eφ and fractional perihelion advance k to 1.5 PN order

are given by

k =
3µ2M2

L2

(
1− ηL · Seff

L2

)
(7.27a)

eφ = er

(
1− E

µ

(
η − 2η

L · Seff

L2

))
. (7.27b)

For completeness the spin-orbit correction to the perihelion precession k is in-

cluded even though it is formally a 2.5 PN order term. These results are exact to

1.5 PN order, as long as the dissipation time scale is longer than the precession time

scale (see the discussion in the section on the separation of time scales 7.2.6 that

follows). The non-inertial frame terms are neglected in both [109, 110] and that may

account for the discrepancies. We now have the exact solution for any spin magnitudes

or orientations to 1.5 PN order.



74

7.2.3 Spin Supplementary Conditions

In comparing our results and various forms for the solutions to the equations

of motion in the literature it must be noted that the spin-orbit contribution to the

equations of motion depends on the choice of spin supplementary condition (SSC),

described in the Appendix A of [104]. The choice of SSC results in different forms of

the spin-orbit contribution to various orbital parameters, but the measurable physical

results such as the gravitational waveform must remain invariant.

In [104] we find the following three examples of SSC choices and their resulting

form of the spin-orbit acceleration aSO:

a
(I)
SO =

1

r3

{
6n̂[(n̂× v)·(2S +

δm

m
∆)]

− [v × (7S + 3
δm

m
∆)]

+ 3ṙ[n̂× (3S +
δm

m
∆)]

}
, (7.28)

a
(II)
SO =

1

r3

{
3

2
n̂[(n̂× v)·(7S + 3

δm

m
∆)]

− [v × (7S + 3
δm

m
∆)]

+
3

2
ṙ[n̂× (7S + 3

δm

m
∆)]

}
, (7.29)

a
(III)
SO =

1

r3

{
3n̂[(n̂× v)·(3S +

δm

m
∆)]

− [v × (7S + 3
δm

m
∆)]

+ 6ṙ[n̂× (2S +
δm

m
∆)]

}
, (7.30)

are given by the three different SSC’s

SµνA uAν = 0, (7.31)
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2SAi0 + SAijv
j
A = 0, (7.32)

Si0A = 0, (7.33)

respectively, where uµA is the four-velocity of the center-of-mass world line Xµ
A of body

A, and

SµνA ≡ 2

∫

A

(x[µ −XA
[µ)τ ν]0d3x, (7.34)

where τµν denotes the stress-energy tensor of matter plus gravitational fields satisfying

τµν,ν = 0, and square brackets around indices denote antisymmetrization. Note that

the spin vector S of each body is defined by SiA = 1
2
εijkS

jk
A .

It has been shown that different forms of the SSC are equivalent up to a transfor-

mation of the center of mass of the system and can be neglected to lowest order [112].

At 1.5 PN order a change in SSC changes the definition of the location of the center of

mass by a term that depends on the spins. This then changes the radiative moments,

which in turn changes the waveforms h+ and h×. The result is the same physical

waveforms from the various SSC since the changes in the equations of motion are

compensated for by changes in the waveform. It is thus important to remain consis-

tent with the definition of the location of the center of mass for the chosen SSC for

our calculations that include 1.5 PN order terms. In [104] the spin-orbit effects are

calculated using the covariant SSC, while simpler equations for the relative motion

of the binary can be calculated with the SSC used by [113]. We have thus chosen to

use the SSC of [113] for our calculations. We have derived the results from our new

choice of SSC and found that there are no changes to the waveform expressions to

1.5 PN order, but there would be new terms introduced at the next higher PN order.
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The derivation of the waveforms h+ and h× in the covariant SSC can be found in

Ref. [104] where

hij =
2

D

{
(2)

I ij +
1

3

(3)

I ijk Nk +
1

12

(4)

I ijkl NkN l

+
1

60

(5)

I ijklm NkN lNm + · · ·

+ εkl(i

[
4

3

(2)

J j)k N l +
1

2

(3)

J j)km N lNm

+
2

15

(4)

J j)kmn N lNmNn + · · ·
]}

TT

, (7.35)

contains the mass multipole moments I ij··· and the current multipole moments J ij···.

Here D is the distance from the source to the observer, N i is a unit vector from

the center of mass of the source to the observation point, the notation (n) over each

multipole moment denotes the number of derivatives with respect to retarded time,

εijk is the completely antisymmetric Levi-Civita symbol, and parentheses around

indices denote symmetrization.

Since we choose a different SSC than [104, 103] we must repeat the derivation of h+

and h× using the equations of motion and multipole moments in the appropriate SSC.

We find that the appropriate correction to I ij produces new terms in hij to higher

order than we are working. The corresponding corrections to J ij also produce new

terms that first appear at 2 PN order. The extension of this work beyond 1.5 PN order

will require the calculation of the terms that appear in the gravitational waveforms

due to our choice of SSC.

7.2.4 Spin Precession

The total angular momentum of the binary system is J = L + S1 + S2. In the

absence of gravitational radiation, J is conserved and the orbital angular momentum
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L and total spin angular momentum S precess as

L̇ = −Ṡ . (7.36)

The orbital angular momentum vector L can formally be written as the sum of

post-Newtonian and spin-orbit contributions. In the SSC we have chosen, to 1.5 PN

order

L = LN + LPN + LSO (7.37)

where

LN = µrv⊥

LPN = LN

{
1

2
v2(1− 3η) + (3 + η)

M

r

}

LSO =
2µ

r
r̂× (r̂× Seff) . (7.38)

The instantaneous precession equations for the spin vectors of the two black holes

are given by [104]

Ṡ1 =
1

r3

(
4 + 3ζ1

2
LN − S2 +

3

r2
(r·S2) r

)
× S1 (7.39)

Ṡ2 =
1

r3

(
4 + 3ζ2

2
LN − S1 +

3

r2
(r·S1) r

)
× S2 (7.40)

where ζ1 = ζ−1
2 = m2/m1.

While it is possible to include the spin-spin interaction in the precession, we are

self-consistently including effects up to 1.5 PN order in the description of motion and

thus neglect the spin-spin interaction which appears at 2 PN order.

Ṡi =
(4 + 3ζi)

2r3
J× Si (7.41)

for i = 1, 2.



