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Abstract
Wepoint out that the recent conjectural solution to the spectral problem for theHamiltonian

= + + +- -H e e e ex x p p in terms of the refined topological invariants of a local Calabi–Yau (CY)
geometry has an intimate relationwith two-dimensional non-interacting electronsmoving in a
periodic potential under a uniformmagnetic field. In particular, wefind that the quantumA-period,
determining the relation between the energy eigenvalue and theKählermodulus of the CY, can be
found explicitly when the quantumparameter = q ei is a root of unity, that its branch cuts are given
byHofstadter’s butterfly, and that its imaginary part counts the number of states of theHofstadter

Hamiltonian. Themodular double operation, exchanging ÿ and p=
~
 4 2 , plays an important role.

1. Introduction

Let us consider the two-dimensionalmotion of electrons in the presence of the periodic potential and the
magnetic field perpendicular to the two-dimensional plane. In suitable limits, theHamiltonian of the system is
described by5

= + + + =- - [ ] ( )H x pe e e e , , i . 1.1x x p pi i i i

In an old but seminal paper [1], it was found that its spectrum shows an intricate pattern, see figure 1, now
known asHofstadter’s butterfly. This systemwas later used as amodel systemwhere the topological numbers
determine theHall conductance [2].More recently, this systemhas received a renewed interest in the context of
ultracold atoms, see e.g. [3, 4]. In amore elementary level, one immediately notices that the pattern infigure 1 is
self-similar: the butterfly is a fractal. Its combinatorial structurewas discussed in detail in e.g. [5]. Note that the
spectrum is periodic for p+  2 . From the figure, we can see that the fractal is apparently generated by
transformations

p p+( ) ( ) ( ) ( ( )) ( )   E E E g E, 2 , , , 4 , , 1.22 

where g(E) is an unknown function6.
In a completely independent line of research in theoretical high energy physics, the equation7

= + + +- - ( )H e e e e , 1.3x x p p

has been intensively studied. Let us pause here to note that when x and p are restricted to be purely imaginary,
this equation reduces toHofstadter’sHamiltonian (1.1).
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6
To the authors’ knowledge, neither the explicit formof the function g(E)nor its physical significance is understood in the literature.

7
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Originally, the variables x and p are regarded as classical complex variables, and therefore the equation
determines a real two-dimensional Riemann surface, or equivalently a complex one-dimensional curve, whose
shape is parameterized by the value ofH. This surface arises whenmirror symmetry is applied to a non-compact
Calabi–Yau (CY) geometry known as the local ´ 1 1 geometry [6], and contains the information on genus-0
Gromov–Witten invariants of the latter. Furthermore, the type IIA string theory on this CY geometry is known
to give rise tofive-dimensional = 1 supersymmetric ( )SU 2 gauge theory compactified on a circle, and as its
mirror, the curve knows the non-perturbative information on this gauge theory8 [6]. In [7], it was also pointed
out that the equation (1.3)with the natural Poisson bracket ={ }x p, 1P.B. is theHamiltonian of the two-particle
relativistic Toda system.

Later, it was appreciated that by elevating x and p in (1.3) to quantumvariables satisfying the commutation
relation =[ ] x p, i , we can extractmore information both on the said ( )SU 2 gauge theory [9, 10] and on the
topological invariants of the local CY geometry [11, 12]. In the last few years, it wasfinally realized thatwe can
conversely use the topological invariants of theCY geometry, which can be computed independently, to describe
the eigenvalues of theHamiltonian (1.3), where x and p are taken to be real. The complete eigenvalues are
determined by an exact version of the Bohr–Sommerfeld quantization condition [13], based on earlier attempts
[14, 15]. This quantization condition has not yet been rigorously proven, but passes extensive analytical and
numerical tests9[16–28].We should note that there is a parallel development purely in the 5d gauge theoretic
framework [30–32].

Towrite down the quantization condition, wefirst need a function of the energyE known as the quantum
A-period of the geometry:

= =( ) ( ) ( )t t E q q, , e , 1.4i

which is explicitly computable [11, 33]. Then, the nth energy eigenvalue En is given by the exact Bohr–
Sommerfeld condition

p
¶
¶

+
¶
¶

= +( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠t

F t q
t

F t q n, , 2
1

2
, 1.5


 

Figure 1.The band spectrumof theHamiltonian (1.1) shows a fractal behavior, calledHofstadter’s butterfly. The vertical direction is
the energy, and the horizontal direction is theflux ÿ.We show the spectrum for p= a b2 with all possible coprime integers
  a b1 30. In this paper, we identify thisfigurewith branch cuts of a parameter in a quantumdeformed geometry of a particular

Calabi–Yau threefold.

8
In fact, by replacing bx x and taking the limit b  0 appropriately, this curve reduces [7] to the celebrated Seiberg–Witten curve

encoding the information on instantons in = 2 supersymmetric pure ( )SU 2 gauge theory [8].
9
The quantization conditionwas originally given as the formula for the spectral determinants [13]. The history up to this point is nicely

summarized in the review paper [29]. A conjecturally equivalent but distinct formwas proposed in [19], whose invariance under
p« =

~
  4 2 was emphasized in [22], and applied to relativistic Toda systems in [23] and further to awide class of integrable systems
[24]. In this paper we utilize this latter form.
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where the tilded variables are defined by

p p
= = =

~ ( )
 

q t
t

e ,
4

,
2

1.6i
2

 

and ( )F t q, is another function explicitly computable from theCY geometry, essentially given by the free energy
of the topological string on this geometry in theNekrasov–Shatashvili limit [9].

We note that the quantumA-period (1.4) is invariant under the transformation

p+ ( ) T : 2 . 1.7

Surprisingly the quantization condition (1.5) is invariant under another transformation

p
=

~ ( ) 


S :
4

. 1.8
2



Note also that these two transformations are just related to the fractal-generating transformations (1.2).
The aimof this paper is twofold: one is to extract outmore on the relativistic Toda spectrum from this

invariance under «
~

 S : , and another is to explore its possible relationwithHofstadter’s butterfly.Our
strategy is to restrict ÿ to be a rationalmultiple ofπ, or equivalently to take q to be a root of unity. In section 2, we
use the idea of themodular double to show that the energy eigenvalues En and En of the relativistic Toda system,

whose Planck constant is respectively ÿ and
~
 , satisfy an algebraic relation of the form =( ) ( )P E P Ea b n b a n for

p= a b2 , where ( )P xa b is a degree-b polynomial. In section 3, we first see that the transformations (1.7) and
(1.8) allow us to determine the quantumA-period ( )t E q, in a closed form expression if q is a root of unity,
where themost of the q dependence is encoded in the polynomial ( )P Ea b .Wewill then note that the same
polynomial ( )P Ea b determinesHofstadter’s butterfly by the equation- < <( )P E4 4a b . In particular, the
branch cuts of ( )t E q, are exactly on the energy bands ofHofstadter’s butterfly. In addition, wewill show that the
imaginary part of the quantumA-period is precisely the integrated density of states of theHofstadter
Hamiltonian.Wewill conclude the paperwith a short discussion in section 4.

