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Abstract

I present an holographic approach to strongly-coupled theories close to the conformal transition, trying
to understand the presence of light scalars as recent lattice simulations seem to suggest. This can have
important implications for solutions to the hierarchy problem via TeV strong-dynamics and their searches
at the LHC.

1 Introduction

Understanding strongly-coupled systems is indispensable either from a phenomenological as well as a

theoretical point of view. On one side, we already know that Nature makes use of a fundamental theory

in the strongly-coupled regime, quantum chromodynamics. Furthermore, there is also the possibility

that the SM Higgs could emerge as a composite state from a strongly-coupled theory at the TeV. On the

other hand, theoretically, it is also necessary to understand strongly-coupled systems in order to provide

a complete mapping of quantum field theories and their predictions.

We are interested here in strongly-coupled theories close to the conformal transition. This is the

transition from a theory in the conformal regime to a non-conformal one. For example, in QCD, when

the number of fermions is enlarged, we expect the theory to become a conformal field theory (CFT)

at the IR. It is unclear where this exactly happens, but lattice simulations suggest that this could be

around NF ∼ 10. There are several motivations to study strongly-coupled theories close to the conformal
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transition. First, recent lattice simulations suggest that, contrary to ordinary QCD, theories close to the

conformal transition have as the lightest resonance a 0++ scalar (apart, of course, from the goldstone

bosons, the pions) 1, 2). It is unclear the origin of the lightness of this state. Some arguments suggest

that this could be a dilaton, the goldstone associated to the breaking of scale invariance. For physics

beyond the SM (BSM), theories close to the conformal transition are also of utmost interests. These

theories allow to generate a large hierarchy of scales that could be useful to explain, for example, the

difference between the electroweak scale and the Planck scale, or the differences in the SM fermion mass

spectrum. Furthermore, if a light scalar is present in these theories, one could speculate whether this can

be the Higgs, or whether this could be the most feasible resonance to search for at the LHC.

It has been suggested in Ref. 3) that the conformal transition is characterized by the merging of

an IR fixed point with a UV fixed point. This is expected to occur when the dimensionality of a scalar

operator of the theory, e.g. qq̄ in a QCD-like theory, approaches two. In this case, conformality is lost

when this operator gets a complex dimension. Holography, based on the correspondence (or duality)

between strongly-coupled CFTs and weakly-coupled five-dimensional Anti-de-Sitter theories (AdS5) 4),

allows to study this transition. As we will discuss below, in the AdS5 theory the scale symmetry is lost

when a scalar Φ, that plays the role of the qq̄ operator, gets a mass below the BF-bound M2
Φ = −4/L2

3). When this happens, the scalar becomes tachyonic and gets a non-zero profile. Working with the

weakly-coupled AdS5 theory it will be possible to calculate the spectrum of resonances of the theory and

see whether it contains a light scalar or not 5).

2 A five-dimensional model for the conformal transition

We will work within the simplest possible holographic five-dimensional model that embody the properties

of strongly-coupled theories that we want to study. This is a deformed CFT with a scalar operator, qiLq̄
j
R

(i, j = 1, ..., NF ) for concreteness, whose dimension becomes imaginary. This means that the scalar qiLq̄
j
R

gets a vacuum expectation value (VEV), signaling the lost of conformality. The global symmetry of this

theory is U(NF )L⊗U(NF )R that is also broken by the VEV of the scalar 〈qiLq̄
j
R〉 ∝ 1l down to the diagonal

subgroup U(NF )L ⊗U(NF )R → U(NF )V . This holographic model will consists in a U(NF )L ⊗U(NF )R
gauge theory in 5D with a complex scalar Φ transforming as a (NF,NF). 1 This scalar plays the role of

the qq̄ operator whose VEV is responsible for the breaking of the conformal and gauge symmetry, and

therefore its mass will be related to the dimension of the qq̄ operator through the AdS/CFT dictionary

entree 4):

Dim[qq̄] = 2 +
√

4 +M2
Φ . (1)

We also impose parity, defined as the interchange L↔ R. The Lagrangian is given by