78

7.2.5 Dissipation

The loss of energy and angular momentum due to gravitational wave emission has

been observed in the Hulse-Taylor binary system of neutron stars, causing the objects

to spiral in toward one another. The instantaneous energy and angular momentum

dissipation equations for a binary system of compact objects are known to be [111, 104]

ĖN = − 8

15

M2µ2

r4

{
12v2 − 11ṙ2

}
(7.42)

ĖPN = − 2

105

M2µ2

r4

{
(785− 852η)v4 − 160(17− η)

M

r
v2

+ 8(367− 15η)
M

r
ṙ2 − 2(1487− 1392η)v2ṙ2

+ 3(687− 620η)ṙ4 + 16(1− 4η)

(
M

r

)2}
(7.43)

J̇N = −8

5

Mµ

r5

(
µrv⊥L̂

){
2v2 − 3ṙ2 + 2

M

r

}
(7.44)

J̇PN = − 2

105

Mµ

r5

(
µrv⊥L̂

){
(307− 548η)v4 − 6(74− 277η)v2ṙ2 + 2(372 + 197η)

M

r
ṙ2

+15(19− 72η)ṙ4 − 4(58 + 95η)
M

r
v2 − 2(745− 2η)

(
M

r

)2}
.

The spin-orbit dissipation terms can be found in the above references as well

as in [114] where they are written in terms of the total spin angular momentum

S = S1 + S2 and a combination of the spins Z =
(
m2

m1

)
S1 +

(
m1

m2

)
S2.

ĖSO = −8µ2M

15r6

{
(LN · S)

(
27ṙ2 − 37v2 − 12

M

r

)

+(LN · Z)

(
18ṙ2 − 19v2 − 8

M

r

)}
(7.45)
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J̇SO = −4µ2

5r3

{
S

(
6v2ṙ2 − 6v4 − 50

3
v2M

r
+

50

3
ṙ2M

r
− 2

M2

r2

)

+n(n · S)

(
18v4 − 30ṙ2v2 + 25v2M

r
+ 6ṙ2M

r
+ 2

M2

r2

)

+ṙn(v · S)

(
6v2 − 21

M

r

)
− ṙv(n · S)

(
18v2 − 30ṙ2 + 33

M

r

)

+v(v · S)

(
6v2 − 12ṙ2 + 23

M

r

)

+Z

(
5ṙ4 − 2v2ṙ2 − 10

3
v4 − 22

3
v2M

r
+

23

3
ṙ2M

r
− 4M2

3r2

)

+n(n · Z)

(
13v4 − 20ṙ2v2 +

41

3
v2M

r
+ 6ṙ2M

r
+

4M2

3r2

)

+ṙn(v · Z)

(
7v2 − 5ṙ2 − 34M

3r

)
− ṙv(n · Z)

(
13v2 − 20ṙ2 +

64M

3r

)

+v(v · Z)

(
10

3
v2 − 5ṙ2 +

38M

3r

)}
. (7.46)

7.2.6 Separation of Time Scales

There are several relevant time scales to consider for a binary system of black

holes. The orbital time scale can be expressed as the orbital frequency or the orbital

period. To first order, the orbital time scale is given by Kepler’s law where the orbital

period squared is proportional to the semi-major axis cubed, T 2 ∝ a3.

Torb ∼ 2πa
3
2M− 1

2 (7.47)

The rate of the advance of periastron is related to the orbital time scale by

Tperi ∼
2π

k
Torb (7.48)

Tperi

Torb

∼ a

M
(7.49)

As expected, periastron advance is a 1 PN effect relative to the orbital time scale.
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The time scale on which the orbital angular momentum L and spins S1 and

S2 precess about the total angular momentum J is the precession time scale. The

magnitude of the precession vector ωprec is calculated above and given in Eqn. 7.13.

The magnitude of the effective spin vector Seff ∼ M2 since the magnitude of the

individual spins is given by Si = χ1m
2
i where the dimensionless spin parameter χi ∼ 1.

Tprec ∼
1

ωprec

∼ µ

M

( a
M

)3

(7.50)

Tprec

Torb

∼
( a
M

) 3
2

(7.51)

We see that the precession effects come in at 1.5 PN order compared to the orbital

time scale.

The rate at which the system loses energy and angular momentum due to gravi-

tational wave emission defines the decay time scale.

Tdecay ∼
E

Ė
∼ L

L̇
(7.52)

Tdecay

Torb

∼ 1

η

( a
M

) 5
2

(7.53)

At times well before the merger of the system
(
a
M

)
is large and

Tdecay > Tprec > Tperi > Torb . (7.54)

Toward the end of the evolution of the system the times scales begin to become

comparable. At this point the post-Newtonian approximations to the equations of

motion and gravitational waveforms also begin to break down. Considering only times

early in the evolution of the system we have a clean separation of time scales and the

different processes can be treated differently in the calculations. This simplifies the
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problem by allowing an adiabatic treatment where the dissipation is assumed to be

small over the course of an orbit and the eccentricity and semi-major axis, er and a,

are treated as constant while calculating an individual orbit.

The precession time scale is also greater than the orbital time scale for times well

before merger. The precession of the spin and angular momentum vectors can thus

be calculated on a coarse grid compared to the orbits.

7.2.7 Orbit Averaged Dissipation and Precession

The equations needed to numerically calculate time dependent gravitational wave-

forms for binary black hole systems have all been derived to various post-Newtonian

orders. The whole system of equations could be solved on the orbital time scale with

enough time steps to sufficiently resolve each orbit. The separation of time scales al-

lows for an alternative method for solving the equations that is less computationally

expensive. Since the decay and precession timescales are much longer than the orbital

timescale we can start with a solution to the orbital equations of motion that neglects

dissipation. This allows us to use Nyquist sampling of just a couple of samples per

orbit for the quantities that depend on the dissipation and precession equations. We

would therefore like to know the orbital averages of instantaneous dissipation and

precession equations given above.

To average over an orbital period T , denoted by brackets 〈〉, we integrate F (t) [115]

〈F 〉 =
1

T

∫ T

0

F (t) dt =
1

2π

∫ 2π

0

2πf
dt

dφ
F (φ) dφ . (7.55)

We have chosen a parameterization using the eccentric anomaly u and can write

the integral in terms of u.

〈F 〉 =
1

2π

∫ 2π

0

n
dt

du
F (u) du =

1

2π

∫ 2π

0

(1− et cos(u)) F (u) du (7.56)
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where n = 2πf and we have used

u̇ =
n

(1− et cos(u))
. (7.57)

We use this integral to orbit average the instantaneous dissipation equations given

above and take advantage of the computational savings from the separation of time

scales.