2.Modular double in the relativistic Toda lattice

Let us start with a hidden duality existing in the relativistic Toda lattice. This duality is called themodular double,
first found in quantumgroups [34] (see also [35]). Themodular double also appears, for instance, in 2dCFTs, in
gauge theories and in integrable systems. It is argued in [36] that the relativistic Toda lattice has themodular
double associatedwith ( ( )) sl 2,q .Wewill show that themodular double directly relates the spectrum at the

Planck constant ÿ to that at p=
~
 4 2 if = q ei is a root of unity10.

Althoughwe can present the analysis for general numberN of the particles, we here keepN=2 for
simplicity. The general case can be treated similarly. TheHamiltonian of the periodic relativistic Toda lattice
with justN=2 particle, after removing the center-of-massmode, is given by

= + + + =- -( ) [ ] ( )H R x pe e e e , , i . 2.1p p x x2

The basic concept of themodular double is that there is a dualHamiltonian, which is obtained fromH by
exchanging p« =

~
  4 2 :

= + + + =
~~ - -( ) [ ] ( )H R x pe e e e , , i , 2.2p p x x2     

where

p p
= = = p ( )
 

p
p

x
x

R R
2

,
2

, . 2.32 

The important point is that the originalHamiltonian and its dual commute:

=~[ ] ( )H H, 0. 2.4

Thus one can diagonalize these two simultaneously:

= =~( ) ( ) ( ) ( ) ( )HQ x EQ x H Q x EQ x, . 2.5

These eigenvalues take discrete values, when thewavefunction is considered as a square-integrable function on
the real line. Atfirst glance, it is far fromobvious how these two eigenvalues E and E are interrelated. In [23],
exact quantization conditions that determine all the eigenvalues of the relativistic Toda lattice ofN-particle were
conjectured. One important consequence in [23]was that these quantization conditions are invariant under the
S-transform (1.8), which implicitly relates the eigenvalues E to the dual ones E, in terms of the quantum

10
Very recently, themodular double property is also argued to explore exact eigenfunctions in the relativistic Toda lattice [37].We also note

that an explicit construction of eigenfunctions is presented in [38].
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A-period.Wewill see just below that themodular double relates these two eigenvaluesmore directly if q is a root
of unity.

In this case ofN=2, we see that the eigenvalue equation (2.5) immediately give the difference equations

p p
+ + - =

+ + - =
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
 Q x Q x T x Q x

Q x Q x T x Q x

i i ,

2 i 2 i , 2.6

where

p
= - = -- -( ) ( ) ( ) ( )


⎜ ⎟⎛
⎝

⎞
⎠T x R E x T x R E

x
2 cosh , 2 cosh

2
. 2.72 2  

Note that the eigenfunctionQ(x) in these difference equations is the same function. This fact is crucially
important in our analysis below.Note that theT-functions have the following periodicity:

p+ = + =( ) ( ) ( ) ( ) ( )T x T x T x T x2 i , i . 2.8 

Herewe pause tomention that even in the general case ofmore particles >N 2, the relativistic Toda lattice can
be reduced to a similar one-dimensional problem via Sklyanin’s separation of variablemethod, see e.g. [36]. In
this context the equation (2.6) are called the Baxter and dual Baxter equations, respectively.

Nowwe show that if the Planck constant takes the form

pt t= = ( )
a

b
2 , , 2.9

with coprime integers a and b, then the twoBaxter equations (2.6) lead to a non-trivial relation between E and E.
The condition (2.9) is rephrased as saying that the quantumparameter = q ei is a root of unity. Shifting
 + x x ji , one can rewrite the first equation in (2.6) as

+ =+ - ( )Q Q T Q , 2.10j j j j1 1

where

= + = +( ) ( ) ( ) Q Q x j T T x ji , i . 2.11j j

This equation can be also rewritten as thematrix form:

=
-+

-
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Q

Q
T Q

Q
1

1 0
. 2.12

j

j

j j

j

1

1

A shortmanipulation reveals that

+ = - - -
-

- ( )⎜ ⎟ ⎜ ⎟⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥Q Q

T T T
QTr

1
1 0

1
1 0

1
1 0

. 2.13b b
b 1 1 0

0

The completely same argument holds for the dual equation in (2.6). Thuswe have

+ = - - -~ ~ ~
-

- ( )
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥Q Q T T T QTr 1

1 0
1

1 0
1

1 0
, 2.14a a

a 1 1 0
0

  

where

p p= + = +~ ( ) ( ) ( )Q Q x j T T x j2 i , 2 i . 2.15j j 

Sincewe have p= + =
~( )Q Q x a Q2 ib a for (2.9), we arrive at the relation

- - - = - - -- - ( )⎜ ⎟ ⎜ ⎟⎜ ⎟
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

T T T T T T
Tr 1

1 0
1

1 0
1

1 0
Tr

1
1 0

1
1 0

1
1 0

. 2.16a b1 1 0 1 1 0 
  

wherewe used = =
~ ( )Q Q Q x0 0 . This equation relates E toE. To understand this factmore clearly, let us see an

example.We take the particular value =( ) ( )a b, 2, 3 . It is easy to see

- - - = - - -

- - = - - -

-

-

[ ( ) ]

[ ] ( )

⎜ ⎟⎜ ⎟⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

T T T
R E E R x

T T R E R x

Tr
1

1 0
1

1 0
1

1 0
3 3 2 cosh 3 ,

Tr 1
1 0

1
1 0

2 2 2 cosh 3 . 2.17

2 1 0 6 2 4

1 0 4 2 4   

Sincewe have =R R3 2 for =( ) ( )a b, 2, 3 , the x-dependence is in precise agreement. Comparing the x-
independent term, wefind the algebraic relation

p
p- - = - - = =

~( ) ( ) E R E E R2 2 3 3 ,
4

3
, 3 . 2.182 4 2 4 
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One test of this relation is to compare the discrete spectra of theHamiltonians (2.1) and (2.2), directly. As
explained in [15], this can be done by expanding the eigenfunctionQ(x) in the orthogonal basis in theHilbert
space ( )L2 . A natural candidate of such a basis is the eigenfunctions for the harmonic oscillator. In table 1, we
show thefirst five eigenvalues of theHamiltonian (2.1) for p= 4 3 and p= 3 in the case ofR=1.One can
check that these eigenvalues indeed satisfy the relation - = -( )E E E4 6n n n

