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Abstract

We consider an extended QED with the addition of a dimension-five Lorentz-breaking coupling between 
spinor and gauge fields, involving a pseudo-tensor κμνλρ . The specific form of the Lorentz violating cou-
pling considered by us have been suggested in other works, and some of its consequences at the classical 
level were already studied. Here, we investigate the consequences of this specific form of Lorentz violation 
at the quantum level, evaluating the one loop corrections to the gauge field two-point function, both at zero 
and at finite temperature. We relate the terms that are generated by quantum corrections with the photon 
sector of the Standard Model Extension, discussing the possibility of establishing experimental bounds on 
kμνρσ . From the dispersion relations in the resulting theory, we discuss its consistency from the causality 
viewpoint.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

One of the most important directions of research related to Lorentz symmetry violations is the 
study of the impacts of different Lorentz-breaking extensions of the known field theory models 
at the classical and quantum levels. The concept of effective field theories is very appropriate 
for this end, since it allows the incorporation in the Standard Model, which is known to describe 
accurately physics in the current accessible energies, of small Lorentz violating terms, assumedly 
originated in some more fundamental theory at very small length scales. Originally, a Lorentz 
violating (LV) extension of the Standard Model, called the Standard Model Extension (SME), 
including minimal (mass dimension up to four) LV terms, has been presented in [1], providing 
a systematic framework for theoretical and experimental investigations. From the theoretical 
standpoint, once LV terms are included in the Lagrangian, it is an interesting question how much 
of the known structure of Quantum Field Theories is preserved, for instance, whether consistent 
quantum corrections can be calculated. Regarding the perturbative generation of LV terms in one 
sector of the theory (e.g. the photon sector) originating from another sector, such as the coupling 
between the photon and a fermion, some known examples are the axial coupling used to generate 
the CFJ term [3,4] and the magnetic one used to generate the aether term [5]. Nevertheless, 
other couplings deserve to be studied as well, and in particular a systematic study of higher 
dimensional operators, called non minimal LV terms, have been worked out in recent years. Some 
interesting results for other couplings have been obtained in [6–8] where quantum corrections 
in the extended QED with dimension-five tensor couplings have been considered, as well as 
[9] where a possible generation of an axion-photon coupling from a LV model was discussed. 
General discussion of higher-dimensional LV operators can be found in [10–12], and in [13]
a recent study of some specific dimension-six operators was reported.

An interesting example of a non minimal interaction based on a constant pseudo tensor κμνλρ

has been introduced in [14,15], in the form κμνλρψ̄σμνγ5ψFλρ , where σμν = i
2

[
γμ, γγ

]
. In 

those works, the contribution from this LV coupling to the Dirac equation was worked out in 
detail, and some experimental constrains were obtained. A natural problem is the study of the 
perturbative implications of this coupling, since, in principle, its contributions to the photon 
sector could allow us to use the stringent experimental constraints on photon physics to put even 
stronger limits on κμνλρ . Besides that, theories with non-minimal LV are potentially plagued by 
problems regarding theoretical consistency, such as violations of causality and/or unitarity, and 
we will also investigate some of these questions in our model.

In this paper, we consider one-loop corrections in the extended spinor QED involving this 
pseudotensor LV coupling. We explicitly demonstrate that the consistent treatment of these inter-
actions will require introduction of specific LV terms in the purely gauge sector, already at tree 
level. Afterwards, we discuss plane wave solutions and dispersion relations in the resulting LV 
extension of Maxwell electrodynamics, giving some estimations for the Lorentz-breaking coef-
ficients based on known experimental data, as well as discussing the possibility of non-causal 
wave propagation.

The structure of the paper is as follows. In Section 2, we carry out the one-loop calculations 
of the two-point functions of the gauge and spinor fields, for zero and finite temperature. In 
Section 3, we discuss the structure of the minimal LV coefficients in the gauge sector in the 
resulting extension of QED, and the general structure of dispersion relations in this theory is 
considered in Section 4, allowing us to discuss the causality of wave propagation. In Section 5, 
we consider the non minimal LV contributions, again discussing the plane wave solutions and 
related causality issues. Finally, in the section 6 we present our conclusions.
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2. Definition of the model and perturbative calculations

We start with a QED-like Lagrangian including a pseudo tensor Lorentz violating coupling, 
given by

L0 = ψ̄
(
i /∂ − m − e /A − igκμνλρσμνγ5Fλρ

)
ψ . (1)

The LV pseudotensor satisfies κμνλρ = −κνμλρ and κμνλρ = −κμνρλ, but for simplicity we as-
sume also that κμνλρ = κλρμν , so that it has essentially the same symmetry properties as the 
CPT even κF coefficient present in the photon sector of the SME [2]. We also remark that 
κμνλρψ̄σμνγ5ψFλρ is a dimension five operator, which therefore is embedded into the non min-
imal sector of the SME. The LV coefficient κμνλρ is chosen to be dimensionless, whereas the 
coupling constant g has dimensions of inverse of mass.

