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The study of continuous symmetry groups of differential equations 

dates back almost a century to the oringinal work of Sophus Lie (1) 

Since that time most of the work on Lie's theory has turned away from 

the connection with differential equations probably because it is not 

general enough; not every differential equation admits a nontrivial 

Lie group. However, it is precisely the differential equations which 

are of interest to physicists and applied mathematicians that do ad- 

mit symmetries (2) The recent books of Miller (3) and Vilenkin (4) have 

demonstrated the close connection between Lie theory and the special 

functions arising from certain differential equations. The symmetry 

group provides a degree of order and understanding to the conglomerate 

of special funtions identities. However, one can gain further geomet- 

rical insight by starting from certain fundamental differential equa- 

tions, like the Laplace-Beltrami equation on a Riemannian space of 

constant curvature. The symmetries of such an equation can be link- 

ed to the coordinate curves in which the equations admits a separation 

of variables. The symmetry group can then be used to derive identities 

between the various separable solutions. I believe that the major 

part if not all of special function theory can be understood in this 

light. This approach has now been developed to the stage where one 

is gaining information, much of which is new, about not only the more 

common special functions, but also about Lam~ and Ince functions,sphe- 

roidal, ellipsoidal, and anharmonic oscillator wave functions and 

others. I would like to mention at this point that the original idea 

of relating symmetries of differential equations to separable co- 

ordinate systems was formulated about ten years ago by P. Winternitz 

and his collaborators(5)in the Soviet Union and much of the develcp- 

ment since then is due to E. G. Kalnins and W. Miller Jr. (6) 

Up until now almost all that I have said pertains to linear 

differential equations and it is this case which will be discussed in 

the sequel. However a few words are in order about the more 

difficult and less extensively developed nonlinear equations. It was 

noticed some time ago (7) how symmetries could be used to generate 

similarity solutions of nonlinear differential equations where more 

general techniques are lacking. These similarity methods are 

especially applicable to boundary value problems which occur in 

thermo and hydrodynamics. However, it has only been recently that 

(2,8,9) a systematic approach to these problems has been given 
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As far as the separation of variables is concerned, the one nonlinear 

case which is fairly well known is the spatial separation of the 

Hamilton-Jacobi equation (10, ii) 

_t S~ 5~ + _%,. = 0 
an9 

The separation of this equation in mixed space and time coordinates 

has recently been studied (12) and it appears that it can be related 

to only a subgroup of the full symmetry group (13) This subgroup is 

the subgroup of linear transformations and is related to the time 

dependent Schr~dinger equation, and hence to a quantization 

prescription (13) We will have more to say about the separation of 

variables and symmetries of the Schr~dinger equation later. Suffice 

it now to say that the general connection between Lie theory and 

separation of variables that will be described breaks down (although 

not entirely) for nonlinear equations. Indeed the concept of 

separability is, in general, not well defined. 

A. General prescription 

Given a general at most second order linear differential equation 

in n variables x. (assumed to be real) 
l 

Qu = 0 (i) 

where ~&~ , ~i, ~ are locally C ~ functions. We will only consider 

second order differential equations although the generalization to 

higher order can be made. 

i) Determine the symmetry group for (i), i.e. the group of 

local transformations of the form 

where~ is a C~function and x' = (x. g) denotes the group action 

over R n, such that Q;ET(g)u] = 0, whenever u satisfies (i) , 

where QS is Q written in the primed variables. It follows from Lie 

theory that the set of such transformations forms a local Lie group 

G. For practical purposes it is more convenient to work 

infinitesimally. Then writing T(g)~--. 1 + ~ L(x, ~ ) + -'- , we 

have the existence of a C~function ~(x) such that 

Writing L = ai(x) ~x i + b(x) for a i , b £ C ~, Eq. (3) determines 

the functions a i and b and thus the Lie algebra 9 of G. As 

mentioned previously ther@ may be no symmetries at all. Of course, 

we are interested in the case where these is a nontrivial symmetry 

group. 
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! 
2) Determ.~ the Second order szmmetries of (i} , i.e. the set~ 

of d~fferent~al operators Cmodulo Q~ S = ~ ) ~ M ~  + ~ ) ~  t ~(5~ 

such that (3) is satisfied upon replacing L by S and where now ~(~ 

is a first order differential operator with C~coefficients. It is 

emphasized that~ does not necessarily form a Lie algebra; however, 

it does form a vector space which carries a representation of G. It 

is important to notice that G acts on ~ and splits~ into G-orbits. 