2 2 for each quantumnumber
=n 0, 1, 2 ,.... The same kind of test is possible for given ÿ andR.
From the practical point of view, it is sufficient to set x=0 in (2.16). In this case, the equation (2.10) can be

regarded as theHarper equation. Let us define a polynomial ( )P E R,a b with degree b by

+-( ) ≔ [ ( ) ( ) ( )] ( )P E R A a b R A a b R A a b R, Tr ; ; ; 2,  2.19a b b 1 1 0

where

t p t= - -( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟A R

E k R

R
;

2 cos 2

0
. 2.20k

2

2

It turns out that the relation (2.16) at x=0 is equivalent to the condition

=( ) ( ) ( )P E R P E R, , . 2.21b a a b 

This is themain result in this section, and provides the exact relation between the energy E for p= a b2 and E
for p=

~
 b a2 . Some explicit forms of ( )P E R,a b are as follows

=

= - + - + - + -

= = - -

= = - + + +

= - + + + +

( )
( ) ( ( ) ) ( ( ) )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

P E R E

P E R E E R

P E R P E R E E R

P E R P E R E R E R

P E R E R E R R

, ,

, 2 1 1 2 1 2 1 ,

, , 3 3 ,

, , 4 1 2 1 ,

, 4 2 2 9 8 . 2.22

a

a
a a

1

2
2 4

1 3 2 3
2 4

1 4 3 4
4 4 2 8

2 4
4 4 2 4 8

Since thematrix t( )A R;k is invariant under t t + 1, the polynomial ( )P E R,a b has the following property

= ( ) ( ) ( )∣ ∣P E R P E R, , . 2.23a b b a b

3.Quantumgeometry andHofstadter’s butterfly

In this section, we see the analytic property of a quantumdeformed special geometry in theCY threefold, the
local ´ 1 1. This geometry is important both in gauge theories and in integrable systems. On one hand, it
describes the low energy effective theory of the five-dimensional = 1pure SU(2) super Yang–Mills theory on

´ S4 1 via the geometric engineering [6]. On the other hand, it is related to the two-particle relativistic Toda
lattice [7], just reviewed in the previous section. In particular, the exact spectrumof theN=2 relativistic Toda
lattice is determined by the topological string on this geometry.Wewill here reveal that the quantumgeometry
in the local ´ 1 1 also has a remarkable connectionwith condensedmatter physics.

3.1.Quantumgeometry in the local ´ 1 1

Let us start by seeing the relation between the quantumgeometry in the local ´ 1 1 and the relativistic Toda
lattice. The key concept is localmirror symmetry.Mirror symmetry states that a CYmanifold has itsmirror dual.
TheKähler structure of the original CY ismapped to the complex structure of themirror CY, and vice versa. In
our case, themirror CY to local ´ 1 1 is described by the following equation, called themirror curve

+ + + =- - ( )z ze e e e 1, 3.1x x p p
1 2

Table 1.The firstfive eigenvalues of theHamiltonian (2.1) for p= 4 3
and for p= 3 withR=1. It turns out that these eigenvalues satisfy the
non-trivial relation p p p- = -( ) ( )( ( ) )E E E3 4 4 3 4 3 6n n n

2 2 for any
non-negative integer n.

Eigenvalues p= 4 3 p= 3

E0 11.038588121924404944 35.816548625048475896

E1 33.165572067706303312 190.48792362943094504

E2 76.646795079907244305 670.68877831711410310

E3 154.53804300167833305 1920.8735917517111079

E4 285.87088224409482661 4833.2468516231114653

5
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where z1 and z2 are the complexmoduli of themirror CY. Themirror curve has enough information to construct
the all-genus free energy of the topological string theory, called the B-model [39, 40].Moreover the interesting
geometric feature appears when one considers the quantization of themirror curve. For our purpose, it ismore
convenient to shift the variables as

 -  + - ( )x x E p p R Elog , 2 log log 3.2

and to set

= = ( )z
E

z
R

E

1
, . 3.31 2 2

4

2

Then themirror curve (3.1) is rewritten as

+ + + =- -( ) ( )R Ee e e e . 3.4p p x x2

This is the same form as theHamiltonian (2.1) of theN=2 relativistic Toda lattice. Nowwe quantize the
variables x and p by =[ ] x p, i . Since one canwrite themomentumoperator as = - ¶p i x, themirror curve
(3.4)naturally leads to a difference equation, which is exactly the Baxter equation in (2.6).We conclude that the
quantizedmirror curve for the local ´ 1 1 is related to the quantum eigenvalue problemof the relativistic
Toda lattice with just two particles11.

Themain achievement in a series of works [13–15, 19] is that the eigenvalue problems associatedwith
quantizedmirror curves are completely determined by exact quantization conditions in terms of the topological
strings on the corresponding geometries. For the local ´ 1 1, the quantization condition is

p
¶
¶

- +
¶
¶

- = + Î( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠t

F t t R q
t

F t t R q n n, log ; , log ; 2
1

2
, . 3.54 4

0
  

Weneed to explain the notation of this equation. The function ( )F t t q, ;1 2 is related to the free energy of the
refined topological string in theNekrasov–Shatashvili limit. It has twoKählermoduli t1 and t2, which
parametrize the size of two 1ʼs, with the parametrization =t t1 and = -t t Rlog2

4. It takes the following form

p
- = - - + + -( ) ( ) ( )

  

⎜ ⎟⎛
⎝

⎞
⎠F t t R q

t R
t t F t t R q, log ;

6

log

4 3 12
2 , log ; , 3.64

3 4
2

NS
4

where ( )F t t q, ;NS 1 2 is theNekrasov–Shatashvili free energy for local ´ 1 1, whose explicit form is given by
(see [12] for example)

å å= -
+ +

- +( ) ( )
( ) ( )

( )
 




F t t q

w
N, ;

1

2
e . 3.7

sin sin

sin
j j w d

j j
d d

w
j j

w d t d t
NS 1 2

, , 1
2 ,

, 2
2 1 2 1

L R j

L R

L
w

R

w
1 2

2

3
2

1 1 2 2

In the above sum, jR and jL run for 0, 1 2, 1, 3 2, .... The integers Nj j
d d

,
,

L R

1 2 are called the refined BPS invariants,

and encode the geometrical information on the local ´ 1 1. Their explicit values are found in [42]. Using these
data, the very first few terms are given by