Before proceeding with the perturbative calculations, some comments are in order. First, a La-
grangian similar to Eq. (1), without the γ5, was already extensively studied in the literature (see 
f.e. [6,8]). The particular non-minimal LV coupling in Eq. (1) have been first introduced in [14,
15], where some of its tree-level consequences have been discussed. The presence of the γ5 in 
Eq. (1) inverts the parity properties of the corresponding operator, and because of that, the LV 
coefficient κμνλρ in our case is a pseudo tensor, instead of being a tensor as in [6,8]. Despite that, 
we are still dealing with a CPT even Lorentz violating operator. That may be seen by relating the 
non minimal LV coupling in Eq. (1) with the general parametrization of the non minimal QED 
extension proposed in [16] by using the identity σμνγ 5 = i

2εμναβσαβ , thus obtaining

L0 ⊃ −1

4
H

(5)μναβ
F Fαβψ̄σμνψ , (2)

where

H
(5)μναβ
F = −2gκμνλρε

αβ
λρ . (3)

Therefore, the LV coupling considered by us can be seen as a particular form of the general CPT 
even coefficient H(5)μναβ

F introduced in [16]. Very few experimental constraints on these LV 
coefficients exist in the literature. Some constraints for electrons and protons were first reported 
on [16], and quite recently improved by two to three orders of magnitude as reported in [17,
18], in experiments involving trapped antiprotons at CERN. The best experimental result is that 
some components of the dimensional combination H(5)μναβ

F ∼ gκμνλρε
αβ

λρ have constraints of 

order 10−8 GeV−1 for protons, or 10−10 GeV−1 for electrons. One of our results will be that, via 
radiative corrections, the specific H(5)

F coefficient we consider will induce birefringent effects in 
the photon sector, thus opening a possible window for more stringent constraints derived from 
this sector.

From Eq. (1), one obtains the Feynman rules that can be used to calculate perturbative correc-
tions to the photon two-point function. Besides the usual free fermion propagator,

S (p) = /p + m

p2 − m2 , (4)

and the usual QED vertex ieγ μ, we also have the LV trilinear vertex proportional to
igκμνλρσμνγ5, which we will distinguish from the LI vertex with a black dot in the diagrams. In 
Fig. 1 we present the two LV corrections to the photon propagator that arise at one loop, which 
will be calculated in this section.
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Fig. 1. One-loop LV corrections to the photon propagator; the LV vertex igκμνλρσμνγ5 is represented by the black dot, 
while straight and wavy lines represent the free fermion and photon propagators, respectively.

We start by the diagram with two LV vertices, the left one in Fig. 1, which corresponds to the 
following expression,

Sκκ (p) = tr
∫

d4k

(2π)4

(
igκρσμνσρσ γ5

)
i

/k + /p + m

(k + p)2 − m2

(
igκλεαβσλεγ5

)
i×

× /k + m

k2 − m2 Fμν (p)Fαβ (p) . (5)

It will be convenient to introduce the notation

F̄μν = κμναβFαβ , (6)

for the contraction of the electromagnetic field strength with the LV tensor. After some manipu-
lations we write

Sκκ (p) =g2F̄ ρσ (p) F̄ λε (p)

∫
d4k

(2π)4

1(
[k + p]2 − m2

) (
k2 − m2

)×

× tr
(
σρσ γ5/kσλεγ5/k + σρσ γ5 /pσλεγ5/k + m2σρσ γ5σλεγ5

)
. (7)

Using that kμkν = 1
4k2ημν under integration, we find that the first term in the equation above 

vanishes since γ ασμνγα = 0. Calculating the relevant traces, from the second term inside the 
brackets in Eq. (7), we have

S(a)
κκ (p) = 4g2F̄ σρF̄ λε× (8)

×
∫

d4k

(2π)4

kλ

(
pσ ηρε − pρησε

) + kε

(
pρησλ − pσ ηρλ

) − pμkνε
α

μρσ ενλεα(
[k + p]2 − m2

) (
k2 − m2

) ,

which, after introduction of a proper Feynman parameter, can be cast as

S(a)
κκ (p) = −4g2F̄ σρF̄ λε

1∫
0

dx × (9)

×
∫

d4k

(2π)4

xpλ

(
pσ ηρε − pρησε

) + xpε

(
pρησλ − pσ ηρλ

) − xpμpνε
α

μρσ ενλεα(
k2 + x [1 − x]p2 − m2

)2 .