There are two relevant types (14) of second order symmetries 

Type i: the elements of~ are all second order members of the 

universal enveloping algebra~of g . 

Type 2: At least one element of~ is not a member of~. 

In general we are interested in classifying all orbits of (n-l) 

commuting operators of 2. 

3) Find the coordinate systems such that (i) separates variables, 

i.e. introduce new variables v i with x i = Xi(v j) such that 

u = R(vj) ~ Ui(vi) reduces (i) to a set of ordinary differential 

equations for the functions Ui(vi). The function R(v i) is called 

a multiplier or modulation factor (15) and is determined from the 

analysis. When Eq. (i) takes the form 

where E % 0 and/k is the Laplace-Beltrami operator for a space of 

constant Riemannian curvature, the method of Stackel (I0'16'17) can 

be used to find the separable coordinates. When (i) does not have 

the form (4) we need recourse to other methods. For example for the 

wave or Laplace equation (i.e. E = V = 0) one can find orthogonal 

coordinates by the method of obtaining confocal cyclides from 

hyperspherical coordinates (15'18'6j) This seems to be related to 

conformal symmetries. When none of these methods work, one simply 

uses brute force to find the coordinates. This usually applies to 

nonorthogonal coordinates (6k) , It should be mentioned that the 

classification of separable coordinate systems is really a classifi- 

cation of equivalence classes (i.e. orbits) of separable systems 

defined by some reasonable group of geometric symmetries H which 

may or may not be the symmetry group G. In general we are interested 

in both H-and G-inequivalent separable systems. 

4) Associate with the (n-l) separation constants ~.for a given 1 
separable system of (i) an H or G orbit of (n-l) commuting members 

S i of~, such that 

siu = ~iu (5) 
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For equations of the form (4), the existence of such a set S. has 
1 

been shown (19) For all other equations treated so far it has 

always turned out to be the case although no general theorem as yet 

exists. Let us also mention that if a variable appears in (i) only 

to first order in its derivative, the corresponding operators will 

also be of first order and thus a member o f ~ .  

5) Find a simpler model for the Lie algebra 9 and Lie group G 

in the sense that it acts over a space of lower dimension. If 

possible construct a Hilbert space and a unitary representation of G 

for both models and the associated unitary transformation between the 

two models. Do all calculations in the simple model such as spectral 

analysis, computation of overlap functions, etc. This provides the 

derivation of many expansion theorems between the generalized 

eigenbases for each separable system. If the construction of a 

Hilbert space is not possible, use Weisner~s method ~'20) to obtain 

generating functions relating various bases. 

Steps 1)-4) provide the basic procedure for obtaining and 

relating the symmetries of a differential equation to the separable 

coordinate systems for that equation. Although step 5) is somewhat 

extra its importance cannot be overestimated. It is precisely this 

step which enables one to derive the kind of information about the 

solutions of a given differential equation which physicists and 

applied mathematicians are interested in. It provides deep insight 

into integral relations and expansion formalae between the various 

special functions which occur as eigenbases for unitary representa- 

tions of Lie groups. Some of these eigenbases can be related to 

• -" ~G where G O "'-,G n denote continuous subgroup reductions G n C G 1 

subgroups of G. The remaining eigenbases have been called nonsub- 

group reductions although it appears possible to relate these to 

subgroup reduction where the subgroups may now be discrete (21) 

In order to illustrate the above procedure in more concrete 

terms we discuss some examples. 

B. Helmholtz Eq. in Euclidean 2-space 

We consider the equation 

u + u + Au = 0 (6) 
% xl x2xa 

i) It is straight forward to calculate the symmetry group for 

(6) and the results give the well known group E(2) with its Lie 

algebra e(2). A basis for e(2) is given by 

whose integrated group action is well known and will not be given. 
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2) The second order symmetries~//~are of type 1 which are spanned 
2 2 by the second order members of the enveloping algebra M , P ' P2' 

MP I~ + PiM, MP 2 + P2 M. The action of E(2) splits~/qi~to the PIP2 , 
2 2 2 

w % #  

orbits M + ~PI' MP1 + P1 M' M , P1 " 

3) The separation of variables for (6) is well known(17'22)and 

there are four E(2)-inequivalent systems given by i) Cartesian, 

ii) polar, iii) parabolic, iv) elliptic. 