1

M5
L5 = −1

4
Tr
[
LMNL

MN +RMNR
MN

]
− α

4
(Tr [LMN +RMN ])

2
+

1

2
Tr |DMΦ|2 − V (Φ) , (2)

with the indices running over the five dimensions, M = {µ, 5}. We parametrize the fields as Φ =

Φs + TaΦa, with Tr[TaTb] = δab (and similarly for LM and RM ). The fields Φs and Φa will respectively

transform as a singlet and adjoint under the U(NF )V . The covariant derivative and the potential are

given by

DMΦ = ∂MΦ + iLMΦ− iΦRM , V (Φ) =
1

2
M2

Φ Tr |Φ|2 +
1

4
λ1 Tr |Φ|4 +

1

4
λ2(Tr |Φ|2)2 . (3)

1We could incorporate the anomaly of the U(1)A by adding a CS-term to the 5D theory.
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The 5D metric in conformal coordinates is defined as ds2 = a2(z)
(
ηµνdx

µdxν − dz2
)

where a(z) is the

warp factor. We will work within AdS5: a(z) = L/z, where L is the AdS curvature radius. As explained

above, our important assumption here is to consider that the conformal breaking arise from the RG-

evolution of Dim[qq̄] down to 2 where it becomes imaginary. On the AdS side, this corresponds from

Eq. (1) to a 5D mass of Φ below the BF bound, making the AdS tachyon to turn on. For this purpose,

we will take

M2
Φ = −(4 + ε)/L2 , (4)

and work in the limit ε→ 0. As the mass of Φ is slightly below the BF bound, the profile of Φ turns on in

the 5D bulk, breaking the conformal and chiral symmetry U(NF )L ⊗ U(NF )R → U(NF )V . Φ will grow

as ∼ z2, as expected from a dimension-two perturbation. When the energy momentum tensor induced by

the nonzero Φ profile gets of order the inverse of the 5D Newton constant, 1/GN , the backreaction on the

metric will be important, starting to depart then from AdS, and signaling the breaking of the conformal

symmetry. Instead of considering the change in the metric, that will complicate and then obscure our

results, we will take the simplified assumption that the growth of the 5D tachyon is regularized by an

IR-brane at some point in the AdS throat z = zIR. This will be determined dynamically by minimizing

with respect 1/zIR, as this corresponds to the VEV of a dynamical field, the radion, or the corresponding

dilaton in the dual theory (see section 2.3). We consider that the IR-boundary will capture in a simple

way the effect of the metric feedback that will be generically parametrized by the boundary terms. In

particular, this means that Φ might also have a potential on the IR-boundary. For this reason, we will

consider the presence of a mass term on the IR-boundary: LIR = a4m2
b Tr |Φ|2/2

∣∣
zIR

, and study its impact

on the properties of the model. As it is usual in AdS/CFT, we will be regularizing the UV-divergencies

by placing a UV-boundary at z = zUV and taking the limit zUV → 0 at the end of the calculation of

physical quantities.

By the AdS/CFT correspondence, the mass-parameter M5, that corresponds to the inverse of the

5D gauge coupling squared, is related to the large-Nc expansion parameter of the dual strongly-coupled

CFT: 1/(M5L) ∼ 16π2/Nc. In this correspondence 5D double-trace operators are suppressed with respect

to single-trace ones, i.e.,

α ∼ λ2/λ1 ∼ 1/Nc . (5)

For this reason these terms were neglected in previous holographic approaches to QCD 6, 7). Neverthe-

less, the parameters α and λ2 are accompanied by a factor NF and then their effects are not suppressed for

large values of NF . Therefore it is important to keep double-trace operators in Eq. (2) when comparing

our results to strongly-coupled theories in the large Nc and NF limit. In particular, λ2 will be responsible

to generate a mass splitting in the scalar sector between the singlet (Φs) and the adjoint states (Φa), as

it is observed in lattice results with large NF
1, 2).

It is important to remark that we cannot consider the strict limit NF ∼ Nc in our 5D model.