From the third and last term inside the brackets in Eq. (7), after similar manipulations we arrive 
at

S(b)
κκ (p) = m2g2 (

F̄ σρF̄σρ − F̄ σρF̄ρσ

) 1∫
dx

∫
d4k

(2π)4

1(
k2 + x [1 − x]p2 − m2

)2 .
0
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We notice that for both contributions the momentum integral to be calculated is

I = με

∫
d4−εk

(2π)4−ε

1(
k2 + x [1 − x]p2 − m2

)2 =

= i

(4π)2

(
2

ε
− γ − ln

[
x (x − 1)p2 + m2

μ2

]
+ ln(4π)

)
, (10)

where dimensional regularization has been used. For convenience, in what follows we redefine 
4πμ2 → μ2. The x integrals can be calculated exactly, and using the symmetry properties of the 
tensor κμναβ , we obtain the one-loop, second order in LV contribution to the photon propagator,

Sκκ (p) = i

(4π)2

{
−4g2 [

4F̄ σ
εF̄

λεpλpσ − F̄ σρF̄ λεpμpνε α
μρσ ενλεα

] × (11)

×
⎡
⎣2

ε
− γ −

ln
(

m2

μ2

)
2

−
√

4m2 − p2

p
tan−1

(
p√

4m2 − p2

)
− 1

⎤
⎦

+ 2m2g2F̄ σρF̄σρ ×

×
[

2

ε
− γ − ln

(
m2

μ2

)
− 2

√
4m2 − p2

p
tan−1

(
p√

4m2 − p2

)
− 2

]}
.

We note that this contribution, being of the second order in the Lorentz-breaking parameters 
κμνλρ , is extremely small and expected to be subdominant. Nevertheless, we will study some of 
its possible consequences which can be relevant when higher-order contributions are discussed.

Now we calculate the diagram with one LV vertex, the right one in Fig. 1, which provides us 
with

Sκ (p) = tr
∫

d4k

(2π)4 igκμνλρσμνγ5i
/k + /p + m

(k + p)2 − m2
ieγ αi

/k + m

k2 − m2 FλρAα

= 4imegF̄ μνAα

∫
d4k

(2π)4

εμναβpβ(
[k + p]2 − m2

) (
k2 − m2

) , (12)

where we have used that tr
(
γ5γμγνγαγβ

) = −4iεμναβ . We can rewrite the above expression by 
noticing that

εμναβAαpβ = i

2
εμναβFαβ = iF̃μν, (13)

where we have defined the dual electromagnetic field tensor as

F̃μν = 1

2
εμναβFαβ , (14)

thus obtaining

Sκ (p) = −4megF̄μνF̃μν

∫
d4k

(2π)4

1(
[k + p]2 − m2

) (
k2 − m2

) .

The remaining momentum integral has already been calculated, resulting in
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Fig. 2. One loop LV contributions to the fermion propagator.

Sκ (p)

= −4imegF̄μνF̃μν

(4π)2

(
2

ε
− γ − ln

(
m2

μ2

)
+ 2

√
4m2 − p2

p
tan−1

[
p√

4m2 − p2

]
− 2

)
.

(15)

One can also calculate the corrections induced by the LV insertions in the one-loop corrections 
to the fermion propagator, by considering the diagrams depicted in Fig. 2. The corresponding 
expressions are given by

�1(p) = egκμνλρψ̄(−p)σμνγ5

∫
d4k

(2π)4

/k − m

k2 − m2 γ α 1

(p − k)2 (pλ − kλ)ηραψ(p) , (16)

�2(p) = −egκμνλρψ̄(−p)

∫
d4k

(2π)4 γ α
/k − m

k2 − m2

1

(p − k)2 σμνγ5(pλ − kλ)ηραψ(p) , (17)

�3(p) = −2g2κμνλρκμ′ν′λ′ρψ̄(−p)

∫
d4k

(2π)4 σμνγ5
/k − m

k2 − m2

1

(p − k)2 σμ′νγ5ψ(p) ×
× (pλ − kλ)(pλ′ − kλ′)ηρρ′ , (18)

which, after integration, lead to

�1(p) = egκμνλρ

16π2ε
ψ(−p)σμνγ5

((
m2

4
− p2

12

)
γλγρ +

(
/p

6
− m

2

)
pλγρ

)
ψ(p) + · · · ,

(19)

�2(p) = egκμνλρ

16π2ε
ψ(−p)

((
m2

4
− p2

12

)
γλγρ −

(
/p

6
− m

2

)
pλγρ

)
σμνγ5ψ(p) + · · · ,

(20)

�3(p) = 2g2

16π2ε
κμνλρκμ′ν′λ′ρηρρ′σμνψ̄(−p) ×

×
1∫

0

dx

(
(m + /px)pλpλ′(1 − x)2 − 1

4
(m + /px)ηλλ′ [m2(1 − x) − p2x(1 − x)]−

− 1

4
(1 − x)[m2(1 − x) − p2x(1 − x)](γλpλ′ + γλ′pλ)

)
σμ′ν′ψ(p) + · · · =

= 2g2

κμνλρκμ′ν′λ′ρηρρ′σμνψ̄(−p) ×

16π2ε
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×
[
(
2m

3
+ /p

4
)pλpλ + 1

12
(
p2

4
− m2)(γλpλ′ + γλ′pλ)−

− 1

4
ηλλ′

(
m3

2
+ m2

/p

6
− mp2

6
− /pp2

12

)]
σμ′ν′ψ(p) + · · · , (21)

where the ellipsis stand for finite terms which we do not quote here.
In summary, we calculated the one-loop LV contributions arising in the two point vertex func-