=
+
-

+ +
+
-

+

+
+ +

-
+

- - - -

- -

( ) ( )
( )

( )

( ) ( )
( )

( )

F t t q
q

q

q

q

q q

q q

i , ;
1

1
e e

1

4 1
e e

1 1

1
e . 3.8

t t t t

t t

NS 1 2

2

2
2 2

2 2

2

1 2 1 2

1 2 

The dual variables in (3.5) are defined by

p p p
= = = =

~ ( )
 




t
t

R R q
2

, log
2

log , e ,
4

. 3.9i
2

  

These just correspond to themodular dual transform in the relativistic Toda lattice.
Let us remark on the quantization condition (3.5). It is obvious to see that theNekrasov–Shatashvili free

energy (3.7) or (3.8) has an infinite number of poles at p= a b2 ( Î a b, ). However, these poles are precisely
cancelled by themodular dual part, i.e., the second term on the left-hand side in (3.5). This cancellation
mechanismwasfirst found inABJM theory [43, 44]. From the viewpoint of quantum geometry, theNekrasov–
Shatashvili free energy corresponds to the quantumB-period [11]. In this sense, the quantumB-period itself is
ill-defined for p= a b2 , but the combinationwith itsmodular dual gives awell-defined function on the
whole real line of12ÿ.Moreover, the free energy -( )F t t R q, log ;NS

4 is an expansion in terms of -e t , and thus

11
In this paper, we focus only on the case that Î x and Î . In principle, one can consider the problem for Î x or Î , as studied

in [27, 41] for instance. Thoughwe do not yet see a visible structure in the general case, itmight give a clue to unify the two spectral problems
in the relativistic Toda lattice and in theHofstadtermodel.
12

This structure is widely found in functions, e.g. the non-compact quantumdilogarithm, that have themodular double property. See
section 5.4.2 in [45], for example.
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itsmodular dual is an expansion in terms of = p- - e et t2 , which is non-perturbative in ÿ. Therefore, the
modular dual part is not visible in the semiclassical analysis  0.

The quantization condition determines a discrete value of t for a given quantumnumber n. To know the
eigenvalues of theHamiltonian, we need a precise relation between t andE. This can be done by the so-called
quantumA-period:

- = + P =
~ ( ) ( )t z z R z q z

E
log , ; ,

1
. 3.10A

4
2

Inverting this relation, one can recover the eigenvalue E. The quantumA-period around z=0 can be computed
from the difference equation (2.6), as explained in [11].We review it in appendix A. Thefirst few terms are given
by

P = + + + + + +

+ + + + + + +

+ + + +

~ -

-

-

( ) ( ) ( ( ))

( )( )

( )( ) ( ) ( )⎟

⎛
⎝⎜

⎞
⎠

z R z q R z R R R q q z

R R
R

R R q q

R R q q z z

, ; 2 1 3 8 3 2

20

3
32 32

20

3
12 1

2 1 . 3.11

A
4 4 4 8 4 1 2

4 8
12

4 4 1

4 4 2 2 3 4

The important consequence of the quantization condition (3.5) is that it is obviously invariant under the
modular dual transform

«( ) ( ) ( )t R q t R q, , , , . 3.12 

As alreadymentioned in [23], this remarkable invariance is understood as a consequence of themodular double
in the relativistic Toda lattice. In particular, the relation between t and t implicitly relates E to E:

p
=( ) ( ) ( )


t E R q t E R q, ;
2

, ; . 3.13  

In fact, one can check, by using (3.11), that this relation gives the equivalent relation to (2.21) for p= a b2 , or
conversely, by using (2.21) and (3.11), one can confirm the relation (3.13). This fact provides further (indirect)
evidence of the validity of the quantization condition (3.5).

3.2.Quantumflat coordinates
In this subsection, we investigate the analytic property of the flat coordinate t in the local ´ 1 1. As seen in
(3.11), it receives quantum corrections. It was observed in [44] that this expansion is a convergent series for

=∣ ∣q 1. However13, it seems technically difficult to resum it for general q. Surprisingly, as shown here, we can
perform the resummationwith a trick, if q is a root of unity. The resulting analytic property of t turns out to
have a very rich structure.

Wefirst observe that the coefficients of the small z-expansion ofP
~ ( )z R z q, ;A

4 are Laurent polynomials of q.
Also these polynomial are symmetric under the exchange of q and -q 1.We confirmed these observations up to
order z9. This implies the symmetries

P = P P = P
~ ~ ~ ~p -( ) ( ) ( ) ( ) ( )z R z q z R z q z R z q z R z q, ; e , ; , , ; , ; . 3.14A A A A

4 2 i 4 4 1 4

The former corresponds to the shift p +  2 , while the latter to the reflection  -  .We assume that
these symmetries exactly work for any complex z. Using these symmetries and the S-dual transform (3.13), we
can compute the exact formof the flat coordinate for pt= 2 , where t = a b with coprime integers a and b,
using Euclid’s algorithm. For concreteness, let us consider an example: t = 2 5. In this case, the dualmodulus
is t = 5 2. Using the shift symmetry (3.14), the quantumA-period at t = 5 2 is equal to that at t = 1 2.We
then use the S-dual transform again, and obtain themodulus t = 2. Of course, the A-period at this value is
equivalent to that at t = 1. In this way, the computation for t = 2 5 ismapped into that for t = 1. The basic
flowof this reduction is summarized as

    ( )S T S T2

5

5

2

1

2
2 1, 3.15

where S signifies the S-transform t t 1 , whileT stands for the translation t t - 1. In order to relate the
flat coordinate t at t = 2 5 to that at t = 1, one has to use the chain of the transforms carefully. Taking into
account the translation invariance (3.14), it is easy to see

13
For =∣ ∣q 1, the large order behavior of the coefficients of z n shows ( )Cnexp with a constantC, while for ¹∣ ∣q 1, the large order behavior

seems to be ( )Cnexp 2 [44].