In this limit loops of vector or scalar resonances contribute as NF

M5L
1

16π2 ∼ NF /Nc ∼ 1, meaning that

we cannot perform a perturbative expansion since the 5D theory is strongly-coupled. Therefore the

5D theory will be only reliable if we approach the large-NF and large-Nc limit (M5L → ∞) keeping

NF � 16π2M5L. Basically, the only difference here with respect to previous models for holographic

QCD is the non-negligible presence of α and λ2.
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Figure 1: 5D tachyon solutions for case (I) with zIR = 1.2 zcIR (left), and case (II) with zIR = 20 zcIR
(right). We have taken λ = 1 and mb = 0.

2.1 The tachyon solution

The non-zero profile for Φ will be taken to be along the φ = |Φs| direction. Since we will be interested

in the solution close to the conformal transition, we will take the limit ε→ 0. Therefore the solution for

φ only depends on zIR, λ and mb. At the UV-boundary we will impose φ = 0, otherwise we would be

breaking the chiral symmetry from UV-physics (as adding an explicit mass term to the quarks in the dual

theory). On the other hand, at the IR-boundary, we must impose the boundary condition determined by

the model above: zIR∂5φ|zIR = −m2
bφ|zIR . This boundary condition however cannot be satisfied for all

values of zIR (unless φ = 0), meaning that the tachyon can only turn on if the IR-boundary is beyond

some critical value, zIR > zcIR. It is easy to find this value zcIR, just by looking for the place where the

IR-boundary must be placed in order to have a 4D massless mode. For this to happen, the wave-function

of this massless mode must satisfy the linearized bulk EOM with p2 = 0. We obtain

φ(z) = Az2 sin

(√
ε ln

z

zUV

)
, (6)

where A is a normalization constant, and where the IR-boundary condition at zIR = zcIR leads to

√
ε ln

zcIR
zUV

= nπ , n = 1, 2, ... , (7)

after taking the formal limit ε→ 0 (and zUV → 0). The presence of n solutions is a well-known feature of

this configurations, and it is associated to the existence of Efimov states. We will be considering n = 1,

that will give us the global minimum, being the other possibilities just local minima.

For zIR > zcIR, the above massless mode will have a negative mass, becoming a tachyon, and then

getting a nonzero profile and triggering the breaking of conformal and chiral symmetry breaking. We can

distinguish two limits:

I) For zIR & zcIR, the tachyon profile is very close to Eq. (6).

II) For zIR � zcIR, the tachyon profile grows till reaching a maximum value determined by the minimum

of the 5D potential V (Φ), i.e., φmax =
√
M2

Φ/λ.

Both types of configurations are shown in Fig. 1. In the figure in the left we have taken zIR ≈ zcIR, while the

one in the right zcIR � zIR. The model can provide both configurations, as zIR can be dynamically settled,
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depending on mb, either relatively close to zcIR or to much larger values. The scale 1/zcIR corresponds

to the scale of chiral symmetry breaking, while 1/zIR is the scale of confinemet. Therefore, while in

case (I) both scales are similar, in case (II) the scale of chiral breaking is much larger than the scale

of confinement. Indeed, in case (II) the theory below 1/zcIR enters into another CFT where the (gauge)

symmetry is just SU(NF )V with Φs and Φa respectively in the singlet and Adjoint representation. Their

squared masses are given by ∼ 8/L2 and 8(1− 2λ2/(3λ))/L2 respectively. This corresponds in the dual

theory to qq̄ operators of very high dimension (becoming irrelevant). In this new CFT, scale invariance

is broken at 1/zIR.

2.2 Excitations around the 5D tachyon

We will start studying the spectrum for a fixed value of the IR-boundary, zIR, to discuss later the

properties of the dilaton, whose mass will be determined by minimizing the energy with respect to zIR.