4) The correspondence between orbit representatives and separ- 

able systems is one-one (5c) Respectively we have 
2 

i) Xl, x2 &--9 P 1 

ii) x I = r cos ~ , x 2 

iii) x I ~ (~- 2) , 

iv) x I = ~ch2o cos~, 

5) 

= r sin@ ~---~ M 2 

x 2 l+ l M 
x 2 = ~sh/o sin ~ (---~M + IP~ 

A simpler model for e(2) is 

We can set up Hilbert spaces L 2 (R 2) such that (7) are skew-adjoint 

operators and L2(S I) where S 1 is the unit circle such that (8) are 

skew-adjoint operators. A unitary transform between L 2 (S I) and 

L2(R2) is ~ 

e (9) 

where k = (cos ~ , sine) and f GL2{SI). We then find the following 

basis functions for the four systems in the two models. 

Type L 2 (S I) L 2 (R2) 

i) Cartesian 

ii) Polar 

iii) Parabolic 

iv) Elliptic 

delta 

exponential 

Powers of tri~ 
functions 

Mathieu 

Product of 
exponentials 

Product of Bessel 
and exponential 

Products of 
Parabolic Cylinder 

Product of Mathieu 

Writing (9) explicitly for each of the above basis functions gives 

us integral identities. Computing overlap functions in the L2(S I) 

model allows us to derive expansion formulas for the L2(R2 ) model. 

C. Free particle Schr~dinger equation in two space and one time 

dimensions ~6g,h) 

We consider the equation 

Ux|x! + Ux~x~ + iu t = 0 (i0) 

It should also be mentioned here that most of the following remains 

unchanged if instead of the Schr~dinger equation we remove the i and 

consider the heat equation (8) 
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i) The symmetry group for (i0) can be calculated (23) and we find 

the structure G= [SL(21R)@0(2 ~ ~W 2 the semi-direct product of the 

special linear group SL(21R) with the 6 dimensional Weyl group W 2. 

A basis for its Lie algebra ils 
* 

= ~ 

A g a i n  (11) can be  i n t e g r a t e d  t o  a l o c a l  L i e  g r o u p  whose d e t a i l s  a r e  

o m i t t e d .  
2) The second order symmetries are of type 1 and turn out to be 

all symmetric quadratic forms of Bj, Pj, E and M, plus the elements 

of 9 " Here we are interested in G-orbits of both 9 and the factor 

space~/~ . 

3) We can first separate off the t Mariable (6f'g'24) This can 

be done in 4 different G~inequi~alent ways. Thfls reduces the problem 

to the Helmholtz equatflon w±th the addition of one of four different 

potentials which correspond to the four different t separations, i.e. 

u + ~- V(~ ,~ ~u = 0 (12) u + 
2 2 

where V is one of the following four potentials V = 0,Vl, ~ (v I + v2); 

i. e. a free particle, linear potential, attractive or repulsive 

harmonic oscillator. Then the problem reduces to finding the 

separable systems of the Helmholtz equation which are compatible with 

the added potentials. In all there are 15 G-inequivalent systems 

listed as follows: free partilcle, systems £)~iv); linear potential, 

system i) and if i); attra~i~e and repulsi~e^w~th systems i), i£) and 

iv) each; three systems obtailned by separating the x! variable and 

SOlving the corresponding one-space dimensional ver~Jion(6~ ) of (i0). 

However, the whole group G is not so easy to v~sualize geometrically 

so it is of interest to classify the separable systems up to 

equivalence of the more geometrilcally meaningful subgroup D ~ G 2 of 

the two-dimensional Galilei group extended by dilatations. W~th t~is 

definition of equivalence, there are 26 separable coordi:nate s~stem. 

A doubling occurs for all but the attractl~ve harmonic oscillator 

types. 

4) To each s~para/ble coordinate ~s~en~t2~ere corresponds a 

~o/nmuting orbit pai~ C/q,S[ %~e Kg 9~and s &~/~ . The 

correspondence, however, is not one-one. The following orbits in 

9~correspond to t-separation: K_2 or K2~ ~free particle; 

K_2 + B 1 or K 2 + PI~--~ linear potential; K_2 + K 2 or D (------'~ 

repulsive harmonic oscillator; K 2 - K24~--~attractive harmonic 

oscillator. The choice for S then is similar to what we had 
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previously for the Helmholtz equation with an additional term 

COrresponding to the potential. 