7

New J. Phys. 18 (2016) 103023 YHatsuda et al



= ¢ ¢ ¢ = ¢ ¢ ¢

= =

p p p

p

( ) ( ) ( )

· ( ) ( ) ( )

· · ·

·

t E R t E R t E R

t E R t E R

, ; e
2

5
, ; e

2

5
, ; e

2

5

1

2
, ; e

1

5
, ; 1 , 3.16

2 i 2 5 2 i 5 2 2 i 1 2

2 i 2   

where by using (2.21), each energy is also related to

= ¢ ¢ = ¢ ¢ = =( ) ( ) ( ) ( ) ( )P E R P E R P E R P E R E, , , , 3.172 5 5 2 1 2 2 1  

andwe have = ¢ =( )R R R2 5 .We conclude that the flat coordinate for = pq e4 i 5 is exactly given by

= = = = =p( ) ( ) ( ) ( )t E R q t E R q E P E R R R, ; e
1

5
, ; 1 , , , , 3.184 i 5

2 5
5   

where the polynomial ( )P E R,2 5 is explicitly computed by the formula (2.19). Our remaining task is to evaluate
the A-period at q=1. This seems difficult for generalR, but as computed in appendix A, we can express its
derivative with respect toE in closed form.Using (A.11), we thusfind

p
¶

¶
=

¶
¶

- -
- -

p -( ) ( )
( )

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

t E R

E

E

E

E
R

R

E R

, ; e 2

5 4
1

16

4 1
, 3.19

4 i 5 2
2 2

1 2 2

2 2 2

 


 


where ( ) z is the complete elliptic integral of the first kind.Our convention of the elliptic integral is

ò
f

f-

p
( ) ≔ ( ) z

z

d

1 sin
. 3.20

0

2

2

Let us test this result. From the exact result (3.19), one easily obtains the following largeE-expansion:

¶
¶

= +
+

+
- - +

+
+ + - +

+

p( ) ( ) ( ( ) )

( )( ( ) ) ( ) ( )

t E R

E E

R

E

R R

E
R R R

E
E

, ; e 2 4 1 4 3 5 7 3

10 1 4 11 3 5 4
1 . 3.21

4 i 5 4

3

8 4

5

4 8 4

7
9

Completely the same expansion is obtained from the small z-expansion (3.11) by setting = pq e4 i 5.We
confirmed this agreement up to order E1 19.

Since any rational number t = a b can be reduced to t = 1by repeating the S-transform and theT-
transform, the above result is easily generalized to arbitrary t = a b.We finallyfind

p
¶ =

¶
=

¢p( ) ( ) ( ) ( )t E R q

E

P E R

bR

F

F

, ; e , 1
, 3.22

a b
a b

b

2 i

where

=
- -( ) ( )

( )F
P E R R

R

, 4 1

16
. 3.23

a b
b

b

2 2 2

2

This is one of themain results in this section.We can evaluate the quantumflat coordinate twhenever q is a root
of unity! ForR=1, the result can be further simplified. In this case, we find

= - + =p( )
( )

( )⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥t E

b
z z F z z

P E
, 1; e

1
log 4 1, 1,

3

2
,

3

2
; 2, 2, 2; 16 ,

1

, 1
. 3.24a b

a b

2 i
4 3 2

   

In the limit R 0, the result is drastically simplified. In this limit, the quantumA-period does not depend on q,
and it is always the same as that at q=1.Using (A.5), onefinds

=
+ -( ) ( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥t E q

E E
, 0; 2 log

4

2
. 3.25

2

Let us proceed to the study of the analytic property of theflat coordinate.Without loss of generality, we can
assume R 1. The complete elliptic integral ( ) F1 has a branch cut along F1 1, i.e.

- -( ) ( )
( )R

P E R R

16

, 4 1
1. 3.26

b

a b
b

2

2 2 2

This leads to the condition

- +( ) ∣ ( )∣ ( ) ( ) R P E R R2 1 , 2 1 . 3.27b
a b

b2 2

Also, the factor F has branch cuts along F 0, and this leads to

-∣ ( )∣ ( ) ( )P E R R, 2 1 . 3.28a b
b2
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Combining these, we conclude that the function (3.22) has branch cuts along

+∣ ( )∣ ( ) ( )P E R R, 2 1 . 3.29a b
b2

It is observed that all the branch cuts are on the real axis in the complex energy plane, and the number of cuts is at
most b. The branch cut structure determined by this equation shows a quite complicated behavior in the energy
plane. Infigure 1, we show it forR=1.We plot the branch cuts for p= a b2 with all possible coprime
integers   a b1 30. As alreadymentioned in the introduction, thisfigure is well-known asHofstadter’s
butterfly in the two-dimensional electron system. In fact, the same condition as (3.29) forR=1was obtained in
[1], though its derivation looks quite different.We also show the case of ¹R 1 infigure 2. The leftfigure is for

=R 1 22 , while the right for =R 1 42 . They correspond to anisotropic cases in theHofstadter problem.We
conclude that the branch cuts of t in the energy plane precisely correspond to the energy bands in theHofstadter
model.

IfE satisfies the condition (3.29), theflat coordinate t takes complex values. In this regime, it ismore
convenient to use another expression. Using the identity for the complete elliptic integral:

= + -( ) [ ( ) ( )] ( )  z z z z1 i 1 , 3.30

we obtain

p
¶ =

¶
=

¢
+ -

p( ) ( )
[ ( ) ( )] ( ) t E R q

E

P E R

bR
F F

, ; e ,
i 1 . 3.31

a b
a b

b

2 i

In the next subsection, wewill see that the imaginary part of this equation also has a nice physical interpretation
in the 2d electron system. In the case of (3.27), it is easy to see

/

p
¶
¶

=
¢

- - +
( )

( ) ( ( ) ∣ ( )∣ ( )) ( )  ⎡
⎣⎢

⎤
⎦⎥

t

E

P E R

bR
F R P E R RIm

,
1 , 2 1 , 2 1 . 3.32

a b

b
b

a b
b2 2

In the case of (3.28), ( ) F is still real, but -( ) F1 takes complex values. Using (3.30) again, onefinallyfinds

/

p
¶
¶

=
¢

- -
-

( )
(∣ ( )∣ ( )) ( ) ⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

t

E

P E R

bR F F
P E R RIm

, 1

1

1

1
, , 2 1 . 3.33

a b

b a b
b2

3.3. Comparing to two-dimensional electrons in amagneticfield
In this subsection, we review the analysis of the 2d electron systemwith a periodic potential in a uniform
magnetic field, and compare the result with the one obtained in the previous subsection.

If the effect of themagnetic field is sufficiently smaller than the potential, we can use the tight-binding
approximation.We here consider the 2d electrons on the square lattice with lattice spacing a=1. The tight-
bindingHamiltonian is

l= + + +( ) ( )† †H T T T T , 3.34x x y y

Figure 2.The branch cut structures for =R 1 22 (Left) and for =R 1 42 (Right).
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whereTx andTy aremagnetic translation operators. They satisfy the following algebraic relations [46–48]

= = = ( )† †T T T T T T qT T1, , 3.35x x y y x y y x

where = fq ei , withf being aflux through an elementary plaquette, andλ is the parameter that describes the
anisotropy between the hopping amplitudes in the x- and y-directions. If themagnetic field is turned off, the
dispersion relation is simply given by

l= + ( )E k k2 cos 2 cos , 3.36x y

where ( )k k,x y is thewave vector.When themagneticfield is turned on, the translation operatorsTx andTy no
longer commute, as in (3.35). In this picture, one can elevate the dispersion relation to the Peierls–Onsager
effectiveHamiltonian [49]

l f= P + P P P =[ ] ( )H 2 cos 2 cos , , i . 3.37x y x y

In fact, the relation (3.35) is satisfied by setting = PT ex
i x and = PT ey

i y. If we rename P  xx , P  py and
f   , theHamiltonian is just the same one in (1.1). It turned out that theHamiltonian (3.37) indeed has the
same spectrum as the original tight-bindingHamiltonian (3.34).