The equations for the orbit averaged dissipation equations to 1 PN order have

already been calculated and can be found in [111]. The orbit averages for the ĖSO

and J̇SO terms had not been previously calculated, but are given here. The orbit

averaged spin-orbit contribution to the energy dissipation is given by

〈
ĖSO

〉
=

M2µ2

30a7(1− e2)11/2
[L · S(784 + 5480e2 + 3810e4 + 195e6)

+L · Z(432 + 2928e2 + 1962e4 + 96e6)] (7.58)

Remaining consistent at 1.5 PN order the magnitudes of the spin vectors are conserved

(Ṡi = 0) and the dissipation of J is due entirely to the loss of L. The time dependent

direction of L is determined by both the precession equations and the component of

the dissipation that is perpendicular to L̂. The magnitudes L and J are changed

by the component of J̇SO parallel to L̂. Here we write the total change to L due to

spin-orbit effects. The terms with components of the spin vectors along L change

the magnitude of L while those perpendicular to L (in the orbital plane) change the

direction of the orbital angular momentum vector.

〈
L̇SO

〉
=

M2µ2

15a5(1− e2)7/2

{
−Z⊥

4
(480 + 2496e2 + 671e4)

−S⊥
2

(332 + 1572e2 + 435e4) + 2 Z‖(72 + 296e2 + 74e4)

+S‖(296 + 1032e2 + 237e4)

}
(7.59)

where S‖ = L̂(L̂ · S), S⊥ = S− S‖, and similarly for Z‖ and Z⊥.
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Averaged over an orbital period the spin precession equations become

〈
Ṡ1

〉
=

(1− e2)−
3
2

2a3

{
(LN × S1)(4 + 3

m2

m1

) + S2 × S1

− 3(L̂N · S2)L̂N × S1

}
, (7.60)

〈
Ṡ2

〉
=

(1− e2)−
3
2

2a3

{
(LN × S2)(4 + 3

m1

m2

) + S1 × S2

− 3(L̂N · S1)L̂N × S2

}
. (7.61)

Compared to the case of a circular orbit, the factor of r3 in the denominator

becomes (a
√

1− e2)3. Again the spin-spin terms can be neglected at 1.5 PN order.

7.2.8 Eccentricity Evolution

The eccentricity of an orbit is ordinarily not a well defined quantity in general

relativity since it depends on the choice of coordinate system. This does not pre-

vent the adoption of some proxy for the eccentricity at any moment, defined as a

relationship between the energy and angular momentum of the system. It would be

possible to define a gauge invariant definition of the eccentricity of a system using a

physical observable such as the gravitational waveform. For our purposes adopting

some definition of the eccentricity will suffice. Following the form of [111, 109], to

first post-Newtonian order the instantaneous radial eccentricity of the orbit can be

defined as

e2
r = 1 + 2

EL2

µ3M2
+
E

µ

[
2(η − 6) + 5(η − 3)

EL2

µ3M2

]
+ 8

(
1 +

EL2

µ3M2

)
η
L · Seff

L2

E

µ
.

(7.62)

The dissipation equations for E and L should ensure that the eccentricity de-

creases as the system loses energy and angular momentum. This is indeed true if the

expressions for e2
r, Ė, and L̇ are expanded to all orders. For the truncated equations
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that we use to calculate the various quantities there exist terms that tend to cause

e2
r to grow for small values of er. We would like to have a stable decay of er for small

values of er, including er remaining zero once the orbit becomes circular.

It is possible to correct the behavior of er due to truncation in the e = 0 limit

by adding a correction term to either the energy or angular momentum evolution

equation.

Ėfix =
−∂(e2r)

∂L
L̇− ∂(e2r)

∂E
Ė

∂(e2r)
∂E

(7.63)

where L̇ and Ė are evaluated at e = 0 and

∂(e2
r)

∂L
= 2

EL

µ2M

(
2 + 5

E

µ
η − 15

E

µ

)
+ 8

E

µ

(
E

µ
− µ2M2

L2

)
η
L · Seff

LµM
,

∂(e2
r)

∂E
= 2

[
L2

µ2M2
+ (5η − 15)

EL2

µ3M2
+ (η − 6) +

(
4µ2M2

L2
+ 8

)
η
L · Seff

µ2M2

]
. (7.64)

Even this attempt to modify the numerical behavior of the eccentricity so that

it behaves in a physical way breaks down at some point. Using the energy and

angular momentum dissipation equations we found that small changes in initial radial

eccentricity resulted in very different merger times for systems with all of their other

parameters identical. This unphysical result revealed the shortcoming of using the
〈
Ė
〉

and
〈
L̇
〉

equations and motivated a conversion from the parameters (E,L) to

(er, a). It is still necessary to use the vector equation for
〈
L̇
〉

since the change in the

direction of L is governed by the perpendicular component of the
〈
L̇
〉

equation.

The calculation of the complementary 〈ėr〉 and 〈ȧ〉 equations involves using the

expressions for e2
r(E,L) and a(E,L) to find the expressions ėr(Ė, L̇) and ȧ(Ė, L̇) and

orbit averaging using the equations of motion that include the spin-orbit effects. We

are once again faced with the problem of needing a stable decay of er for small values

of er, including er remaining zero once the orbit becomes circular. We can see that
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since

de2
r

dt
= 2erėr , (7.65)

if the terms that come from differentiating Eqn. 7.62 come in at order e2
r we will have

an expression for ėr that is proportional to er and that has the behavior we expect

for small er and er = 0.

Eqn. 7.62 gives the expression for e2
r in terms of E and L, including the spin-orbit

effects due to L · Seff . The corresponding expression for a is

a = −µM
2E

(
1− E

2µ
(η − 7)− 2η

L · Seff

L2

E

µ

)
. (7.66)

Differentiating these expressions with respect to time and using Eqns. 7.64,

2erėr =
∂(e2

r)

∂E
Ė +

∂(e2
r)

∂L
L̇

ȧ =
∂(a)

∂E
Ė +

∂(a)

∂L
L̇ . (7.67)

To take advantage of the computational savings associated with the separation of

time scales we want to find the orbit averaged dissipation equations for the parameters

er and a to 1.5 PN order. This calculation involves differentiating the 1.5 PN expres-

sions for e2
r and a as in Eqns. 7.67 and orbit averaging the 1.5 PN expressions for Ė

and L̇ with the 1.5 PN equations of motion. There will be terms that come out of the

calculation at higher PN order that can be neglected for our 1.5 PN treatment. For

instance, the 1.5 PN terms in the expressions for e2
r and a only need to be combined

with the 0 PN Ė and L̇ terms orbit averaged with the 0 PN equations of motion to

be consistent to 1.5 PN order.
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〈
ėr