5) A simpler two variable model for ~ is obtained by putting 

t = 0 in (ii) and making the replacement ~,--~k<~,~,~xa~a):4~ 

We will denote the generators in this model by script letters 

corresponding to the generators 41). The group act±on for this 

model then gives rise to a group representation by ~ntegral 

transforms (25) A one-parameter subgroup of this group represen- 

tation is the transform which connects the two models 

This transform is a unitary transform from - - , ;  to ,~ 

solutions of (i0). We provide an explicit example by applying (13) 

to the case of the linear potential in parabolic coordinates. In 

this case the separable coordinates are x I = ~(~$- <~/~ ~ ;~=~,~ 

with the commuting orbit pair (K 2 ~ PI' B2M + MB2 + P~) and the 

corresponding script generators for the simple model. Without 

going into further details ~24) we simple remark that the script 

generators give rise to an exponential times an anharmonic oscillator 

wave function, i. e. an ~(~,) solution of 

denoted by h,(X; X,{~ . Then in the three variable model we have 

the separable solutions h n ( ~ , ~  ) h ~ ( ~ & ;  ~ ' { )  t±mes a modular 
f a c t o r  (exponent ia l  he r e ) .  The t r ans fo rm (13) then gives  r i s e  to 
an integral identity 

where Ai(~) is an Airy function. It is remarkable that Lie theory 

can provide information about problems as asymmetrical as the 

cuartic anharmonic oscillator. Many other identities can be found 

by Similar techniques. An addition theorem (26) can be derived for 

the functions hm, This method has also been applied to the wave 

functions for the Stark effect (26) of the H-atom, the sextic 

anharmonic oscillator (27) as well as many other functions. 

C. Conclusion 

As a COnclusion we present a table listing the differential 

equations which have been studied from the point of view of symmetry 

groups and separation of Variables along with the relevant references 

to the literature. It should also be mentioned that there is a 

forthcoming book on the subject of symmetries and separation of 

variables by W. Miller, Jr. 
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Equation 

Au +lu = 0 

i) 2-dimensions 

Euclidean 

A=0 

Pseudo-Euclidean 

I%0 

A=O 

Sphere 

2-sheet Hyperboloid 

ii) 3-dimensions 

Euclidean 

A%0 

A=0 

Pseudo-Euclidean 

~¥0 

A=0 

Sphere 

2-sheet Hyperboloid 

~u + iu t =0 

i) 1-dimension 

ii) 2-dimensions 

Euclidean 

Pseudo-Euclidean 

~u + iut-~-9~ 

Euclidean ~yA%0 

~=0 

~u ~ ~v---~u = 0 

Euclidean 

Pseudo-Euclidean 

Group 

E(2) 

infinite 

E(I,Z) 

infinite 

0(3) 

o(2,1)  

E(3) 

O(4,1) 

E(2,1) 

0(3,2) 

0(4) 

0(3,1) 

SL (2 ,R)ZW 1 

EL (2, R)~O (2~)W 2 

~T. (2, R)~o <~z~ 2 

SL(2,~) 

SL (2 ,R)~W I 

SL(2,R) 

SL (2, R) 

Separable System 

4, in text 

infinite, c~ongor~. 

ii 

infinite, conform. 

2, sph.~ellpt. 

9 

ii 

17 

53 or more 

over 90 

6 

34 

26 

58 

15 

25 

Reference 
i 

5c,6a 

6c,d 

5d,6e ,22,2~ 

5a,b ,d, 6e ,22,286 

6b,17,22,29,30 

18,30 

6g,h 

31 

26 

26 

64,30 

6~ 

6f 

6c,j,22 

6i-k 

17,21,22 

19,22 



433 

i. L. Lie, Theorie der Transformationsgruppen. Vol. i, 2, 3, 
Leipzig (reprinted by Chelsea, New York, 1970). 

2. L. Ovsjannikov, Group Properties of Differential Equations 
(Acad. Sci. USSR, Novasibirsh, 1962) (I~n Russian) (Translated 
by G. Bluman, 1967); W. Miller, Jr., SIAM J. Math. Anal. 4, 
3~4 (1973); G. W. Bluman and J. D. Cole, Similarity Methods 
for Differential Equations (Springer-~erlag, New York, 1974). 