The purpose is to show the properties of the spectrum as we increase zIR and move from scenario (I) to

(II). The results are presented in the left plot of Fig. 2 as a function of zIR/z
c
IR and for λ = 1, λ2 = −3λ

and mb = 0 (solid line) and mb = −1 (dashed line). Following the notation used in QCD, we refer by

f0, a0, ρ and a1 respectively the singlet-scalar, adjoint-scalar, vector and axial-vector resonances. Since

Fπ is the only quantity that depends on M5 (Nc in the dual theory), we have fixed its value following
7). We have normalized the spectrum to mρ. From the left figure of Fig. 2 we see that for zIR ∼ zcIR we

are in the scenario (I) where the chiral breaking scale is smaller or of order the confinement scale. This

is reflected in the ρ − a1 mass splitting that is always small. As we increase zIR/z
c
IR, we move towards

scenario (II) where the breaking of the chiral symmetry is larger, as can be appreciated by the growth

of Fπ and the ρ − a1 splitting. For zIR � zcIR the theory is close to a different CFT, the one discussed

before, where the global group is U(NF ) and the scalars and axial-vector have masses larger than 1/zIR.

Another important prediction of the proposed 5D model is that only the scalar sector presents a

mass splitting between the singlet (f0) and the adjoint (a0). This splitting is generated by λ2. In the

gauge sector the only physical difference between the singlet and adjoint arises from α in Eq. (2). This

however does not produce any mass splitting in the vector sector VM between the the singlet resonances

(the ω in QCD) and the adjoint resonances (ρ), as these do not depend on α but only on the boundary

conditions on the IR-boundary that are the same for all gauge fields. For the axial-vector AM a mass

splitting could arise from their coupling to Φ that, for α 6= 0, is different for the singlet and adjoint.

Nevertheless, when fitting the model to the UV, as we do here, one obtains α = 0 7). Therefore the

proposed 5D model predict that the only mass splitting between the singlet and adjoint resonances (the

Kaluza-Klein states) can only be possible in the scalar sector. Of course, these mass splittings could be

generated at the loop level or from higher-dimensional operators in Eq. (2), but this are suppressed by

the 5D cutoff (scale at which the 5D theory becomes strongly coupled) Λ5 . 24π3M5.

It is more instructive, also to compare later our results with lattice simulations, to analyze the

spectrum at equal Fπ. For this purpose, we adjust λ to fulfill, for the different values of zIR/z
c
IR, the

relation Fπ ∼ mρ/8 as in QCD. This can always be achieved as Fπ roughly scale as 1/
√
λ. The results

are given in the right plot of Fig. 2. For zIR � zcIR, however, we must increase λ to a too large values,

putting in danger the perturbative approach. We find the for mb = 0 (mb = −1), in order to stay with

λ ≤ 4, we must have zIR/z
c
IR . 2.6 (zIR/z

c
IR . 4.1). Keeping in this region, we find that the scalar f0

is the lightest resonance. A reason for the relative lightness of the scalar excitation is the following. As
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Figure 2: Resonance mass spectrum as a function of the position of the IR-boundary, either for constant
λ (left) or constant Fπ (right), for two values of the boundary mass: mb = 0 (solid line) and mb = −1
(dashed line).

we approach the conformal edge, the corresponding dimension of the scalar operator becomes close to 2.

This is the lowest value before being imaginary. As it is well-known, the dimension of a scalar operator

has a minimal value determined by its unitarity bound, in this case Dim[qq̄] = 1, a limit in which the

scalar decouple from the CFT. Therefore it is expected that, as the scalar approach this limit, the mass

of the lightest resonance becomes smaller.

2.3 Dilaton mass

Since 1/zIR is a dynamical field, the radion, that in the dual 4D CFT corresponds to the dilaton, its

value must be determined by its EOM. Interestingly, the 5D tachyon provide a minimum for zIR due

to its logarithmic dependence (see Eq. (6)). The minimization condition can be read from the junction

condition following Ref. 8). From there we can get the mass of the dilaton: m2
D ∝ L(m2

bL
2 + 2)3/

√
λ×

∂zIRφ(zIR)/zIR. From this equation, it is clear that only when the value of the tachyon on the IR-

boundary mildly depends on the IR-boundary position, we can expect a light dilaton. From Fig. 1, this

only happens for large zIR/z
c
IR, but in this case the chiral breaking is large. Lattice simulations do not

seem to see a large breaking of the chiral symmetry when approaching the conformal transition, therefore

we can conclude that the light 0++ state is not expected to be the dilaton.