tions due to the presence of the non minimal pseudotensor LV coupling in Eq. (1). All these 
contributions are divergent, so that for consistency we are enforced to assume that these struc-
tures already exist in the tree level photon Lagrangian, so that one has enough counterterms 
available to absorb these divergences. This renormalization procedure leave us with arbitrary fi-
nite counterterms, which have to be fixed by some physical conditions, or by comparison with 
the experiment. This scenario is not new: the same happens when the tensor coupling (missing 
the γ5 present in our LV vertex) is used to generate the usual CPT even kF coefficient in the 
SME, as discussed in [6] (see also [8]). A somewhat different sort of arbitrariness appears in the 
perturbative generation of the CFJ term [4] and also the axion-photon coupling [9], where the 
quantum corrections are finite but ambiguous (regularization dependent). On the other hand, it 
has been shown that the perturbative generation of aether-like LV terms yielding well-defined, 
finite quantum corrections, happens in different models [5]. We stress that our results are to be in-
terpreted within the framework of the effective field theory approach [19], according to which the 
non-renormalizable models represent themselves as a low-energy effective description of some 
more fundamental theory. In this context, coupling constants of non-renormalizable operators 
have negative mass dimension, arising as a consequence of integrating out some heavy modes, 
and being proportional to negative powers of some large mass scale. It is worth to point out that 
originally, the SME itself has been introduced as a low-energy effective description of the string 
theory [20]. Therefore, the appearance of non-renormalizable couplings and of divergent terms 
in our theory is very natural.

The end result is that, to cancel one loop divergences, the effective Maxwell Lagrangian, 
taking into account the LV terms that are generated by the fermion loop, should look like

Leff = −1

4

(
FμνF

μν + r1mgF̄μνF̃
μν + r2m

2g2F̄μνF̄
μν + r3g

2F̄μν�F̄ μν

+ r4g
2∂μF̄μν∂λF̄

λν
)
, (22)

where the ri are dimensionless renormalization constants. The terms proportionals to r1 and 
r2 are minimal LV operators, being first and second order in the LV tensor, respectively, and 
therefore should relate to the kF term of the photon sector of the minimal SME, while those 
proportional to r3 and r4 are higher derivative, non-minimal terms. Since we are interested in 
investigating the basic properties induced in the photon sector by these LV operators, we will 
not pursue the task of fixing the exact values of ri in the following, instead they will be assumed 
of order one, in order to establish rough order-of-magnitude constraints on κ , as well as other 
interesting physical consequences.

We close this section by making some comments about the extension of our results for fi-
nite temperature which we elaborate within the framework proposed in [21] and further applied 
in [22,23] and other papers. To justify the validity of this approach, we remind that within 
Lorentz-breaking theories, there are two types of Lorentz transformations, the observer ones, 
which transform both dynamical fields and background coefficients, and the particle ones, which 
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transform only the dynamical fields, see discussion in [1]. As a result, the Lagrangian is invariant 
with respect to observer Lorentz transformations but not particle ones, and in within the observer 
viewpoint we apply the usual finite temperature methodology. We proceed with the basic mo-
mentum integral in Eq. (10), which appears both in the minimal and non-minimal contributions. 
For simplicity, we restrict ourselves to the minimal terms proportional to F̄ μνF̄μν and F̄ μνF̃μν , 
and the external momentum p in the denominator are set to zero. Following the Matsubara for-
malism, we carry out the Wick rotation and discretize the Euclidean p0 variable according to 
p0 = 2πT (n + 1

2 ), for integer n. As a result, we have the following finite temperature result for 
our basic integral (10):

I = T

∞∑
n=−∞

∫
d3�k

(2π)3

1(�k2 + m2 + 4π2T 2(n + 1
2 )2

)2 , (23)

which, after integration yields

I (a) = 1

16π2

∞∑
n=−∞

1

[a2 + (n + 1
2 )2] 1

2 +ε
, (24)

where a = m
2πT

, and we have introduced the parameter ε → 0 since at ε = 0 the sum diverges. 
Using the well-known sum formula [22], we obtain

I (a) = 1

16π2ε
− 1

4π2

∞∫
a

dz√
z2 − a2

1

e2πz + 1
. (25)

We note that the pole part explicitly reproduces the zero-temperature result as it should be. The 
finite part of I (a) vanishes in the zero temperature limit (a → ∞).

It is interesting to study the high-temperature (a → 0) behavior of this result as well. To avoid 
the singularity in the lower limit of the integral above, we use the following analytic continuation 
formula (see f.e. [22]):

∞∫
a

dz

(z2 − a2)λ
Re

1

e2π(z+ib) − 1
=

= − 1

2a2

3 − 2λ

1 − λ

∞∫
a

dz

(z2 − a2)λ−1 Re
1

e2π(z+ib) − 1
−

− 1

4a2

1

(2 − λ)(1 − λ)

∞∫
a

dz

(z2 − a2)λ−2

d2

dz2 Re
1

e2π(z+ib) − 1
. (26)

Applying it for our case λ = 1/2, b = 1/2, and taking into account that the integral in (25) is 
real, we represent this integral as:

∞∫
a

dz

(z2 − a2)1/2

1

e2πz + 1
=

= − 1

a2

⎡
⎣1

2

∞∫
dz(z2 − a2)1/2(1 − tanhπz) + π2

3

∞∫
dz(z2 − a2)3/2 tanhπz

cosh2 πz

⎤
⎦ . (27)
a a
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The integrand in the parentheses in the r.h.s. displays no singularity at a → 0. Hence, this integral 
in the limit a → 0 can be written as

∞∫
a

dz

(z2 − a2)1/2

1

e2πz + 1

 −C0

a2 + . . . , (28)

where dots are for the subleading at a → 0 terms, and

C0 = 1

2

∞∫
0

dzz(1 − tanhπz) + π2

3

∞∫
0

dzz3 tanhπz

cosh2 πz

is a finite constant. Thus, recovering the temperature dependence through using the explicit ex-
pression of a we can write the following higher-dimensional asymptotic form for I (a):

I (a)|a→0 = 1

16π2ε
+ C0

4π2a2 + . . . = 1

16π2ε
+ C0

T 2

m2 + . . . . (29)

This result grows quadratically with the temperature. Such a behavior is not unusual, it occurs, 
for example, for some contributions in [23].

The final minimal correction to the photon Lagrangian, in the finite temperature case, turns 
out to be

Leff
T = 2

(
m2g2F̄ μνF̄μν − megF̄μνF̃μν

)
I (a), (30)

so the essential structure of the LV corrections induced in the photon two point function is pre-
served in the case of finite temperature.

3. The induced minimal LV term

Inspired by the results of the previous section, we now consider the following effective La-
grangian

Leff

(1) = −1

4

(
FμνF

μν + c1κμναβεαβρσ FμνFρσ + c2κμναβκαβρσ FμνFρσ

)
, (31)

where c1 and c2 are dimensionless constants. These corrections amount to a CPT even kF term 
in the photon sector of the SME,

LSME ⊃ −1

4
k
αβρσ
F FαβFρσ , (32)

where

k
αβρσ
F = c1κ

αβμνε ρσ
μν + c2κ

αβμνκ ρσ
μν . (33)

In order to write this Lagrangian in a way that allows for more physical insight, we choose to 
decompose κμναβ into three 3 × 3 matrices κa , κb , κc according to

(κa)
ij = κ0ilmεjlm , (34a)

(κb)
ij = κ0i0j , (34b)

(κc)
ij = εikmεjpqκkmpq . (34c)
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This is the same kind of decomposition used for the kF tensor in the photon sector of the SME 
[2], but here applied to a different object, whose symmetry properties are the same. Due to the 
symmetries of κμνλρ , one can see that κb and κc are symmetric matrices by definition.

Recalling the definition of the dual electromagnetic field tensor (14), together with the rela-
tions between the covariant tensors and the vectorial fields E and B,

F i0 = Ei, F ij = −εijkBk, F̃ i0 = −Bi, F̃ ij = −εijkEk , (35)

we can cast Eq. (31) as

Leff

(1) = 1

2

(
E2 − B2

)
+ 1

2
E ·

[
2c1κa + c2

(
4κ2

b − κaκ
T
a

)]
· E

+ E ·
[
c1

(
2κb − 1

2
κc

)
+ 1

2
c2κaκc − 2c2κbκa

]
· B

− 1

2
B ·

(
2c1κa − c2κ

T
a κa + 1

4
c2κ

2
c

)
· B . (36)

It is instructive to compare this with the similar terms present in the SME,

LSME
photon = 1

2

(
E2 − B2

)
+ 1

2
E · κDE · E + E · κDB · B − 1

2
B · κHB · B . (37)

We see that different combinations of κa , κb and κc contribute to the coefficients κDE , κDB and 
κHB .

To simplify the analysis, we will first look at the first order terms in (36), which are naturally 
the dominant ones. In this approximation, we see that the κa coefficients are responsible for 
generating κDE and κHB terms, while the combination 2κb − 1

2κc contributes with a κDB term, 
according to the correspondence

κDE = κHB = 2c1κa , (38a)

κDB = c1

(
2κb − 1

2
κc

)
, (38b)

where we used the fact that both κb and κc are symmetric matrices. We also recall that the LV 
coefficients in Eq. (37) can be rewritten in terms of CPT even and odd parts as follows [2],

(κe+) = 1

2
(κDE + κHB) , (κe−) = 1

2
(κDE − κHB) − 1

3
trκDE , (39a)

(κo±) = 1

2
(κDB ± κHE) = 1

2

(
κDB ∓ κT

DB

)
, (39b)

κtr = 1

3
trκDE , (39c)

where κe and κo are CPT even and odd coefficients, respectively. In the photon sector of the 
SME, the CPT even coefficient κμνρσ

F is assumed to have vanishing double trace (κF )
μν

μν = 0, 
since any non-vanishing value for (κF )

μν
μν could be reabsorbed in a normalization of the usual 

kinetic term; this leads to the vanishing trace of the combination κDE + κHB , which amounts to 
trκDE = −trκHB . For the specific case of our model, in the currently considered approximation, 
the correspondence given in Eq. (38) means that any non-vanishing trace of κa should lead to no 
observable effect in the photon sector, and therefore we will assume trκa = 0 for the moment.
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Applying the decomposition given in Eq. (39) for the effective LV coefficients generated in 
our model, according to Eq. (38), leads to