When the effect of themagnetic field is far larger than the periodic potential, we can project the system to the
lowest Landau level, with a perturbation. As explained in [2], in this case, one gets almost the sameHamiltonian
but the flux in the commutation relation isflipped as f p f 4 2 .We do not consider this case in detail, except
for noting that curiously this quantization parameter is exactly themodular dual of the situation above.

Let us return to the tight-binding approximation. Following the argument ofHofstadter [1], the tight-
bindingHamiltonian (3.34) leads to the followingHarper equation [49, 50]:

y y l p t y y+ + ¢ + =+
-

- ( ) ( )k n Ee e 2 cos 2 , 3.38k
n

k
n y n n

i
1

i
1

x x

where f pt= 2 andwewrote ky as p t¢ +k n2y . In the following, we consider the case

t = ( )a

b
, 3.39

where a and b are coprime positive integers. Themagnetic Brillouin zone is identified as

p
p¢ ( )   k

b
k0

2
, 0 2 . 3.40x y

Wealso have the boundary condition y y=+n b n. The spectrumof theHarper equation is determined by the
equation [49, 50]

l l l+ + = + ¢( ) ( ) ( ) ( ) ( )F E bk bk, 2 1 2 cos 2 cos , 3.41a b
b

x
b

y

where l( )F E,a b is a characteristic polynomial of the form

l

l
l

l
l

=

- -
- -

- -
- -

-

( )

( )
( )

( )
( )

( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
F E

M E
M E

M E
M E

, det

, 1 0 0 0 1
1 , 1 0 0 0

0 0 0 1 , 1
1 0 0 0 1 ,

, 3.42a b

b

b

1

2

1




     



with

l l p t= -( ) ( ) ( )M E E n, 2 cos 2 . 3.43n

It turns out that this polynomial is precisely related to ( )P E R,a b

= + +( ) ( ) ( ) ( )P E R F E R R a b, , 2 1 if and are coprime. 3.44a b a b
b2 2

Since ¢( )k k,x y takes the values in themagnetic Brillouin zone (3.40), we conclude that the energy bands are
determined by the condition

l l l+ + +∣ ( ) ( )∣ ( ) ( )F E, 2 1 2 1 . 3.45a b
b b

This condition is exactly the same as (3.29)with the identification l = R2.
Next, let us study the density of states. It is known that the density of states in the 2d electronswith

anisotropy has two expressions (see e.g., [50, 51])14. Let us introduce a short notation:

l l l= + +( ) ≔ ( ) ( ) ( ) ( )P E P E F E, , 2 1 . 3.46a b a b
b

14
The isotropic case (l = 1)was first studied byWannier, Obermair, andRay in [52].

10

New J. Phys. 18 (2016) 103023 YHatsuda et al



For l l- +( ) ∣ ( )∣ ( ) P E2 1 2 1b b , the density of states is given by

r
p l

l
l

=
¢ + -( ) ( ) ( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟E

P E

b

P E

2

4 1

16
. 3.47

b

b

b2 2

2 2

For l-∣ ( )∣ ( )P E 2 1 b , the expression ismore complicated,

r
p l

l
l

l
l

=
¢

+ - + -
( ) ( )

( ) ( ) ( ) ( )
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟E

P E

b P E P E2

16

4 1

16

4 1
. 3.48

b

b

b

b

b2 2 2 2

1 2

2 2

Nowwe compare these results with the imaginary part of ¶ ¶t E , see (3.32) and (3.33). One easily sees that these
are exactly related by

r
p

l=
¶ =

¶
=

p
( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥E

t E R q

E
R

1

2
Im

, ; e
, . 3.49

a b2 i
2

As shown in [50, 51], the density of states exhibits a logarithmic singularity (vanHove singularity) at themiddle
of each subband15.

Finally wewould like to comment on the semiclassical limit. In theweakmagnetic field limit f  0, one can
treat theHamiltonian (3.37) semiclassically. In this case, the spectrum is located near the extremum

l= +( )E 2 1 or l= - +( )E 2 1 . This can be understood by expanding theHamiltonian (3.37) as

l l l= + - P + P + P + P +( ) ( ) ( ) ( )H 2 1
1

12
. 3.50x y x y

2 2 4 4 

This can be seen as a perturbation of the harmonic oscillator. The terms Px
m2 and Py

m2 give contributions of
order fm. In the standard perturbation technique, one immediately finds the following semiclassical expansion

l l f
l

f f= + - + +
+

+ + +( ) ( ) ( ) ( ) ( )E n n n2 1 2 1
1

16
2 2 1 . 3.512 2 3

Near f = 0, thewidth of each band is exponentially narrow, and the spectrum can be regarded as the Landau
levels labelled by n in (3.51).We show the behavior near f = 0 infigure 3. The semiclassical expansion indeed
explains the position of the bands.

Figure 3.Theweakflux behaviors for l = 1 (left), for l = 1 2 (middle) and for l = 1 4 (right) are shown.We show thefirst four
graphs (  n0 3) of the expansion (3.51) by the red solid lines. In all of these case, the semiclassical expansion captures the positions
of the bands for f ~ 0.

15
In the terminology of theCYmoduli space, these singularities probably correspond to the orbifold points, while the edges of the energy

bands should correspond to the conifold points.
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Similarly, if we consider the semiclassical limit of theHamiltonian (2.1), we find

= + + + +
+

+ + +( ) ( ) ( ) ( ) ( )  E R R n
R

n n2 1 2 1
1

16
2 2 1 . 3.52Toda 2

2
2 2 3

These two expansions are simply related by the replacement f  - . This is easily understood since the two
Hamiltonians are connected by the analytic continuation  Px i x and  Pp i y. Both of the semiclassical
expansions above are asymptotic divergent series, but there is a crucial difference. As observed in [22], the
expansion (3.52) is an alternating sum. Thismeans that the Borel transformof (3.52) does not have any
singularities on the positive real axis, and its Borel sum iswell-defined for > 0. On the other hand, the
expansion (3.51) is a non-alternating sum, and it should have singularities on the positive real axis. In this case,
the Borel sum along the positive real axis is not defined, and one has to avoid these singularities by deforming the
integration contour. There are choices in how to deform the contour. This ambiguity is of order f-e 1 andmust
be annihilated by additional non-perturbative corrections to the semiclassical expansions. In this case, one needs
a trans-series expansion to explain the spectrum forfinitef. Roughly speaking, the non-perturbative order

f-e 1 is also related to thewidth of the bands, and thus it is extremely narrow in theweakflux limit. Recently, the
non-perturbative band splitting in the very similar (but different) setupwas also confirmed in16 [41].