3 Lattice QCD in the large NF

Lattice results for QCD with NF = 8 have been reported in Ref. 1, 2). At such large value of NF , it is

believed that QCD is close to the conformal transition, expected to occur around NF ∼ 10. It was found
1, 2)

Fπ ' 0.14mρ , mf0 ' 0.5mρ , ma0 ' mρ , ma1 ' 1.4mρ . (8)

As compare to real QCD these values show a lighter f0 scalar and a smaller mass splitting between the

vector and axial-vector resonance. Surprisingly, the ratio of Fπ/mρ is quite similar to real QCD, showing

that this quantity is quite independent of NF . Let us compare our results to the values of Eq. (8). From

the right plot of Fig. 2, where we fixed Fπ = mρ/8 and used the matching to the two-point vector-vector

correlator in the UV following 7), we see that for values of zIR/z
c
IR . 2 our predictions on the spectrum
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Could this scalar be the Higgs? Resurrecting Technicolor? 

Higgs-like coupling?  Approaching free scalar limit = SM Higgs

Mass?  Not light enough

Excitations around the AdS-tachyon expected to be lighter
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Figure 3: Couplings of the f0 resonance to SM gauge bosons and fermions as a function of the dimension
of the associated operator in the dual theory using Eq. (1).

of resonances follows quite close to the pattern given in Eq. (8). This suggests that the light scalar found

in lattice simulations could mostly be a meson scalar qq̄, with its lightness arising from the fact that

Dim[qq̄]∼ 2. Another prediction from the holographic model is the small mass splitting between adjoint

and singlet in the vector and axial-vector sector. It would be interesting to check this prediction from

lattice simulations.

4 Implications for BSM

The model described here open new possibilities for physics beyond the SM. First, it can solve the big

hierarchy problem, since by choosing small values of ε, we can generate a small IR scale from a large UV

scale. Indeed, from Eq. (7) we have

1

zIR
∼ 1

zcIR
= e−π/

√
ε 1

zUV
� 1

zUV
. (9)

Furthermore, the presence of a light scalar f0 in the spectrum raises the old question of whether this

resonance could be identified with the Higgs h. In the holographic model we can calculate the couplings

of f0 to the SM fields. The result is shown in Fig. 3. As expected, the couplings tend to the SM values

as we decrease the dimension of qq̄ and approach the decoupling limit where f0 becomes closer to an

elementary field. Nevertheless, for Dim[qq̄]∼ 2 the departures from the SM are still too large to properly

fit the present experimental values.

For models in which the Higgs arises as a composite pseudo-goldstone boson, that have been exten-

sively searched for at the LHC, the presence of a light scalar f0 has also important implications. Being

f0 the lightest resonance, it implies that other resonances will mostly decay to f0, that sequentially will

decay to tops or WL, ZL, h. As a consequence LHC search strategies must be changed. For example,

searches for top partners T must look for three SM particles in the final states instead of two, as we

could have, for example, T → tf0 → tt̄t. Finally, the fact that the Higgs operator qq̄ has dimension close

to 2 allows to alleviate the flavor limits on this type of models, similarly as in walking technicolor. In

particular, flavor models as the one proposed in Ref. 9) can satisfy all flavor and CP-violating constraints

for an IR scale of few TeV.

110



5 Conclusions

Strongly-coupled theories provide a motivation for physics at the TeV. Using holography, we have studied

the implications of these theories close to the conformal transition following the approach of Ref. 3). We

have seen that the theory predicts a scalar 0++ as the lightest resonance. Nevertheless, this scalar is not

the dilaton but a scalar whose interpolating operator qq̄ gets the lowest possible dimension. Furthermore,

the mass of this scalar cannot be parametrically much smaller than the mass gap of the theory. This could

be checked by lattice simulations. Being the scalar the lightest resonance have important implications

for the LHC, as other resonances (vectorial of fermionic) will decay to it with BR of order one. Therefore

LHC search strategies must be optimized differently from present ones.
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