N
〉

= − 1

15

µ

M2

(
M

a

)4
er

(1− e2
r)

7/2
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ėr

SO
〉

= − 1

30

µ

M4

(
M

a

)11/2
er

(1− e2
r)

4
{(7032 L̂ · S + 4408 L̂ · Z)

+(5592 L̂ · S + 2886 L̂ · Z)e2
r + (1313 L̂ · S + 875 L̂ · Z)e4

r} (7.68)

〈
ȧN
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While the calculation of Eqns. 7.68 and 7.69 can be done with all of the required

expressions to 1.5 PN order, in practice the calculation can be done in its various

pieces. Using the notation that 〈F a〉b gives the expression for F to aPN order, orbit

averaged with the equations of motion to bPN order, to 1.5 PN order

〈
F 1.5

〉
1.5

=
〈
F 0
〉

1.5
+
〈
F 1.5

〉
0
. (7.70)

It turns out that in the 〈ėr〉 calculation, the two terms on the right hand side of

Eqn. 7.70 each separately cancel all of their e0
r terms that can cause the unphysical

behavior of the eccentricity dissipation.

We find that Eqns. 7.68 and 7.69 ensure the proper behavior of the eccentricity

as seen in Figures 7.2 and 7.3. These new decay equations require that we write
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the parameterized orbital equations Eq. 7.26 and Eq. 7.27 as functions of er and a,

replacing E and L with the appropriate expressions.

E = −µ
2

(
M

a

)
+
µ

8
(7− η)

(
M

a

)2

− µ

2

L̂ · Seff

M2(1− e2
r)

1/2

(
M

a

)5/2

(7.71)

L = µM(1− e2
r)

1/2
( a
M

)1/2
(

1 +
(4 + 2e2

r − ηe2
r)

2(1− e2
r)

(
M

a

)

− L̂ · Seff

M2

(3 + e2
r)

2(1− e2
r)

3/2

(
M

a

)3/2
)

(7.72)

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

-5e+06  0  5e+06  1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

e r
(t)

t (sec)

Figure 7.2: The dissipation of eccentricity for a binary black hole system with initial
radial eccentricity e0 = 0.1.
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Figure 7.3: The relative separation r in red and the semi-major axis a in blue show
the inspiral of the system as a decays as well as the circularization of the binary as
rmin and rmax tend toward a.

We find the following expressions for the 1.5 PN orbital parameters written as

functions of er and a.
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We have now fully described the time dependence of the system to 1.5 PN order,

taking advantage of the separation of time scales for spinning binary black hole sys-

tems in eccentric orbits far from merger. We can now build time dependent waveforms
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based on the previously calculated instantaneous gravitational waveforms for these

systems.

7.2.9 Instantaneous Waveforms

The gravitational radiation from orbiting bodies was first calculated by [89] and

has been extended in the post-Newtonian expansion by various authors [115, 116, 111].

The gravitational wave polarization states h+ and h× for spinning compact bina-

ries in eccentric orbits have been given by [103]. The various post-Newtonian and

spin-orbit contributions to the waveform are indicated by the superscript.
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ṙ2 − M

r

)
(p2
x − q2
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3ṙ2M

4r
− v2M

r
− 41M2

12r2
− ṙ4
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2

]
Ny

}
(p2
x − q2

x)

+ v⊥
δm

M

{
(1− 2η)

([
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4r
+

(11− 6η)v2M

4r
− (32− 9η)M2

3r2
− (1− 5η)v2ṙ2

]
Nx

− v⊥ṙ
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[
−6M

r
+ 3ṙ2
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85ṙ2M

4r
− 9v2M

4r
− 7M2

r2
− 6ṙ4
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+ 6ṙv2
⊥

[
2M

r
− ṙ2
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]
N3
y

)

+ ṙ
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where δm = m2 −m1, and ∆ = M(S2/m2 − S1/m1)

The instantaneous waveforms calculated by [103] are given in the comoving coor-

dinate system defined by the motion of the system in the orbital plane and the line

of sight vector N̂. The choice of defining the gravitational waves at the source in the

comoving coordinate system leads to a form for h+ and h× where the orbital time

dependence is carried in the components of the basis vectors N̂, p̂, and q̂.
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The line of sight vector N̂ represents the direction from the source to the observer.

For the LISA detector the center of the observer coordinate system is located at the

barycenter while the LIGO coordinate system is located at the geocenter. N̂ does not

change over the observation time and is used to help define both the invariant and

comoving coordinate systems for a pair of orbiting black holes.

7.2.9.1 Invariant Coordinate System: The invariant coordinate system is de-

fined by the total angular momentum vector J and the line of sight vector N̂. The

total angular momentum is a slowly changing quantity with J̇ = L̇ because the orbital

angular momentum L decays due to gravitational wave emission and the direction of

L precesses due to spin-orbit coupling effects. The spin vectors of the black holes S1

and S2 change direction but not magnitude to 1.5 PN order.

In the invariant coordinate system Ĵ = k̂. We choose N̂ to be in the i-k plane

and define the angle between N̂ and Ĵ such that N̂ · Ĵ = cos γ. We can then write N̂

in these coordinates as 


Ni

Nj

Nk




=




sin γ

0

cos γ




(7.84)

7.2.9.2 Comoving Coordinate System: The comoving coordinate system is de-

fined by the orbital angular momentum vector L, the separation vector r, and the

line of sight vector N̂. In this coordinate system that is attached to the separation

vector, r̂ = x̂ and L̂ = ẑ.

The polarization vectors p̂ and q̂ are perpendicular to the line of sight and are

defined as

p̂ ≡ L̂× N̂

|L̂× N̂|
(7.85)
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q̂ ≡ N̂× p̂ (7.86)

With this definition, p̂ is always in the orbital plane and p̂ = (pi, pj, 0). Using the

additional conditions of orthonormality, p̂ · p̂ = 1 and N̂ · p̂ = 0, we can calculate the

components of p̂. 
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(7.87)

Similarly, we can find the components of q̂ in the comoving system.


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(7.88)

To transform any vector u in the comoving system to a vector u′ in the invariant

coordinate system we use a set of time dependent rotation matrices.

u′ = Rk(Φ)Ri(iS)Rk(Ψ)u (7.89)

The rotation angles are Ψ, the polar angle on orbital plane, Φ, the precession of the

orbital plane, and iS, the precession cone angle.