(κe+) = 2c1κa , (κe−) = 0 , κtr = 0 , (40)

(κo+) = 0 , (κo−) = c1

(
2κb − 1

2
κc

)
. (41)

Therefore, we have generated non-vanishing coefficients κe+ and κo−, which are responsible for 
birefringence effects in the propagation of light in vacuum and, as a consequence, have very 
strong experimental constraints: typical bounds are of order 10−37 from astrophysical observa-
tions, and 10−15 from laser interferometry [25]. We stress, however, that translating these bounds 
on κe+ and κo− to precise bounds on κa and κb + κc should take into account the mass of the 
integrated fermion, the coupling constant g and, most importantly, the renormalization constant 
r1. Assuming r1 to be of order one, we can state the estimate

mgκa < 10−37 , mg

(
2κb − 1

2
κc

)
< 10−37 , (42)

for the dimensionless combinations of fermion mass, coupling constant and the LV parameters. 
For the electron mass of order 10−4 GeV, that amounts to constraints of order 10−33 GeV−1 to 
the corresponding coefficients in H(5)μναβ

F , according to Eq. (3), while for the proton mass of 
order 1 GeV, the bounds would of order 10−37 GeV−1.

Now taking into account the second order terms, the correspondence (38) changes to

κDE = 2c1κa + c2

(
4κ2

b − κaκ
T
a

)
, (43a)

κDB = c1

(
2κb − 1

2
κc

)
+ c2

2
κaκc − 2c2κbκa , (43b)

κHB = 2c1κa − c2κ
T
a κa + c2

4
κ2
c , (43c)

The new aspects arising from the second order contributions are that now the condition of zero 
trace of κa is not enough to ensure that κDE + κHB is traceless, and in general we will have 
κtr �= 0. Also, the non-birefringent coefficients κe− and κo+ acquire non-vanishing values, which 
are second order in κa , κb and κc. Typical experimental constraints for these non-birefringent 
coefficients are of order 10−18 from astrophysics, and 10−15 from laser interferometry [25], but 
from these we will not try to infer new constraints on the LV coefficients since they apply to 
second-order combinations of κa , κb and κc, and therefore could provide at the best very modest 
constraints.

4. Covariant dispersion relations: the minimal case

To fully unveil the birefringence effects resulting from the minimal LV model defined in 
Eq. (31), we calculate the dispersion relations using the formalism presented in [11]. The general 
idea is to use a plane wave ansatz Aμ (x) = Aμ (p) e−ip·x and write the covariant equations of 
motion for the electromagnetic potential in the absence of sources in the form

Mμν (p)Aμ (p) = 0 . (44)

For a LV Lagrangian of the general form we will be interested in,
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L = −1

4
FμνFμν − 1

4
Fμν

(
κ̂F

)μναβ
Fαβ , (45)

the matrix M assumes the explicit form

Mμν = 2χ̂μανβpαpβ , (46)

where

χ̂μανβ = 1

2

(
ημνηαβ − ημαηνβ

) + (
κ̂F

)μανβ
. (47)

Gauge symmetry implies that Mμνpν = 0, so that Eq. (44) always have the trivial, pure gauge 
solution Aμ ∼ pμ. This leads to the conclusion that detM = 0, so M has null spaces, i.e., its rank 
is smaller than its dimension. By carefully studying the null space structure of M , using exterior 
algebra tools, an explicit, covariant form for the dispersion relation can be shown to be [11]

εμ1μ2μ3μ4εν1ν2ν3ν4pρ1pρ2pρ3pρ4 χ̂
μ1μ2ν1ρ1 χ̂ ν2ρ2ρ3μ3 χ̂ρ4μ4ν3ν4 = 0 . (48)

This equation can be applied for our model, after the proper identification of the coefficient (
κ̂F

)μανβ generated in the photon sector by the radiative corrections, which, in the minimal case, 
is given by Eq. (33).

We will perform the calculation of the dispersion relation for a particular case. Taking into 
account the decomposition (34), we set κb = κc = 0, and take κa as the antisymmetric matrix

κa =
⎛
⎝ 0 κ3 −κ2

−κ3 0 κ1

κ2 −κ1 0

⎞
⎠ , (49)

so that the LV is parametrized by a vector k = (
κ1, κ2, κ3

)
. By expanding the expression (48)

with this particular choice of κ , we find a second order polynomial equation in (p0)
2, which can 

be solved to find

(p0)
2 = � ± √

�

6
(
c2k2 − 1

)
2 − 8c2

1k2
, (50)

where

� = 6p2 + k2p2
(

6c2
2k2 + 8c2

1 − 12c2

)
+ (p × k)2

(
−12c3

2

(
k2

)2 + 12c2
2k2 + 16c2

1c2k2 − 48c2
1

)
, (51)

and

� =
{

3
(

1 − c2k2
)[

2p2 + 4c2
2k2 (p × k)2 − 2c2k2p2

]
+4c2

1

[
4 (p × k)2

(
c2k2 − 3

)
+ 2k2p2

]}2

+ 4
(

3
(
c2k2 − 1

)
2 − 4c2

1k2
)(

4c2 (p × k)2 − p2
)