To close this section, we summarize the difference between theN=2 relativistic Toda lattice and the
Hofstadtermodel in table 2.We stress that the local ´ 1 1 geometry has the complete spectral information in
the bothmodels.

4. Conclusions

In this paper, we foundHofstadter’s butterfly in the quantum local ´ 1 1 geometry.Wemade a further study
of the recent conjectural solution to the exact quantization conditions of the relativistic Toda lattice (2.1) in the
simplest caseN=2 in terms of the refined topological string on the local ´ 1 1 geometry in theNekrasov–

Shatashvili limit. Our focuswas on the implication of the S-duality p« =
~

  4 2 when the quantum
parameter = q ei is a root of unity.

Wefirst demonstrated that the n-th eigenvalues En and En with the quantumparameter p= a b2 and

p=
~
 b a2 , respectively, satisfy a simple polynomial relation =( ) ( )P E R P E R, ,a b n b a n  , where ( )P E R,a b was
defined in (2.19).We then showed that the quantumA-period can be determined exactly in terms of ( )P E R,a b ,
see (3.22) and (3.24). Interestingly, we found that the polynomial relation above controls Hofstadter’s butterfly
and that it has all the information on the spectrumof theHarper equation.We also showed that the imaginary
part of the derivative of the quantumA-period is exactly the density of states ofHofstadter’sHamiltonian. In
some sense, the correspondence here is natural, since bothmodels have the same underlying symmetry

( ( )) sl 2,q [36, 46–48]. To the authors’ knowledge, on theHofstadter side, the relevance of themodular
double property has not been recognized in the literature.

There aremany immediate further directions of study. Firstly, the relation between the exact quantization
conditions and the enumerative geometry of the local CY is not just restricted to the case of the local ´ 1 1

treated in this paper.We can consider amore general relativistic Toda latticewithmore particles [23] or amore
general completely integrable systems ofGoncharov andKenyon [53] corresponding to general local toric CY
manifolds [24].We should be able to generalize our analysis of the implication of S-duality to these systems.

Secondly, bymultiplying the exponents of theHamiltonian by the imaginary uniti, we have variants of
Hofstadter’sHamiltonian for each of the integrable systems justmentioned.We expect that the structure of the
spectrumof these generalized versions ofHofstadter’sHamiltonian still controls the analytic structure of the
quantumA-period, and that its imaginary part is related to the density of states.We should be able to check these
features.

Table 2.TheN=2 relativistic Toda lattice versus theHofstadtermodel.

Model Relativistic Toda Hofstadter

Energy domain +( )E R2 1 2 l+∣ ∣ ( )E 2 1

Spectrum Discrete Finite bands

Spectral

information

B-period (+ itsmod-

ular dual)
A-period

Semiclassical

expansion

Borel summable Non-Borel

summable

16
In [41], the band splittingwas observed in the spectral problem for l= + + +- -( )H e e e ep p x xi i with =[ ] x p, i ( Î x ,
> 0, l > 0).
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Thirdly, we can bemore ambitious. Note that the determination of the density of states r ( )E Ed of
Hofstadter’sHamiltonianwas quite straightforward, oncewe notice that the density is uniform in the k-space:
r µ( )E E k kd d dx y . If the relation between the quantumA-period and the density of states is generic, this
observation suggests that the quantumA-period for generic systems, when q is a root of unity, can be readily
computed in thismanner. If the quantumB-period17 can similarly be computed, this would give an independent
method to determine the exact quantization condition for the general integrable systemsmentioned above, and
would also determine the enumerative invariants of the corresponding local CY spaces.

Finally, we should admit that so far the relation to quantumgeometry we explored in this paper did not shed
any new light on the physics ofHofstadter’s system. Rather, we just used the knowledge ofHofstadter’s system as
an input. As the implication of the S-duality p« =

~
  4 2 onHofstadter’s systemdoes not seem to be

extensively studied in the literature, at least to the authors’ knowledge, there is a chance that something new can
be said about this issue. For example, canwe find the unknown function g(E) in (1.2), thus explicitly determining
the fractal generator?

The authors would hope to come back to some of these issues in the future.
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AppendixA. Period integrals

In this appendix, we briefly review the computations of classical and quantum (A-)periods in the local ´ 1 1.

A.1. Classical periods
Let usfirst consider the classical periods. It is well-known that special geometry of local CYmanifolds is
governed by the Picard–Fuchs (PF) equations. In the case of local ´ 1 1, the PF operators are

x x x x x x

x x x x x x

= - - - - + -

= - - - - + -

( ) ( )

( ) ( ) ( )





z z z z z z z

z z z z z z z

1 4 4 8 6 1 6 ,

1 4 4 8 6 1 6 , A.1

1 2 2 2
2

1
2

1
2

1 2 1 2 1 1 2 2

2 1 1 1
2

2
2

2
2

1 2 1 2 2 2 1 1

where z1 and z2 are complexmoduli and x = ¶ ¶zi i. The classical periodsmust be annihilated by these
operators, i.e., solutions to the PF equations. The important fact is that there are three kinds of singularities in
themoduli space: the large radius point, the conifold point and the orbifold point. The PF equations allow us to
construct the solutions around these singularities (see [54], for instance). Here, we consider only the large radius
point.