N̂ =




cos Ψ cos Φ sin γ + sin Ψ(− sin Φ sin γ cos iS + cos γ sin iS)

− sin Ψ cos Φ sin γ + cos Ψ(− sin Φ sin γ cos iS + cos γ sin iS)

sin iS sin Φ sin γ + cos γ cos iS




(7.90)

We find the necessary angles to calculate
(
N̂, p̂, q̂

)
in the comoving frame from

the physical vector quantities associated with the system defined in the barycenter
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reference frame

Ĵ · L̂ = cos iS (7.91)

Ĵ · N̂ = cos γ (7.92)(
N̂× Ĵ

sin γ

)
·
(

Ĵ× L̂

sin iS

)
= cos Φ . (7.93)

We integrate the following to find Ψ:

Ψ̇ = φ̇− cos iS Φ̇ . (7.94)

All of the pieces necessary to build efficient time dependent inspiral waveforms

for spinning black hole binary systems in eccentric orbits up to 1.5 PN order have

now been calculated. Figures 7.4 and 7.5 show the gravitational wave signal h+(t)

and LISA A channel response A(t) for an eccentric binary black hole system. These

efficient time dependent gravitational waveforms can now be used to study several

gravitational wave parameter estimation problems. Parameter estimation for ground

based detectors such as Advanced LIGO and the Einstein Telescope and the use of

eccentric waveforms to test alternative theories of gravity are left for future work.

The LISA parameter estimation study is described in the next section.

7.3 Parameter Estimation with LISA

We can now use our general time dependent gravitational waveforms to study how

well LISA will be able to measure the full set of seventeen parameters necessary to

describe a spinning binary black hole system in an eccentric orbit. We are especially

interested in the ability of the mission to distinguish small eccentricity values from

zero.

A preliminary study using the established Extreme Mass Ratio Inspiral (EMRI)

waveforms [44, 117, 95] extended to include small mass ratios indicated how well we
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Figure 7.4: The time dependent gravitational waveform h+(t) in the source frame for
a binary black hole system with e0 = 0.2.

might be able to determine the eccentricity parameter for black hole binary systems.

We used the non-spinning case to simplify the waveforms, reasoning that the added

modulation due to the spin parameters would tend to tighten the parameter estima-

tion ranges resulting in a conservative upper limit. This early study indicated that

the eccentricity parameter would be very well determined, with the initial eccentricity

when the signal enters the LISA band resolvable for values as small as e0 ≈ 10−3 as

shown in Figure 7.6.

The full study involves the efficient time dependent waveforms for spinning black

hole binary systems in eccentric orbits derived in the previous section. The post-

Newtonian expansion begins to break down as the system nears merger. For our

calculations out to 1.5 PN order, we choose to terminate our waveforms near a ≈ 20M ,

where the expansion parameter M
a
≈ 0.05. This termination condition is conservative

in terms of the SNR LISA will be able to extract from this type of source. Most of the
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Figure 7.5: The A channel LISA detector response to the spinning binary black hole
system in Figure 7.4. Modulations in amplitude are due to the detector motion and
the spin precession effects. The overall gravitational wave amplitude grows as the
system spirals in and nears merger.
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with SNR= 410 injected into simulated LISA data indicating that the eccentricity
when the signal enters the LISA band will be distinguishable from zero for values of
e0 ∼ 10−3.
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SNR comes from times near merger, so the extension of the validity of the waveforms

closer to merger results in a big increase in SNR. Our study here is thus a pessimistic

estimate of how well LISA will be able to determine the various source parameters.

In the case of the radial eccentricity parameter however, the circularization of the

waveform toward merger means that most of the eccentricity information is encoded

at times well before merger. While increased SNR would improve the determination

of the other source parameters, we find that the eccentricity is not highly correlated

with the other parameters. Our choice for when to truncate the waveforms thus

should not have much of an effect on our study of how well LISA will be able to

determine the eccentricity parameter for black hole binary systems.

We chose for our study an observation time of one year, with the merger time just

less than the full observation time. In order to choose initial parameter values for

a system that will merge in approximately one year, we need to calculate an initial

semi-major axis based on the lifetime estimate for a system with some given initial

radial eccentricity. The lifetime for an eccentric binary system was derived in [94].

There the author defines

β =
64

5
µM2 (7.95)

and the lifetime for a system in a circular orbit (e0 = 0)

Tc =
a4

0

4β
. (7.96)

We want to know the semi-major axis at some time before merger t ∼ year and some

given e0. We use

a0 = C(e0) (4βTc)
1/4 (7.97)

where C(e0) is some correction factor due to the eccentricity of the orbit, expanded

in powers of e0:

C(e0) = 1 +
157

172
e2

0 +
5799977

7336832
e4

0 +
1888175763

2523870208
e6

0 . (7.98)
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We use parameter ranges consistent with typical LISA sources, given in Table 7.1.

Table 7.1: Parameter ranges for our study of spinning black hole binary systems in
eccentric orbits.

Parameter Minimum Maximum
m1 105M� 107M�
m2 105M� 107M�
DL 1 Gpc 100 Gpc
e0 0 1
a0 20 M 1000 M
χ1 0 1
χ2 0 1

cos θ -1 1
cos θL -1 1
cos θS1 -1 1
cos θS2 -1 1
φ 0 2π
φL 0 2π
φS1 0 2π
φS2 0 2π
n0 0 2π
φ0 0 2π

The masses are given in terms of the mass of the Sun, M� = 1.9891×1030 kg, and the

luminosity distance DL is given in units of gigaparsecs, Gpc. The dimensionless spin

parameters χ1 and χ2 combine with the black hole masses to give the magnitudes of

the spins,

Si = χim
2
i . (7.99)

There are initial orientation parameters for the orbital angular momentum vector

L, cos θL and φL, as well as the spin vectors Si, cos θSi
and φSi

. The final two

parameters n0 and φ0 are initial phase parameters for the mean motion n and orbital

phase φ. In the circular limit these parameters are degenerate, but eccentric orbits
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require a second phase parameter beyond the initial orbital phase to specify the initial

orientation of periastron.

Here we study several representative cases to establish that various LISA sources

will have eccentricities distinguishable from zero for initial radial eccentricities e0 ≈

10−3. Marginalized posterior distribution histograms are shown in Figure 7.7 for

sources with the same parameter values and SNR = 237 but with several different

initial radial eccentricity values. The source parameters are given in Table 7.2. By

Table 7.2: Injected parameter values for two sets of sources with a range of values for
e0. The results of the parameter estimation study for Source 1 are given in Figure 7.7
and the results for Source 2 are given in Figure 7.8.