×
[
3
(
c2k2 − 1

)(
c2 (k · p)2 − p2

)
− 4c2

1 (k · p)2
]

. (52)

One may verify that the usual result (p0)
2 = (p)2 is obtained when κ → 0. In the general case 

in which � �= 0, equation (50) exhibits the expected birefringence in the model, as predicted in 
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the previous section. The propagation of light signals in this theory is also anisotropic, since the 
phase velocity contains terms which depend on the relative orientation of p and k.

One interesting question that can be addressed with this result is the causality of the wave 
propagation. We can obtain from Eq. (50) the phase, group, and front velocity for electromagnetic 
waves, by means of

vphase = p0

|p| , vgroup = dp0

d|p| , vfront = lim|p|→∞vphase , (53)

and we say causality is ensured at the classical level if vgroup ≤ 1 and vfront ≤ 1 [27]. We consider 
the dispersion relation for two particular cases, namely, waves propagating in the same direction 
as k, as well as in a perpendicular direction. To simplify the resulting expressions, we consider 
that the LV parameters are very small, and so expand the results up to the second order in |k|. 
We also verify that, in our case, the equality vphase = vgroup = vfront holds for every case.

For p parallel to k, we choose, without loss of generality, p = (p,0,0) and k = (κ,0,0), and 
we obtain,

vgroup = 1 ± 2√
3
κ |c1| + 2

3
κ2c2

1 +O
(
κ3

)
(for p ‖ k) , (54)

as for the case of p perpendicular to k, we choose p = (p,0,0) and k = (0,0, κ), thus obtaining

vgroup = 1 + 1

6
κ2

(
2c2

1 ±
∣∣∣2c2

1 + 3c2

∣∣∣) +O
(
κ3

)
(for p ⊥ k) . (55)

We conclude that for the parallel case, one of the polarizations is generally non-causal, while for 
the perpendicular case, if c2 < 0, we can ensure that both polarizations are causal, otherwise one 
of them will violate causality.

5. The induced non minimal LV sector

We now study the non minimal LV terms induced in the photon sector, corresponding to the 
ones proportional to r3 and r4 in Eq. (22): both contribute to the non minimal k̂F term in the 
SME [11],

LSME ⊃ −1

4
k̂
αβρσ
F FαβFρσ . (56)

These terms are expected to be subdominant, so we will provide a more simplified discussion, 
in order to provide insight into the kind of effects that could be generated at this level, yet point-
ing out that a more complete discussion, including for example higher loop orders, would be 
necessary in order to provide conclusive results.

For simplicity, we will consider the two non-minimal terms separately, starting with

Leff

(2) = −1

4

(
FμνF

μν + c3κμνρσ κμναβFρσ �Fαβ

)
. (57)

With the identification

k̂
αβρσ
F = −c3κ

μνρσ κ αβ
μν p2 , (58)

where the κμνρσ tensor is decomposed according to Eq. (34), and using the standard definitions 
for the non minimal coefficients κ̂DE , κ̂DB and κ̂HB ,
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(
κ̂DB

)jk = κ̂
0j lm
F εklm , (59a)(

κ̂DE

)jk = −2κ̂
0j0k
F , (59b)(

κ̂HB

)jk = 1

2
εjrmεkpq κ̂

rmpq
F , (59c)

one obtains directly

(
κ̂DE

)jk = −4c2
3

(
κ2
b − 1

4
κaκ

T
a

)jk

p2 , (60a)

(
κ̂HB

)jk = c2
3

(
κT
a κa − 1

4
κ2
c

)jk

p2 , (60b)

(
κ̂DB

)jk = 2c2
3

(
κT
a κb − 1

4
κaκc

)jk

p2 . (60c)

From this result, one can use the non minimal generalization of Eq. (39) to calculate the coef-
ficients κ̂e±, κ̂o± and κ̂tr± [11]. Instead of quoting the exact expressions, we comment on their 
general features. First, the trace components κ̂tr± are generically nonzero, in the sense there is 
not a simple condition on κa , κb or κc that can ensure κ̂tr± = 0, as in the first order, minimal term 
analyzed in Sec. 3. Second, we notice that κ̂e+ ∼ κ̂DE + κ̂HB is nonzero whenever any of the κa , 
κb or κc is nonzero (except for very specific values in which their contribution to κ̂e+ cancel), 
and since the κ̂e+ is associated with birefringence, we can state that birefringence is a generic 
feature of this model. The other birefringent coefficient, κ̂o−, can only be nonzero if both κa and 
κc , or κa and κb, are nonzero.