The large radius point corresponds to = =z z 01 2 . The solution to the PF equations is constructed by the
Frobeniusmethod. The fundamental period is given by

år r
r r r r

r r r r
=

G + + + G + G +
G + G + + G + +

r r+ +ℓ
ℓ

( )
( ) ( ) ( )
( ) ( ) ( )

( )
ℓ

ℓw z z
k

k
z z, ; ,

2 2 2 2 1 1

2 2 1 1
. A.2

k

k
0 1 2 1 2

,

1 2 1
2

2
2

1 2 1
2

2
2 1 2

1 2

Then the so-called A-periods are given by

r
r r- =

¶
¶

=
r r= =

( ) ( )t w z z i, ; , , 1, 2. A.3i
i

0 1 2 1 2

01 2

It is easy to see that this can bewritten as

- = + P - = + P
~ ~( ) ( ) ( )

( ) ( )
t z z z t z z zlog , , log , , A.4A A1 1

0
1 2 2 2

0
1 2

17
Strictly speaking, the quantumB-period is not well-defined for q a root of unity. In this case, we need to consider the combination of the

B-period and itsmodular dual.
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where

åP =
G +

G + G +
~

¹

ℓ
ℓ

( ) ( )
( ) ( )

( )
ℓ

ℓ( )

( ) ( )
z z

k

k
z z,

2 2 2

1 1
. A.5A

k

k0
1 2

, 0,0
2 2 1 2

In a similar way, one can construct the B-periods18. In our identification (3.3), we have

- = = -( ) ( )t t z z Rlog log . A.62 1 1 2
4

Thereforewe parametrize =t t1 and = -t t Rlog2
4. Then the parameter t is given by

- = P = + P =
~( ) ( ) ( )( ) ( )

t E R z z R z z
E

, log , ,
1

. A.7A A
0 0 4

2

The same result is obtained by the direct period integral of themirror curve (3.4). It turns out that the classical
A-period P ( )( ) E R,A

0 is given by

òp
P = -

-

+
( ) ( )( ) ⎜ ⎟⎛

⎝
⎞
⎠E R x

E
R x,

2

i
d arccosh

2
cosh , A.8A

x

x
0 2

where >x 0 are determined by

=  ( )⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥x

R

E
arccosh

1

2
1 . A.9

2

The derivative ofP ( )( ) E R,A
0 can bewritten in closed form. After a change of variable, onefinds

òp
¶
¶

P = -
- - + + -

-

+
( )

( )( )( )
( )( )

E
E R

t

t R t
E E

t

,
1 d

2
1

2
1

. A.10A
0

1

1

2 4
E

E

2

2

This integral can be performed exactly, and onefinally obtains

p
¶
¶

= - -
- -

-

( )
( )

( )
⎛
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⎞
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⎛
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E

E
R

R

E R
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4 1
, A.11

2
2 2

1 2 2

2 2 2

where the complete elliptic integral of the first kind is defined by (3.20). ForR=1, one can perform the double
sum (A.5) directly:

- = + ( )⎜ ⎟⎛
⎝

⎞
⎠t z z F zlog 4 1, 1,

3

2
,

3

2
; 2, 2, 2; 16 . A.124 3

A.2.Quantumperiods
The quantumdeformed periods can be computed from the quantizedmirror curve:

+ + - = -( ) ( ) ( ) ( ) ( ) Q x Q x E R x Q xi i 2 cosh . A.132

Wefirst consider the semiclassical analysis in  0. In this limit, we take theWKB ansatz

ò å= ¢ ¢ =
=

¥

( ) ( ) ( ) ( ) ( )



⎡
⎣⎢

⎤
⎦⎥Q x x P x P x P xexp

i
d , . A.14

x

n

n
n

0

Plugging this ansatz into the difference equation (A.13), one canfixPn(x) order by order. Note that one obtains
two solutions at the leading order n=0. This is because the difference equation has two independent solutions.
For our purpose, either of the solutions is sufficient in order to construct the quantumperiods. It was proposed
in [55, 56] that the quantumA-period are obtained by

åP = P P =
=

¥

∮( ) ( ) ( ) ( ) ( )( ) ( ) E R E R E R x P x, ; , , , d , A.15A
n

n
A
n

A
n

A
n

0

2
2

where the integral contourA should be chosen as a closed circle around two points x . Of course, at the leading
order, the integral reduces to the classical one (A.8) (up to an irrelevant rescaling). In this way, one can compute
analytic forms of the quantum corrections order by order, but thismethod only gives the period perturbatively
in ÿ. The quantumB-period can be computed by changing the integration contour appropriately.

Another powerfulmethodwas proposed in [11].Wefirst rewrite the difference equation (A.13) as

+ = - + = =
-

( )
( )

( )⎜ ⎟⎛
⎝

⎞
⎠V X

V q X
E R X

X
X q

1 1
, e , e , A.16x

1
2 i

18
Herewe refer to the solutions with the logarithmic divergence in z 0i as the A-periods, while the solutionswith the double logarithmic

divergence as the B-periods.
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where =( ) ( ) ( )V X Q qX Q X .We solve this equation in the largeE limit. The right-hand side behaves as E in
 ¥E . There are two possibilities: ~( )V X E or ~-( )V q X E1 . If ~( )V X E, then ~- -( )V q X E1 1 1, and

vice versa. It is sufficient to consider thefirst case.We can take the ansatz

å= - + -
=

¥

( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠V X E R X

X

v X q

E

1 ;
. A.17

k

k

k
2

1

The coefficients ( )v X q;k can be easilyfixed by the q-difference equation (A.16). Thefirst few results are

= = +
= + +

- -

- -
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( ) ( ) ( )

v X q v X q R q X qX

v X q R q X qX
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; 1. A.18

1 2
2 1 1

3
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Thus the expansion of the logarithm is
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+
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+ +
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R X
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X R X

X E
Elog log

1 2 1

2
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2 2 2 4 2 2

2 2
3

The claim in [11] is that the quantumA-period in  ¥E is given by

P =-

=
+

+
+ +
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, ; Res
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1 A.20

A
X

X

0
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2 2
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3 2
3

In this way, one obtains the expansion (3.11). In a similarmanner, one can also compute the quantumB-periods,
but the computation ismuchmore complicated. See [11] in detail.

An open problem in these computations is the following. In the semiclassical computation, one obtains the
quantumperiods around = 0. Since each coefficient is exact in z (orE), one can analytically continue it to the
whole z-plane.However the result is perturbative in ÿ, andwe have to resum it if wewant to know the behavior
forfinite ÿ. In general, the semiclassical expansion is asymptotic, andwe have a delicate resummation problem
(Borel summability, ambiguity of resummation, etc).

On the other hand, themethod in [11] gives the quantumperiods around the large radius point z=0 but
exact in ÿ. This expansion is convergent for =∣ ∣q 1. If wewant to analytically continue the periods outside the
convergence regime, we again encounter another resummation problem. Though the expansion around z=0
is convergent, its resummation seems technically very difficult. In otherwords, we do not know any systematic
ways to compute the quantumperiods far from the large radius point, at least so far.

Wewould like to emphasize, in themain text of this paper, we partially solved this problem.We found the
explicit analytic expression of the quantumA-period for any q of the form pe a b2 i , and its analytic structure
turned out to be quite complicated.
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