Parameter Source 1 Source 2
m1 2× 106M� 2× 106M�
m2 1× 106M� 1× 106M�
DL 6.36167 Gpc 6.36167 Gpc
e0 0.001-0.2 0.002-0.1
a0 69 M 69 M
χ1 0.5 0.5
χ2 0.8 0.8

cos θ 0.2 0.4
cos θL -0.5 -0.5
cos θS1 -0.8 -0.8
cos θS2 0.6 0.6
φ 1.2 2.0
φL 2.6 2.6
φS1 0.4 0.4
φS2 1.7 1.7
n0 0.2 0.2
φ0 1.65 1.65

SNR 237 576

varying the initial radial eccentricity and keeping the other source parameters con-

stant we find that LISA can determine the value of e0 to parts in a thousand. This

result does not depend on the initial value e0. This sugggests that the smallest initial
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radial eccentricity values detectable for typical LISA sources will be e0 ∼ 10−3. We

can see in Figure 7.7 that for small values of the initial eccentricity with e0 ≈ 10−3

there is weight in the posterior distribution at e0 = 0, indicating that the search could

not clearly distinguish a waveform with small eccentricity from a circular waveform.

In this example of a typical LISA source (Table 7.2, Source 1) an initial radial ec-

centricity of e0 = 0.005 is distinguishable from e0 = 0, but the e0 = 0.002 case is

just on the margin of detectability (Figure 7.7). Changing just the sky location of

this source (Table 7.2, Source 2), there is increased SNR and the e0 = 0.002 case is

distinguishable from circular (Figure 7.8).
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Figure 7.7: The marginalized posterior distribution for the initial radial eccentricity
for sources with the same parameter values and SNR = 237, but different initial
eccentricities. Top left e0 = 0.2, top right e0 = 0.1, bottom left e0 = 0.005, bottom
right e0 = 0.002. The other parameter values are given in Table 7.2, Source 1.
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Figure 7.8: The marginalized posterior distribution for the initial radial eccentricity
for sources with the same parameter values and SNR = 576, but different initial
eccentricities. On the left e0 = 0.1, and on the right e0 = 0.002. For this source,
e0 = 0.002 is distinguishable from the circular case. The other parameter values are
given in Table 7.2, Source 2.

The other source parameters are also measured quite well by LISA, as seen in

some examples in Figure 7.9 and Figure 7.11. Marginalized posterior distributions

are shown for the two individual masses, the distance to the source, the initial radial

eccentricity, and the two sky location parameters. The injected parameters are given

in Table 7.2, except for the initial radial eccentricity e0 = 0.3. The parameters

with dimension are given in terms of the natural log of their values because the

Fisher matrix calculation uses dimensionless parameters. In each case the Fisher

matrix prediction for a Gaussian distribution about the injected value is given by the

blue line. The posterior distribution is not expected to be centered on the injected

parameter value because the detector noise tends to shift the maximum likelihood

location off of the injected source parameters. The corresponding two dimensional

posterior distribution for the sky location parameters can be seen in Figures 7.10

and 7.12.

The comprehensive study of the full parameter space is beyond the scope of this

project. If we were to choose just two values of each parameter to study the resulting
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Figure 7.9: The marginalized posterior distribution for several source parameters,
including the initial radial eccentricity with injected value e0 = 0.3 and SNR = 237.
The Fisher matrix prediction for a Gaussian distribution centered on the injected
value for each parameter is shown in blue for comparison.

Figure 7.10: Two dimensional posterior distribution of the sky location parameters θ
and φ projected onto the plane of the sky for a source with initial radial eccentricity
e0 = 0.3 and SNR = 237. The white box marks the injected parameter values.
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Figure 7.11: The marginalized posterior distribution for several source parameters,
including the initial radial eccentricity with injected value e0 = 0.1 and SNR = 576.
The Fisher matrix prediction for a Gaussian distribution centered on the injected
value for each parameter is shown in blue for comparison.

Figure 7.12: Two dimensional posterior distribution of the sky location parameters θ
and φ projected onto the plane of the sky for a source with initial radial eccentricity
e0 = 0.1 and SNR = 576. The white box marks the injected parameter values.
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sources we would need to perform 217 ∼ 105 MCMC parameter estimation studies.

The Fisher matrix approximation to the posterior distribution appears to be depend-

able for values of the initial radial eccentricity that are not too small (e0 ∼ 10−2).

For smaller values of e0 the Fisher approximation is not a reliable prediction of the

posterior distribution, as seen in an example in Figure 7.13, compared to the corre-

sponding posterior distribution seen in Figure 7.7. A Fisher approximation study of

the full parameters space for large values of initial radial eccentricity is left for future

work.

Figure 7.13: The Fisher matrix Gaussian prediction for the distribution of initial
radial eccentricity e0 for Table 7.2, Source 1 for several injected values with e0 ∼ 10−3

(e0 =0.005 in pink, 0.002 in red, 0.001 in blue).

We perform MCMC parameter estimation studies of several representative exam-

ples, varying the mass ratio, sky location, distance, eccentricity, and dimensionless

spin parameters. We neglect studying the effects of the various initial orientation

parameters since we expect in general that the corresponding orbital parameters will
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take a wide range of values during the evolution, precession, and orbit of the system

regardless of their initial values.

The dimensionless spin parameters χ1 and χ2 are varied in Table 7.3 to study the

cases of large relative spin and small relative spin. The magnitude of the spin vectors is

related to the mass of the black hole Si = χim
2
i . The posterior distribution for several

of the source parameters for these cases are given in Figures 7.14 and 7.15. The Fisher

approximation is a reasonable prediction of the width of the posterior distribution for

the larger χi as seen in Figure 7.14, but the correspondence is degraded for the small

χi values in Figure 7.15. A Fisher matrix study calculating the Gaussian prediction

for the errors in the spin parameters is thus more reliable for larger spin values and

in general an MCMC map of the posterior distribution of the spin parameters is a

better description of the errors in these parameters.

We expect that the eccentricity parameter will not be highly correlated with the

other source parameters since the higher harmonics introduced in the waveform due

to eccentricity cannot be simulated by changes in other parameters or their com-

binations. We indeed find that the initial radial eccentricity is not correlated with

the other parameters. Compare the distribution of values for the two masses in

Figure 7.16 to the distribution of mass and eccentricity values in Figure 7.17. The

two masses are highly correlated since it is the total mass of the system and the ratio

of the masses that appear in the waveform. The distribution of eccentricity versus

the other source parameters is similar to that seen in Figure 7.17.