Next, we consider the remaining non minimal term, as in

Leff

(2) = −1

4

(
FμνF

μν + c4κμνρσ κλναβ∂μFρσ ∂λFαβ

)
, (61)

and the identification with the SME k̂αβρσ
F coefficient now reads

k̂
αβρσ
F = −c4κ

μνρσ κ
αβ

λν pμpλ . (62)

The calculation of the corresponding κ̂DE , κ̂DB and κ̂HB is more involved in this case, but can 
also be carried out directly. We will not quote the cumbersome expressions that result, but we 
comment that birefringence is also a generic consequence of the Lagrangian in Eq. (61).

We can gain more insight into wave propagation in this model with the help of the covariant 
dispersion given in Eq. (48), where now, we use

κ̂
ρσαβ
F = −

(
c3κ

μνρσ κ αβ
μν p2 + c4κ

μνρσ κ
αβ

λν pμpλ
)

. (63)

As before, we select a particular case to show what kind of physical effects we can expect in this 
model. Again we consider κb = κc = 0 and κa given as in Eq. (49). Expanding the dispersion 
relation in Eq. (48) we obtain an eighth order polynomial in p0, whose solutions can be found in 
explicit form with a computer algebra system such as Mathematica. The independent solutions 
are (

p0
)2

a
= p2 , (64a)

(
p0

)2 = 1 + c3 (k · p)2

2 , (64b)

b c3k
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(
p0

)2

c
= 1 + c3k2p2 + 2c4 (p × k)2

c3k2 . (64c)

We find therefore three modes for electromagnetic wave propagation, one being completely 
independent of the LV background, corresponding to the usual wave propagation in Maxwell 
electrodynamics. The other two modes are inherently Lorentz violating, in the sense they do not 
possess a smooth limit when k → 0, the corresponding poles in the complex p0 plane going to 
infinity in this limit.

For the first LV mode, 
(
p0

)
b
, we calculate the phase, group and front velocity, for the parallel 

case (i.e., p = (p,0,0) and k = (κ,0,0)) as well as for the perpendicular case (i.e. p = (p,0,0)

and k = (0,0, κ). The results are

vphase =
√

1 + 1

c3p2κ2 , vgroup = (
vphase

)−1
, vfront = 1 (for p ‖ k) , (65)

and

vphase = 1√
c3p2κ2

= vfront, vgroup = 0 (for p ⊥ k) . (66)

Despite 
(
p0

)
b

propagating with vphase > 1 in the parallel direction to k, this mode does not vio-
late causality because both vgroup and vfront are less or equal to one. In the perpendicular direction, (
p0

)
b

is actually independent of p, so even if classically we can say causality is preserved since 
vphase = vfront < 1, it is hard to imagine that a consistent quantum interpretation can be made for 
this mode. As for the second LV mode, 

(
p0

)
c
, proceeding as before we obtain the same results 

as for 
(
p0

)
c

in the case p ‖ k. However, for p ⊥ k we have

vphase =
√

1 + 2
c4

c3
+ 1

c3p2κ2 , vfront =
√

1 + 2
c4

c3
, (67)

vgroup =
√

1 + 2 c4
c3

1 + κ2 (for p ⊥ k) , (68)

corresponding to non-causal wave propagation. We conclude that the non-minimal piece of the 
Lorentz violating model has unphysical modes, which is a general feature of the non-minimal 
SME extensions [11,12] (see for example [13] for a detailed discussion of dimension six op-
erators). From the phenomenological viewpoint, understanding these models as effective field 
theories, one can say that these unphysical modes are not expected to appear in low energy 
experiments, but a deeper theoretical investigation about them is a non trivial and interesting 
problem.

6. Conclusions and perspectives

We considered the quantum impacts of a dimension-five pseudotensor Lorentz-breaking 
spinor-vector coupling, by calculating the one loop contributions to the two-point function of the 
gauge field. These corrections turned out to be divergent, thus requiring the introduction of the 
corresponding counterterms in the purely gauge sector in order to eliminate these divergences. 
Therefore, the problem of studying the new extended LV Maxwell theory naturally arose. For 
this theory, we obtained the dispersion relations and found different modes of wave propagation, 
with only some of them being consistent with regard to the causality requirement. We found also 
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that the birefringence is a general feature in our resulting model, and from it some constraints on 
the LV parameter could in principle be imposed.

The mechanism presented in this, as well as in other works in the literature [4–7,9,26], involv-
ing Lorentz violating terms in the photon sector of the SME arising as perturbative corrections 
originated from Lorentz violating couplings in other sectors, could lead to the translation of the 
very stringent bounds found in the photon sector to these original couplings. Unfortunately, this 
perturbative corrections rarely appear without some degree of uncertainty, due to ambiguities in 
the calculation of Feynman diagrams, or to the renormalization procedure itself, as we discussed 
in this work. This is certainly a subject that deserves further study.

Further continuation of our study could also consist in a deeper discussion of the impacts of 
the higher-derivative terms generated by the pseudotensor coupling. The most interesting issue 
would be the investigation of their influence on the unitarity of the theory. This question was 
discussed for other non minimal couplings such as in [24], and more recently unitarity in the 
presence of a Lorentz violating three-derivative term appeared in [28,29], so, performing a similar 
analysis for the four-derivative term would be an interesting problem.
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