3. W. Miller, Jr., Lie Theor Y and Special Functions, (Acad., New 
York, 1968). 

4. N. Ja. Vilenkin, Special Functions and the Theory: of Grou 
Representatlons (Amer. Math. Soc./ Prov±dence, 1968). 

5. a) P. Winternitz and I. Fris, Soy. Phys., JNP i, 636 (1965); 
b) P. Winternitz, Ha. A. SmorodinskiiM, and M. Uhl~r, ibid 
i, 113 (1965); c) P. W~ntern~tz, Ja. A, Smorodlnski~, M. Uhlir, 
and I. Fris, ibid 4, 444 (i~67); d~ P. Wintern~tz, I. Lukac, 
and Ha. A. Smorod~sk±~, ±bid ~, 139 (1968). 

6. a) W. Miller, Hr. SIAM H. Math. Anal, 5, 626 ~974); b) i%:i~ 
822 (!974); c) E. G. Kalnins, ibid ~, ~40 ~935~; d) E, G, 
Kalnins and W. Miller, ~r., H. Math. Phys.glS,~_C 1025 ~g74); 
e) ibid 1263 (1974); f) ±b±d i~28 ~914); . P. Boyer, 
E. G. Kalnlns, and W. Miller, Jr., ~bi~, 16, 499 ~1975); 
h) ibid 512, ~1975); i) E. G. Kalnins and W. Miller, Jr., 
Univ. of Minnesota preprint ~o appear in J. Math. Phys.); 
j) E. G. Kalnlns and W. Miller, @r., Uni~. de Montreal preprint 
CRM 467; k) ibid C~ 489; @) E. G. Kaln±ns and W. M±ller, Sr., 
Univ. of Minnesota preprint. 

7. G. Birkhoff, Hydrodynamics (Princeton U. P. Princeton, 1950). 

8. G. W. Bluman and H. D. Cole, J. Math. Mech. 18, 1025 (1969). 

9. B. K. Harrison and F. B. Estabrook, J. Math. phys. 12, 653 
(1971); H. D. Wahlquist and F. B. Estabrook, ibid 16, 1 (1975). 

i0. P. Stackel, Habil-Schr. Halle 1891. Math. Ann. 49, 145 (1897). 
T. Levi-Civita, Math. Ann. 59, 383 (1904). 

ii. P. Havas, J. Math. Phys. 16, 1461 (1975). 

12. C. P. Boyer and E. G. Kalnins, to be published. 

13. C. P. Boyer and M. Penafiel N. preprint UNAM, Comun. Tech. 
6-94 (1975). 

14. W. Miller, Jr., Proceedings of the Seminar on Special 
Functions, Madison, Wis. (1975). 

15. P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill, New York, 1953) Vol. sec. 5.1. 

16. H. P. Robertson, Math. Ann. 98, 749 (1928). 

17. L. P. Eisenhart, Ann. Math. 35, 284 (1934) 



434 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

M. B~cher, Uber die Reihenentwickelun~en der Potentialtheorie 
(Druck und Verlag, Leipzig, 1894). 

Ja. A. Smorodinski[ and I. I. Tugov, Sov. Phys. JETP, 23, 
434 (1966). 

L. Weisner, Pac. J. Math. ~, 1033 (1955). 

E. G. Kalnins, W. Miller, Jr., and P. Winternitz, Univ. de 
Montreal preprint CRM 416 to appear in SIAM J. of Appl. Math. 

M. P. Olevski~, Mat. Sb. 27, 379 (1950). 

U. Niederer, Helv. Phys. Acta, 46, 191 (1973); C. P. Boyer, 
ibid 47, 589 (1974). 

E. G. Kalnins, Proceedings of the 3rd International Conference 
on Group Theoretical Methods in Physics, Marse±lle, 1974. 

K. B. Wolf, J. Math. Phys. 15, 1295 (1974); ibid 15, 2101 (1974) 
C. P. Boyer and K. B. Wolf, £bld, 16, 1493 {1975)__ 

C. P. Boyer, UNAM preprint Comun. Tech. to appear in SIAM J. 
Math. Anal. 

C. P. Boyer and K. B. Wolf, UNAM preprint Comun. Tech. to 
appear in J. Math. Phys. 

a) J. Patera and P. Winternitz, J. Math. Phys. 14, 1130 (1973); 
b) N. MacFadyen and P. Winternitz, J. Math. PhyS. 12, 281 
(1971). 

A. A. Makarov, Ja. A. Smorodinski~, Y~h. Valiev, and P. 
Winternitz, Nuovo Cimento 52A, 1061 (1967). 

C. P. Boyer, E. G. Kalnins, and W. Miller, Jr., Nagoya Math. J. 
to appear. 

C. P. Boyer and E. G. Kalnins, to appear. 