7.4 Conclusions

Our studies of the response of the LISA detector to the gravitational wave signal

from spinning binary black hole systems in eccentric orbits show that the eccentric-
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Table 7.3: Source 3 gives the injected parameter values for Figure 7.14 with large
spin values. Source 4 gives the injected parameter values for Figure 7.15 with small
spin values.

Parameter Source 3 Source 4
m1 2× 106M� 2× 106M�
m2 1× 106M� 1× 106M�
DL 6.36167 Gpc 6.36167 Gpc
e0 0.1 0.1
a0 69 M 69 M
χ1 0.8 0.1
χ2 0.9 0.11

cos θ 0.2 0.2
cos θL -0.5 -0.5
cos θS1 -0.8 -0.8
cos θS2 0.6 0.6
φ 1.2 1.2
φL 2.6 2.6
φS1 0.4 0.4
φS2 1.7 1.7
n0 0.2 0.2
φ0 1.65 1.65

SNR 282 200
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Figure 7.14: The marginalized posterior distribution for several source parameters for
a source with SNR = 282, including the dimensionless spin parameters with injected
values χ1 = 0.8 and χ2 = 0.9 (Table 7.3, Source 3). The Fisher matrix prediction for
a Gaussian distribution centered on the injected value for each parameter is shown
in blue for comparison.
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Figure 7.15: The marginalized posterior distribution for several source parameters for
a source with SNR = 200, including the dimensionless spin parameters with injected
values χ1 = 0.1 and χ2 = 0.11 (Table 7.3, Source 4). The Fisher matrix prediction for
a Gaussian distribution centered on the injected value for each parameter is shown
in blue for comparison.
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Figure 7.16: Two dimensional posterior distribution showing the correlation of the
mass parameters m1 and m2 for a source with initial radial eccentricity e0 = 0.001
and SNR = 153.
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Figure 7.17: Two dimensional posterior distribution of m1 and e0 values for a source
with initial radial eccentricity e0 = 0.001 and SNR = 153.
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ity should not be neglected for LISA data analysis and parameter estimation. The

construction of the gravitational waveforms for these general sources to 1.5 PN order

establishes the framework for the extension to higher order. Binary black hole wave

forms that include eccentricity will be necessary for several of the LISA science goals

including constraining galaxy merger scenarios and testing general relativity in the

strong field regime near supermassive black holes.



114

CHAPTER 8

CONCLUSIONS

Once the first direct detections of gravitational waves are made in the next decade

and the gravitational wave detector network expands to space with LISA, gravita-

tional wave astronomy will join with electromagnetic observation and cosmic ray

detection to increase the breadth of the field of astronomy. The astrophysics that can

be done with gravitational wave detectors is enhanced by source modeling and data

analysis techniques that allow scientists to dig deep below the noise levels to extract

signals of expected forms.

Gravitational wave sources include a possible network of cosmic length strings

that will produce a gravitational wave background as well as bursts of gravitational

wave radiation that will stand up above the background. These sources have been

modeled and our study shows that the next generation of gravitational wave detectors

will be able to accurately determine the source parameters.

The most promising source of gravitational waves are inspiraling systems of com-

pact objects such as white dwarf stars, neutron stars, and black holes. Gravitational

radiation from such systems has already been indirectly detected through the energy

and angular momentum loss observed from binary pulsar systems. The sensitivities

and frequency ranges of the next generation of gravitational wave detectors are certain

to contain many strong sources of gravitational waves from inspiraling systems.

We present herein the model for the time dependent gravitational waveforms for

a general system of binary black holes. We study the LISA instrument response to

these signals and determine the parameter uncertainties we should expect for such

sources. This work establishes the parameter estimation abilities of LISA for this

class of sources and provides the pieces necessary for further studies.
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CHAPTER 9

FUTURE WORK

This work on spinning eccentric black hole binaries builds the foundation for fur-

ther studies including a comprehensive exploration of the parameter space including

source sky location, distance, spins, and masses. For sources with initial radial ec-

centricity greater than e0 ∼ 0.01 the Fisher matrix is a good approximation to the

posterior distribution. The very large parameter space could be studied quickly using

the Fisher approximation, although it is not as useful for the low initial eccentricity

cases.

The equations of motion and instantaneous gravitational waveforms have been

calculated to the next post-Newtonian order and these pieces can be included sys-

tematically as described here. The 2 PN effects include the spin-spin coupling of the

two black holes and thus corrections to the precession and evolution of the system.

These waveforms can be used to study how well the Advanced LIGO-Virgo network

and proposed Einstein Telescope will be able to measure eccentricity and what level

of bias could be expected from using circular templates for parameter estimation.

Tests of general relativity near supermassive black holes can also be studied with

these general waveforms by adopting alternative theories of gravity for source simu-

lation and determining the residuals left when searching with GR waveforms.

The methods described here for characterizing astrophysical sources of gravita-

tional waves with Markov Chain Monte Carlo techniques are general once a time

dependent waveform is known (h+(t), h×(t)) for a given source. The detector re-

sponse for LISA or the ground based detectors can be calculated for any h+(t) and

h×(t) and the MCMC methods can be used for parameter estimation. The develop-

ment of these tools for gravitational wave data analysis has been the work of several
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groups, including the Montana Gravitational Wave Astronomy Group at Montana

State University. Methods will continue to be improved as the gravitational wave

community readies for the new era of frequent gravitational wave detections, but it

has already been shown that we will be able to extract a wide range of signals and

their various parameters from the noisy data from gravitational wave detectors.
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[84] Miloš Milosavljević David Merritt. Massive Black Hole Binary Evolution. Living
Reviews in Relativity, 8(8), 2005.

[85] Milos Milosavljevic and David Merritt. The final parsec problem. AIP Conf.
Proc., 686:201–210, 2003.

[86] Kelly Holley-Bockelmann and Steinn Sigurdsson. A Full Loss Cone For Triaxial
Galaxies. arXiv, astro-ph/0601520, 2006.

[87] Peter Berczik, David Merritt, Rainer Spurzem, and Hans-Peter Bischof. Effi-
cient Merger of Binary Supermassive Black Holes in Non-Axisymmetric Galax-
ies. Astrophys. J., 642:L21, 2006.



123

[88] Martin G. Haehnelt. Hierarchical build-up of galactic bulges and the merging
rate of supermassive binary black holes. Class. Quant. Grav., 20:S31, 2003.

[89] P. C. Peters and J. Mathews. Gravitational Radiation from Point Masses in a
Keplerian Orbit. Physical Review, 131:435–440, July 1963.

[90] Alberto Sesana, Francesco Haardt, and Piero Madau. Interaction of massive
black hole binaries with their stellar environment: I. Ejection of hypervelocity
stars. Astrophys. J., 651:392–400, 2006.

[91] Ryan M. O’Leary, Frederic A. Rasio, John M. Fregeau, Natalia Ivanova, and
Richard O’Shaughnessy. Binary Mergers and Growth of Black Holes in Dense
Star Clusters. Astrophys. J., 637:937–951, 2006.

[92] Kayhan Gultekin, M. Coleman Miller, and Douglas P. Hamilton. Three-Body
Dynamics with Gravitational Wave Emission. Astrophys. J., 640:156–166, 2006.

[93] Emanuele Berti. LISA observations of massive black hole mergers: event rates
and issues in waveform modelling. Class. Quant. Grav., 23:S785–S798, 2006.

[94] P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses.
Physical Review, 136:1224–1232, November 1964.

[95] Pau Amaro-Seoane et. al. Astrophysics, detection and science applications of
intermediate- and extreme mass-ratio inspirals. Class. Quant. Grav., 24:R113–
R169, 2007.

[96] Monica Colpi, Lucio Mayer, and Fabio Governato. Dynamical friction and the
evolution of satellites in virialized halos: the theory of linear response. arXiv,
astro-ph/9907088, 1999.

[97] Massimo Dotti, Monica Colpi, and Francesco Haardt. Inspiral of double black
holes in gaseous nuclear disks. arXiv, astro-ph/0602013, 2006.

[98] Peter Berczik, David Merritt, and Rainer Spurzem. Long-Term Evolution of
Massive Black Hole Binaries. II. Binary Evolution in Low-Density Galaxies.
Astrophys. J., 633:680–687, 2005.

[99] Philip J. Armitage and Priyamvada Natarajan. Eccentricity of supermassive
black hole binaries coalescing from gas rich mergers. Astrophys. J., 634:921–
928, 2005.

[100] Loren Hoffman and Abraham Loeb. Dynamics of triple black hole systems in
hierarchically merging massive galaxies. Mon. Not. Roy. Astron. Soc., 377:957–
976, 2007.



124

[101] Miroslav Micic, Kelly Holley-Bockelmann, Steinn Sigurdsson, and Tom Abel.
Supermassive Black Hole Growth and Merger Rates from Cosmological N-body
Simulations. Mon. Not. Roy. Astron. Soc., 380:1533, 2007.

[102] Ryan N. Lang and Scott A. Hughes. Localizing merging massive black hole
binaries with gravitational waves. ApJ, 2007.

[103] Janos Majar and Matyas Vasuth. Gravitational waveforms for spinning compact
binaries. Phys. Rev., D77:104005, 2008.

[104] Lawrence E. Kidder. Coalescing binary systems of compact objects to post-
Newtonian 5/2 order. 5. Spin effects. Phys. Rev., D52:821–847, 1995.

[105] Linqing Wen. On the Eccentricity Distribution of Coalescing Black Hole Bina-
ries Driven by the Kozai Mechanism in Globular Clusters. The Astrophysical
Journal, 598:419, 2003.

[106] Ryan M. O’Leary, Bence Kocsis, and Abraham Loeb. Gravitational waves from
scattering of stellar-mass black holes in galactic nuclei. MNRAS, 395(4):2127 –
2146, 2009.

[107] N. J. Cornish and J. S. Key. Computing waveforms for spinning compact bina-
ries in quasi-eccentric orbits. in preparation, 2010.

[108] Thibault Damour and N Deruelle. General relativisitc celestial mechanics of
binary systems I. The post-Newtonian motion. Ann. Inst. Henri Poincare,
43(1):107–132, 1985.

[109] Christian Konigsdorffer and Achamveedu Gopakumar. Post-Newtonian accu-
rate parametric solution to the dynamics of spinning compact binaries in eccen-
tric orbits: The leading order spin-orbit interaction. Phys. Rev., D71:024039,
2005.

[110] Manuel Tessmer. Gravitational waveforms from unequal-mass binaries with
arbitrary spins under leading order spin-orbit coupling. Phys. Rev., D80:124034,
2009.

[111] W. Junker and G. Schaefer. Binary systems - Higher order gravitational radi-
ation damping and wave emission. MNRAS, 254:146–164, January 1992.

[112] B.M. Barker and R.F. O’Connell. Gen. Relativ. Gravit., 5(539), 1974.

[113] Zoltan Keresztes, Balazs Mikoczi, and Laszlo A. Gergely. The Kepler equation
for inspiralling compact binaries. Phys. Rev., D72:104022, 2005.



125

[114] Jing Zeng and Clifford M. Will. Application of energy and angular momentum
balance to gravitational radiation reaction for binary systems with spin-orbit
coupling. Gen. Rel. Grav., 39:1661–1673, 2007.

[115] L. Blanchet and G. Schaefer. Higher order gravitational radiation losses in
binary systems. MNRAS, 239:845–867, August 1989.

[116] Craig W. Lincoln and Clifford M. Will. Coalescing binary systems of compact
objects to (post)5/2-Newtonian order: Late-time evolution and gravitational-
radiation emission. Phys. Rev. D, 42(4):1123–1143, Aug 1990.

[117] Jonathan R. Gair. Approximate waveform templates for detection of extreme
mass ratio inspirals with LISA. Proceedings of the Eleventh Marcel Grossmann
Meeting on General Relativity, 2007.


	Titlepage
	Copyright
	Approval
	Permission
	Dedication

	Table of Contents
	List of Tables
	List of Figures

	Abstract
	Chapter 1 — Introduction
	Chapter 2 — Conventions
	Chapter 3 — Gravitational Waves
	Introduction
	Sources of Gravitational Waves
	Gravitational Wave Detectors

	Chapter 4 — Parameter Estimation
	Posterior Distribution Function
	Markov Chain Monte Carlo Techniques
	Proposal Distributions
	Parameter Uncertainties

	Chapter 5 — Cosmic String Cusps
	Introduction
	Gravitational Wave Signature
	MCMC Techniques
	Mock LISA Data Challenges (MLDC)
	Advanced Ground Based Detectors
	Conclusions

	Chapter 6 — Binary Black Hole Formation
	Observational Evidence for Massive Black Holes
	Binary Systems of Massive Black Holes
	Eccentric Orbits of Binary Black Holes

	Chapter 7 — Eccentric Binary Black Hole Systems
	Spinning Binary Black Holes in Eccentric Orbits
	Source Modeling
	Parameter Estimation with LISA
	Conclusions

	Chapter 8 — Conclusions
	Chapter 9 — Future Work
	References Cited

